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ABSTRACT 
The spatial nature of traffic crashes makes crash locations one of the most important and 
informative attributes of crash databases. It is however very likely that recorded crash 
locations in terms of easting and northing coordinates, distances from junctions, addresses, 
road names and types are inaccurately reported. Improving the quality of crash locations 
therefore has the potential to enhance the accuracy of many spatial crash analyses. The 
determination of correct crash locations usually requires a combination of crash and network 
attributes with suitable crash mapping methods. Urban road networks are more sensitive to 
erroneous matches due to high road density and inherent complexity. This paper presents a 
novel crash mapping method suitable for urban and metropolitan areas that matched all the 
crashes that occurred in London from 2010-2012. The method is based on a hierarchical data 
structure of crashes (i.e. candidate road links are nested within vehicles and vehicles nested 
within crashes) and employs a multilevel logistic regression model to estimate the probability 
distribution of mapping a crash onto a set of candidate road links. The road link with the 
highest probability is considered to be the correct segment for mapping the crash. This is 
based on the two primary variables: (a) the distance between the crash location and a 
candidate segment and (b) the difference between the vehicle direction just before the 
collision and the link direction. Despite the fact that road names were not considered due to 
limited availability of this variable in the applied crash database, the developed method 
provides a 97.1% (±1%) accurate matches (N=1,000). The method was compared with two 
simpler, non-probabilistic crash mapping algorithms and the results were used to demonstrate 
the effect of crash location data quality on a crash risk analysis.  

Keywords: crash location, crash mapping, metropolitan/urban networks, multilevel logistic 
regression   
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INTRODUCTION 
Sustainable road safety programmes require constant enhancements to crash 

prevention policies and countermeasures. The precautionary measures should focus on the 
network areas where many crashes occur and the driving attitudes that are considered mostly 
responsible for crashes. Analysis of crash data aims to identify and explain the factors that 
lead to traffic crashes. The quality and reliability of the crash data that are used as an input 
for spatial crash analyses (e.g. identification of black spots, spatial crash modelling etc.) is 
closely related to the validity of their outcomes (e.g.1–5). The spatial nature of crashes makes 
crash locations as one of the most important and informative attributes of crash databases (5–
7) that at the same time are very likely to be inaccurately reported (1–4, 7). Therefore, the 
refinement of the crash locations gives to the crash analyses the potential to improve in 
quality. 

Traffic crashes create major problems to society as they are related to personal 
injuries, property damage and other disruptions such as traffic congestion and delays. Crashes 
in urban networks are more likely to involve unprotected road users such as pedestrians and 
pedal cyclists who are more vulnerable to serious or fatal injuries. Metropolitan areas are the 
ultimate form of the urban environment and they are characterised by high network density, 
large number of trips per day and road users with non-uniform driving attitudes who may also 
be unfamiliar with the environment (i.e. tourists, business visitors etc.). In these chaotic 
traffic conditions the explanation of the causal factors of crashes might be challenging; and 
that is why crash analyses of these areas are of particular interest. Crash locations are rarely 
reported very precisely as they are collected, for administrative rather than scientific purposes, 
by police officers who may not arrive immediately at the crash scene (2). The complexity and 
density of the urban road network is likely to increase the chance of misreporting.  

This paper presents a novel crash mapping method suitable for GIS-based crash data 
that is designed for London, one of the 20 largest metropolitan areas worldwide and the 
largest in Europe. The main challenges of this work are the high density and the complexity 
of the road network and the missing values for one of the most important information for 
identifying crash locations, the road names on which crashes occurred. The crash mapping 
algorithm developed in this work is based on a multilevel logistic regression model that 
employs the distance and direction differences as explanatory variables and it is the first 
wide-area network-level crash mapping attempt that does not include road names as 
supporting information.  

This paper consists of: a review of the existing literature for crash mapping 
methodologies, a detailed description of the available data, a step-by- step explanation of the 
developed crash mapping method and the results of its implementation. Finally the main 
conclusions of this study are drawn. 

