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ABSTRACT 

Particulate number (PN) standards in current and future emissions legislation pose a challenge 

for designers and calibrators during the warm-up phases of cold direct injection spark ignition 

(DISI) engines. To achieve catalyst light-off conditions in the shortest time, engine strategies 

are often employed that inherently use more fuel to attain higher exhaust temperatures. 

These can lead to the generation of locally fuel-rich regions within the combustion chamber 

and hence the formation and emission of particulates. 

To meet these emissions requirements, further understanding of the DISI in-cylinder processes 

during cold-start are required. This thesis investigates the effect of cooling an optical research 

engine to temperatures as low as -7°C, one of the legislative test conditions. A high-speed 

9 kHz optical investigation of the in-cylinder combustion and fuel spray along with in-cylinder 

pressure measurements was completed with the engine motored and fired at 1500 rpm during 

combustion conditions that were essentially homogeneous and stoichiometric.  

Results showed significant differences between the flame growth structures at various 

operating temperature conditions with the notable presence of fuel-rich regions, which are 

understood to be prominent areas of particulate formation. Measured engine performance 

parameters such as indicated mean effective pressure (IMEP) and mass fraction burned (MFB) 

times correlated with the observed differences in combustion characteristics and flame growth 

speed. It was shown that flash boiling of the fuel spray was present in the fully heated engine 

case and significantly reduced the penetration of the spray plume and the likelihood of piston 

crown and cylinder liner impingement. 

The flow and combustion processes of a transient production cold start-up strategy were 

analysed using high-speed particle image velocimetry (HSPIV).  Results highlighted a broad 

range of flame structures and contrasting flame stoichiometry occurring at different times in 

the start-up process. Turbulent flow structures were identified that have an effect on the fuel 

spray development and combustion process as well as providing a path for cold-start emissions 

reduction. 

PN and transient hydrocarbon (HC) emissions were measured at cold conditions to further 

elucidate the effect of operating temperature and correlate emissions data with in-cylinder 

measurements.  A clear link between the quantity and size range of particulate and HC 

emissions and operating temperature was shown and the precise in-cylinder location of HC 

emissions, caused by fuel impingement, was inferred from the HC emissions data.  
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1.1 BACKGROUND AND LEGISLATION 
There is an ever increasing need in the automotive industry to reduce vehicle carbon dioxide 

(CO2) emissions by developing new and innovative engine technologies. Increasingly stringent 

European legislation has driven the average CO2 emissions of passenger cars down from above 

150 g CO2·km-1 in the year 2000 and targets average CO2 emissions of 95 g CO2·km-1 by the year 

2020 for petrol, diesel and alternative fuel vehicles (AFV) (Figure 1.1.1). The financial penalties 

for non-compliance of these emissions targets, along with industry competitiveness that 

strives for more fuel-efficient technologies, have forced manufacturers to devise novel 

methods to improve engine emissions. 

 
Figure 1.1.1: Average CO2 emissions of new passenger cars by fuel type and EU targets by 2020 (adapted from 

European Environment Agency (EEA) (2014)) 

Direct injection spark ignition (DISI) engines meet many of the needs of these new emissions 

targets and hold the benefit of utilising existing internal combustion (IC) engine technologies. 

Alternative technologies such as hybrid engines, electric vehicles and fuel cells are undergoing 

a recent surge in popularity due to emissions legislation and changing consumer trends. Due to 

the extensive level of IC engine development, with their inherent low cost, high performance 

and high reliability, in addition to the continued prevalence of fossil fuels, it is likely that IC 

engine technology will remain on the forefront of engine development to allow manufacturers 

to meet legislative and consumer demands. 
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DISI engine technology holds a number of benefits over other engine technologies such as port 

fuel injected (PFI) engines, including improved fuel consumption and lower carbon dioxide 

emissions. These inherent advantages have been discussed in considerable detail in Chapter 2. 

More recently, DISI engine technology has been focussed on improving fuel consumption to 

bridge the gap to diesel engine technology through downsizing and downspeeding. In order to 

maintain powertrain performance, turbocharging is being widely introduced for gasoline 

engines, which, with DISI engine technology, facilitates higher compression ratios when 

compared to PFI engines (Berndorfer et al. 2013). A critical drawback, however, is that they 

emit higher quantities of combustion derived nanoparticulates (Zhao et al. 2002, Zhan et al. 

2010, Piock et al. 2011, Berndorfer et al. 2013).  

DISI engines operating under stoichiometric conditions have been able to fulfil all current 

global exhaust emissions requirements due to exhaust after-treatment systems based on the 

three-way catalyst (TWC) (Piock et al. 2011, Berndorfer et al. 2013). The Euro Stage 5a 

emissions standards released in September 2009 restricted particulate matter (PM) emissions 

(on a mass basis) on DISI engines for the first time (Table 1.1.1). Furthermore, recent 

Euro Stage 6 standards have introduced a particulate number (PN) count restriction on DISI 

engine technology, which will increase by an order of magnitude by 2017.  

  Euro 4 Euro 5a Euro 5b Euro 6 
 Units Jan. 2005 Sept. 2009 Sept 2011 Sept 2014 
CO mg.km-1 1000 1000 1000 1000 
THC mg.km-1 100 100 100 100 
NMHC mg.km-1 - 68 68 68 
NOx mg.km-1 80 60 60 60 
CO mg.km-1 1000 1000 1000 1000 
PM mg.km-1 - 5 4.5 4.5 
PN #.km-1 - - - *6 x 1011 
*6 x 1012 within first three years from Euro 6 effective dates 

Table 1.1.1: EU emissions standards for passenger cars (EU regulation 715/2007). Data 
from DieselNet (2015) 

Benchmarking activities by Berndorfer et al. (2013) have shown that current DISI engine 

technology does not meet the needs of Euro Stage 6 PN legislation, to be released in 2017, 

highlighting the significant development challenges of DISI engine technology. 
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Figure 1.1.2: Particulate matter (PM) number and mass emissions legislation compared to current DISI engine 

system benchmarking results (Berndorfer et al. 2013) 

It is well understood that the highest concentration of PN emissions in DISI engines occurs 

within the first 100 seconds of the Euro Stage 5 New European Drive Cycle (NEDC) (Piock et al. 

2011, Whitaker et al. 2011, Berndorfer et al. 2013) whilst the engine is still at a cool operating 

temperature and during the first transient events as shown in Figure 1.1.3. This is further 

compounded by the fact that the TWC system has not yet achieved light-off temperatures, 

requiring combustion strategies that inherently need to generate high exhaust temperatures, 

but also generate high levels of PM. 

 
Figure 1.1.3: PN emissions plot during the Euro 5 NEDC comparing a DISI engine and PFI engine (adapted from 

Whitaker et al. (2011)) 

 

Cold / transient conditions 
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TWCs effectively reduce emissions of CO, HC and NOx by above 95% (Shelef and McCabe 2000, 

Gandhi et al. 2003) when they reach a typical light-off temperature of approximately 300°C 

(Shelef and McCabe 2000), but are markedly less effective below this temperature, so it 

essential that this operating condition is reached as soon as possible. It has also been shown 

that a TWC can reduce the total particle number density of volatile particles by up to 65% 

during a cold-start test (Whelan et al. 2013). 

The importance of PM emissions from DISI engines and the current lack in meeting future 

emissions targets is widely acknowledged. There has been little optical research that analyses 

the in-cylinder physical processes within an optical engine during cold-start temperatures as 

low as -7°C. The modes of PM generation within DISI engines are generally understood, but 

little data exists precisely linking the complex interaction of the in-cylinder engine flow, fuel 

spray and combustion to particulate generation within the cylinder. 

1.2 THESIS OVERVIEW 
Chapter 1 of this thesis has identified DISI engine technology as an area of future development 

to meet the needs of reducing CO2 emissions and other harmful greenhouse gases. The 

requirement of reducing PM emissions in DISI engine technology has been discussed and 

highlighted the prevalence of PM emissions during the cold-start and transient phases of a 

legislative drive cycle. Understanding the nature of PM generation within the cylinder will help 

engine designers and calibrators meet the challenges of stringent future emissions legislation. 

Chapter 2 reviews the current literature surrounding DISI engine technology and research. 

Control methods that are used to regulate engine emissions are analysed to better understand 

the interaction between flow, fuel injection and combustion processes. Focus has been placed 

on experimental investigations but a concise review of numerical studies has been made. The 

subject of cold-start performance and the limitations of optical research in this area have been 

identified. 

Chapter 3 describes the single cylinder optical research engine used to investigate the flow, 

injection, combustion and emissions processes. The optical diagnostics techniques used to 

analyse these areas are discussed, along with the imaging and illumination methods that 

facilitated them. An overview of the ancillary systems used to achieve the desired range of 

engine operating conditions is made. The experimental instrumentation of the emissions 

measurement equipment is also presented. 
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Chapter 4 investigates the effect of engine operating temperature on the in-cylinder 

combustion process within a DISI engine. High-speed flame imaging data observed through the 

optical piston crown is presented and processed into quantitative data. In-cylinder pressure 

measurements and engine performance data is discussed and correlated to the optical results. 

Chapter 5 analyses the fuel injection process using laser illumination and high-speed imaging 

through the optical cylinder liner. Statistical processing of repeated fuel spray injection events 

are used to further understand the effect of engine operating temperature on the fuel spray 

structure, atomisation, vaporisation and surface impingement. These results are used to 

further interpret the combustion imaging data and engine performance data presented in 

Chapter 4. 

Chapter 6 discusses the effect of in-cylinder flow structures during the intake and compression 

strokes of the DISI engine during a production cold start-up strategy. The subsequent 

combustion process is also analysed using colour optical imaging though the piston crown and 

in-cylinder pressure measurements. The complex stoichiometry of the flame is commented on 

and a number of particulate generation regions are identified throughout the cold-start 

process. 

Chapter 7 presents PM and HC exhaust measurements over a range of engine operating 

temperatures to correlate previous results that indicated the presence of fuel-rich regions 

where PM generation was anticipated. Fast FID transient HC measurements allow the precise 

in-cylinder location of HCs to be recorded during individual exhaust strokes, allowing the effect 

of fuel impingement that was imaged in Chapter 5 to be commented on. 

Chapter 8 summarises the main conclusions from this research and discusses potential areas 

of further work in the field of DISI engine emissions during cold-start. 
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1.3 CONTRIBUTION TO KNOWLEDGE 
The work presented in this thesis using the single cylinder DISI optical engine has contributed 

significantly to  the understanding of DISI cold-start flow processes, fuel spray, combustion and 

emissions. These contributions include: 

1. High-speed combustion flame imaging and fuel spray visualisation within an optical 

DISI engine at cold-start temperatures as low as -7°C whilst simultaneously measuring 

in-cylinder pressure data. This experimental investigation has highlighted the striking 

effect that cold-start engine operating temperatures have on the combustion process, 

fuel injection process and engine performance of a DISI engine. Results highlighted 

striking differences between the flame growth structures and fuel spray structures at 

different operating temperatures and the presence of fuel-rich regions in both the 

flame and fuel spray data. Engine performance was significantly affected by operating 

temperature and correlated with the optical measurements. 

 

2. The application of high-speed particle image velocimetry (HSPIV) and colour high-speed 

combustion imaging to a production NEDC engine cold start-up process whilst 

simultaneously measuring in-cylinder pressure data at cold-start temperatures. This 

revealed a wealth understanding of the in-cylinder physical processes that occur 

during engine cold start-up. The complex and dynamic stoichiometry of the flame were 

highlighted and linked to in-cylinder pressure and engine performance data. The in-

cylinder flow field measurements facilitated an improved understanding of their 

important contributory effect to fuel injection, transportation and mixing, as well as 

the subsequent combustion process during cold-start. 

 

3. The particulate matter (PM) emissions from a DISI engine operating at a range of cold-

start temperatures as low as -7°C have been quantified in the particle size range of 

5 nm – 1 μm alongside cycle-resolved HC emissions data. The evolution of particle size 

and number concentration across an engine warm-up period has been described to 

give further insight into the origin of PM emissions. Detailed HC emissions data has 

allowed the precise in-cylinder location of HCs to be commented on and linked to the 

observed fuel spray impingement analysed in Chapter 5.  
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 INTRODUCTION 2.1
This chapter discusses DISI engine operation in more detail and examines the complex 

combustion processes involved as well as their control techniques. Fundamental flow and 

combustion processes are described as well as the experimental techniques that are used to 

measure them. The control methods that are used to regulate engine emissions have been 

analysed in order to attain a better understanding of the complex in-cylinder flow, injection 

and combustion processes involved. New and novel approaches taken by other research 

groups have also been discussed. The aim of this chapter is to identify research areas that 

require further understanding and have the need for experimental investigation. By identifying 

these gaps in knowledge, research can be conducted to provide new information and useful 

findings for supporting other research groups and engine developers. 

 DISI ENGINE METHODOLOGY 2.2
Over the past 30 years, a major research goal in the automotive sector has been to develop 

internal combustion engines that combine the specific power of gasoline engines with the 

higher efficiency of diesel engines at part load, enabling brake specific fuel consumption (BSFC) 

approaching that of the diesel engine (Zhao et al. 2002). Significant contributions to this area 

of research have realised the best approach taken is using a four-stroke DISI engine with the 

potential to not throttle the intake mixture to control the load as in port fuel-injected (PFI) 

engines. At present, most major automobile manufacturers including BMW, General Motors, 

Ford, Jaguar, Volkswagen, Audi, Mazda and Porsche utilise DISI engine technology in their 

fleets. 

In their methodology of operation, DISI gasoline engines have fundamental differences to PFI 

engines in the way the charge mixture is prepared and delivered into the cylinder. DISI engines 

inject fuel directly in the cylinder either during intake (e.g., homogeneous charge systems) or 

near TDCcomp (e.g., stratified charge systems), these modes are discussed in detail later in the 

literature review. PFI engines spray fuel into the inlet manifold upstream of the intake valves 

and use the intake flow to initiate the charge delivery to the cylinder. This has the potential to 

lead to significant wall wetting and in extreme cases such as cranking and cold-start, PFI 

engines can develop fuel films near the intake valves. In worst case scenarios, PFI engines 

operate on fuel metered from a pool rather than fuel delivered by the injector (Zhao and Lai 

1995). Figure 2.2.1 illustrates the results of a study by Stanglmaier et al. (1999) observing the 

effect of hydrocarbon (HC) emissions when specific wall wetting locations are identified. It can 

be seen that certain locations such as the piston crown and exhaust side of the cylinder exhibit 
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higher HC emissions than others, which highlights the sensitivity of wall wetting on HC 

emissions and the importance of their control. Wall wetting can occur in the intake manifold 

and in-cylinder and is difficult to eliminate completely, especially during cold-start. This 

emphasises the importance of reducing wall wetting and highlights a potential operational 

advantage of DISI engines at this condition when compared to PFI engines. 

 
 

Figure 2.2.1: Effects of wall wetting location on HC emissions (Injection Timing = 160 °CA ATDC, 90°C coolant 
temperature) (adapted from Stanglmaier et al. (1999)) 

 

DISI engines hold a number of benefits over PFI engines that can lead to improvements in 

break specific fuel consumption (BSFC) as well as contributing towards improving exhaust 

emissions. A significant contributor is the reduction of pumping losses when stratified 

combustion is used during low-load requirements. In these stratified lean mixture systems, the 

charge is not throttled to control the load of the engine so the mechanical efficiency loss 

associated with throttle pumping work is eliminated. Fuel is injected directly into the cylinder, 

which produces a charge cooling effect and allows a higher knock-limited compression ratio to 

be used, resulting in a higher thermal efficiency. Direct injection also allows more precise fuel 

control that helps maintain a more consistent air-fuel ratio (AFR) and potentially reduces the 

chance of forming a rich charge mixture that can lead to significant CO and unburned HC 

emissions. Similarly, an accurately maintained stoichiometric mixture can ensure efficient and 

stable combustion that is especially important during initial cranking and transient loads. By 

having a precise and rapid response of the delivery of fuel into the cylinders, less acceleration 

enrichment is required due to the absence of a manifold fuel-film and improved load control 

enables more aggressive fuel cut-off during deceleration that in turn benefits BSFC (Zhao et al. 

