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Abstract  
Assumptions used in field reliability data analysis may be seldom made explicit or questioned in 
practice, yet these assumptions affect how engineering managers develop metrics for use in long-
term support contracts. To address this issue, this article describes a procedure to avoid the 
pitfalls in employing the results of field data analysis for repairable items. The procedure is then 
implemented with the aid of a simplified example based on a real case study in defense avionics, 
and is streamlined so that the computations can be replicated in other applications. 
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Introduction 

The research presented in this article outlines and implements a strategy to improve the 

understanding of reliability baseline data in industry by avoiding common pitfalls in the analysis 

of field reliability data for repairable items. The topic is of particular relevance to those seeking 

to reduce ambiguity when using real-world data to identify supportability factors of repairable 

items subject to in-service support solutions through Performance-Based Logistics (PBL) or 

availability type contracts. 

Sols, Nowicki and Verma (2007) point out that a major aspect in the success of performance-

oriented equipment support solutions is the ability to reach and maintain agreement on the key 

equipment support requirements. In practice, such requirements are determined by knowledge 

about current support activities gained through the analysis of field reliability data. Thus, how 

field reliability data analysis is performed impacts whether or not a business will embark on a 

long-term equipment support contract and the financial conditions they impose. Example case 

studies are available on fleets of aircraft engines (Bowman and Schmee, 2001) and industrial 

machinery (Huang et al., 2013; Lugtigheid et al., 2007). 

Most “textbook” examples and popular modeling choices that practitioners may have at hand 

assume situations that are ideal from a mathematical perspective, but hardly resemble the 

underlying field data. In practice, models may be chosen for their computational tractability 

rather than for their appropriateness to the situation described by the data being analyzed; terms 

such as “failure rate” may be used in situations so heterogeneous that they are almost devoid of 

meaning. A set-of-numbers may be called a “data set” despite lacking information about the 

specific context in which the numbers were generated (Ascher, 1983a; Ascher, 1999). Hence, to 

evaluate whether a model is adequate for the purpose at hand, one should first question what the 
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field data represents (Evans, 1995) and be aware that impeccable mathematics is not a guarantee 

that the statistics are meaningful in decision making (Evans, 1999). 

This article highlights assumptions that are often made in reliability data analysis yet seldom 

made explicit and questioned in practice. A strategy for a meaningful reliability data analysis is 

outlined to assist engineering managers in critically evaluating which analytical option is 

adequate for a specific case. The strategy is illustrated through a simplified example underpinned 

by real-life failure reports for defense avionics. 

Assumptions and “Forgotten” Lessons in Field Data Analysis 

Although with a focus on wind turbines’ gearbox, a recent systemic review of the literature 

shows that such research themes as “Condition monitoring, prognostics and fault diagnostics” 

and “Reliability analysis and prediction” are underpinned, respectively, by test-rig/experimental 

and field data (Igba et al. 2015). However, the same reference does not mention whether and to 

what extent obtaining the data in the field rather than test-rig conditions affects the methods and 

techniques used. This section aims to address this often-overlooked aspect. 

Product reliability is typically modeled in terms of uncertain lifetime distributions that are 

either a given or estimated from historical or actuarial data through statistical analysis. Widely-

used maintenance performance metrics such as the Mean Time Between Failures (MTBF) are 

often computed from a given product lifetime distribution and then used to draw cost-

effectiveness considerations. Examples include procurement (Blanchard, 1992; Waghmode and 

Sahasrabudhe, 2011), development of business cases for a product design (Sandborn, 2013; 

Tuttle and Shwartz, 1979), and lifecycle engineering (Dhillon, 2010).  

A popular modeling choice is to assume a priori that a product’s lifetime is exponentially 

distributed. Examples include common microelectronics reliability prediction models (Held and 
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Fritz, 2009), as well as most non-electronics hardware cost-effectiveness models (Blanchard, 

1992). Such a choice is implicitly made when expressing reliability of both new and fielded 

items using a constant MTBF that is the reciprocal of a “failure rate” which is presumably 

measured in laboratory conditions. Although convenient when it comes to mathematical 

formulations, the exponential law and the associated assumption of a constant failure rate have 

been criticized for fostering erroneous decisions, hindering the use of engineering fundamentals 

and quality control practices to gain understanding about possible “humps” in the failure rate 

curve (Wong and Lindstrom, 1988). However, even when alternatives to the exponentially-

distributed lifetime model are chosen for a joint reliability engineering and financial evaluation, 

evidence from field reliability data is seldom employed (e.g., Gosavi, et al., 2011; Sinisuka and 

Nugraha, 2013; Waghmode and Sahasrabudhe, 2011). This is also the case for PBL and 

availability type contracts (e.g., Rahman, 2014; Wu and Ryan, 2014). 