LITERATURE REVIEW 
 Although accurate crash locations can be particularly useful for crash analyses the 
majority of existing studies proceed to the analysis of crash location data without reporting 
any sort of prior processing (e.g. (6)). The developed crash mapping approaches are closely 
related to the type of their locational input data. Crash locations are reported either using 
linear referencing, offset from intersections, addresses, or GIS coordinates.  
 The linear referencing method is a straightforward and relatively accurate method of 
crash location reporting. Studies that have available the indication of the closest milepost to 
the crash define this point of the network as the crash location (8, 9). Although this approach 
demands minor processing, it is reporting mistakes insensitive. Moreover, its location error is 
equal to the half of the interval between two mileposts that can be as long as half mile. 
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Additionally, linear referencing can be used only on numbered roads and so it may not be 
applicable to urban networks.  
 In order to convert crash locations that are reported using an offset from junctions to 
coordinates it is needed to combine the attributes of the crash and the network data. Qin et al. 
(10) and Dutta et al. (11) developed two algorithms for identifying crash locations in urban 
and sub-urban environment using “On-At tables” that demonstrate all the roads and their 
directions at each intersection. These algorithms are strongly dependent on the accuracy of 
the information included in the “On-At” tables and cannot be applied when junction 
information is missing. Qin et al. (10) report that overall 83% correct matches are achieved 
but this percentage is higher (89.7%) for local roads.  
 Address is an easily obtained spatial variable and consequently can be used for 
identification of crash locations. Burns et al. (12) tested some of the online geocoding APIs 
(Application Programming Interfaces) in terms of their capability to identify crash locations, 
when given the reported addresses. Google Maps API was found to give the highest matching 
rate (78%) although the accuracy of matching could not be quantified due to the ambiguity of 
the cases where the addresses include spelling or other mistakes. Another crash mapping 
method that is indirectly related to addresses is the method developed by Tarko et al. that 
attempted to link crash and network records (3). The method was theoretically founded on 
probabilistic linking techniques used for matching hospital data and although it succeeded in 
matching all crashes with the correct roads, in some cases it matched one crash with multiple 
roads. 

Crash locations that are reported with GIS coordinates when superimposed on a map 
of the road network rarely fall exactly on roads. In order to correct the locations additional 
crash related information should be employed. Some of the GIS-based studies use 
straightforward but simplistic approaches such as selection of the closest junction (13) or 
closest road section with road name filtering, (2) that may be effective for large datasets but 
not very precise. A similar approach includes the use of restrictive, pre-defined buffer zones 
along with some descriptive variables such as road name, class, speed limit and junction 
details (1). Although these approaches have the benefit of a simple theoretic background and 
are easier to implement, are shown to produce significantly less accurate results than methods 
that use the vehicle directions (7). 
 The use of the direction difference between the intended direction of the involved 
vehicles and a road segment was introduced by Wang et al. (14) who used a maximum 
weighted score to combine the distance and the angular difference to identify crash locations 
on the M25 motorway in the UK. A weighted score, although it gives slightly improved 
results than the simpler approaches (as estimated by Imprialou et al. (7) ), is not suitable for 
dense and complex networks due to its strong dependency on vehicle direction. Direction 
difference was later used for two Artificial Intelligence-based crash mapping concepts (4, 7). 
Deka & Quddus (4) developed an artificial neural network for matching crashes within the 
entire primary road network of the UK that considered the distance, vehicle direction, and the 
reported road name and type (accuracy level: 98.4%). Imprialou et al. (7) employed an 
empirically set fuzzy-logic inference system based on distance and direction combined with 
road name and type filters (accuracy level: 98.9%). One of the main shortcomings of these 
three methods is the expression of the direction of a crash by a single measure (i.e. the 
average of all the intended directions of all the involved vehicles) that can result in major 
information losses if the examined crashes include multiple vehicles. 
 In summary, although existing literature includes a variety of different crash mapping 
approaches, it seems that most of them are not applicable to dense urban networks. Moreover, 
none of the developed methods enables the identification of road crashes without taking into 
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consideration the reported road name for each crash. Therefore, a new method should be 
developed that will be able to handle the complexity and the special characteristics of an 
urban road network such as inaccurate/missing road names in the crash records. 
 