1999). These transient operation modes are of particular importance during the new European 

drive cycle (NEDC) legislative test, since, for example, it is well understood that a large 
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proportion of HC and particulate number (PN) emissions occur during the first few seconds 

when the engine is at a cold operating temperature and during the first transient events 

(Whitaker et al. 2011). 

In order to promote charge mixing in the reduced mixture preparation time before 

combustion, DISI engine injection systems operate at high pressures (e.g., 150-200 bar) 

(Sanford et al. 2009, Spegar 2011). This has the benefit of improved fuel atomisation and 

vaporisation compared to PFI engines, producing average Sauter mean diameter (SMD) fuel 

droplet sizes of 16 µm compared to 120 µm (Zhao et al. 2002). 

The factors discussed outlining the BSFC benefits of DISI engines when compared to PFI 

engines have been summarised in Table 2.2.1 listing identified improvements obtained by 

different research groups attributed to different factors. This shows that the advantages of 

DISI engine technology have the potential to be significant, with benefits in BSFC of up to 31% 

being reported. 

Source Cause Kume et al. 
(1996) 

Alkidas and 
Tahry (2003) 

Reduced Pumping 
Losses Less throttling 15% 10% 

Improved Charge 
Mixing Lean combustion 7% 7.5% 

Higher Compression 
Ratio Charge air cooling 4% 3% 

Reduced Heat 
Losses 

Lower temperature 
combustion 5% 2% 

Fuel Delivery 
Response 

Better transient 
operation - 3.5% 

Total 31% 26% 

Table 2.2.1: Summary of DISI contributions to BSFC improvement when compared to PFI engines 
(Kume et al. 1996, Alkidas and Tahry 2003) 

Despite increased legislative pressures, there is a continuing industry competitive requirement 

to improve vehicle performance, fuel economy and enhance existing products, particularly in 

the premium vehicle market. A study by Jaguar Cars Ltd outlined a market demand in 2010 for 

a 35% increase in engine performance compared to previous generation V8 engines in the 4.2 

to 4.5 litre range (Sanford et al. 2009). This highlights the on-going future demand for DISI 

engine technology and inevitable industry investment in DISI engine architecture, including 

fuel injection systems, calibration and emissions control. 
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A number of drawbacks also exist in DISI engine technology. Whilst operating in a stratified 

combustion mode, despite having a globally decreased peak thermodynamic temperature, a 

higher NOx formation rate is present due to the high temperatures within the rich core of the 

burning charge (Zhao et al. 2002). Potential methods of reducing NOx in a DISI engine include 

exhaust gas recirculation (EGR) and lean NOx aftertreatment technologies such as three-way 

catalyst (TWC) and urea-based selective catalyst reduction (SCR) systems. These ancillaries, 

however, will inevitably increase the complexity and cost of combustion and aftertreatment 

systems. 

A critical drawback of DISI engines and an area of considerable research within the context of 

this literature review, are particulate number (PN) emissions. Compared to diesel engines and 

PFI engines, DISI engines emit a higher number of smaller sized particulates (generally 

< 100 nm) that consist not just of carbon, but high and low volatile compounds that depend 

highly on engine operating conditions (Price et al. 2007, Schreiber et al. 2007). As highlighted 

by Table 1.1.1 in Chapter 1, these PN emissions need to be addressed for current and future 

DISI engine technology, due to increasingly stringent legislation. Particulate filtering is an 

option but the inevitable requirements of nanoparticulate filters (such as regeneration) would 

introduce an increased complexity and cost to the after-treatment system. Also, a resultant 

higher exhaust gas flow back pressure would adversely affect engine performance. It is 

therefore the task of engine designers and researchers to combat these drawbacks using 

appropriate combustion systems and robust engine calibration, alongside new and novel 

techniques. It has been suggested that future targets can be met without the use of a 

particulate filter (Piock et al. 2011, Whitaker et al. 2011, Berndorfer et al. 2013). 

The rest of this literature review analyses the research into engine flow and combustion, 

parameter control and engine measurement to identify critical areas of research that require 

further knowledge and understanding. 
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 DISI ENGINE FLOW AND FUEL INJECTION 2.3
In order to optimise SI engines so that emissions targets can be met and performance 

demands can be maintained, a number of key shortcomings need to be overcome. For 

example, variability in intake flow structures, injection and combustion are major factors that 

limit engine optimisation. Reducing cycle-to-cycle variability is a key area of engine 

development and can facilitate the reduction of incomplete burning and emissions, as well as 

addressing knock and the resultant limitations on compression ratio. Figure 2.3.1 shows an in-

cylinder pressure trace taken from the DISI optical research engine utilised in the investigation 

contained within this thesis and illustrates this cycle-to-cycle variability by highlighting a 5 bar 

difference in peak cylinder pressure over 100 engine cycles. This section analyses the 

distinctive flow, injection and combustion characteristics of DISI engines alongside the 

methods that have been employed in their control, in order to prepare an ideal in-cylinder 

charge for successful turbulent combustion. 

 
Figure 2.3.1: Pressure vs. volume graph from a DISI optical research engine highlighting variability in peak 

cylinder pressure 
 

 2.3.1 Intake Flow 
The dominant in-cylinder flow structures that are present during intake and combustion are 

critical to the successful operation of a DISI engine. These structures control important 

parameters such as air-fuel mixing, fuel vaporisation and turbulence generation that are of 

paramount importance for rapid flame propagation in SI engines to deliver maximum work 

output (Heywood 1988, Rimmer et al. 2009).  
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Most IC engines utilise spring-loaded poppet valves controlled by the engine camshaft. These 

are of relatively low cost and have good sealing characteristics. The maximum distance the 

valve opens (valve lift) is typically 5 to 10 mm for automobile engines (Pulkrabek 2004). 

Annand and Roe (1974) outline the flow through a valve and its geometric parameters in 

Figure 2.3.2. At low valve lifts, the conical jet flow is attached to the valve head and seat and 

its direction is influenced strongly by the seat width and angle. The flow in this case has a high 

discharge coefficient, CD, which is defined as 

 𝐶𝐶𝐷𝐷 =
𝐴𝐴𝑒𝑒
𝐴𝐴𝑐𝑐

 Eqn. (2.3.1) 
 

where Ae is the effective flow area, defined by the separated flow and Ac is the curtain area, 

defined by the physical geometry of the orifice area. 

The small effective flow area relative to the port and the large pressure difference during this 

early phase of induction create high velocities that are approximately 10 times the mean 

piston speed (Heywood 1988). The high velocity in-cylinder flow and shear that is produced 

forms the basis of bulk flow vortex structures such as tumble and swirl, these are described in 

more detail in later sections of this literature review. 

At intermediate valve lifts, the flow separates from the surface of the valve head at its corners 

and the actual flow area is less than the available geometric area giving the flow a lower 

discharge coefficient (Figure 2.3.2). At high valve lifts the flow is influenced less by the valve 

geometry until a free jet is formed, the properties of which are influenced predominantly by 

the intake port and upstream manifold geometry. The understanding of detailed intake flow 

around the valves is of importance to researchers and engine designers. Computational fluid 

dynamics (CFD) turbulence models use the accurate prediction of the discharge coefficient to 

accurately predict the main flow characteristics and as such, place emphasis on correctly 

predicting the discharge coefficient as shown by Bianchi et al. (2002).  

Intake valve flow experiments have been predominantly carried out on steady flow rigs with 

upstream diffusers and settling chambers to reduce the effect of turbulence. The transition 

points between attached, separated and free flow have been studied in detail by Annand and 

Roe (1974) who concluded that a 30° seat angle with a minimum width seat with a 10° angle at 

the upstream surface gives the best results. Figure 2.3.2 shows these transition points and how 

the discharge coefficient varies with valve lift. The effective flow area is shown to reach a 

maximum when the non-dimensional valve lift is approximately 0.23 (Annand and Roe 1974). 
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Figure 2.3.2: Flow characteristics of outlining discharge coefficient, CD, against valve lift and schematic of air flow 

through an intake valves with different lifts (Annand and Roe 1974)) 

As mentioned previously, the in-cylinder velocity field around the intake ports is known to 

have an important effect on fuel mixing and turbulence, as well as contributing to cycle-to-

cycle variation. A particle image velocimetry (PIV) study was conducted in this area by Lee and 

Farrell (1993) for four different valve lift positions at 150 rpm and 300 rpm. Thin intake jets 

were observed from the valve edge that expanded as they travelled further into the cylinder 

volume. Several vortices were observed at the edge of these jets, which entrained the ambient 

air into the main jet stream. These were caused by the high levels of shear from the interaction 

between the high velocity jet flow and stationary ambient air. Yasar et al. (2006) conducted 

more detailed experimentation at higher engine speeds up to 2500 rpm and showed similar 

flow structure results as outlined in Figure 2.3.3. These illustrations show the rotation of two 

main counter-rotating vortices created from each side of the valve emphasising the significant 

effect of the shear layer caused by the jets. These form the basis of bulk in-cylinder tumble 

motion and were confirmed by (Stansfield et al. 2007b). Cycle-to-cycle variations in the flow 

were consistently observed throughout these studies in regions such as the jet boundary, but 

flow with a higher velocity, such as near the valve jets, were consistently shown to behave 

more repeatably. 
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These studies have shown the fundamental effect that the conical valve jets have on the 

formation of bulk in-cylinder flow structures that affect the subsequent injection and 

combustion events in an engine. However, it is the subsequent dissipation of these bulk in-

cylinder structures into small scale turbulence structures that has a dominant effect on engine 

performance as shown by Rimmer et al. (2009). It was discovered that it is the small scale 

structures with frequency fluctuations above 600 Hz that predominantly influence indicated 

mean effective pressure (IMEP) and burn rate. 

Instantaneous Time-averaged 

  

  
Figure 2.3.3: Instantaneous and time-average PIV velocity vectors and streamline topology for a 7 mm valve lift 

(L/D = 0.12) (adapted from Yasar et al. (2006)) 

The flow upstream of the valves has also been shown to have an effect on the subsequent in-

cylinder flow field. Justham et al. (2006a, 2006b) investigated this intake region using PIV at 

engine speeds of 1500 rpm in a single cylinder optical research engine. Relationships were 

highlighted between cycle-to-cycle variations in the intake manifold and in-cylinder flows, 

whereby variation in the intake manifold later affected the in-cylinder bulk flow structures, 

albeit not as predominantly as the valve itself. Further work from Justham (2010) used high-

speed PIV (HSPIV) at 5 kHz to observe the temporal flow field development in the intake 

manifold. Turbulence oscillations in the intake manifold flow were observed along with the 
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presence of backflow that contributed to variations in the intake bulk flow. Despite these 

variations not having a dominant influence on the intake flow, their presence contributes to 

the global cycle-to-cycle variability in an engine’s in-cylinder flow field. 

Developments in experimental PIV equipment and the use of HSPIV have allowed the 

decomposition of time-resolved flow fields and an improved understanding of the turbulent 

behaviour around the intake valves. Kapitza et al. (2010) studied the transient flow behaviour 

and flow fluctuations in the intake port of a 1.6 litre 4-cylinder production cylinder head using 

10 kHz stereoscopic HSPIV. Fast Fourier transform (FFT) frequency analysis was used to identify 

the origins of the main flow fluctuations. It was shown that the transient flow behaviour was 

predominantly caused by the interaction between vortices (varying in magnitude and position) 

and the wavelike fluctuations of valve jet flow near the walls. The levels of fluctuation in these 

transient flows were shown to be caused by increasing mass flow and decreasing valve lift. This 

type of analysis allows a progression in the understanding of transient intake flow that can be 

utilised to achieve better influence transient flow behaviour. 

 2.3.2 Variable Valve Actuation and Lift 
Valve timing events, particularly in SI engines, influence engine performance, efficiency and 

emissions due to the effect of pumping losses from partially open valves and throttling. Like 

compression ignition Diesel engines, DISI engines have the potential to operate without 

throttling, in stratified operation. The development of variable valve actuation (VVA) systems 

presents the potential for these engines to operate without a throttle. The following section 

discusses the four main valve opening and closing strategies and their effect on an engine. 

Early intake valve closing (EIVC) reduces the mass of charge in the cylinder by closing the valve 

early in the intake stroke. This results in reduced pumping losses due to reduced charge 

induction and the negative area represented in the corresponding PV diagram (Figure 2.3.4) is 

reduced. A 40% reduction in pumping losses compared to a conventional engine with a 

throttle has been achieved that can lead to a 7% reduction in brake specific fuel consumption 

(BSFC) and a 24% reduction in NOx at part load (Tuttle 1982). This strategy also holds potential 

for generating ideal sprays, particularly in high-pressure DISI injection systems. EIVC can lower 

the in-cylinder pressure to below the saturation pressure of the fuel and induce flash boiling 

during injection. Xu et al. (2013) demonstrated this technique can be used to reduce fuel spray 

droplet size, shorten penetration and increase fuel spray dispersion in a DISI engine. These 

effects are of particular significance during cold-start, when fuel rail pressure is not fully 
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developed and fuel spray penetration needs to be minimised to reduce cold-surface 

impingement. 

Late intake valve closing (LIVC) delays the closure of the intake valves until a point within the 

compression stroke, which expels some of the charge back into the intake manifold. The 

charge expelled back into intake manifold is at a slightly higher pressure than atmospheric, due 

to compression and the subsequent stroke will induct a charge with higher pressure, reducing 

pumping losses. At higher engine speeds, LIVC offers the benefit of improved volumetric 

efficiency as the higher intake air momentum continues to charge the cylinder during 

compression (Asmus 1982). As with EIVC, a 40% reduction in pumping losses has been 

reported at part load conditions using this strategy as well as a reduction in NOx emissions 

(Tuttle 1982).  

  
Figure 2.3.4: PV diagrams for early intake valve closure (EIVC) and late intake valve opening (LIVO) (adapted from 

Hong et al. (2004)) 

Late intake valve opening (LIVO) delays the induction of air into the cylinder and increases the 

pressure difference between the cylinder and the intake manifold. Pumping losses will actually 

be increased as illustrated in Figure 2.3.4 with the larger negative work loop area. Volumetric 

efficiency will not be affected, however, as the complete mass of the charge will eventually be 

drawn into the cylinder at a higher velocity. As a result, benefits can be seen in the creation of 

turbulence in the charge mixture, which assists fast and efficient combustion (Stone et al. 

1993, Reeves et al. 1999, Rimmer et al. 2009) and is considered an effective technique to 

reduce unburned hydrocarbon (UHC) emissions (Hong et al. 2004, Morita et al. 2005). The 

creation of turbulence in the intake stroke is essential in enhancing the air-fuel mixing process 

and improving the evaporation of fuel (Rimmer et al. 2012), creating a more homogeneous 

charge mixture. Furthermore, the dissipation of bulk air flow into high-frequency turbulence 
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during compression increases the interaction between the flame and unburned charge 

promoting rapid flame propagation in SI engines (Heywood 1988). 

LIVO has the added benefit of being able to induce flash boiling of fuel by injecting into 

cylinder pressures lower than that of the fuel’s saturation pressure. Xu et al. (2013) showed 

that flash boiled sprays had smaller droplet sizes, shorter penetration and quicker evaporation 

rates without the need for higher pressure injection systems. The present author (Efthymiou et 

al. 2013) confirmed the benefits of flash boiling sprays during cold-start conditions of -7°C. 

Lower penetration, due to less fuel spray momentum and improved atomisation resulted in a 

reduction in cold-surface impingement and contributed to a more homogeneous charge and 

flame structure and improved engine performance. Flash boiling strategies offer an alternative 

approach to higher injection pressures and negate the added complexity and higher costs 

associated with them. 