Alternatively, statistical analysis of empirical reliability data can support the formulation and 

testing of a hypothesis regarding the model chosen. Different methods can be used for this 

purpose, which are described in detail elsewhere (Meeker and Escobar, 1998; Phillips, 2003). In 

practice, trying to fit a probability distribution to the reliability data provided might become 

more of a “reflex reaction” for reliability engineers, and the algorithms employed for the data 

fitting exercise are largely treated as a black box (Newton, 1991). This is not just a problem for 

the academic. With specific reference to aviation maintenance, Busch (2013, p. 28) notes that 

technicians with decades of expertise may have a tendency to analyze such data as those from 

health-monitoring through “…pattern matching against the historical library in their noggins.” 

Hence, just like a priori assumptions about lifetime distributions, decisions based purely on fit to 

data can be very misleading (Phillips, 2003).  
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These limitations can be overcome if a sound strategy for the statistical analysis of reliability 

data is in place, starting from preliminary data exploration (Meeker and Escobar, 1998). Via data 

exploration one identifies aspects that may appear trivial, but can undermine the meaningfulness 

of the statistical analysis in spite of impeccable underlying mathematics. Such aspects include, 

but are not limited to: 

• Which type of item does the data refer to? (e.g., repairable or non-repairable) 

• In which context did the data arise? (e.g., test rig or field) 

• What is the physical meaning of the data? (e.g., removals or physical failures) 

• Is there structure in the data? (e.g. trend or identically and independently distributed—

i.i.d.) 

• Do the observations begin and end at the same time? (e.g., single sample data or censoring) 

A useful distinction is to be made between single sample data and recurrence data. Single 

sample data are data collected from a complete sample of non-repairable items observed until 

times to failure are observed for all of them (Phillips, 2003). The analytical derivation of a 

product lifetime distribution is implicitly underpinned by single sample data from test-rig 

conditions (Sandborn, 2013). Recurrence data is a term used by Meeker and Escobar (1998) to 

denote a sequence of failure times for one or more copies of an item which upon failure is 

restored to operation by repair. Typically, recurrence data are the empirical basis for modeling a 

repairable item’s failure trends and patterns as a stochastic process of point events in time (Cox, 

1983). 

A common pitfall is to approach recurrence data obtained for repairable fielded items in the 

same way one would approach single sample data. Authors such as Newton (1991) and Ascher 

(1999) have demonstrated how insidious such a practice is, as it leads to terminological and 
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conceptual ambiguities, pessimistic estimates, and contradictory conclusions from the same data 

set. The literature, however, does not offer many examples on how to avoid common mistakes in 

empirical data analysis. Most works fit a pre-selected model to empirical data without much 

preliminary data exploration to ground such a choice. For example, both Weckman et al. (2006) 

and Bowman and Schmee (2001) present cases in aircraft engine support, but differ in their 

model choice. They respectively fit a model meant for repairable items and one meant for and 

non-repairable items to failure occurrence data. Held and Fritz (2009) claim that avionics field 

reliability data were used to compare two failure rate prediction models but disclose no details 

about the data used and how the analysis was carried out. Works like Lugtigheid et al. (2007) and 

Jolly and Singh (2014) combine models for repairable and non-repairable items within the same 

case study. However, they present the empirical data aggregately and limit the explanation of 

their analysis to how the models were fitted using a particular software package. Gosavi et al. 

(2011) mention that data from an automotive manufacturer were used but only the chosen 

failure-time distributions and their parameters are given. In some cases, the parameters for the 

chosen models are retrieved from databases (Sinisuka and Nugraha, 2013) or subjective 

judgment (Waghmode and Sahasrabudhe, 2011), which may call for a Bayesian approach 

(Hauptmanns, 2011). 

Commercial software tools (such as JMP®, Weibull++ ®, etc.) offer a range of capabilities for 

performing reliability analyses. In comparing different software packages, Sikos and Klemeš 

(2010) implicitly endorse the common assumptions and offer no indication as to the importance 

of preliminary data exploration when a software’s analytical capabilities are applied to empirical 

case studies. Hence, the presence of specific features in a software package does not guarantee 

that practitioners are adequately guided with regard to how, why and when to use them. 
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Materials and Methods 

Methodology concerns “the attempts to investigate and obtain knowledge about the world in 

which we find ourselves” (Flood and Carlson 1988). One aspect that is rarely acknowledged in 

the analysis of field data is that the process of determining whether a piece of equipment is to be 

categorized as defective is both technical and social in nature (Aubin 2004). Hence, the meaning 

of an object (e.g., a piece of equipment) or an observation, which is often taken for granted, is in 

fact dependent on the context and the observer (Evans, 1995). 

With this caveat in mind, this research is descriptive and inductive, since the interest is in 

deriving the qualities of a phenomenon from available observations, while providing insight into 

the specific context. As most studies using real-world data, it applies predefined computational 

techniques to the data. However, it cannot be regarded as purely “theory confirming” since it 

aims to evaluate critically such data and techniques. 