DATA DESCRIPTION 
 The data that are used for the implementation and validation of this crash mapping 
algorithm are extracted from the Integrated Transport Network of Great Britain (ITN) and the 
National Road Accident Database of the United Kingdom (termed as STATS 19). 

a) Network Database-ITN 
ITN is one of the layers of the digital Ordnance Survey MasterMap and represents in 

detail the centrelines and the direction of the entire road network of Great Britain with a 
system of links and nodes (15). The part of the network that is considered for this study 
includes the City of London and Greater London (see FIGURE 1). The road network of this 
area is particularly dense and includes a variety of different road types; from motorways and 
A-roads to minor and private roads. The attributes of the network that are considered are: 

• Link Reference Number. 
• Coordinates and Reference Number of start node 
• Coordinates and Reference Number of end node 
• Road name 
• Road type 
• Link length 

 
b) Crash Database-STATS 19 

STATS 19 is the official Police crash database in the UK and consists of all injury 
crashes (16). The database includes a number of different variables that describe the crash 
location, involved vehicles and casualties(17). The main variables that may be of interest for 
this study are: 

• Accident Reference Number; 
• Reported Location: Easting and Northing obtained by the Ordnance Survey Grid map; 
• Vehicle movement compass point: The intended direction of every involved vehicle 

reported using the four cardinal points and their intermediates (i.e. N, NE, E etc); 
• Road type; 
• Junction Detail: Type of junction (if any) within a radius of 20 meters from the crash 

location; 
• Road name; 
• First point of Impact: Each involved vehicle’s first point to come into contact with 

another vehicle (i.e. front, back, offside, nearside); 
 
The crash database for this study consists of all the 72,710 reported crashes that 

occurred from 2010 to 2012 in the City of London and Greater London. TABLE 1 includes 
some descriptive information about the examined crashes. Not surprisingly for a dense urban 
network, over three quarters of the crashes are located less than 20 metres from junctions that 
are the most challenging road configuration in terms of crash mapping. Moreover, more than 
one quarter of the crashes occurred on minor urban roads where the road name is not reported. 
This is a significant limitation because road name has been proved to be a useful variable in 
previous crash mapping techniques and indicates that an alternative approach is required. 
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The predictive multilevel model that is described in the next section is built and 
validated using two independent representative samples (i.e. training and reference datasets 
respectively) extracted from the full crash dataset with the method of quota sampling. The 
training dataset consists of 700 crashes equally distributed all around the examined network 
in London during 2011. The reference dataset includes 1,000 crashes that occurred in 2012 
(TABLE 1). All the crashes of these two sub-datasets were manually matched (vehicle by 
vehicle) to one of the candidate road links employing a range of quantitative and qualitative 
variables. The selection of the candidate links is based on the reported location, direction, 
road type, junction detail, first point of impact and road name (where available). In the 
absence of real reference data showing the road segments where crashes actually occurred, 
the manual crash mapping, although it is time inefficient, is considered to be the most reliable 
method (12). Thus, the comparison of the results of the proposed method to the reference 
dataset is considered to capture the actual accuracy level. 