Early intake valve opening (EIVO) increases the amount of exhaust residuals in the intake and 

the level of internal EGR that has the potential to reduce NOx due to a reduction of peak flame 

temperatures in subsequent combustion events. Late exhaust valve closing (LEVC) produces 

similar effects to EIVO. Morita et al. (2005) utilised a variable valve timing (VVT) system along 

with a spark retardation strategy to reduce HC emissions by a total of 3 g.kWh-1, this strategy is 

discussed in more detail later in this literature review. 

As well as valve scheduling, other valve control strategies have been utilised to influence the 

flow and subsequent combustion in SI engines. Wilson et al. (2005) investigated the effect of 

short duration negative valve overlap using PIV in a homogeneous charge compression ignition 

(HCCI) research engine. Peak flow velocities were shown to be up to three times higher and 

flow fluctuations increased by 50% during the compressions stroke (when compared to typical 

valve overlapping strategies in SI engines). These increased flow fluctuations highlight the 

potential benefits to a DISI engine operating in a homogeneous mode, as increased turbulence 

offers improved mixture preparation and homogeneity in the charge. Low lift and the 

complete deactivation of a single valve can also have potential benefits, as later investigated 

by Patel et al. (2008). A low lift valve strategy was shown to exhibit faster burn speeds and 

reduced HC, NOx, CO emissions by approximately 25% whilst a single valve strategy improved 

fuel consumption and reduced PM emissions substantially. These benefits were seen to be 

amplified at low load cases highlighting the benefit of these strategies during cold engine 

start-up. 
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Future legislative emissions levels have been mentioned as one of the critical challenges facing 

engine designers and the discussed strategies have shown potential for their improvement. 

The majority of system design and engine operating variables, however, are interdependent, 

thus a proposed alteration of a component or strategy must be examined to evaluate the very 

important compromise between performance, fuel economy and emissions (Zhao et al. 2002). 

 2.3.3 Fuel Injection 
The control and optimisation of fuel injection durations and timing parameters facilitates the 

good transient response that is inherent in DISI engines. A number of manufacturers and 

researchers have implemented injection strategies such as multiple injection, which during 

cold-start has been shown to improve combustion stability and reduce emissions. 

Three main atomisation concepts for DISI injectors are currently available, swirl, outward 

opening and multi-hole. While the swirl-type injector has been widespread for first generation 

DISI engines it is now increasingly being replaced by multi-hole fuel injectors for homogeneous 

combustion systems (Stach et al. 2007). 

Swirl injectors can induce the presence of a transient phase pre-spray that is created at the 

beginning of an injection event due to fuel trapped in tangential slots from the previous 

injection event that consequently lack high swirl (Chryssakis et al. 2003). This solid cone pre-

spray structure can generate large fuel droplets, resulting in high HC emissions. A laser induced 

fluorescence (LIF) study by Ahmed et al. (2010) confirmed the presence of liquid fuel droplets 

and also showed that the spray plume was more affected by changes in cylinder pressure. 

Moreover, the dynamic variations of fuel spray structure, such as spray collapse, when engine 

operating conditions change, have the potential to cause engine misfire (Ahmed et al. 2010). A 

comparison between injector types and their parameters has been made by Stach et al. (2007) 

and is shown in Figure 2.3.5. While similarities are present in spray quality, in terms of fuel 

atomisation, multi-hole injectors were shown to have advantages in terms of spray flexibility, 

backpressure influence and cost. These findings, however, will be highly dependent on spray 

pattern, which is of fundamental importance to multi-hole injectors. The combustion mode 

also affects the performance of injectors, for example, an injector’s resistance to backpressure 

is not so relevant to early fuel injection in homogeneous DISI combustion systems. 

The spray from early multi-hole injectors was shown by Tomoda et al. (1997) to be more stable 

and repeatable, but have a wider range of droplet size distribution when compared to swirl 

injectors. More recently, with the development of multi-hole injection systems from 
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companies such as Bosch, it has become possible to increase injection pressure up to 200 bar 

(Lee et al. 2013) and stabilise the Sauter mean diameter (SMD) of fuel droplets to 14-19 µm 

and eliminate large droplets such as those found within the pre-spray of swirl injectors (Ahmed 

et al. 2010). 

 
Figure 2.3.5: Atomisation techniques for DISI fuel injectors (adapted from (Stach et al. 2007)) 

In its fundamental form, fuel injection control in homogeneous charge DISI engines involves 

controlling the quantity and pressure of fuel delivered to achieve the required combustion 

conditions, controlling the trajectory of the spray and controlling the timing of the spray to 

optimise the balance between mixture preparation time and combustion chamber surface 

impingement. Figure 2.3.6 illustrates the effect of injector timing in a spray-guided DISI engine 

with a centrally mounted fuel injector and homogeneous combustion mode. The requirements 

of the fuel spray in homogeneous combustion systems are as early injection as possible to 

increase vaporisation and mixture preparation time, along with a well atomised and dispersed 

spray to increase mixing, decrease penetration and avoid piston impingement (Kume et al. 

1996, Zhao et al. 2002, Xu et al. 2013). Kume et al. (1996) suggested such a timing strategy 

whereby the spray ‘chases’ the piston to avoid surface impingement. A range of fuel droplet 

sizes are also preferable to ensure an adequate range of penetration into the cylinder to 

facilitate good charge mixing. 
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Figure 2.3.6: Injection timing schematic highlighting mixture preparation and piston impingement during 

induction stroke 

Figure 2.3.7 highlights the importance of fuel injection pressure with images from an AVL 

optical engine at cold-start. The improvements in atomisation are clearly illustrated with an 

increasing fuel injection pressure up to 15 MPa (150 bar) showing a significant improvement of 

atomisation and reduced presence of liquid fuel. Whilst increasing pressure improves 

atomisation and evaporation, which can decrease PM generation due to improved mixture 

quality, the penetration depth increases, which can increase the likelihood of piston 

impingement (Whitaker et al. 2011). Penetration depth, however, is limited and highly 

dependent on fuel particle size and breakup. A number of researchers have extensively 

analysed and predicted sprays in diesel engines, indicating that spray penetration is 

approximately proportional to the square root of time after injection (Schweitzer 1938, Xu et 

al. 1992). The effect of better atomisation due to higher injection pressure will also determine 

penetration, since smaller fuel spray droplets will have less momentum due to their reduced 

mass and hence penetration. 

 
Figure 2.3.7: Laser Induced Fluorescence (LIF) images of fuel spray using an AVL optical engine at increasing fuel 
pressures at 250 rpm, multi-hole injector, first injection for cold-start particulate optimisation (Whitaker et al. 

2011) 
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 2.3.4 Fuel Spray and Air Flow Interaction 
The interaction of the fuel spray with the broad range and scales of air flow structure and 

turbulence are fundamental for adequate charge mixing and vaporisation. The limited time 

available in DISI engines (when compared to PFI) exemplifies the importance of charge 

preparation in providing successful combustion and minimising exhaust emissions. 

The interaction of the fuel spray with the in-cylinder flow at a range of injection timings was 

investigated by Davy et al. (1998) who showed that early injections (up to 60 °CA ATDCIntake)) 

were unaffected by intake flow structures. This was hypothesised to be due to the relatively 

low flow momentum at this time during the intake stroke, despite the flow structures during 

early intake having a considerably high velocity magnitude due to the small effective flow area 

and large pressure difference across the intake valves (Reeves et al. 1999, Jarvis et al. 2006). It 

is likely that the high velocity of the fuel spray and short time for flow to take effect are 

dominant factors as to why earlier injections are less affected. 

With injection timings nearer that of modern homogeneous charge combustion systems (90 to 

120 °CA ATDCIntake), Davy et al. (1998) demonstrated that injected sprays were deflected away 

from the intake side of the cylinder due to the more developed bulk flow vortex structures and 

higher intake momentum. Stansfield et al. (2007b) confirmed these bulk flow structures using 

PIV, which showed the effect of the conical vortex jets forming two distinct vortices (Figure 

2.3.8). Path 1 forms the inherent tumble flow in pent-roof combustion systems (this is 

discussed in more detail in Section 2.7 of this literature review). Spray structures during 150 –

 210 °CA ATDCIntake injection were shown to be influenced considerably more by developed 

bulk flow structures, which can be attributed to tumble flow, whilst injections during the 

compression stroke were shown to be influenced far less, due to the decay of bulk flow 

structures around this time (Rimmer et al. 2009). Steady-state flow experimentation has been 

used to attain a more fundamental understanding of fuel spray interaction with engine flow. 

Choi et al. (2000) used 17 m·s-1 cross flow velocities inside a cylinder to simulate the in-cylinder 

mean velocity during injection. As cross flow velocity was increased, the intensity of the Mie 

scattered images of the spray decreased and it was concluded that the rate of vaporisation had 

increased. The spray width and main spray penetration was shown to be unaffected but the 

spray drift at the tip of the plume was measured to be approximately 2 m·s-1. 
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Figure 2.3.8: Schematic of valve jet path flows and formation of bulk flow structures during intake 

Similar findings have been observed by Efthymiou et al. (2013), Rimmer et al. (2012) and 

Serras-Pereira et al. (2007a) who showed that the fuel spray was influenced by bulk in-cylinder 

structures only after adequate penetration and dispersion into the cylinder. Numerical studies 

(Han et al. 1997a, Han et al. 1997b) have predicted that this is due to the increased 

momentum of intake flow structures that are formed in the centre of the cylinder due to the 

interaction between the intake valve jets. The fuel spray has also been shown to have a 

suppression effect on the dominant tumble flow with early injection, which is observed as a 

more uniform velocity field (Han et al. 1997b, Rimmer 2010). This can likely be attributed to 

the momentum transfer involved with the transportation of the fuel spray. Conversely, later 

injections toward BDC intake were actually shown to enhance the tumble motion, which can 

have the benefit of increased turbulence around the time of spark ignition. Figure 2.3.9 

illustrates the effect that these bulk flow structures can have on a fully heated DISI engine fuel 

spray that is highly atomised. The effect of the main clockwise vortex can be seen to influence 

the right spray plume of the highly atomised spray once it has started to disperse and 

transport the plume away from the wall towards the intake side of the cylinder. 

 
10 °CA ASOI 11 °CA ASOI 17 °CA ASOI 20 °CA ASOI 

Figure 2.3.9: The effect of in-cylinder bulk flow structures on a DISI engine fuel plume in fully heated DISI optical 
engine (intake valves on LHS, ASOI – after start of injection) (Efthymiou et al. 2013) 
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The described intake bulk flow structures have also been shown to be beneficial for the 

evaporation and transportation of fuel that is consistently seen to have impinged onto in-

cylinder engine surfaces (Stanglmaier et al. 1999, Serras-Pereira et al. 2007b). Rimmer et al. 

(2012) showed evidence of the flow sweeping the spray across the top of the piston away from 

the liner wall. These flow processes are beneficial to the transportation of fuel deposits away 

from impingement locations, especially in scenarios where impingement is difficult to avoid, 

such as cold-start. 

As discussed previously, utilisation of intake valve timing can have a profound effect on the 

operation of a DISI engine and specifically, the ability to control the interaction between the 

air flow and fuel spray. Deactivation of a single intake valve is a technique that increases intake 

flow velocity due to the smaller effective flow area available and induces some degree of swirl 

flow due to the non-symmetrical intake of air into the cylinder. Stansfield et al. (2007a) 

observed the spray plume being convected away from the single open valve whilst maintaining 

its spray pattern, along with strong swirl structures present in the cylinder. The increased swirl 

will have an effect on charge mixing and may also aid the vaporisation of fuel films on the 

cylinder wall surfaces. A more in-depth study by Patel et al. (2008) confirmed the disruption of 

the fuel spray plume with single valve operation and a reduction in piston impingement was 

also observed during early injection cases. The luminosity of the Mie scattered spray also 

appeared lower, which indicates a higher rate of vaporisation may have taken place. As 

expected from the favourable air-fuel mixing conditions, subsequent combustion analysis 

revealed an improvement in heat release rate, which is likely due to the improved air-fuel 

mixing, as well as a fuel consumption improvement of 5% at low engine loads. Deactivation of 

one of the intake valves is a strategy that holds a number of benefits to charge mixing and 

engine performance but parameters such as fuel injector location will have a profound 

influence on its effectiveness. Investigations into the effect on bulk flow structures such as 

tumble should also be considered, as these are of paramount importance to the generation of 

high-frequency turbulence structures around the time of combustion.  

In the discussed studies, a number of optical diagnostics techniques have been used to analyse 

fuel spray parameters such as droplet size, atomisation and vaporisation rate. It is important to 

interpret the data from these techniques in the correct manner in order to avoid false 

conclusions. Vaporisation of the fuel, for example, has two modes and when using typical Mie 

scattering techniques. The initial vaporisation of particles of a certain size is detectable whilst 

the subsequent vaporisation of particles below a certain size, is not. Multiple complementary 

diagnostics techniques such as laser Doppler anemometry (LDA), phase Doppler anemometry 
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(PDA) and Mie imaging analysis helps to facilitate the interpretation of a complex spray flow 

field (Wigley et al. 2004). Wigley et al. (1998) stated that a single technique alone could lead to 

false conclusions about the atomisation of fuel. 

 DISI ENGINE COMBUSTION 2.4
This section analyses the subsequent spark ignited turbulent combustion in a DISI engine and 

the parameters and techniques used in its analysis. Two modes of combustion have been 

focussed on: homogeneous stoichiometric combustion that involves early fuel injection during 

the intake stroke, and stratified combustion whereby fuel is injected much later during the 

compression stroke and the mixture, by definition, is not homogeneous. 

 2.4.1 Homogeneous Combustion 
The stages of fuel injection and turbulent flame combustion that specifically apply to 

homogeneous charge DISI engines are outlined in Figure 2.4.1. The process of combustion 

initiation involves an electrical discharge across the spark plug gap of which 95% of the energy 

is transferred to a plasma (Maly and Vogel 1978). During the subsequent phases, 90% of the 

energy is transferred to the spark and the efficiency of energy transfer to the charge mixture 

can be up to 60% under typical in-cylinder conditions that initiates the development of a flame 

kernel (Kalghatgi 1987). If the early flame kernel survives without being extinguished, the 

flame becomes fully established and the turbulent flow structures present at the time of 

ignition allow the interaction of the flame with the unburned charge in the form of flame 

wrinkling, which helps to establish an effective burning velocity by increasing the surface area 

of the flame (Williams 1985). Flame kernel location during ignition is an important factor in 

engine performance, stability and variability (Rimmer et al. 2009, Twiney et al. 2010a). The 

turbulent flow structures present around the time of spark ignition affect the rate at which the 

kernel develops into a flame.  

The surface area of the flame increases approximately in proportion to the root mean square 

(RMS) turbulent velocity (or turbulence intensity), u’ (Bradley et al. 2000), which is expanded 

upon later in this survey. This increases the burning rate as well as the rate of entrainment of 

cold reactants into the leading cold front (Bradley et al. 2000). The remainder of the charge 

combusts during the early stages of the expansion stroke until it is extinguished at the walls 

and crevices. 
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Figure 2.4.1: Stages of injection and turbulent flame combustion 

A number of studies regarding the sensitivity of spark plug parameters and the effect of spark 

characteristics on the flame kernel have been undertaken. Spark ignition and flame kernel 

creation and development are considered to be important in terms of cycle-to-cycle variation 

(Bradley et al. 2000, Pajot and Mounaïm-Rousselle 2000, Chen et al. 2009, Rimmer et al. 2009, 

Twiney et al. 2010a, Twiney et al. 2010b). Misfire has been shown to occur with an excessively 

high air flow across the spark plug, which stretches the arc, as well as when liquid fuel is 

present in the spark plug gap (Twiney et al. 2010a). Pischinger and Heywood (1990) previously 

investigated the effect of velocity flow in the spark plug gap on early flame kernel 

development and identified an optimum flow velocity of 3 m·s-1 to 5 m·s-1. 