The research strategy followed in this article to inform the selection of specific methods for 

data collection and analysis is based on the strategy for the analysis of reliability data as defined 

by Meeker and Escobar (1998). A possible strategy for the analysis of reliability data, with an 

emphasis on preliminary data exploration, is outlined in Exhibit 1. The strategy is applied for 

illustrative purposes to the data in Exhibit 2. The data is based on a real-life case study in defense 

avionics, with proprietary information masked or omitted, and only a small subset of the original 

data considered to ensure the procedures and results presented in this study are replicable. 

Exhibit 1 HERE 

Exhibit 2 HERE 

The amount of data in Exhibit 2 is sufficient to apply most techniques for the statistical 

analyses of reliability data. However, only by providing adequate context regarding the 
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underlying situation from which the data arose does one avoid misconceptions between 

approaches meant for repairable items and those meant for non-repairable items (Ascher, 1999). 

For fielded repairable items the data set is a sequence of times to a recurrent event, namely a 

functional failure. The term “functional failure” emphasizes that an item can perform 

unsatisfactorily in fulfilling its intended purpose without there being manifestations of undesired 

physical conditions - that is, “material” failures (Yellman, 1999). Upon functional failure, 

unscheduled removals of replaceable items are recorded. Further inspection may either identify 

what went wrong or lead to a “No Fault Found” (NFF) if it was not possible to replicate a 

suspected malfunctioning. The distinction is particularly important for PBL support solutions, as 

the NFF returned items also impact performance (Smith, 2004). 

By contrast, for a collection of items that are discarded upon their first failure, the data set 

would consist of each item’s time to “material” failure, a unique event. For such reason this time 

is often referred to as survival time, borrowing the terminology used in the biometry field 

(Kleinbaum and Klein, 2012). 

Exhibit 2 provides recurrence data for five copies (A, B, …, E) of a fielded repairable item. 

Underpinning Exhibit 2 are chronological logs of functional failure events that have resulted in 

the removal of an item from a “socket” (on an aircraft), and its transfer to the support service 

provider for inspection. Each event outcome is either the detection of a “material” failure in one 

of the inspected item’s component modules (a, b,…,f ) or an NFF. 

To specifically address repairable items, a distinction between “recurrence” and 

“interrecurrence” times is introduced. Recurrence times are the items’ ages, or service times at 

failure. This is different from the term “time to failure” which implicitly refers to the time it 

takes for a non-repairable item to fail catastrophically in test-rig conditions. In Exhibit 2, 
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recurrence time values are recorded under the “time since new” heading and computed for each 

event as the difference between the event log date and the item shipping date. The sequence of 

“time since new” values is not ranked by magnitude, as it would be if all the items were 

considered at risk of becoming an event starting from the same point in time. Such a situation is 

common in field data analysis and is known as staggered entry (Meeker and Escobar, 1998) or 

left-truncation of survival times (Kleinbaum and Klein, 2012). 

Interrecurrence times (sometimes referred to as “time between failures”) are times between 

successive occurrences of a functional failure event for the same item. When the first failure 

occurs for a certain item the “interrecurrence time” and the “recurrence time” (or “time since 

new”) take the same value. Zero-valued interrecurrence times in Exhibit 2 denote that, upon the 

same functional failure occurrence, a material failure has been detected for more than one 

module within the same item. In some cases, an NFF occurs along with the detection of a 

modules’ material failure. This means that the malfunction the item was originally inspected for 

could not be replicated, while a different problem was detected instead. 

It is common that observations for one or more items cease before all possible failure events 

are observed. The term right-censoring (or Type I censoring) is used when some failure times are 

known to be greater than a certain value, but are not known exactly (Meeker and Escobar, 1998). 

Censored times providing such partial information as the times to “non-failure,” if ignored will 

lead to overly pessimistic reliability estimates (Newton, 1991). For all the items in Exhibit 2, 

observations cease at a fixed date defined by the last entry in the original data set. The values 

recorded under the “censored time” heading are the differences between the date the observations 

cease and the last event-per-item’s dates. 
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To allow further analysis, it is necessary to modify the original data set in Exhibit 2 in such a 

way to obtain Exhibit 3.  

Exhibit 3 HERE 

In Exhibit 3, one finds only records having non-zero interrecurrence times, with additional 

information on the modules that materially failed and/or an NFF was recorded as a dichotomous 

time-dependent explanatory variable. By contrast, if two or more events are logged on the same 

date for different items, they remain distinct lines in the new data set. As Walls and Bendell 

(1986) point out, simultaneous failures may be simply due to rounding induced by the crudity of 

the timescale, although genuine multiple occurrences may indicate incipient or cascade-type 

failures within the data set. Additional lines in the new data set accommodate non-zero censored 

time. The date assigned to each such line is the date the observations end. 