 
METHOD: CRASH MAPPING USING MULTILEVEL LOGISTIC REGRESSION 
(CM-MLOGIT) 

To achieve the maximum possible level of accuracy a crash mapping method should 
be designed to fit the special characteristics of the network and the crash data. As mentioned 
above, the examined road network is considerably dense and complex as it includes multiple 
different road types and classifications (from minor private roads to motorways). Moreover, 
the names of the roads where the crashes occurred are not always available (i.e. not available 
for all minor-road crashes that account for over the 26% of the crash database); increasing the 
difficulty of the task. In order to overcome the problems due to the above characteristics it is 
necessary to use a measure that in addition to the distance of a reported crash location to a 
road link (henceforth: distance) will enable the discrimination of a relevant to the crash road 
link from the non-relevant. The intended direction of each involved vehicle has been shown 
to have these qualities (4, 7) and consequently it is selected for this algorithm. In contrast to 
the previous approaches that used one single value of intended direction per crash (i.e. the 
average of the directions of all the involved vehicles), this algorithm considers a 
disaggregated measure of direction; the intended direction of each of the involved vehicle is 
considered separately so as to decrease the chance of mismatches.  

The foundation of this approach lays on the examination of the crash moments before 
its occurrence. A crash is an unintentional meeting (collision) between a moving vehicle with 
other vehicles, road users or other obstacles and the crash location is the point of the network 
where this impact occurred. This point can be considered as the meeting point of the 
trajectories of the involved vehicles. Consequently, in order to find this unique crash location, 
firstly the road link, where each of the involved vehicles was travelling on just before the 
crash, should be found. This approach enables the identification of the locations of multiple-
vehicle crashes that occurred on complex junctions without affecting negatively the mapping 
of simpler cases such as single vehicle crashes or crashes that included vehicles that were 
moving to the same direction. This section discusses the crash mapping process that is 
divided into three main procedures: a) Candidate road links identification, b) Matching 
probability estimation of candidate links and finally c) Identification of crash location. 
 

a) Candidate road links identification 
As the examined network covers a wide area and consists of over 300,000 road links 

the minimisation of the examined road links per crash is necessary for developing an efficient 
crash mapping algorithm. Thus, each crash is attempted to be matched with road links that 
fall into the area that is defined by an error circle with its centre at the reported crash location 
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and a predefined radius (henceforth: candidate links). This method, that is extensively 
discussed in Imprialou et al. (7), is an efficient way to narrow down the number of the 
examined road links without compromising the accuracy of the results. 

The radius of the error circle is crucial for the successful implementation of this 
method as it should be sufficiently large for capturing the road links that are the most likely 
to be correct and simultaneously exclude most of the unnecessary links. The optimal value 
for the radius of the error circle was determined by the 99th percentile of the distance between 
the reported crash location and the manually selected road link in the training dataset. The 
99th percentile of the distances is 27.46 m and the radius of the error circle was rounded up to 
30 m. In order to identify candidate links for the extreme cases that did not include links 
within this area, the radius is expandable up to 230m with a step of 50m in each iteration. 

Another measure to decrease the number of candidate links is the filtering of the links 
by road type. For crashes that are reported to occur on roundabouts or slip roads the final 
candidate links set consists of only roundabout or slip road links unless these road types do 
not appear in the error circle. In that case, all the links within the error circle are considered 
as candidate. 

 
b) Matching probability estimation 

As discussed, the primary goal is to identify the correct link on which a crash occurs. 
After identifying the set of candidate links, each link is assigned with a probability of being 
the link where each of the involved vehicles was travelling on just before the collision. At 
this stage both the distance (i.e. minimum distance from the reported crash location to a link) 
and the angular difference are considered. While the distance of a specific candidate link is 
the same for all the involved vehicles of a crash, the angular difference may differ. Thus, all 
the candidate links that were identified at the previous stage should be evaluated for their 
likelihood to be the matching links for each participating vehicle separately. In this way, 
crash data can be seen as a  nested structure where candidate links are nested within vehicles 
and vehicles are then nested within crashes resulting in a three-level hierarchical dataset. 
FIGURE 2 represents graphically this hierarchical structure; every crash includes I (I ≥1) 
involved vehicles and each of these vehicles can be matched to J (J ≥1) candidate links. 