There are a number of parameters that are used to characterise turbulent premixed flames. 

The Damköhler number (Da), is the ratio of the characteristic eddy turnover time (τT), to the 

laminar burning time (τT), given by the equation (Heywood 1988)  
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where lI is the integral length scale, δL is the laminar burning velocity, SL is the laminar flame 

thickness and u’ is the turbulence intensity. 

The turbulent Reynolds number ReT 

 
𝑅𝑅𝑅𝑅𝑇𝑇 =
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 Eqn. (2.4.2) 

is used to define flame turbulence. It relates the inertia of the turbulence defined as a product 

of the turbulence intensity (u’) and integral length scale (lI), to the dissipative effect of the fluid 

kinematic viscosity (v). 
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By comparing the Damköhler number, Da to the turbulent Reynolds number, ReT (Figure 2.4.2), 

Heywood (1988) identified a number of different turbulent flame regimes. In SI engine 

combustion, typical Da and ReT numbers lie predominantly in the reaction sheet flame region 

as shaded in Figure 2.4.2. The structure of a developed flame in this case is therefore expected 

to have a thin reaction sheet wrinkled and convoluted by the turbulent flow (Heywood 1988).  

The creation and successful development of the flame kernel is known to be an important 

parameter in the subsequent propagation of the flame through the remaining unburned 

charge. Flow structures around the spark plug region directly affect early flame displacement 

and influence the remainder of the flame’s propagation. Pajot and Mounaïm-Rousselle (2000) 

used PIV and chemiluminescent flame imaging to show that the flame is displaced in the 

predominant direction of the in-cylinder bulk flow. In-depth PIV analysis of the spark plug 

region (Rimmer et al. 2009) confirmed these findings and also discovered that the early bulk 

flow structures around the time of spark ignition affected the global convection of the flame in 

the cylinder. 

 

Figure 2.4.2: Different turbulent flame regimes shown on plot of Damköhler number vs. turbulent Reynolds 
number (Heywood 1988) 
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Fundamental research into the interaction of a flame front with flow structures can be used to 

better understand flame propagation in a DISI engine. Long (2010) used in-depth combustion 

bomb analysis to reveal that the charge motion does not only influence the propagation of the 

flame, but the reaction itself influences the charge motion, culminating in a symbiotic 

relationship. Toroidal flow structures were also shown to have an effect on flame propagation. 

It was observed that when a flame front encounters a vortex structure, its burning velocity is 

increased where the flame directly interacts with the rotation, particularly with smaller 

vortices, which were shown to have a profound effect on the local and global burning velocity. 

This knowledge agrees with the fact that small-scale turbulence structures help wrinkle the 

flame front (Figure 2.4.3), and high-frequency turbulence increases flame propagation rate and 

engine performance (Jarvis et al. 2006, Rimmer et al. 2009). 

 
27 °CA AIT 33 °CA AIT 39 °CA AIT 

Figure 2.4.3: Flame front wrinkling in a DISI engine operating at 80°C (AIT – after ignition timing) (Efthymiou et al. 
2013) 

 2.4.2 Stratified Combustion 
Stratified combustion in DISI engines typically involves the injection of fuel late during the 

compression stroke to create an overall-lean stratified charge with an air-fuel ratio (AFR) 

around the spark plug to allow successful ignition and flame propagation.  

For idle-load to medium-load applications in DISI engines, stratified charge operation along 

with throttle-less operation is generally used to achieve maximum fuel economy. This is due to 

a significant reduction in pumping losses associated with throttling the intake air. Other 

benefits arise from reduced heat loss, reduced dissociation from lower cycle temperatures and 

an increased specific heat ratio, which improves thermal efficiency (Queiroz and Tomanik 

1997, Zhao et al. 2002). 

Zhao et al. (2002) presented a detailed comparison between stratified and homogeneous 

charge combustion. A successful stratified charge typically contains a slightly rich mixture 
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around the spark plug gap at the time of ignition. When this is achieved, the reaction rate will 

be high enough to sustain efficient and stable combustion. The initial flame kernel during 

stratified combustion develops more rapidly in the spark plug region but the rate of flame 

propagation is reduced in the lean outer region of the charge (Figure 2.4.4). This significantly 

reduces the combustion rate near the end of the combustion process. The extent of this early 

flame propagation speed is highlighted with a 2% mass fraction burned (MFB) time of 7.5 °CA 

for a stratified charge, compared to 13.3 °CA with homogeneous charge. From the pressure-

volume (PV) diagram presented in Figure 2.4.4, it is evident that stratified combustion releases 

heat more rapidly, culminating in a steeper pressure rise that peaks at a larger magnitude. 

 
Figure 2.4.4: Pressure-volume diagram for homogeneous and stratified operation at 1500 rpm (Zhao et al. 2002) 

With direct injection, particularly when injection occurs late, such as in stratified combustion, 

incomplete vaporisation may lead to the presence of liquid fuel droplets in the flame (Bradley 

et al. 2000). Increased mixture heterogeneity is a known source of hydrocarbon emissions and 

particulates, Bradley et al. (2000) analysed this type of combustion in terms of gas phase 

equivalence ratio in the spray (φg) and showed that as φg decreases and the droplet size 

increases, the burning velocity of the aerosol increased above that of a corresponding 

completely gaseous mixture. Schlieren photography was used to observe the flames and it was 

concluded that the burning velocity enhancement is due to the greater propensity of aerosol 

flames to become unstable and develop a cellular structure.  
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Greenberg et al. (1999) previously confirmed this effect and further concluded that even when 

a non-aerosol flame is cellular, the equivalent aerosol flame will have a finer cellular structure. 

The primary effect of the spray on the stability of these flames was observed to be due to heat 

loss from the absorption of heat by the droplets due to vaporisation. This heat loss mechanism 

was theorised as a plausible reason for the velocity enhancement induced by the use of spray 

fuel droplets (Greenberg et al. 1999). This phenomenon will not be relevant for a broad range 

of DISI operating conditions but may be applicable in the area of cold-start (discussed later in 

this literature review) where cold conditions increase the propensity of poor fuel atomisation 

and vaporisation, and catalyst heating strategies utilise stratified combustion. 

 THE EFFECT OF MULTIPLE INJECTION ON FLAME PROPAGATION 2.5

AND EMISSIONS 
Research has shown that performance advantages and reductions in emissions can be 

achieved using more than one injection per engine cycle. The flexibility of electronic common-

rail systems implemented into DISI engines readily permits the use of multiple injection 

strategies (Zhao et al. 2002, Schmidt et al. 2011). The characteristics of the fuel injector itself 

are fundamental in defining the injection strategy, since the number of injections is restricted 

by the minimum injector pulse width and injector separation time. These parameters need to 

be met to achieve successful atomisation and stable spray geometry. Cycle-to-cycle variation 

may also be induced with a poorly designed strategy that further contributes to global cyclic 

variability in the engine. For these reasons, multiple injection strategies are typically limited to 

two or three injections per cycle due to the limitations of an injector’s response time (such as 

needle lift) and the time available during an engine cycle. Schmidt et al. (2011), however, 

demonstrated the potential of five injections with independent injection quantities and timing. 

Figure 2.5.1 illustrates the potential benefit of using multiple injections of shorter durations, 

especially during cold-start, which allows this strategy to be more readily implemented at 

lower engine speeds. The triple injection strategy shown highlights the reduction in fuel spray 

impingement with the piston compared to single injection case, which can be seen to deflect 

off the piston crown and will result in significant wetting of other engine surfaces. Reducing 

the amount of liquid fuel impingement, particularly on cold surfaces, is essential for cold-start 

and the reduction of PM emissions. 
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Figure 2.5.1: Comparison of single and triple injection strategies with different injection durations, highlighting on 
piston impingement during cold-start (Whitaker et al. 2011) 

Serras-Pereira et al. (2007b) used multiple injection strategies in an optical research engine to 

observe liquid impingement as well as mixture preparation and combustion. A multi-hole 

injector was used in a homogeneous combustion setup and high-speed imaging was used to 

capture injection and combustion events for a triple injection strategy. As expected, it was 

shown that the use of a multiple injection strategy can reduce the amount of direct liquid fuel 

impingement during intake and shorter split injections can promote more rapid evaporation 

and mixing than a single injection. Combustion, however, was observed to be slower using a 

triple-injection strategy and the flame growth was observed to be more spherical and deviated 

less from the central cylinder position of the injector. It was hypothesised that a number of 

mechanisms such as AFR concentrations around the spark plug and increased heat transfer 

could have caused this effect. These results still highlighted a potential reduction of soot 

formation with a substantial reduction in high luminosity regions that illustrate fuel-rich areas 

and the potential for PM formation, as confirmed by Block et al. (2000), Gupta et al. (2000) 

and Rimmer (2010). Block et al. (2000) utilised Laser-induced incandescence (LII) to detect the 

broadband light emission of soot particles in fuel rich regions of the flame. Interestingly, it has 

been noted that lower luminosity flames with spherical growth are typical of PFI combustion 

systems and high levels of charge mixing and homogeneity (Aleiferis et al. 2000a, Aleiferis et 

al. 2000b).  

Serras-Pereira et al. (2007b) also observed a more stable flame centroid for a triple-injection 

strategy when compared to a single injection. This was concluded to be due to possible flame 

independence to the convecting currents during flame growth. This stability in flame position 

indicates a potential improvement in combustion variability that contributes to global cyclic 

variability. 

0.4 ms 1.2 ms 



2.5 THE EFFECT OF MULTIPLE INJECTION ON FLAME PROPAGATION AND EMISSIONS 
 

35 
 

Multiple injections have the potential to increase the fuel spray interaction with the in-cylinder 

flow field. Rimmer et al. (2009) used high-speed particle image velocimetry (HSPIV) to 

investigate the effect of multiple-injection strategies during homogeneous combustion on 

turbulence during the compression stroke and around the time of ignition. It was shown that 

turbulence increased during double and triple injection but 10% and 90% mass fraction burned 

(MFB) times were detrimentally effected. These results correspond to the reduction in flame 

growth speed observed by (Serras-Pereira et al. 2007b) in a similar engine configuration. 

In order to further understand the potential causes of the engine performance decrease, 

Rimmer et al. (2009) conducted high-frequency turbulence filtering and found a decrease in 

turbulence near TDC prior to the point of ignition. These high-frequency turbulence structures 

are known to correlate with engine performance parameters such as IMEP and MFB, which 

explains the observed performance drop. As turbulence is generated by the squish of large-

scale structures such as tumble (Zhao et al. 1999), the previously discussed flow suppression 

from the fuel spray (Han et al. 1997b, Rimmer 2010) could be a potential cause for the 

diminished turbulence. Furthermore, with a higher number of fuel-spray events and therefore 

flow disruption, the effect of multiple injections may be greater on the flow field. 

The extra-urban NEDC comprises long acceleration phases from cold-start and high vehicle 

speeds once the engine is fully warmed. In these combustion modes, fuel impingement is a 

potential issue due to the increased fuelling requirements and therefore penetration, which 

can lead to an increase in PM emissions. To simulate these conditions, Whitaker et al. (2011) 

tested a DISI triple-injection strategy during transient engine operation with a variety of engine 

loads and speeds. A single injection strategy at low speed was shown to produce high smoke 

levels that were stated to be the result of ineffective air motion to deflect the fuel spray and 

reduce impingement. At high speed, the increased bulk flow tumble was said to be sufficient 

enough to reduce impingement and improve mixture preparation, which resulted in a smoke 

reduction. The triple injection strategy resulted in a smoke reduction across all engine speeds. 

This also corresponded to a significant reduction in measured PN emissions when simulating 

the NEDC. A numerical study on the effect of multiple injection on soot emissions by 

Bonandrini et al. (2012) agreed with these findings. Wall impingement was also shown to be 

reduced and mixture homogeneity was improved due to the influential effect of fuel injection 

scheduling at low engine speeds, corresponding with previous experimental findings by 

Rimmer et al. (2009). 
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HSPIV has been used to analyse the effect of multiple injection in a DISI engine operating in a 

stratified mode. As bulk flow structures are less dominant, due to the absence of intake valve 

jet flow, the effect of the fuel spray will be more influential on the in-cylinder flow field. Disch 

et al. (2013) conducted an experimental study using HSPIV and cinematographic particle 

tracking to investigate the effect of a second fuel spray injection near TDC. Figure 2.5.2 

illustrates the in-cylinder flow field immediately after each injection event and it was shown 

that the turbulent kinetic energy of the larger vortex (labelled with a red ‘X’) was temporarily 

higher. These results show the potential of using multiple injections to influence the flow field 

near TDC and subsequently the combustion performance of an engine operating in a stratified 

mode. 

 

 
Figure 2.5.2: HSPIV data showing spray break-up and vortices formation immediately after each injection event 

during stratified combustion (Disch et al. 2013) 
 

The introduction of multiple injection scheduling within cold-start strategies by some 

manufacturers, utilises some of the beneficial effects observed within the presented research, 

as engine designers and researchers follow a particular trend to improve the quality of 

combustion to meet emissions legislation. These cold-start strategies are discussed in more 

detail in the next section of this literature review.  
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 COLD-START CONTROL STRATEGIES 2.6
As discussed in Chapter 1, DISI cold-start engine performance is critical with the recently 

released Euro Stage 6 legislation, which also includes an operating temperature of -7°C in the 

NEDC. Two main factors are important with regards to cold-start in DISI engines: catalyst light-

off and PM generation. DISI engines hold a benefit over PFI engines because strategies such as 

late injection can be implemented. These strategies generate higher exhaust temperatures and 

therefore reduce the time to reach catalyst light-off. Up to this light-off point, however, the 

quantity of PM emissions is at its highest, as illustrated by Whitaker et al. (2011) in Figure 

2.6.1. Two distinct peaks in particulate number (PN) count are shown to occur during the first 

two transient stages of the NEDC, which then decrease by an order of magnitude. These 

significant PN reductions after an initial cold-start have been supported by (Price et al. 2007). 

In the catalyst heating operation, the first injection occurs during induction (as in 

homogeneous charge combustion) and the second occurs close to the point of ignition. The 

ignition is retarded past the point of TDC to increase the exhaust temperature, which leads to 

a rise in catalyst temperature (Hattori et al. 1995, Ando 1997, Kuwahara et al. 1998, Lee et al. 

2002, Eng 2005, Morita et al. 2005). This is due to the reduced expansion work delivered from 

combustion and the consequently higher in-cylinder temperature at the end of combustion. A 

twin injection strategy of this nature has also been shown to improve combustion stability 

when compared to single injection (Morita et al. 2005, Chen et al. 2009). This has been 

theorised due to the fuel rich mixture around the spark plug from the second injection and the 

turbulence created by this late injection. 

 
Figure 2.6.1: PN emissions plots during the Euro 5 NEDC comparing a DISI engine and PFI engine (adapted from 

Whitaker et al. (2011)) (also Figure 1.1.3) 

Cold / transient conditions 
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A number of research studies have utilised different methods to raise the exhaust temperature 

and achieve a quicker catalyst light-off. Choi et al. (2000) retarded the spark timing up to 

8 °CA ATDC on a cold-start PFI engine operating at 25° C. This reduced the catalyst light-off 

time by 16 seconds, which lowered HC emissions by 39%, whilst maintaining the level of IMEP 

variability. When combined with a double-injection strategy in a DISI, it has been shown that 

the spark can be retarded further to 20 °CA ATDC (Morita et al. 2005). MFB times using this 

strategy were also shortened by 36% when compared to a standard homogeneous strategy. 

Morita et al. (2005) also carried out a computational fluid dynamics (CFD) study that showed 

that the second injection generated a strong turbulent flow that promoted fuel-air mixing, as 

discussed in the previous section by Disch et al. (2013). This was confirmed by laser induced 

florescence (LIF) experimentation that showed the AFR heterogeneity around the spark plug 

area was improved and the standard deviation of AFR fell by 7% when compared to a 50% 

injection strategy.  