Exhibit 3 also shows additional elements compared to Exhibit 2. The individual items’ 

recurrence times are superimposed onto a common timescale having the earliest entry date as the 

origin, thus obtaining unique magnitude-ranked recurrence times. At each recurrence time the 

cumulative age for the items in the risk set is also computed. For example, by the time the first 

failure occurs in item C at age 1344 days, item A will have completed 1861 days, B 1403 days, 

etc., yielding an aggregate age of 6787 days. An indication of the number of items under 

observation at each recurrence time, called “risk set size,” is also given. A repairable item is not 

removed from the set until its last observed event, while different items may enter the set at 

different times in the case of staggered entries. In the example, the set is the same until 

observations end. However, one should be aware that the timescale used may affect how the size 

of the risk set changes over time (Kleinbaum and Klein, 2012). 
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Implementation of Procedure to a Numerical Case 

Empirical recurrence data such as those in Exhibit 3 provide a sample pattern of a random 

process of point events in time. Such a pattern can be visualized as shown in Exhibit 4.  

 
Exhibit 4 HERE 

A common way of treating such data analytically is by focusing on the intervals between 

successive point events and, assuming they are independently and identically distributed, fit a 

parametric distribution to them, be it exponential, Weibull, lognormal, etc. (Meeker and Escobar, 

1998; Lewis, 1996). Regardless of which distribution is used, this is not appropriate for two main 

reasons (Ascher, 1999): 

• The possible effects of the chronological order of the events are ignored a priori. 

• The same interpretation is mistakenly given to such concepts as “hazard rate,” which 

expresses a property of the times to failure of a sample of non-repairable items, and “rate 

of occurrence of failures,” which expresses a property of a sequence of times to 

successive failures of one or more copies of a repairable item. 

To take these potential pitfalls into account the analysis is structured as presented below. 

Testing data for trends 

It has been shown that, if a set-of-numbers representing times between successive failures is 

considered in a different order, its “eyeball” interpretation will change, whereas the result of 

fitting any distribution to such numbers will not (Ascher, 1983a). Hence, it is good practice to 

preliminarily check on whether the sequence of the events the data set refers to has repercussions 

on analysis before attempting any distribution-fitting exercise. 
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A powerful analytical check to be performed on a data set is the centroid, or Laplace test. The 

test score for the case in which n sequenced times to failure 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are observed over a 

fixed interval (0, 𝑡𝑡𝑎𝑎), where 𝑡𝑡𝑎𝑎 ≠ 𝑥𝑥𝑛𝑛, can be formulated as follows (Ascher, 1983a): 

𝑈𝑈 =
√12𝑛𝑛
𝑡𝑡𝑎𝑎

�
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
−
𝑡𝑡𝑎𝑎
2
� (1) 

In the absence of a trend, one expects a test score 𝑈𝑈 =  0. The test score is said to provide 

evidence of a trend at a level of statistical significance 100𝛼𝛼% if it exceeds the value 𝑧𝑧 such that 

𝜙𝜙(𝑧𝑧) = 1 − 𝛼𝛼 2⁄ , where 𝜙𝜙(∙) is the standard cumulative normal distribution function (Meeker 

and Escobar, 1998). 

Newton (1991) shows that where multiple copies of an item are concerned, one must use 

cumulative time. He also demonstrates that, in doing so, one should not overlook staggered 

entries, assuming a common time origin instead, as this may lead to incorrect conclusions from 

the test. Hence, for the case considered here, from Exhibit 3, one obtains: 𝑛𝑛 = 12; ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 =

141584, 𝑡𝑡𝑎𝑎 = 17472 [days]. The test score 𝑈𝑈 =  2.103 provides evidence that the 

interrecurrence times are tending to become smaller (colloquially, the item is “sad,” - see Ascher, 

1983a) at a 5% level of statistical significance. To graphically check for trends, one may plot the 

cumulative number of recurrences versus time (if the plot approximates to a straight line, there is 

no such trend) and also check whether there is correlation between lagged failure-time 

observations via a correlogram (Walls and Bendell, 1986). For the case considered here, Exhibit 

5 shows an increasing slope over time (the data-fitting model shown alongside the point 

observations will be discussed later).  

 
Exhibit 5 HERE 
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The correlogram in Exhibit 6 shows the autocorrelation coefficients computed following 

Makridakis et al. (1998) up to an eight period lag. Theoretically, for a series of random numbers, 

all the coefficients should be zero, but in practice it is sufficient that, for a sample of n 

observations, 95% of all sample coefficients lie within the range of ±1.96 √𝑛𝑛⁄ .  

Exhibit 6 HERE 

In Exhibit 6, all values lie within such range (the critical values ±0.47 are obtained for 

𝑛𝑛 = 17, considering the times to non-failure). This result suggests “white noise” data, making it 

less straightforward to reject the hypothesis that there is no trend. 

Fitting models to data 

The test for trend suggests a “sad” repairable item which, in principle, calls for fitting a 

nonstationary model to the data (Ascher, 1983a). Several data-fitting models can be suitable for a 

repairable item. Such models are parametric or non-parametric in nature, depending on whether 

or not they embed underlying assumptions on particular characteristics of the population studied 

(Meeker and Escobar, 1998). Below, appropriate formulations from amongst the best-known 

modeling options are identified considering the nature of the empirical data employed here. For 

ease of exposition, a distinction between recurrence time models, interrecurrence time models, 

and regression models is introduced. The application of such models to the data is illustrated to 

help guide practice. 