The estimation of the probability of each link to be the correct link is based on a 
predictive three-level logistic regression model. Logistic regression is a probabilistic 
approach for modelling a binary response variable (here: a vehicle can be matched or cannot 
be matched to a link) in order to address a classification problem. The use of probability in 
classification problems is useful and logical when other labelling rules seem crude or 
ineffective due to the lack of a general criterion of classification (18, 19). One of the main 
assumptions of traditional logistic regression is the independence of observations. Violation 
of this assumption may lead to biased standard errors, confidence intervals and significance 
tests that can result in erroneous conclusions(20). In the examined case the candidate links 
cannot be considered as independent observations because the outcome of an observation can 
affect the outcome for other observations of the same candidate set. In fact, the structure of 
the crash data as it is aforementioned can be seen as hierarchical. Consequently, in order to 
avoid biases due to the independency assumption violation it is necessary to apply a 
hierarchical logistic regression model (18, 21). 

 
The general expression for a three-level logistic regression model is: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = log�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 �1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖�⁄ � = 𝛽𝛽0 + 𝜷𝜷𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 + 𝑢𝑢0𝑘𝑘 + 𝑢𝑢0𝑗𝑗𝑗𝑗 (1) 
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Where: 
 i, j and k: indices of Levels 1, 2 and 3 respectively;  

𝑦𝑦𝑖𝑖𝑖𝑖: binary response variable; 
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = Pr�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�: probability the binary response variable belongs to the category 
represented by one; 
𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎: vector of the mth explanatory variables; 
𝛽𝛽0: intercept; 
𝜷𝜷𝒎𝒎: vector of coefficients of the mth explanatory variables; 
𝑢𝑢0𝑘𝑘: random intercept of Level 3 (𝑢𝑢0𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝑢𝑢0𝑘𝑘

2 )) and 
𝑢𝑢0𝑗𝑗𝑗𝑗: random intercept of Level 2 (𝑢𝑢0𝑗𝑗𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝑢𝑢0𝑗𝑗𝑘𝑘

2 )). 
The predictive model is built using the training dataset that consists of 700 crashes 

that included 1,258 vehicles and 6,446 road links in total. The number of involved vehicles 
per crash varied from one to four and the candidate links per crash were from one to 31. The 
response variable is score that is equal to one (score=1) when the examined link is the unique 
“matching” link or equal to zero (score=0) for the rest of the links that are “not matching” 
with the examined involved vehicle of a crash. The explanatory variables are distance (i.e. 
minimum distance from the reported crash location to a link) and angular difference (i.e. 
minimum angular difference between the vehicle’s intended direction and the link). The 
integration method that was used is mean and variance adaptive Gauss–Hermite quadrature 
(21). The parameter estimation of the model is summarised in TABLE 2. 
 The tabulated results show that both the distance and the angular difference are 
statistically significant to the 95% level (i.e. p-values are less than 0.05) for the estimation of 
the probability of a candidate link to be the correct. As expected, an increase in both the 
explanatory variables decreases the probability of the examined link to be matching. More 
specifically, for every metre increase in the distance between the reported crash location and 
the examined link, the odds for it to be the matching decrease by 21.9% (i.e. distance odds 
ratio =exp(βDistance) =0.781) and for every degree the angular distance increases, the odds drop 
by 4.9% (i.e. angular difference odds ratio =exp(βAng Difference) =0.951). Moreover, from the 
Likelihood Ratio (LR) (i.e. LR test are used to compare the fit between two nested models) 
test it was found that the current model fits significantly better than the ordinary logistic 
regression model, justifying the superiority of multilevel modelling for the examined dataset. 
Equation (2) presents the combination of the expected values of the coefficients and the 
random effects that was used for prediction (according to the initial assumption random 
effects’ expected values are equal to zero): 
 

𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖) = 2.6154 − 0.2476 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) − 0.0505 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (2) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑒𝑒𝐴𝐴

1 + 𝑒𝑒𝐴𝐴
 (3) 