Engine misfire is of particular importance during cold-start due to its increase propensity and 

importance on engine stability and emissions. Chen et al. (2009) investigated the effect of 

spark timing and spark plug orientation on engine misfire tolerance in a DISI engine during 

cold-start. The results showed that an optimal misfire-free window was present when 

changing spark plug protrusion, spark plug orientation and injector orientation, highlighting 

the sensitivity of combustion initialisation with a catalyst heating strategy. It was hypothesised 

that misfire mechanisms during this operation could include a lack of fuel vapour around the 

spark plug, the presence of liquid fuel near the spark plug electrodes and high velocity bulk 

flow created by the second spray. However, CFD results from Piock et al. (2011) and 

experimental data from Rimmer et al. (2009) have since shown that the second injection does 

not have a dominant impact on the overall turbulent energy level around the spark plug 

region. It was concluded by Piock et al. (2011) and Berndorfer et al. (2013) that the primary 

stabilisation effect of combustion by the late injection is due to the creation of a locally rich 

mixture. 

Spark plug misfire was investigated in more detail by Twiney et al. (2010b, 2010a) during a 

catalyst heating operating mode and in a similar configuration engine to Chen et al. (2009). An 

injection and ignition timing sweep, alongside a twin spark strategy, showed misfire tendency 

increased as injection was retarded (with up to 40% cycles misfiring). Interestingly, certain 

spark plug orientations had a significant effect on misfire with up to 75% of cycles and a double 

spark strategy not improving this rate. This study highlights the number of factors that 
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contribute to the sensitivity of successful combustion during a catalyst heating operation that 

are sensitive to engineering tolerances in production. 

Further investigations from Twiney et al. (2010b, 2010a) using high-speed photography 

revealed the fuel jet impacting on the spark plug electrode in certain orientations and fuel 

remaining in the spark plug gap. This helps supports the theory by Chen et al. (2009) that liquid 

fuel can extinguish the early flame kernel leading to misfire. Other mechanisms for misfire can 

also be suggested that included an excessively rich AFR in the spark plug gap and an overly 

stretched spark across the spark plug electrode. 

The ever-increasing stringency of emissions legislation against PN count in DISI engines 

requires the implementation of reduction strategies across the entire NEDC in order to meet 

these targets. Whitaker et al. (2011) carried out an in-depth experimental study across the 

NEDC and showed that PN reduction could be achieved in the follow areas: cold-start (10%), 

catalyst heating (10%), transients during cold engine operation (60%) and transients during hot 

engine operation (20%). It was stated that the very first injection needed to be of the highest 

atomisation quality for lowest PM generation during cold-start by raising the fuel pressure as 

high as possible. This was shown to reduce the PN count and mass of PM emission from start-

up by a factor of 4-5 when the engine was started from 22°C, which is approximately the 

typical NEDC cold-start test condition when measuring particulates. 

During cold-start, the low rotational velocity of the engine allows multiple injection strategies 

to be fully utilised and as previously discussed, up to five injections can be made per cycle 

(Schmidt et al. 2011). Whitaker et al. (2011) tested up to 4 injections from a 22° C cold-start 

and showed a reduction in peak PN generation by a factor of over 6. 

Transients during a cold-start NEDC are major contributors to total PN emissions (Piock et al. 

2011, Berndorfer et al. 2013) with up to 60% of the total number being emitted during the first 

three hills of the NEDC shown in Figure 2.6.1 (Whitaker et al. 2011), which were shown to 

reduce significantly after the engine had heated up. The combination of the techniques 

discussed and tested by Whitaker et al. (2011) were shown to reduce the PN emissions from a 

baseline of 2.0 x 1012 #.km-1 by an order of magnitude to 4.5 x 1011 #.km-1
, which falls below the 

EU Stage 6 levels of 6.0 x 1011 #.km-1 (European Parliament 2007, DieselNet 2015) without the 

use of any particulate treatment systems. This proposed potential in DISI engines for achieving 

reduced emissions has was also confirmed by Piock et al. (2011) who reduced the PN 

emissions of a baseline engine to 4.4 x 1011 #.km-1 using a number of similar control strategies. 
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The focus in strategies used by manufacturers and research groups in cold-start conditions 

have been summarised in Table 2.6.1. Catalyst heating and spark timing are widely used to 

increase combustion temperatures and reduce TWC light-off time. A trend towards increasing 

fuel injection pressures to improve atomisation can also be seen, along with increasing use of 

multiple injection strategies. Further research would be valuable in the areas of VVT and the 

use of flow structures to influence PM generation as is highlighted by the reduced application 

of these factors. 

Research 
Group 

Stratified 
Catalyst 
Heating 

Spark 
Scheduling 

Multiple 
Injection 

Increased 
Fuel 

Pressure 
VVA 

Utilisation 
of Flow 

Structures 
Berndorfer et 

al. (2013) 
Delphi 

    
  

Whitaker et 
al. (2011) 

AVL 

    
  

Piock et al. 
(2011) 
Delphi 

    
  

Chen et al. 
(2009) 

Jaguar Land 
Rover 

    

  

Morita et al. 
(2005) 
Toyota 

    
  

Choi et al. 
(2000) 

Hyundai 

    
  

Table 2.6.1: Summary of cold-start strategies utilised by various research groups 

The subject of cold-start performance in DISI engines has become an increasing focus in 

experimental research due to the known shortfall of current DISI engines when evaluated 

against future legislation. This highlights the needs of engine manufacturers and researchers 

alike to attain an improved understanding of this area and meet future legislation 

requirements with intelligently designed combustion systems in order to avoid the use of 

costly ancillary systems such as nanoparticulate filters. The presented research highlights focus 

on engine calibration for reducing PM emissions at the exhaust. Less information is available 

regarding the formation of PM at the initial transient stages of an IC engine cold-start cycle as 

well as the fuel spray structures and flame characteristics at these very low initial engine 

speeds, which are responsible for a significant proportion of PM emissions. There is also a 

significant lack of optical research data available relating to DISI engine operation at low 
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temperatures, such as the EU Stage 6 NEDC cold-start condition of -7°C (DieselNet 2015). This 

condition is of particular importance as it poses a significant challenge for DISI engines in 

meeting proposed PN count legislation. 

The next section discusses the influential flow structures that are predominantly present in 

DISI engine systems or can be created using available engine architecture. The successful 

measurement and understanding of these structures is of paramount importance in controlling 

exhaust emissions. 

 THE EFFECT OF TUMBLE ON FLAME PROPAGATION AND 2.7

EMISSIONS 
A number of bulk flow structures are present during an engine cycle. These are formed due to 

the complex flow interaction across the intake valves and the later interaction with the 

combustion chamber, cylinder walls and piston crown. Tumble motion is used to describe the 

presence of large scale rotating vortices that are generated during intake relative to engine 

crankshaft rotation. 

Figure 2.3.8, presented previously, illustrates the typical bulk flow structures formed during 

the intake of a single cylinder four-valve pent roof DISI engine viewed from the tumble plane, 

with the intake valves on the left hand side. Two dominant structures are highlighted, the 

majority of the intake flow (Path 1) travels over the top of the intake valves and across the 

pent roof combustion chamber before making contact with the exhaust side of the cylinder 

wall and being inducted downwards towards the piston crown to form a clockwise 

recirculation region. This flow feature is commonly referred to as ‘tumble’ and is typically 

present during the entire intake stroke as well as most of the compression stroke until it is 

dissipated into small-scale turbulence towards TDC. Flow that travels over the bottom of the 

intake valves (Path 2) during the early stage of intake contacts the intake side of the cylinder to 

form a higher velocity counter-clockwise vortex on the surface of the piston that follows its 

motion before dissipating during the latter part of the intake stroke as the more dominant 

tumble flow vortex is established. This type of recirculating flow has been observed by a 

number of authors (Fischer et al. 2002, Jarvis et al. 2006, Justham et al. 2006a) with Stansfield 

et al. (2007b) demonstrating its presence in an optical research engine for engine speeds up to 

3500 rpm. 

Various methods exist for describing bulk flow tumble from the velocity vector fields measured 

using particle image velocimetry (PIV) (Lumley 1999, Stansfield et al. 2007b). A commonly used 
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dimensionless parameter is tumble ratio (TR), which relates the cross product of the 

magnitude and distance of individual velocity vector fields from the vortex centre, to the 

engine speed and dot product of the distance of the individual velocity vector fields from the 

vortex centre, as shown below (Pitcher and Wigley 2001, Li et al. 2004): 

 
𝑇𝑇𝑇𝑇 =

∑ 𝑟𝑟(𝑥𝑥,𝑦𝑦,𝑖𝑖) × 𝑢𝑢(𝑥𝑥,𝑦𝑦,𝑖𝑖)
𝑁𝑁
𝑖𝑖=1

𝜔𝜔𝑐𝑐  ∑ 𝑟𝑟(𝑥𝑥,𝑦𝑦,𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 . 𝑟𝑟(𝑥𝑥,𝑦𝑦,𝑖𝑖)

 Eqn. (2.7.1) 

where: 
N Number of vectors 
ω Engine speed (Rad s-1) 
ωc Engine crankshaft angular speed (m·s-1) 
r(x,y,i) Distance of the cell position of the ith velocity vector to the vortex centre. 
 

The location of the vortex centre of the bulk tumble flow is required for the calculation of the 

tumble ratio. Stansfield et al. (2007b) describes a mathematical algorithm (Eqn. (2.7.2)) that 

takes into account every vector from a mean velocity flow field. The algorithm calculates the 

sine of the angle between the position vector and flow vector for the surrounding eight 

vectors of every individual vector in the flow field. The average of the eight surrounding angle 

sines is plotted to produce a scalar field that will approach unity at the point of the vortex 

centre. A Gaussian peak fit is then applied to the field to locate the position of the vortex 

centre. 

 
𝑅𝑅(𝑛𝑛) =

1
𝑁𝑁
�

�𝑀𝑀 × 𝑈𝑈�. 𝑍̂𝑍
‖𝑀𝑀‖ ‖𝑈𝑈‖𝑠𝑠

=
1
𝑁𝑁
� sin(𝜃𝜃)

𝑠𝑠
 Eqn. (2.7.2) 

where: 
R Vortex identifier (dimensionless scalar) 
N Position 
S 2D area surrounding n 
N Number of points inside s 
M Radius 
M Radius vector 
U Velocity 
U Velocity vector 
Z Unit vector normal to the measurement plane 
Θ Angle between U and M. 
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Tumble flow and its effect on combustion has been studied and utilised for over 20 years.  

Four-valve engines employing high-tumble induction systems have been noted to result in 

lower combustion times in addition to reductions in harmful exhaust emissions (Mahmood et 

al. 1996). It has been discussed that to enhance the tumble ratio of an engine, it is essential to 

increase the air flow to the upper valve area to allow for increased air flow across the 

combustion chamber towards the exhaust valve side of the cylinder (Omori et al. 1991). 

de Boer et al. (1990) assessed the combustion of three different four-valve engines that were 

fitted with low to high tumble cylinder heads. It was shown that tumble was able to reduce the 

ignition delay, burn duration (for 10% to 90% MFB) and lower the levels of cycle-to-cycle 

variation. Exhaust gas recirculation (EGR) tolerance was shown to be higher in a high-tumble 

system resulting in pumping loss reductions that benefitted fuel economy by 3-6%. 

Hydrocarbon emissions were also reduced by 18% and CO emissions were reduced by 25%. 

However, it was observed that excessively high levels of tumble led to an increase in unburned 

hydrocarbon (HC) emissions and an increase in BSFC. A potential reason for this is an excessive 

flow velocity around the spark plug area, which could adversely affect the spark discharge and 

flame kernel, leading to a poor flame establishment.  

This was also suggested by Reeves et al. (1999) who used PIV to measure the in-cylinder flow 

field with a high and low tumble ratio of 1.2 and 1.8 respectively (originally referred to as 

‘barrel swirl’ and defined by Chapman et al. (1991)). The flow over the top of the intakes valves 

was shown to create a rotating vortex at 45 °CA ATDC accompanied by a counter rotating 

vortex of similar size beneath the intake valves. The high tumble case was observed to produce 

a more centrally distributed vortex during intake that remained through to compression, 

where it was observed rotating at a greater angular velocity in the clearance volume of the 

engine (at 260 °CA ATDC). It is the conservation of angular momentum as the field is forced 

into a smaller volume that causes of the increased velocity, along with the increased shear 

forces, which alter the structure of the vortex. Reeves et al. (1999) suggested if peak velocities 

at TDC were scaled up linearly with engine speed, it would likely cause excess flow velocity 

around the spark plug. Therefore, a fine balance needs to be made when inducing in-cylinder 

tumble motion, as this dissipation of rotational energy into turbulence is an important 

parameter in flame growth speed and engine performance, which has been detailed in a 

number of studies (Jarvis et al. 2006, Rimmer et al. 2009).  

Inducing tumble has also been shown to have benefits on the cycle-to-cycle variation of the in-

cylinder flow field. By generating a dominant flow that is more repeatable, greater consistency 
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can be achieved by the time the bulk flow structures dissipate into performance-critical small-

scale turbulence at TDC. Li et al. (2003) modified a three-valve SI engine to increase the level of 

tumble and analysed the effects using PIV. It was observed that an ensemble-averaged tumble 

ratio of 1.5 reduced the cycle-to-cycle variation of the main tumble vortex, with 95% of 

individual cycles displaying a strong and consistent tumble motion with a clear tumble centre. 

Fluctuating kinetic energy, a measure of turbulence, reached 15 m2s-2 during the compression 

stroke that was three times that of the unmodified engine. Li et al. (2003) believed that the 

distortion and breakup of the tumbling vortex into velocity fluctuation (turbulence) would 

accelerate the formation of the flame kernel and aid flame propagation. This suggestion was 

confirmed by Rimmer et al. (2009) who correlated the high frequency turbulence structures at 

ignition with engine performance. 

Lee et al. (2007) analysed flame propagation in an optical research engine with modified intake 

ports along using laser Doppler velocimetry (LDV) analysis of the flow field. A tumble ratio of 

2.0 achieved the fastest flame propagation and heat release analysis showed improved MFB 

time improvements of up to 5%. These findings agree with much of the presented research 

indicating that certain levels of tumble motion in DISI engines (1.5 - 2.0 tumble ratio) can 

enhance flame propagation and reduce exhaust emissions. The requirement to further 

understand the specific effects of tumble flow on PM emissions has been highlighted, as well 

as the lack of experimental investigation on the interaction of tumble with fuel spray 

atomisation, vaporisation and impingement. 

 THE EFFECT OF SWIRL ON FLAME PROPAGATION AND 2.8

EMISSIONS 
Swirl is created from an imbalance in velocity between the two intake ports creating a bulk 

toroidal flow structure that rotates around the cylinder axis as outlined in Figure 2.8.1. As with 

tumble, swirl has been utilised and researched in spark ignition engines to produce 

combustion systems that have higher burning velocities. Axial swirl is predominantly utilised 

and associated with diesel engines, but it is also effective in spark ignition engines (Collins and 

Stokes 1983). In the studies presented here, tumble is normally present as well as swirl due to 

the intake manifold geometry, pent roof combustion chamber and the complex swirl-flow 

cylinder interaction. 
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Figure 2.8.1: Schematic of in-cylinder swirl flow when viewed across intake and exhaust valves 

Swirl ratio (SR) is a common method used to characterise in-cylinder swirl and is typically 

measured on a steady flow rig consisting of either an impulse or vane swirl meter. The 

dimensionless Ricardo swirl ratio (SR), is defined below (Stone et al. 1993): 

 
𝑆𝑆𝑅𝑅 =

𝐵𝐵𝐵𝐵
𝑛𝑛𝐷𝐷2

∫ 𝐶𝐶𝐹𝐹(𝛼𝛼)𝑁𝑁𝑅𝑅(𝛼𝛼) 𝑑𝑑𝑑𝑑𝛼𝛼𝑐𝑐
𝛼𝛼𝑜𝑜

 

�∫ 𝐶𝐶𝐹𝐹(𝛼𝛼) 𝑑𝑑𝑑𝑑𝛼𝛼𝑐𝑐
𝛼𝛼𝑜𝑜

�
2  Eqn. (2.8.1) 

  

𝑁𝑁𝑅𝑅 =
8𝑇𝑇

𝑚̇𝑚𝐵𝐵𝑣𝑣0
 

Eqn. (2.8.2) 

where: 
B Bore 
S Stroke 
n Number of intake valves 
D Inner valve seat diameter 
CF(α) CF (flow coefficient) at the valve lift corresponding to a particular crank angle 
αo, αc Crank angle for intake valve opening and closing 
NR(α) NR (Ricardo swirl ratio) at the valve life corresponding to a particular crank angle 
T Moment of momentum flux (measured by a swirl torque meter) 
𝑚̇𝑚 Air mass flowrate 
v0 Velocity for frictionless flow with the applied pressure difference across intake port. 