Recurrence time models  

The main aspect of recurrence time models is that a sequence of time to failures for a 

population of repairable items is described by a property called the Rate of Occurrence of 

Failure—ROCOF (Ascher, 1999), expressed in failures per unit time per item. 
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A model implying a minimum set of assumptions regarding the process which generates the 

items histories is the population’s Mean Cumulative recurrence Function - MCF. It is the 

expected number of failures experienced across a population of items by a certain age. A 

procedure to obtain a nonparametric MCF estimator from empirical data with confidence bounds 

is described in Meeker and Escobar (1998). The procedure’s focus is on the unique recurrence 

times for a population of items. At each recurrence time, ranked by magnitude, one determines 

the mean of the distribution of reported failures across all the items still observed at that time 

(the “risk set”), and the MCF estimator as the cumulative sum of those means up to that time. 

Graphically, the non-parametric MCF is a step-function with jumps at each recurrence time. 

Exhibit 7 shows the MCF and confidence bounds for the data considered here. Due to the 

presence of staggered entries, the unique recurrence times are determined on a common 

timescale (Exhibit 3).  

Exhibit 7 HERE 

A ROCOF can only be obtained for each pair of successive recurrence times dividing the 

difference between the value of the MCF estimator at each time by the time interval length. 

A parametric alternative is to model recurrence data as a Poisson process (Cox, 1983). In the 

presence of a trend, it is recommended that a Non Homogeneous Poisson Process (NHPP) is 

employed (Walls and Bendell, 1986). More sophisticated theoretical models exist (Lindqvist, 

2008). However, when it comes to fitting a Poisson process to empirical recurrence data the 

formulation known as power law NHPP (Crow, 1990) is a convenient option. Power law NHPP 

is characterized by a non-stationary ROCOF of the form, 𝑣𝑣(𝑡𝑡, 𝜽𝜽) = 𝜆𝜆𝜆𝜆𝑡𝑡𝛽𝛽−1, where 𝑡𝑡 is an item 

age (the rate is not constant over time), and 𝜽𝜽 = [𝛽𝛽 𝜆𝜆] is the vector of unknown parameters that 

can be estimated by maximum likelihood via the following equations: 



14 

𝛽̂𝛽 = 𝑛𝑛 ∑ ln �𝑡𝑡𝑎𝑎
𝑥𝑥𝑖𝑖
�𝑛𝑛

𝑖𝑖=1�   (2a) 

𝜆̂𝜆 = 𝑛𝑛 𝑡𝑡𝑎𝑎𝛽𝛽
�⁄  (2b) 

where n are distinct recurrence times 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 observed for an item over (0, 𝑡𝑡𝑎𝑎).  

These equations are the most commonly used in the literature (e.g., Ascher, 1983a; Meeker 

and Escobar, 1998), but assume a single item. Crow (1990) provides two variations for use: first, 

when data are obtained from multiple copies of an item observed over the same time period and 

second, when observation start and end times are different for each copy. In principle, the latter 

cases would be more appropriate for the example considered here, but since the equations are not 

in a closed-form they would need to be solved numerically. For the sake of simplicity, here we 

refer to an “equivalent single item” and use the aggregated values in Exhibit 3 to obtain the 

estimates 𝛽̂𝛽 = 2.32, and 𝜆̂𝜆 = 1.73 × 10−9 by applying (2a-b). 

An estimate of 𝛽̂𝛽 greater than one is consistent with the “sad” item result obtained from the 

trend test, whereas 𝛽̂𝛽 = 1 would have been consistent with a homogeneous Poisson process - 

HPP, implying that the interrecurrence times are independently exponentially distributed 

(Ascher, 1983a; Cox, 1983). The curve in Exhibit 5 is the Cumulative Intensity Function - CIF - 

of an NHPP with the estimated ROCOF, 𝐸𝐸�𝑁𝑁(𝑡𝑡)� = 𝜆̂𝜆𝑡𝑡𝛽𝛽� = 1.73 × 10−9𝑡𝑡2.32. The curve 

expresses the mean (or expected, as denoted by the operator E) number of support interventions, 

𝑁𝑁(𝑡𝑡), that an “equivalent single item” will have demanded by a certain time t. This provides a 

useful indication of how the “pressure” on the support system’s resources may evolve over time. 