 Equation (3) was used for predicting the probability of each candidate link to be the 
link where the examined vehicle involved in the crash was travelling on just before the crash. 
For instance, a candidate link that is located 3m away from the reported crash location and its 
direction differs 11 degrees from the intended direction of an involved vehicle is 78.9% likely 
to be the matching link while the probability for another link with 2m distance and 70 degrees 
angular difference is only 19.6%. This probability (score) is used for ranking all the candidate 
links in terms of their goodness of matching with an involved vehicle and plays a primary 
role in the final crash location identification that is described in the following section.  
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Matching Link per Vehicle 
 The candidate link with the highest probability (i.e. score) is considered to be the 
correct link on which a vehicle was travelling on just before the crash. This link is termed as 
the matching link for this specific vehicle. 
 Although the links that ranked first in terms of score are almost always indeed the 
matching links, due to minor network digitisation problems there are a few cases where the 
matching link was found to be neighbour to the link with the highest score. This happens due 
to inaccuracy in the measurements of crash location and angular difference. In order to 
prevent this kind of mismatches an empirical rule was set: if the candidate link set includes 
links with distances smaller than the one of the link with the highest score and with angular 
differences up to 25 degrees bigger, then the link that has the highest score among them 
becomes the matching link. 
 

c) Identification of crash location 
The last step of this process is the identification of the final location on the selected 

link representing the most likely point of the network where the first impact occurred. In 
order to proceed to link-based locational or other statistical analyses of the crash data the 
crash location should be represented by a unique road link (i.e. final matching link) and a set 
of coordinates on that link representing the estimated point of first impact (i.e. final crash 
location). From the previously described process, every involved vehicle is matched with one 
road link. In order to select the final matching link of a crash, the matching links of all the 
involved vehicles must be taken into consideration. For that purpose it is useful to distinguish 
the two main categories of crashes in terms of the approach of the final selection they need.  

1) Crashes including one matching link  
This category includes all single-vehicle crashes and the crashes that behave like single-
vehicle (i.e. crashes where all the vehicles are heading in the same direction and crashes 
where the vehicles are matched with the same link). The final matching link for these crashes 
is the link that was identified at the previous step (i.e. the link with the highest score) and the 
final crash location is the closest point from the reported crash location to this link. 

2) Crashes including multiple matching links 
This category includes crashes with vehicles heading in different directions. The majority of 
these crashes occurred on junctions. The rules of this process are described below: 

i) If all the involved vehicles are matched with links that have one node (i.e 
intersection) in common, then this node is considered as the final crash location 
and the link that has the smallest distance from the reported crash location is the 
final matching link. 

ii) If the involved vehicles are matched with links that do not all intersect, then the 
final matching link is the link with the highest score and the final crash location is 
the closest point from the reported crash location to this link. 

 

RESULTS 
Method Evaluation 
 The matching accuracy of CM-MLOGIT is estimated by comparing its output with 
the 1,000 manually matched crashes of the reference dataset discussed above.  If the 
identified road link by CM-MLOGIT for each crash is different from the manually selected 
link then this is considered as a mismatch. The confidence interval of the result (d) that is 
estimated based on categorical data sample equation (22) is approximately one percent. 
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𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(
𝑍𝑍𝑍𝑍(1 − 𝑝𝑝)

𝑁𝑁𝑆𝑆
) (4) 

  

Where d: acceptable margin of error, Z: Z-value (here: 1.96 for the 95% confidence 
level), p: percentage of expected error, Ns: sample size (1,000 crashes). 
 CM-MLOGIT is a method that requires a certain amount of time for training the data 
and fitting the three-level logit model. In order to test whether CM-MLOGIT could be 
substituted by non-probabilistic, less time-demanding methods, the reference dataset results 
were compared to the results of: 

a) A minimum distance based algorithm that selects the closest road link to the reported 
location (DMIN) as suggested by Levine et al. (13); 

b) A minimum angular distance based algorithm that selects the link that has the most 
similar direction with at least one of the involved vehicles (AMIN). This algorithm is 
tested for the first time in this paper. 1 
The three methods were applied for the full three-year crash database (2010-2012) in 

order to develop three indicative crash rate maps of the entire study area. The risk level of 
each road link is quantified using the ratio of total crashes per unit of length. Using crash 
rates is not the strongest method for risk estimation (23) but the scope of this paper is not the 
identification of high risk areas, but the comparison of crash mapping methods. Consequently, 
the maps should be seen more as a representation of the differences between the methods 
than of the actual hazard-proneness of the network links. 