The most commonly utilised method of inducing swirl in a four-valve engine without swirl-

creating intake geometry is valve deactivation. Stone et al. (1993) disabled one of the intake 

valves in a four-valve pent roof arrangement engine in order to generate axial swirl and 

observe combustion performance at speeds of 1500 rpm to 2400 rpm. The speed of 

combustion was seen to increase with 10% and 90% MFB times that were 23% shorter. Peak 

Intake Valves Exhaust Valves 
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pressure increases were also seen that correlated with the faster observed combustion and 

the peak pressures that were closer to TDC.  

Stone et al. (1993) also showed considerable benefits to cyclic variability using swirl, with 

coefficients of variation (COV) of IMEP decreasing by 3%. This improvement can be attributed 

to the decreased 10% MFB times, which reduced the time for random displacements of the 

flame kernel and the swirling bulk flow structures and led to a dominant mean flow. Reuss 

(2000) later showed similar findings in the flow field using PIV. It was shown inducing a swirl 

ratio (SR) of 5 reduced the standard deviation of the in-cylinder flow to a point where 

individual cycle flow fields accurately followed the trends of their ensemble mean flow fields. 

Further analysis of the flow showed that turbulence fluctuation was strongest in the central 

50 mm diameter region of the cylinder. 

Due to the nature of DISI in-cylinder fuel spray, swirl flow has a direct impact on fuel spray 

distribution and impingement. Alger et al. (2000) used Mie scattering techniques to visualise 

the fuel spray whilst measuring the equivalence ratio in an optical research engine with a SR 

of 2. At 750 rpm the fuel was shown to concentrate in the centre of the cylinder. This is 

because swirl inherently decreases turbulent radial diffusion and creates a radial pressure 

gradient that results in a low pressure in the centre of the cylinder and higher pressure near 

the walls (Lumley 1999, Alger et al. 2000). This effect was previously outlined by Moriyoshi et 

al. (1997). Alger et al. (2000) also observed the swirling bulk flow remain throughout the 

compression stroke. When a higher speed of 1500 rpm was tested, it was found that the swirl 

effect on the fuel jet was more pronounced and distorted the spray. At both engine speeds, 

the quantity of residual liquid fuel and amount of surface impingement (particularly on the 

piston crown) increased. Piston wetting is a well-known contributor to PM generation (Gupta 

et al. 2000, Rimmer et al. 2012). 

Emissions analysis from Stone et al. (1993) when inducing swirl from valve deactivation 

showed reductions in NOx as well as a reduction of 5.6% in fuel consumption. These findings 

were consistent with those seen by Fraidl et al. (1990) who conducted tests at 2000 rpm with 

intake valve deactivation and Lee et al. (2007) as discussed previously, who utilised a 

combination of swirl and tumble. Moriyoshi et al. (1997) also showed this effect and was able 

to achieve a maximum IMEP using a combination of swirl and injection scheduling at 90 °CA 

ATDC that was shown to reduce NOx and CO emissions. 

It has been shown that a combination of both tumble and swirl further enhances turbulence 

structures near TDC (Lee and Lee 2003, Lee et al. 2007). This is more significant during lean 
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combustion, which has shown a considerable increase in flame propagation and agrees with 

findings from Lee et al. (2007), Rimmer (2010) and suggestions by Reeves et al. (1999), who 

discussed the importance of turbulence on flame growth speed and engine performance. 

 MEASUREMENT TECHNIQUES 2.9
In order gain an in-depth understanding of the mechanisms of in-cylinder flow processes and 

combustion, detailed measurements of in-cylinder fluid flow are required. A number of 

authors have successfully studied the complex flow field structures, fuel injection and flame 

propagation inside IC engines (Reeves et al. 1999, Reuss 2000, Li et al. 2002, Jarvis et al. 2006, 

Justham et al. 2006a, Serras-Pereira et al. 2007b, Stansfield et al. 2007b, Rimmer et al. 2009, 

Xu et al. 2013). A number of optical measurement techniques discussed here require the 

introduction of small tracing particles that follow the motion of the flow and can be recorded, 

known as seeding. The operational parameters required when seeding for accurate flow field 

analysis are described within the particle image velocimetry experimental setup subsections in 

Chapter 3 and Chapter 6. This section analyses a number of invasive and non-invasive 

diagnostic techniques that can be applied to the measurement of IC engine flow, species 

composition and emissions. These are: 

1. Hot Wire Anemometry (HWA) 

2. Mie Scattering 

3. Laser Doppler Velocimetry (LDV) 

4. Particle Image Velocimetry (PIV) 

5. Laser Induced Fluorescence (LIF) 

6. Laser Induced Incandescence (LII). 

 2.9.1 Hot Wire Anemometry (HWA) 
Hot wire anemometry (HWA) is a commonly used technique utilised in the vast majority of 

production IC engines to measure the mass flow rate of intake air into the engine. It operates 

on the principle of heat loss from a thin hot wire as gas flows past it. The change in electrical 

response of the wire can be measured and this is related to the velocity of the gas. As a non-

linear relationship exists between the electrical response and the magnitude of gas velocity, 

extensive calibration is required to maintain accuracy. Two methods of measuring the 

electrical response of the wire exist, maintaining the temperature of the wire by varying the 

electrical current (constant temperature method), or maintaining the electrical current and 

measuring the reduction in resistance due to the temperature drop (constant current method). 
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HWA provides a good frequency response and it can be used without optical access but its 

point measurement nature only provides a limited spatial velocity measurement of the flow 

field and flow direction cannot be deduced. The physical use of a probe also disturbs the flow 

and affects the accuracy of the velocity measurement. Despite these limiting factors, Erdil and 

Kodal (2007) successfully used HWA method to measure in-cylinder engine flows around the 

piston bowl at engine speed up to 2000 rpm and at flow frequencies up to 75 Hz. 

 2.9.2 Mie Scattering 
A qualitative understanding of the physics of a particle can be readily acquired when an 

incident electromagnetic wave is applied to it. If a single particle is considered as a number of 

conceptually subdivided regions, when a wave is applied, a dipole moment is induced in each 

region. These dipoles oscillate at the frequency of the applied field and therefore scatter 

secondary radiation, which can be detected (Bohren and Huffman 1998). 

 
Figure 2.9.1: Mean fuel-spray images scattered from an Nd:YLF laser at 527 nm comparing temperature and fuel 

effects on spray formation (Serras-Pereira et al. 2007b) 

Mie scattering is a valuable tool in two-dimensional (2D) fuel spray measurement and has 

been utilised by a number of research groups to provide a qualitative understanding of in-

cylinder fuel spray location and distribution (Hargrave et al. 2000, Serras-Pereira et al. 2007a, 

Rimmer 2010, Efthymiou et al. 2013, Xu et al. 2013). The fuel droplets themselves scatter the 

incident light so there is no need to add a dopant to the fuel. Figure 2.9.1 illustrates Mie 

scattering of a fuel spray in a DISI engine using different fuel types and operating 

temperatures. The illumination of all spray plumes over a number of engine cycles allowed the 
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quantitative processing of important spray parameters such as RMS of spray location to be 

calculated. Care must be taken, however, when commenting on the results from Mie scattered 

particles as not all particles may be perfectly spherical (such as those formed from fuel spray 

particle clusters). It has been shown that non-spherical particles scatter light similarly to area-

equivalent spherical particles (Bohren and Huffman 1998). 

 2.9.3 Laser Doppler Velocimetry (LDV) 

Laser Doppler velocimetry (LDV) provides a time-resolved point measurement of the fluid 

velocity within a velocity flow field. In a single-component dual-beam system, two coherent 

laser beams intersect in the measurement region and create dark and light interference fringes 

in an ellipsoidal volume as illustrated in the lower left region of Figure 2.9.2. When a seeding 

particle passes through this volume, its scattered light fluctuates as it crosses the fringe 

pattern. The scattered light is detected by a photomultiplier tube and converts the light into a 

fluctuating voltage signal that represents the velocity component perpendicular to the light 

fringes. The velocity is deduced using the knowledge that the frequency of this fluctuation is 

equivalent to the Doppler shift between the incident and the scattered light and therefore 

relates to the velocity of the particle in the ellipsoidal volume.  

LDV provides a non-intrusive method of measuring velocity at a high temporal resolution up to 

sub crank angle resolution with an experimental setup that is more simplified when compared 

to other optical techniques such as PIV. The technique is limited however, by its point 

measurement nature that does not provide any measurement for larger spatial flow structures 

unless the measuring volume is traversed across the required measurement region. This 

process can be time-consuming reduces the accuracy of velocity data as it is not spatially or 

temporally resolved and requires cyclic averaging. Considering the typical measurement region 

area and the nature of complex flow structures that exist in an IC engine, LDV is not ideally 

suited for measuring IC engine fluid flow over a large region. 
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Figure 2.9.2: Optical arrangement schematic for a Laser Doppler Velocimetry (LDV) system showing the 

interference fringe pattern and lights scattered by particles (Stone 1999) 

 2.9.4 Particle Image Velocimetry (PIV) 
Particle image velocimetry (PIV) is an optical measurement technique that has the capability of 

mapping 2D velocity fields with a high temporal and spatial resolution and as such is a 

commonly used method of analysing the flow field of an IC engine. 

Figure 2.9.3 illustrates the schematic of a typical PIV setup that consist of focussing a thin 

sheet of high energy density laser light in the required velocity measurement region and 

seeding the flow with small tracer particles. These particles need to follow the bulk flow as 

well as the highest frequency structures as accurately as possible in order to maximise the 

resolution and spatial accuracy of the measured velocity flow field as well as maximising 

turbulence characterisation. Typical seeding materials used in IC engine measurement are 

olive oil and silicone oil that can be seeded into 1-2 μm diameter particles, with silicone oil 

being capable of better withstanding vaporisation from high in-cylinder compression pressures 

and temperatures. When these particles pass through the laser sheet, their scattered light can 

be detected as Gaussian peaks on the image plane of the recording camera that is situated 

perpendicular to the laser sheet. Typical single-shot PIV systems capture image pairs at up to 

15 Hz, allowing every engine cycle to be captured up to 1800 rpm. A known time separation 

between pairs allows a velocity vector field to be formulated by dividing the flow field into 

small interrogation regions and correlating the displacement of several particles into a single 

vector for each region. Interframing times of less than 1 μs are possible (Raffel et al. 2007) 

allowing the capture of high-speed flows typical of engine flow. 
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Figure 2.9.3: Experimental arrangement for a PIV system (adapted from Raffel et al. (2007)) 

High-speed digital PIV (HSPIV) systems using high-repetition lasers and high-speed cameras to 

allow velocity vector fields to be captured at rates of 10 KHz (Kapitza et al. 2010). Vector fields 

with high temporal resolutions can be quantified using these systems, allowing the 

development of complex flow structures to be observed at high engine speeds. PIV systems 

rely on individual aspects of the experimental setup to be precisely calibrated to achieve 

results that accurately represent the measured flow field. Parameters such as seeding density, 

diffraction limited particle image size, particle displacement and velocity gradient, are amongst 

a number of important factors that need consideration to achieve high-quality accurate PIV 

results. 

2.9.4.1 Application of HSPIV to Engine Flow 

Previous PIV experimentation in IC engines has been restricted to single-shot PIV, whereby one 

laser pulse and one image capture event occurred per engine cycle (Reuss 2000, Li et al. 2002, 

Justham et al. 2006a). More recent advances in camera technology and laser systems have 

demonstrated the use of HSPIV to quantify the in-cylinder flow to both a high temporal and 

spatial resolutions in a number of studies (Reeves et al. 2000, Ghandhi et al. 2005, Jarvis et al. 

2006, Rimmer et al. 2009, Kapitza et al. 2010). 

Early use of HSPIV, however, was somewhat restricted by camera and laser technology as 

highlighted by Reeves et al. (2000) and Towers and Towers (2004) who recorded engine flows 

at temporal resolutions of 9 kHz and 13.5 kHz respectively but were restricted to low image 

sizes between 128 x 128 pixels to 256 x 256 pixels at realistic engine speeds, which resulted in 



2.9 MEASUREMENT TECHNIQUES 
 

52 
 

low spatial resolutions of approximately 5 mm and limited the smallest measureable eddy 

diameter to 2.9 mm. The use of frame-straddling CMOS cameras and dual-head Nd:YLF lasers 

improved the spatial resolution of recorded IC engine flow. Ghandhi et al. (2005) 

demonstrated the increase of turbulent kinetic energy when increasing the cut-off length and 

decreasing the cut-off frequencies for high-pass filtering of flow measured within an engine 

operating at 1200 rpm with a temporal resolution of 1 kHz and an image resolution of 

1024 x 1024 pixels. 

Jarvis et al. (2006) and Rimmer et al. (2009) extended the application of HSPIV systems to 

engine flow at 1500 rpm, with a high temporal resolution of 5 kHz and image resolution of 

512 x 512 pixels, which enabled the time between images to be as low as 1.8 crank angle 

degrees. The spatial resolution of 0.56 mm was high enough in these experiments to detect 

the cyclic variability in both the in-cylinder large scale bulk motions and small scale high-

frequency components, which were shown to be linked to various engine parameters. Jarvis et 

al. (2006) used a fast Fourier transform (FFT) low-frequency filter to link large variations in the 

in-cylinder flow field to the recorded variations in the intake valve jets and location of tumble 

centres. Rimmer et al. (2009) measured the turbulent flow field around the spark plug area at 

the time of ignition and demonstrated that turbulent fluctuations greater than 600 Hz 

influence the IMEP and burn rate, which confirmed previous work by Gillespie et al. (2000) and 

Bradley et al. (2003) carried out in a combustion bomb. 

More recent studies by Muller et al. (2010) and Kapitza et al. (2010) have utilised HSPIV rates 

of 6 kHz and 10 kHz respectively, at images sizes of at least 512 x 512 pixels. These high 

temporal and spatial resolution studies have enabled the temporal evolution of turbulent flow 

structures to be quantified at realistic engine speeds. These studies highlight HSPIV as a vital 

tool in further elucidating the link between turbulence flow structures, fuel spray structure 

and impingement, combustion and emissions processes. 

 2.9.5 Stereoscopic PIV 
The flow field measurement capability of 2D PIV is greatly restricted when the flow is of a 

three-dimensional (3D) complex nature, as is seen within IC engines. The third out-of-plane 

velocity component is not captured with 2D PIV systems so a full understanding of the 3D field 

is not achieved. Stereoscopic PIV is an approach that involves using a second camera with both 

cameras at an angle of 45° from the axis normal to the laser sheet focussed onto the same 

flow imaging region. The velocity components from each camera exert a slight difference that 

is due to the third velocity component parallax error. To quantify the third velocity 
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component, camera calibration is required using physical the parameters of the imaging 

system such as the viewing angle and magnification factor, along with the use of precision 

manufactured planar calibration targets, which are placed coincident with the light sheet 

plane.  