A goodness-of-fit test for the estimated NHPP is to compare the difference between expected 

number of failures and the actual data with a Chi-distribution (Crow, 1990). To do so, usually 

three time intervals are identified with at least five total failures in each interval. However, from 
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Exhibit 3, one obtains 𝑇𝑇1 = �𝑡𝑡1, 𝑡𝑡1̅� = (0, 2394); 𝑇𝑇2 = �𝑡𝑡2, 𝑡𝑡2� = (2394, 3255); and  𝑇𝑇3 =

�𝑡𝑡3, 𝑡𝑡3� = (3255, 3698), with  𝑁𝑁�𝑇𝑇𝑗𝑗� = 4 for 𝑗𝑗 = 1,2,3. The difference between expected 

failures, 𝑒𝑒𝑗𝑗 = 𝜆̂𝜆 𝑡𝑡𝑗𝑗
𝛽𝛽�
− 𝜆̂𝜆 𝑡𝑡𝑗𝑗

𝛽𝛽� , and actual data is not significant since 𝜒𝜒2 = ∑ �𝑁𝑁�𝑇𝑇𝑗𝑗�−𝑒𝑒𝑗𝑗�
2

𝑒𝑒𝑗𝑗
= 0.89 3

𝑗𝑗=1  

is below the critical value of a Chi-distribution with 1 degree of freedom at the 10% significance 

level. 

Interrecurrence time models 

Parametric lifetime distributions are typically meant to model non-repairable items that fail 

once. A property of the time to failure of such items is the hazard rate:  the instantaneous 

potential, per unit time, for an event (“material” failure) to occur at a given instant given survival 

up to that instant (Kleinbaum and Klein, 2012). Specific parametric failure-time models like the 

Weibull distribution are commonly chosen in practice for electronic devices due to their 

flexibility (Sandborn, 2013). One may even notice that the ROCOF of a power law NHPP is 

numerically analogous to the hazard rate of a Weibull distribution. As Ascher (1999) 

demonstrates, this may cause misconceptions since the two are not equivalent in terms of 

interpretation, even when they are equal. 

Newton (1991) shows that trying to model a repairable item by fitting a lifetime distribution 

does not makes sense unless interrecurrence times are being analyzed, since this amounts to 

analyzing the non-repairable components which reside in a repairable item. Also, the parametric 

distribution-fitting approach requires the reordering of interrecurrence times by magnitude. 

Hence, one should proceed only once the necessary checks described earlier have provided no 

strong evidence against the hypothesis that interrecurrence times are i.i.d. Assuming it is 
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legitimate to do so for the empirical data considered here, Exhibit 8 shows the reordered 

interrecurrence times and the computation of the necessary statistics (Newton, 1991).  

Exhibit 8 HERE 

The procedure starts with a nonparameteric estimate of the Cumulative Hazard Function - 

CHF - the Kaplan-Meier estimator (Kleinbaum and Klein, 2012). A fundamental difference from 

Exhibit 3 is that the risk set in Exhibit 8 is formed by a number of fictitious non-repairable items 

equivalent to the number of recurrences. Using the values of 𝑡𝑡𝑖𝑖 and the estimate of the 

cumulative density function (CDF) of the interrecurrence times shown in Exhibit 8, one obtains 

the coordinates for the Weibull plot shown in Exhibit 9.  

Exhibit 9 HERE 

An estimate of the distribution’s parameters can then be obtained by fitting a line to the plot 

shown, whereby the reciprocal of the slope is the distribution shape parameter  β� = 1
0.96

= 1.04 

and the intercept the natural logarithm of the scale parameter 𝜃𝜃� = e7.03 = 1129.80.  

Another approach is to compute maximum-likelihood estimate (MLE) for the distribution 

parameters. This approach provides, in principle, versatility and statistical efficiency also in the 

presence of censored data (Meeker and Escobar, 1998). A robust algorithm to obtain such 

estimates is available through the “fitdistr” function in the MASS package (Venables and Ripley, 

2007) for the open-source statistical software R (R Development Core Team, 2012). Due to the 

presence of censored data, the extension of the original function provided in the fitdistrplus 

package (Delignette-Muller and Dutang, 2012) has been used. The estimates β�mle =  1.18 and 

𝜃𝜃�mle =  1470.17 are obtained via a minor reorganization of the information in Exhibit 8 that is 

required by the algorithm. 
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Exhibit 10 shows the empirical and two estimated density functions. In the presence of 

censored times, the application of commonly-used goodness-of-fit tests is problematic; although 

procedures exist (D'Agostino and Stephens, 1986), they only apply to the case in which censored 

observations are all greater than the largest observed value. This situation may reasonably occur 

for single sample data obtained in test-rig conditions. In the absence of adequate alternatives, it is 

suggested analysts proceed through visual inspection (Delignette-Muller and Dutang, 2012). 

Exhibit 10 HERE 

Using the maximum likelihood estimated parameters, the hazard rate function for the 

Weibull distribution, and the corresponding CHF are, respectively, ℎ(𝑡𝑡) = 𝛽𝛽�mle
𝜃𝜃�mle

� 𝑡𝑡
𝜃𝜃�mle

�
𝛽𝛽�mle−1

=

0.000803 � 𝑡𝑡
1470.17

�
0.181 

, and 𝐻𝐻(𝑡𝑡) = � 𝑡𝑡
𝜃𝜃�mle

�
𝛽𝛽�mle

= � 𝑡𝑡
1470.17

�
1.18

. Unlike the ROCOF for the 

models based on recurrence times, the hazard rate expresses a conditional probability of failure 

per unit time for a non-repairable component. Hence, an NHPP model described by a 

distribution’s CHF would not be comparable with one obtained by direct estimation of the 

stochastic process’ CIF. 