 
Accuracy Estimation 
 The reference dataset was employed to estimate the accuracy of the three methods 
discussed above. The percentage of accurate matches is 76.6%, 55.1% and 97.1% (±1%) for 
DMIN, AMIN and CM-MLOGIT respectively. Not surprisingly, the two simplistic methods 
are significantly less accurate than CM-MLOGIT. The accuracy of DMIN is slightly lower 
than that of the simple distance-based mapping algorithm (81.6%) for sub-urban and rural 
roads (7) and the higher density of the examined network is the most probable reason for this 
difference. A minimum angular difference algorithm has not been tested before and it is 
found that based on the direction differences alone, only half of the crashes can be matched to 
the correct links. Despite that, the results of an algorithm that uses an optimal combination of 
angular difference and distance can be very precise. It is clear that both these variables are 
very useful for GIS-based crash mapping independently of the density of the network and the 
availability of other supporting information (i.e. road name). CM-MLOGIT is the first 
network-level crash mapping algorithm that does not include road name filtering at any of its 
stages. The accuracy level that is reached, taking into account the absence of a dominant 
variable for all the existing crash mapping approaches, is satisfying.  

The mismatches of CM-MLOGIT are closely related to the complexity and density of 
the urban network; they are either due to the configuration of some links or the large distance 
of the reported location from the most probable actual location. More specifically, the 
complexity of the links’ shape cannot be accurately represented using a pair of nodes and in 
some extreme cases this leads to erroneous estimation of the distance or the angular 

                                                 
 
1 The candidate links for both the methods were the same with those of CM-MLOGIT. 
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difference (or both) and consequently of the matching score. An attempt to address this 
problem by dividing road links into straight smaller segments indicated by their shape points 
was not successful though. The candidate links set was replaced by a candidate segments set 
and the rest of the matching process remained the same. Although the candidate segments 
capture the real configuration of the road, the accuracy level was 95.6%. This slight increase 
in mismatches is caused by minor inherent digitisation imperfections of the network map. 
The accuracy of DMIN and AMIN after the links’ segmentation reached 77.4% and 56.3% 
respectively, but this increase is not significant enough to change the conclusions about the 
matching capability of either of the algorithms. The second type of mismatched crashes 
includes cases where the correct link was located further from the reported location than a 
parallel neighbouring link. This kind of mismatches could be avoided if more variables of the 
crash reports were included in the algorithm (such as junction detail or first point of impact or 
road name where available). However, improvement of the overall results is not guaranteed 
as the crash databases include some erroneously reported information (1) and an increase of 
the number of the considered variables would increase the chance of mismatches due to 
misreporting. 

FIGURE 3 depicts the rate maps that correspond to each of the three crash mapping 
methods (a, b and c for DMIN, AMIN and CM-MLOGIT respectively). Crash rate (crashes 
per kilometre) is represented with descending order with the red, orange, blue and green 
zones. Comparing the three maps it can be seen that the risk pattern for the same area appears 
to be different depending on which crash mapping method is implemented (e.g. junction A). 
The most realistic representation belongs to the map produced based on CM-MLOGIT 
because the crash locations used are by far more precise and the quality of the input is 
proportional to the quality of the output. Accordingly, this outcome can be extended to other 
crash analyses; the accuracy of a crash mapping method affects the results of the subsequent 
crash analyses and consequently their conclusions (e.g. decisions for prevention policies and 
countermeasures).  