Less research literature is available for stereoscopic PIV analysis of in-cylinder fluid flow, 

particularly in DISI engines, highlighting the requirement for continued investigation into this 

area. Calendini and Durveger (2000) used stereo-PIV on a single cylinder DISI engine to better 

visualise the bulk flow tumble motions in the centre of the cylinder during intake and 

compression. In-cylinder flow structures were measured that showed flow motions of a highly 

complex and 3D nature with no clear and discernible tumble motion when compared to 2D 

measurements. Due to the measurement of the third component of flow, cycle-to-cycle 

variability, especially within large eddies, was described to be higher when compared to 2D PIV 

measurements. High-swirl intake flow, typically found in compression ignition (CI) engines, can 

benefit significantly from stereo-PIV measurements due to the increased prevalence of out-of-

plane motion when measuring in the tumble plane. Singh et al. (2015) measured the in-

cylinder flow field near the intake valves of a CI engine operating at 1200 rpm and 2100 rpm 

using stereo-PIV. The flow during the compression stroke was shown to be more turbulent at 

higher engine speeds due to the increased level of flow rotation and vorticity measured in the 

third component plane. This flow behaviour is vital for CI engine performance as it promotes 

better fuel-air mixing and affects engine performance and emissions characteristics (Singh et 

al. 2015).  

Due to the nature of engine flow, along with the added complexity of tumble and swirl flow 

structure present in DISI engines, this type of analysis would be invaluable in better 

understanding and quantifying the in-cylinder three-dimensional flow. Further understanding 

of in-cylinder turbulence and the mechanisms that lead to turbulent flame propagation as well 

as their correlation with engine performance would contribute greatly to the existing research 

that links turbulence to engine performance parameters. 

As highlighted, a significant benefit of all PIV measurement techniques, is the ability to 

simultaneously capture high resolution spatial and temporal velocity flow fields. Capturing 

data over a planar region enables flow field derivatives such as strain and shear rates to be 

quantified, which are not readily available through single point measurement techniques such 

as LDV. It is understood that these gradient-based quantities are involved in energy 
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production, dissipation and in the mechanisms responsible for the energy transfer down to the 

smallest scales in the energy cascade (Rimmer 2010).  

 2.9.6 Laser Induced Fluorescence (LIF) 
Laser induced fluorescence (LIF) is a technique used for the detection of species within a flow 

or flame. It is widely used for the investigation of fuel spray atomisation, vaporisation and 

charge mixing whereby it can measure the AFR distribution of the charge (Stevens et al. 2006, 

Kirchweger et al. 2007, Williams et al. 2008). 

A pulsed laser forms a light sheet into the required flow region with a frequency that is tuned 

to cause a specific species or tracer to excite electrons and subsequently light. Various 

intensities of the emitted fluorescence allow a species concentration to be detected by a 

camera that is perpendicular to the laser sheet. Quantitative planar laser induced fluorescence 

(QPLIF) was successfully implemented by Williams et al. (2008) in a DISI engine and by 

Mederer et al. (2012) in a hydrogen engine to quantitatively determine the homogeneity of 

the fuel mixture and the cyclic-to-cycle variations present in the fuelling. An extensive amount 

of experimental setup and calibration, however, was required with the selection of a suitable 

fuel tracer, in order to attain accurate quantitative data. Non-quantitative LIF does have the 

advantage, however, of being able to capture useful spatial and temporal species data 

qualitatively with reduced experimental calibration. 

A number of LIF studies have investigated important physical processes that contribute to 

emissions in DISI engines. Fuel spray breakup, distribution and evaporation of gasoline-based 

and ethanol-base fuel sprays in a DISI engine were measured using a combination of LIF and 

Mie scattering by Andersson et al. (2011). It was shown that at air temperatures of 363 K, the 

light components of gasoline fuel evaporated much faster than the medium to heavy 

components. The ethanol-base fuel spray, however, was measured to evaporate much slower 

and required an air temperature of 473 K to produce similar evaporation rates to gasoline. Fuel 

spray impingement is also a known cause of PM and HC emissions and was fundamentally 

investigated using LIF by Uchida et al. (2015), who utilised a doped fuel spray and it was found 

that the impingement behaviour on a cylinder liner oil film can be linked to the Weber number 

of the impinging fuel droplet. 
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 2.9.7 Laser Induced Incandescence (LII) 
With the increasing requirement to monitor and reduce PM emissions in DISI engines, laser 

induced incandescence (LII) is a measurement technique that offers useful measurement of 

soot volume fraction as low as nanoparticle sizes. LII is one of the most commonly used 

techniques to study soot formation processes in an engine because it can prove in-situ 

quantitative measurements of soot volume fraction (Zhao and Ladommatos 1998). The 

principle of the technique is straightforward in that a laser pulse heats the soot particles up to 

their vaporisation temperature of approximately 4500-K that emits near-ultraviolet light more 

intense than that emitted at a flame temperature of approximately 2200 K. This enables the 

light emitted by combustion-heated particles to be removed from the LII images using an 

appropriate filter (Francqueville et al. 2010). Using collection optics and photo detectors, the 

incandescence of the soot particles is measured. The decay rate of the short LII signal is then 

monitored and related to the soot size of the particle with a larger particle exerting a longer 

decay period. The dominant cooling mechanisms for the soot particles are conduction to the 

surrounding gas, sublimation and radiative emissions (Francqueville et al. 2010). To convert 

the LII signal to an absolute volume fraction and primary soot particle size, calibration with a 

known source is required (Rimmer 2010).  

 FLOW FIELD ANALYSIS TECHNIQUES 2.10
The analysis of instantaneous velocity vector fields attained through PIV measurement gives an 

indication of the nature of the flow velocity and turbulence but does not attain an adequate 

in-depth understanding of the complex flow typically observed in IC engines. The development 

of high-speed systems that spatially and temporally resolve flow field data allow a number of 

techniques to extract further information on the nature of the flow so a better understanding 

can be derived. 

 2.10.1 Reynolds Decomposition 
Instantaneous velocity fields can be broken down in an ensemble mean and fluctuating 

component using Reynolds decomposition as illustrated in Figure 2.10.1. This method is very 

common in describing turbulent velocity fields over a number of cycles. The amount that the 

instantaneous component differs from the ensemble mean depends on how large the 

cycle-to-cycle fluctuations are.  
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Figure 2.10.1: Schematic of velocity variation with crank angle showing high and low frequency components 
(adapted from Heywood (1988) 

The Reynolds decomposition is formulated below and links the instantaneous velocity, U(θ,i,x,y), 

ensemble average, Ū(θ,x,y) and turbulence fluctuation , u(θ,i,x,y) as shown below. Reynolds 

decomposition can be space-averaged, which averages the vectors in a single spatial field and 

compares it to each individual velocity vector or time-averaged, which averages the vectors in 

a certain position over a time. 

 𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) = 𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦) + 𝑢𝑢(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) Eqn. (2.10.1) 

and 

 
𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦) =

1
𝑛𝑛
�𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦)

𝑛𝑛

𝑖𝑖=1

 Eqn. (2.10.2) 

where: 

 

Ū(θ, x, y) = Ensemble average velocity at crank angle θ, position x, y 
Ū(θ, i, x, y) = Instantaneous velocity of cycle i, for n cycles. 

The ensemble average velocity is a useful parameter in quantifying the flow field development 

through an engine cycle when used with time-resolved HSPIV data. The development of bulk 

flow structures can be observed through a cycle as well as the comparisons between 

instantaneous vector fields. To maintain an accurate ensemble average of a spatial or temporal 

velocity field, the number of average cycles must be adequate. Reuss (2000) highlighted that a 

small cycle sample size can result in an extreme statistical bias in the ensemble mean when an 

unsteady parameter is analysed. 

The turbulence fluctuation velocity u, is defined as the difference between the instantaneous 

and the mean velocities. The turbulence intensity (or RMS velocity fluctuation) u’, can be 

deduced thus 
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 𝑢𝑢′(𝜃𝜃) = �(𝑈𝑈 − 𝑈𝑈�)2������������ Eqn. (2.10.3) 

   

 𝑢𝑢′(𝜃𝜃) = �
1
𝑁𝑁
�(𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) − 𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦))2
𝑁𝑁

𝑖𝑖=1

 Eqn. (2.10.4) 

Local mean velocity (LMV) decomposition is a technique that calculates the ensemble average 

over small regions compared to the entire field. The fluctuation component u, is compared to 

this LMV that reveals eddies in one area of the vector field where the fluid flows at exactly the 

chosen mean velocity, while remaining hidden in all other regions where the fluid is moving 

faster or slower (Rimmer 2010). 

 2.10.2 Large Eddy Simulation (LES) 
Large eddy simulation (LES) involves decomposition of velocity flow fields into small scale, high 

frequency and large scale, low frequency components. To achieve this, the x and y velocity 

vector components are transposed into the spatial frequency domain using a fast Fourier 

transform (FFT). A low pass filter is then applied to filter out the high frequency components 

using a cut-off frequency and the velocity signal is reconstructed into the time domain to 

obtain the low frequency velocity components (Rimmer et al. 2009). The low frequency and 

high frequency velocity components can then be deduced the instantaneous velocity such that 

𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) = 𝑈𝑈𝐿𝐿𝐿𝐿(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) + 𝑈𝑈𝐻𝐻𝐻𝐻(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) 

where: 

U Instantaneous velocity vector of cycle i, at crank angle θ, and location x, y 
ULF Low frequency velocity vector component 
UHF High frequency velocity vector component. 

The selection of the cut-off frequency for the low-pass filter has been discussed by a number 

of authors (Reuss 2000, Jarvis et al. 2006, Rimmer et al. 2009) with typical frequencies 

between 200 Hz and 600 Hz. The cut-off frequency, however, is dependent on the analysed 

flow field and is usually an arbitrary approach. Rimmer (2010) discussed an alternative 

approach for the correct selection of cut-off frequency. The RMS turbulence is first calculated 

using Reynolds decomposition along with a range of cut-off frequencies. The calculated high-

frequency RMS turbulence is then compared to the engine parameter IMEP, calculated for 

each engine cycle. A correlation coefficient between these two parameters is then 

determined, which quantifies the relationship between turbulent flow structures and engine 
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performance. A suitable cut-off frequency can then be selected depending on where the 

highest correlation coefficient is observed. This method has been successfully implemented 

experimentally and in CFD modelling (Rimmer et al. 2009, Laget et al. 2010). 

 CONCLUDING REMARKS 2.11
This literature review has discussed DISI engine methodology and the processes involved with 

in-cylinder flow and combustion. The review of control strategies available to DISI engine 

designers with particular focus on meeting future emissions legislation has highlighted an array 

of techniques that can be utilised to affect combustion parameters. Increasingly investigated 

cold-start strategies has highlighted the ever increasing focus in this field as well as the 

requirement to better understand the complex in-cylinder processes taking place. It was also 

noted that further experimental research into initial transient engine start-up is needed to 

better understand the mechanisms that generate PM in this critical phase. Considerable 

research has been presented highlighting the use of tumble and swirl to influence turbulent 

flow structures and the effect these have on combustion and emissions. The importance of 

attaining a good understanding of these complex flow structures and the way they interact 

with the fuel spray is vital in understanding fuel spray impingement and fuel mixture 

homogeneity. A number of in-cylinder velocity measurement techniques and methods of 

analysing their results have been studied. The need for third-component fluid flow analysis in 

an IC engine and the potential benefits in understanding in this field of research are very 

apparent. A number of velocity vector analysis techniques exist that successfully decompose 

the data into useful information. There is, however, no standardised methodology for selecting 

the cut-off frequency in the analysis of turbulent flow field data in engine studies, highlighting 

the necessity of developing improved analysis techniques. 

The next chapter discusses the experimental setup and configuration of the optical engine 

facility and details the setup of the experimental equipment that has been used to investigate 

the research areas identified in this literature review. 
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3.1 INTRODUCTION 
The importance of PM generation in DISI engines has been discussed in Chapters 1 and 2, 

highlighting its particular significance during cold-start and transient operating modes. In-

cylinder turbulence, and engine calibration and control have the potential to influence 

injection and combustion processes to improve engine emissions. 

The literature review highlighted the lack of knowledge and understanding of in-cylinder 

processes during the cold-start and transient phases of DISI engine start-up. This chapter 

describes the experimental setup and implementation of an optical DISI engine for operation 

and measurement at low temperature. The optical engine facility was originally commissioned 

for an EPSRC project and has been continually utilised and developed for a number of 

combustion and in-cylinder flow studies (Jarvis et al. 2006, Justham et al. 2006a, Justham et al. 

2006b, Rimmer et al. 2009, Rimmer et al. 2012, Efthymiou et al. 2013). 

The engine modifications required to simulate an NEDC -7°C ‘cold soak’ test have been 

outlined along with the setup of all ancillary and data acquisition systems. Secondly, a 

description of the imaging systems used to acquire fuel spray and combustion visualisation 

data, using the wide array of available optical access, have been presented. Exhaust emissions 

analysis of both transient hydrocarbon emissions as well as PM emissions were made in order 

to correlate results with optical data and further the understanding of the complex in-cylinder 

combustion processes. A description of the HSPIV system that was used to measure the in-

cylinder velocity field and its instrumentation on the optical engine, has also been presented. 
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3.2 OPTICAL ENGINE SPECIFICATION 
A single cylinder optical research engine with a combustion system similar to that of the Jaguar 

AJ133 V8 was used (Sandford et al. 2009). This allowed the data obtained from the engine to 

be used for the design and calibration of production engines. Fundamental components such 

as the cylinder liner and piston could be interchanged between optical and thermodynamic 

variants depending on the level of optical access required. Figure 3.2.1 illustrates the engine 

configured for combustion imaging through the optical piston crown in cold conditions 

alongside basic engine configuration details. It should be noted that engine timing parameters 

are relative to after top dead centre (ATDC) of the intake stroke unless stated otherwise. 

 

Maximum Engine Speed 2000 rpm 
Bore 89.0 mm 

Stroke 90.3 mm 
Compression Ratio 10.5:1 
Number of Valves 2 Intake, 2 Exhaust 

Fuel Delivery 6-hole direct injection 
Max Fuel Pressure 150 bar 

Valve Timings (ATDC) IVO 24°, IVC 274° 
EVO 475°, EVC 6° 

 

 

Injection Timing (ATDC) 60°, 0°, 7° 
Ignition Timing (ATDC) 335°, 361.5° 

 

Figure 3.2.1: Jaguar optical engine cooled to -7°C and corresponding engine configuration details (Efthymiou 
et al. 2013) 
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The engine crankcase assembly incorporated primary and secondary balancing to compensate 

for the forces of inertia caused by a single cylinder piston design. An extended Bowditch piston 

was attached to the primary piston within the engine crankcase and base block and the 

cylinder head is attached using three pillar supports. The Bowditch piston allowed the 

positioning of a 45° mirror beneath it to allow optical access through an optical piston crown 

into the combustion chamber (Figure 3.4.1). Sealing of the cylinder liner was achieved using a 

pneumatic ram that was driven from a 6  bar regulated supply of compressed air for motoring 

and a 20 bar supply of nitrogen for combustion. This equated to optical liner sealing forces of 

2.6 kN and 8.9 kN respectively. 

 3.2.1 Optical Access 
The Jaguar optical research engine allows for measurements of in-cylinder processes such as 

charge motion, fuel spray injection and flame propagation. To accomplish this there are 

several optical access configurations available: 

i) Pent-roof window – for imaging around the spark plug and injector tip region and 

investigating parameters such as fuel impingement and flame kernel creation. 

ii) Piston crown window – allowing optical access from the 45° mirror into the 

combustion chamber for imaging fuel injection and flame propagation. 

iii) Quartz cylinder liner – providing access to the full cylinder bore and stroke during 

fuel injection, combustion and exhaust. 