Regression models 

In the previous sub-sections, the focus was either on a sequence of times to failures, or on a 

lifetime distribution. In both cases, a common underlying assumption is that data are from 

indistinguishable copies of an item, which assumedly operate under identical conditions. Also, 

some functional form of the ROCOF and the hazard rate has to be chosen upfront. 

In the case of field data, one may be interested in taking into account the heterogeneities 

encountered in a population of repairable items, if some information on such differences is 

available - the items may not be indistinguishable or operated under identical conditions, and 
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choosing an underlying distribution of time to failures can hardly be possible (Ascher, 1983b). 

Such limitations are overcome by semi-parametric regression models for survival analysis based 

on the Cox Proportional Hazard (CPH) model widely used in biometrics (Kleinbaum and Klein, 

2012). A distinguishing feature is the hazard rate formulation which varies between groups or 

other measurements on the cases that serve as explanatory factors (also known as covariates, or 

regression variables) (Meeker and Escobar, 1998). 

Exhibit 3 shows that the explanatory variables chosen due to practical considerations for the 

numerical example considered here are “inherently” time-dependent, thus requiring an 

“extended” CPH (Kleinbaum and Klein, 2012). When using such a model for recurrent events 

the data layout is particularly important since, for each recurrence, the “start” and “stop” times 

must be specified. A suitable layout can be obtained from Exhibit 3 with minimum 

modifications. Given the data layout is suitable, the model is fit to empirical data using the 

“coxph” function included in the survival package for the statistical software R (Venables 

and Ripley, 2007, Ch. 13). Statistically significant associations were found for such explanatory 

variables as the detection of a material failure in modules a and c, or an NFF. The estimated 

coefficients were, respectively, 𝛿𝛿𝑎𝑎 = −.962; 𝛿𝛿𝑐𝑐 = .899; and 𝛿𝛿NFF = 1.758.  

The interpretation of such coefficients is based on a relative measure called “hazard ratio” for 

the effect of each variable, adjusted for the other variables in the model (Kleinbaum and Klein, 

2012). For example, for the explanatory variable NFF the ratio is 𝑒𝑒1.758 = 5.801. Since the 

variable is time-dependent, the interpretation of its estimate is, at any given time, the hazard for 

an item which has not yet experienced an NFF (but may experience it later) is approximately 

1 5.801 ≅ 0.17⁄  times the hazard for an item which has already experienced an NFF by that 

time. 
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Discussion 

The statistical analysis of real-world data is the basis for delicate choices such as whether or 

not to embark on long-term support contracts for repairable items, and what financial conditions 

are set. Field data, however, often describes situations that are less ideal than those described by 

“textbook” approaches and popular modeling choices. A lack of guidance on how to choose 

between competing modeling options often leads practitioners to apply models that are meant for 

non-repairable items, such as lifetime distributions, to recurrence data gathered for fielded 

repairable items. Thus, aspects such as the investigation of trends in the data and the possibility 

of using models meant for items experiencing recurrent events are overlooked altogether (e.g., 

Bowman and Schmee, 2001). In some cases, elements pertaining to models meant for repairable 

and non-repairable items coexist ambiguously (e.g., Huang et al., 2013). 

One characteristic of field data for repairable items is time censoring. If neglected, it may 

lead to pessimistic reliability estimates, incorrect conclusions from testing for trends, and 

inappropriate “goodness-of-fit.” These aspects can be easily handled by choosing an appropriate 

data layout as described in this work. 

An adequate data layout eases the preliminary exploration of data. Preliminary data 

exploration is an aspect of great practical relevance as it allows identification of structures in the 

data that may (or may not) lead to rejection of the commonly (uncritically) made hypothesis of 

independently and identically distributed (i.i.d.) failure times. In the absence of a clear strategy 

for the statistical analysis of reliability data, a constant failure rate, and hence exponentially 

distributed times to failure, is often chosen upfront. Justifications for such a choice include that 

the i.i.d. assumption is not likely to be rejected for small data sets (Walls and Bendell, 1986), or 



20 

for large enough populations observed for a sufficiently long period (Meeker and Escobar, 1998), 

or, that it seems difficult to treat data which are not i.i.d. analytically (Ascher, 1983a). 

In the illustrative example presented here, particular attention has been paid to staggered 

entries and right-censored data, to avoid misleading results while testing for trends or applying 

inadequate formulations of the data-fitting models considered. In practice, this aspect is 

overlooked due to difficulties arising when data are obtained from multiple copies of an item, for 

which observations do not start and stop at the same time. For example, Weckman et al. (2006) 

estimate power law NHPP’s parameters for a fleet of aircraft engines using Crow’s equations that 

apply when the empirical data used refer to copies of an item with the same start and end time. 