 
CONCLUSION 
 Allocation of traffic crashes to the precise locations where the first impact occurred is 
directly related to the accuracy of spatial crash analyses. A review of literature highlighted 
that crash mapping in metropolitan and urban areas is rather challenging because of high 
complex land-use patterns and road density of the road network and due to incorrect/missing 
records of road names on which the crashes occur.  
 This paper developed a new probabilistic crash mapping algorithm (termed as CM-
MLOGIT) that has the capability of mapping traffic crashes in dense urban networks. The 
two unique features of the algorithm are: (1) separate matching of all individual vehicles 
involved in a crash for identifying the final matching link for the crash and (2) allowing 
hierarchical nested structure of data (i.e. links are nested within vehicles where vehicles are 
nested within crashes) for developing the relationship between distance, angular difference 
and the goodness of matching (i.e. a three-level logistic regression). When the algorithm 
applied to 1,000 crashes in London, the accuracy level of CM-MLOGIT was found to be 97.1% 
revealing that the vehicle by vehicle examination of crashes and the use of an optimal 
combination of angular difference and distance through the use of a multilevel logistic 
regression can counterbalance the exclusion of road names in the mapping process. Moreover, 
CM-MLOGIT outperforms two non-probabilistic crash mapping methods (i.e. DMIN and 
AMIN) that are based on the minimum distance and angular difference respectively. A 
preliminary crash risk analysis showed that the examined algorithms provide different results, 
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meaning that the accuracy of identified crash locations can affect the outcomes of spatial 
crash analyses.  
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TABLE 1: Summary of crash reports 2010-2012 and the training and reference sub-datasets. 

 
Year Sub-Datasets 

2010 2011 2012 Training Reference 
Total crashes 24,145 24,468 24,097 700 1000 

Pe
rc

en
ta

ge
 (%

) 

Fatalities 0.51 0.63 0.56 1.00 0.70 
Serious injuries 10.88 10.42 11.59 10.00 11.80 
Slight injuries 88.61 88.94 87.85 89.00 87.50 
Roundabouts 4.35 3.96 3.98 4.57 4.20 
Slip Roads 0.62 0.58 0.59 0.86 0.80 
Junctions 75.44 76.81 77.79 77.14 77.30 
Missing Road Name 27.23 26.14 26.39 25.00 27.40 

Min number of vehicles 1 1 1 1 1 
Max number of vehicles 8 11 8 4 5 
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TABLE 2: Estimated parameters, standard errors and confidence intervals of the hierarchical logit model. 

 Coefficient Std. Error p-value 95% Confidence intervals 
min max 

Intercept 2.615373 0.1687828 0.000 2.284565 2.946181 
Distance -0.2476173 0.0136814 0.000 -0.2744324 -0.2208023 
Angular 
Difference 

-0.0505259 0.0022673 0.000 -0.0549698 -0.0460819 

σ(𝑢𝑢0𝑘𝑘) 0.5716379 0.182914  0.3053174 1.070263 
σ(𝑢𝑢0𝑗𝑗𝑗𝑗) 6.20E-28 9.61E-21  - - 
 Log-Likelihood (Three-level Logit Model) = -1759.3957 
 Log-Likelihood (Simple Logit Model) = -1770.9883 
 LR=23.1752>χ2

.01, 2 
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FIGURE 1: City of London and Greater London boundary. (Left: A zoomed detailed portion of the road 
network showing the inherent complexity in mapping crashes onto correct segments) Source: BingTMMaps 
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FIGURE 2 : Graphical representation of the hierarchical structure of a crash with I involved vehicles and J 
candidate links. 
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FIGURE 3: Crash rate maps of a part of the study area based on the results of: i) DMIN, ii) AMIN and iii) CM-
MLOGIT. 


	Multilevel Logistic Regression Modelling for Crash Mapping in Metropolitan Areas
	ABSTRACT
	INTRODUCTION
	LITERATURE REVIEW
	DATA DESCRIPTION
	METHOD: CRASH MAPPING USING MULTILEVEL LOGISTIC REGRESSION (CM-MLOGIT)
	RESULTS
	CONCLUSION
	REFERENCES
	LIST OF TABLES
	LIST OF FIGURES