Whether this assumption is reflected by the underlying data is not discussed. 

Another issue is that seldom is adequate context provided to a set-of-numbers before 

undertaking a data-fitting exercise. Most practitioners fail to appreciate differences between 

models that are meant for non-repairable items, such as parametric lifetime distributions, and 

those meant for repairable items which, by contrast, focus on a sequence of times to failures 

(Ascher, 1999). As a consequence, some works may implicitly treat the ROCOF of a stochastic 

point process as if it were a lifetime distribution’s hazard function (e.g. Lugtigheid et al., 2007; 

Waghmode and Sahasrabudhe, 2011). However, it is usually advised not to do so since the two 

are not the same even if they are numerically equivalent (Ascher, 1999; Crow, 1990). 

Due to their practical relevance, lifetime distribution models were not ignored in the research 

presented here, with the caveat that numerical equivalence between such concepts as ROCOF 

and hazard rate must not lead to confusion. Estimating a ROCOF can assist those seeking to 

estimate the replacement rate for a line-replaceable item and determine if the rate increases with 

age (which is relevant to support burn-in, recall, and retirement policies).  
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Practical Implications for Engineering Managers 

This work provides insight to practicing engineering managers in terms of obtaining “actionable 

knowledge” by making intelligent use of existing reliability data. For example, based on the 

authors’s experience on a case study in the defense avionics industry, to successfully execute 

PBL or availability type contracts, engineering managers across partner organizations are 

constantly searching for insight to facilitate the provision of equipment availability over time. 

They look at the data, attempt to detect trends and “see things” happening for a population of 

items deployed in the field. The analytics chosen for this purpose have practical repercussions on 

how organizations work with their suppliers and customers to face day-to-day issues that affect 

availability and end customer satisfaction, as well as long-term issues. The strategy for field 

reliability data described in this work helps engineering managers to navigate different options, 

from data exploration to the implementation of data analytics, and to place the focus on 

computational devices that are appropriate to the real-life situation engineering managers face. 

This is becoming particularly useful in maintenance planning and prioritization for engineering 

managers.   

The same case study also reveals that engineering managers are often presented with 

information they are expected to understand, but they may not necessarily be specialists or 

subject matter experts in the field. The procedure presented here is self-contained and fully 

replicable to facilitate communication across engineering management teams with managers 

having different levels of familiarity with reliability engineering and statistical data analysis. 

This helps overcome constrains imposed by upfront modeling choices and the use of specific 

software packages. While useful for illustrative purposes, a simplified example may be limiting 

to convince a firm to adjust its strategy. An application and extension of the approach illustrated 
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in this study to a full scale industrial case in defense avionics availability can be found elsewhere 

(Settanni et al., 2015). 

One of the co-authors also has direct experience as a practicing engineering manager in 

the electric energy sector. In this sector, engineering asset and operations managers analyze 

maintenance data from fleets of similar assets to make operating decisions about resource 

allocation decisions across a network of equipment – see e.g., Bumblauskas (2015). This 

research can be useful to asset and operations managers as it presents data analytics that are 

mostly overlooked in the literature such as MCF and power law NHPP, with few exceptions 

including Bumblauskas et al. (2012). By indicating the overall number of support interventions 

that an item is expected to demand, on average, after a certain time period in field, these models 

can help prevent putting excessive pressure on the capacity of a support system, or in this case 

the electric power grid. 

Analytics such as NHPP and MCF can be particularly important in a PBL, where the 

service providers’ ability to commit on performance such as repair lead times is greatly affected 

by how well the overall support system’s capacity is managed. MCF plots can also be used to 

compare batches of items that differ for design, support policy, etc. They may also reveal 

whether attempts to improve reliability by consecutive product design iterations results in a 

reduction of the total number of interventions that, on average, a fielded product requires over 

time. 

Closing Remarks 

This article contributes to improving the understanding of reliability baselines used in 

industry for fielded repairable items by offering a strategy to avoid common pitfalls in data 

analysis. The strategy, from preliminary data exploration to data-fitting, has been illustrated for a 
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case study in defense avionics underpinned by real-life data. The case has been simplified so that 

the procedures and results presented in this research can be replicated. 

The importance of exploring data and providing adequate context to a set-of-numbers have 

been highlighted to prevent misconceptions due to common assumptions and popular modeling 

choices. This aspect is of practical relevance in situations involving the execution of performance 

and availability-based contracts, where fair organizational accountability is achieved through a 

shared and unambiguous understanding of reliability baselines. 

The limitations of this research are mainly due to a current lack of examples in the literature 

on how to proceed when one cannot apply the most common ways to perform reliability data 

analysis. This lack complicates the identification and implementation of alternative model 

formulations. By bringing forth some of the available, yet seemingly forgotten, “lessons” in field 

reliability data analysis, this research aspires not to be comprehensive, but to provide impulse to 

the intellectual process of analysis in future work so that current gaps can be bridged. 
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