In addition to these optical components, a liquid-cooled steel version of the cylinder liner was 

used along with an aluminium pent-roof insert. This facilitated precise temperature control 

when the engine was cooled and allowed extended fired operation of over three minutes, 

which is the temperature-dependent time limit of optical components. Extended operation 

periods of up to ten minutes were required during the investigation of particulate matter (PM) 

emissions during the warm-up phase after a cold-start. The optical and thermodynamic engine 

components are shown in Figure 3.2.2. 
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Figure 3.2.2: Interchangeable optical and thermodynamic engine components 

 

 3.2.2 Fuel Injection and Ignition 
Fuel injection was provided by a 6-hole prototype injector mounted vertically and located 

centrally within the cylinder head, in close proximity to the spark plug. This configuration 

allows the engine to operate in homogeneous or stratified charge combustion modes. The 

injector nozzle consisted of two groups of three nozzle holes, all with a 0.5 mm outlet 

diameter. The six holes each have a different injection angle, producing the distinctive spray 

pattern (Figure 3.2.3). The individual injection angles for each fuel plume were designed to 

achieve maximum spray coverage of the cylinder bore, necessary for mixing with the intake air 

prior to ignition. Plumes 1 and 6 are orientated such that they passed around the spark plug in-

order to minimise wetting of the electrode during fuel injection.  The fuel rail was pressurised 

and regulated using a nitrogen-driven accumulator piston and fuel pressure was fully 

adjustable up to a maximum pressure of 150 bar. The fuel injector assembly comprised a 

reservoir of fuel that had a volume large enough to deliver a single engine test run of 100 

cycles. This ensured that all of the fuel injected during a test run was of a consistent 

temperature to the head and liner after hot or cold-soaking. 

A coil-on-plug type ignition system was used with a 12 V, 9A supply that delivered ignition 

energy of 35-40 mJ. The orientation of the spark plug electrode was maintained perpendicular 

to the pent roof window to avoid disturbance of the initial flame kernel growth if viewing 

through the pent roof window and to maintain the default orientation used recently in 
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research on the engine (Rimmer et al. 2009, Rimmer et al. 2012, Efthymiou et al. 2013). Spark 

plug orientation in a similar DISI engine has also been shown to have a notable effect on spark 

duration, flame kernel location, cycle-to-cycle variation and misfire (Twiney et al. 2010a, 

Twiney et al. 2010b). This is of particular importance in the presented research whereby a 

range of spark scheduling has been tested during the combustion sensitive mode of cold-start. 

Injection and ignition timing was controlled using an AVL engine timing unit synchronised to an 

engine crankshaft encoder and TDC sensor, which allowed a timing resolution of 0.1 °CA. Air-

fuel ratio (AFR) and engine load were controlled manually with the engine timing unit. 

 

 

Figure 3.2.3: Schematic of six-hole fuel injector showing orientation of spray plumes relative to the cylinder 
head (adapted from (Serras-Pereira et al. 2007a)) 

 3.2.3 Cylinder Head and Liner Temperature 
A 6 kW vapour chiller was required to cool an antifreeze-water (80:20) mixture to -20°C and 

achieve an operating condition of -7°C. This was connected to the coolant circuit that flowed 

through the cylinder head and steel liner. When an operating temperature above ambient 

conditions was required, the coolant circuit was connected to a coolant tank that heated the 

fluid using a 3 kW thermostat-controlled immersion heater. The operating condition 

temperature was defined by a thermocouple embedded within the cylinder head on the 

exhaust-side of the engine away from the coolant circuit, this ensured the recorded 

temperature was representative of all of the cylinder head components. The thermocouple 

was coated with a silicone-based thermal compound to achieve good thermal contact with the 

cylinder head surface. A ‘dry’ oil sump design was used in the engine so the crankcase was 

heated separately using a crank-driven pump that also supplied oil to the overhead cams. 

When the engine was heated, the coolant and engine oil were fully heated prior to engine 

operation. 

1 

6

 



3.2 OPTICAL ENGINE SPECIFICATION 
 

73 
 

 3.2.4 Intake Air Temperature 
For the first time a vortex tube was used to cool the intake air of the engine in order to 

simulate a cold-soak at -7°C (Figure 3.2.4). The device was connected to a 6.0 bar compressed 

air supply that enters the device tangentially to create a rotating high velocity vortex along a 

heat transfer tube. The outer region of the vortex is restricted through a hot exhaust whilst the 

lower velocity cold air stream is restricted through a smaller hole which is centrally located 

with respect to the rotational axis. The fundamental operation of the vortex tube is governed 

by energy transfer from the inner to the outer vortex region in the form of heat. A precise cold 

air stream of -7°C was achieved by adjustment of the exhaust valve that controls the flow rate 

ratio between the two exhaust streams. The cooled air was fed into the intake plenum of the 

engine, which prevented any induction pressure waves in the vortex tube and allowed stable 

measurement of the air temperature using a thermocouple located inside the plenum.  

 
Figure 3.2.4: Arrangement of the vortex tube and plenum thermocouple in the engine intake plenum 

(Efthymiou et al. 2013) 

 3.2.5 Engine Speed and Load Control 
A DC motor with an energy-absorbing drive system was used to crank the engine. When the 

engine was fired, a resistive load was applied that absorbed the power generated. This allowed 

the engine speed to be kept within a tightly controlled window of ±2 rpm. Engine load was 

controlled using a combination of varying the fuel injection duration (as discussed in Section 

3.2.2) and throttling the intake air. For coarse pressure adjustments, an industry standard 

cable-driven throttle was used, whilst a needle valve controlled fine pressure adjustments.  
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When the engine was operated under cold conditions, a needle valve between the vortex tube 

and intake plenum was used to throttle the intake air. The pressure within the intake plenum 

was monitored using a digital display piezo-resistive pressure transducer. 

 3.2.6 Air-Fuel Ratio (AFR) Measurement 
The Air-fuel equivalence ratio (λ) during fired engine operation was manually maintained at a 

stoichiometric level for the majority of the results presented in this thesis. This was controlled 

during engine running using a combination of altering the intake plenum pressure and fuel 

injection duration. An ECM Lambda Pro 1200 sensor supported the measurement of fuels with 

H:C, O:C and N:C ratios, as well hydrogen, allowing standard hydrocarbon gasoline fuels and 

ethanol blended fuels to be used if desired. A visual display of λ was used during engine 

running whilst an analogue output from the sensor was logged by the data acquisition system. 

The accuracy of the lambda sensor was ±1% at stoichiometry and ±2% otherwise, with a 

response time of < 150 ms. 

 3.2.7 Pressure Measurement 
In-cylinder pressure was measured with a Kistler 6041A piezo-capacitive pressure transducer 

mounted from the camshaft side of the engine into the top of the pent-roof combustion 

chamber. The sensor allowed operation in a wide temperature range with a fast response time 

of 1.0 µs and a linearity of < 0.5%.  A reference pressure was required, however, as the 

transducer only measured relative pressure change. A Kistler 4045A piezo-resistive pressure 

transducer was installed into the lower part of the steel cylinder liner and measured absolute 

pressure at BDC. When the full length optical liner was used, the reference pressure was taken 

from the intake plenum when the intake valves were open. 

 3.2.8 Data Acquisition 
An AVL engine timing unit and National Instruments data acquisition system with 16 separate 

data channels were synchronised to the engine crankshaft position so that parameters such as 

fuel injection and spark timing could be controlled and in-cylinder pressure could be 

measured. Triggering events for data acquisition were also controlled so that simultaneous 

measurements, such as pressure and PIV data, could be synchronised. A Leine and Linde 

crankshaft encoder with 3600 pulses per revolution was used to determine crankshaft 

position. One channel on the encoder provided a TDC pulse every revolution and the other 

outputted a signal every 0.1 °CA/revolution. 
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In order to stop early triggering of data acquisition systems, an individually controllable 

channel filter was developed and situated between the output channels of the AVL engine 

timing unit and the data acquisition system. This both allowed certain channels to be blocked 

until desired engine stability had been achieved and to synchronise multiple data acquisitions 

systems. 

3.3 FUEL-SPRAY IMAGING 
The fuel spray was imaged using a Photron FASTCAM APX-RS high-speed camera viewing 

through the quartz optical cylinder liner with the camera positioned perpendicularly to the 

cylinder liner. Illumination of the combustion chamber was provided by a Copper Vapour 

Laser, capable of producing a pulse repetition rate of 50 kHz with a pulse duration of 10-30 ns 

with wavelengths of 511 nm and 578 nm. The camera and laser were synchronised at 9 kHz to 

allow for a high temporal resolution of 1 °CA per frame at 1500 rpm engine speed with 

illumination energy in the order of 2 mJ per pulse. The copper vapour laser used an optical 

fibre system in order to allow for greater positional flexibility, the beam was reflected on the 

45° mirror below the extended Bowditch piston and through the piston crown. By using an 

illumination source through the piston crown window, reflection was minimised from the 

optical cylinder liner which reduced the presence of optical artefacts in the recorded images 

and improved the accuracy of post-processed groups of fuel spray images. 

A system using a traversable spherical lens was used to reduce the divergence of the conical 

beam as it exited the fibre and maximise the energy density of the laser by restricting the 

beam’s diameter to that of the optical piston crown. The flood-fill illumination of the beam 

allowed all injector plumes to be detected optically and the camera was then focused on the 

central axis of the cylinder in line with the injector. Figure 3.3.1 outlines the optical 

arrangement of the illumination system and high-speed camera on the optical engine. 

The camera recorded an imaging area of 80 mm by 60 mm at a resolution of 640 by 480 pixels 

at a rate of 9 kHz producing a spatial resolution of 0.124 mm/pixel. Images were recorded at 

9 kHz allowing a high temporal resolution of 1 °CA at a tested engine speed of 1500 rpm. A 

Nikon lens with a focal length of 28 mm was used with a wide-open aperture setting of f2.8 to 

maximise the detection of scattered light from the fuel spray without the requirement for any 

post image enhancement. 
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Figure 3.3.1: Experimental setup of fuel-spray visualisation through optical cylinder liner (Efthymiou et al. 

2013) 

The camera memory was partitioned to allow 70 frames per trigger to be captured, with the 

camera trigger occurring 10 °CA before fuel spray injection (Figure 3.3.2). The increased delay 

time of the image trigger before the injection event allowed any liquid fuel deposits present in 

the cylinder from the intake ports to be detected during intake. 

 
Figure 3.3.2: Timing graph outlining camera trigger events during injection and combustion relative to 

ATDCInjection (Efthymiou et al. 2013) 
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The engine was motored continuously with fuel injection and without spark ignition.  This 

allowed the conditions over a single test run of 97 cycles to be kept as consistent as possible 

by avoiding the high temperature build-up from combustion, which would ultimately have an 

impact on the fuel spray.  Compressive heating and friction were still considered, but their 

effect would be far less than the energy released during combustion and this heating was 

considered to be offset by the evaporative cooling effect of the evaporating fuel spray. 

3.4 COMBUSTION IMAGING 

 3.4.1 Greyscale High-Speed Imaging 
In-cylinder combustion imaging was obtained via the quartz optical piston crown window using 

a Photron FASTCAM APX-RS high-speed camera viewing across the 45° mirror located inside 

the extended Bowditch piston (Figure 3.4.1). The camera recorded an imaging area of 640 by 

480 pixels at a rate of 9 kHz producing a spatial resolution of 0.142 by 0.142 mm/pixel and a 

temporal resolution of 1 °CA/frame at the standardised engine speed test point of 1500 rpm. 

The camera memory was partitioned to allow 80 frames per trigger to be captured, with the 

camera trigger occurring 5 °CA before spark ignition. Each test run recorded 85 engine cycle 

events which was limited by the 2GB on-board memory of the camera, this produced a total of 

6800 images through the optical piston crown. Figure 3.3.2 illustrates the location of the 

camera trigger and image capture time relative to the pressure curve during the engine’s cycle 

ATDC relative to the intake stroke. 

 3.4.2 Colour High-Speed Imaging 
Analysis of a simulated cold-start engine start-up strategy was completed using a Photron 

FASTCAM SA1.1 high-speed colour 24-bit camera with different specifications. The camera 

recorded an imaging area of 832 by 800 pixels at a rate of 9 kHz producing a spatial resolution 

of 0.087 by 0.087 mm/pixel and a temporal resolution range of 0.1 °CA to 1.3 °CA per frame 

depending on the tested engine speed (150 rpm to 2000 rpm). 

The camera memory was partitioned to allow from 80 to 300 frames per trigger to be captured 

depending on the speed of the piston, combustion process and the presence of any scheduled 

engine events, such as a second injection or spark. Each test run recorded from 29 to 108 

engine cycles that was limited by the 16GB on-board memory of the camera, this produced a 

total of 8600 24-bit colour images.  
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Figure 3.4.1: Schematic of visible imaging region during combustion imaging (Efthymiou et al. 2013) 

Figure 3.4.2 illustrates the viewing area available through the optical piston crown for all types 

of combustion imaging along with the orientation of the presented images relative to key 

engine components such as the intake and exhaust valves. Due to the diameter of the piston 

crown window (65 mm) compared to the cylinder bore (89 mm), the cylinder bore could be 

imaged up to a radius of 35 mm from the centre. 

 
Figure 3.4.2: Schematic of available imaging region relative to cylinder head 
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3.5 EXHAUST EMISSIONS MEASUREMENTS 
To facilitate the interpretation and build upon the knowledge and understanding gained from 

the optical data, exhaust emissions analysis was carried out on the optical engine. The data 

acquisition system allowed in-cylinder pressure measurement data and emissions results to be 

synchronised to better understand the effects of in-cylinder fuel injection and combustion 

processes on exhaust emissions. 

A modified exhaust was manufactured for the engine allowing up to seven sample points, 

which could be used simultaneously (Figure 3.5.1). Sampling equipment was situated in the 

exhaust manifold such that any upstream flow effects were minimised and data accuracy was 

not compromised. 

 
Figure 3.5.1: Modified optical engine exhaust manifold 

 3.5.1 Particulate Emissions Sampling 
A Cambustion DMS500 MkII fast particulate analyser was used to measure particulate number 

(PN) emissions during extended periods following cold-start and whilst simulating a cold-start 

engine start-up strategy. The DMS500 was capable of measuring PM number concentration 

and size distribution with a response time of 200 ms at a sample rate of 10 Hz. The sampled 

gas first enters a vortex to remove large un-measurable particles and the remaining particles 

are diffusion charged. The aerosol then passes through a classifier column which is subjected 

to a strong radial electrical field. Depending on their electrical mobility, which is a function of 

particle size, particles are deflected and subsequently detected at different positions along the 

column of electrometer detectors. 
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Before entering the classifier column, the sampled exhaust gas travelled through a 90°C 

heated sample line which applied primary dilution using a compressed air source, the heated 

lined prevents condensates forming between the exhaust and classifier column. Secondary 

dilution is then applied if required, consisting of a rotating disc dilutor (Figure 3.5.2). The 

DMS500 facilitated the dynamic alteration of primary and secondary dilution during testing, 

allowing the dynamic measurement range to be optimized. This was of particular benefit in a 

single cylinder DISI engine, which has an increased sensitivity to changes when measuring 

particle concentration. This is due the inherent low size and reduced quantity of particulate 

emissions that were exhausted compared to, for example, diesel engine. 

 
Figure 3.5.2: DMS500 sample and dilution system (Cambustion 2013) 

Due to the sensitivity of PN number measurement in low-count applications such as single 

cylinder SI engines, the sample probe for the DMS500 was located in the centre of the exhaust 

flow and as close to the exhaust valve as possible (Figure 3.5.1). This prevented flow 

disturbance from other sampling equipment which could affect the accuracy and sensitivity of 

the sampled particulates. The 5 mm stainless steel sample pipe was given a smooth 90° bend 

to facilitate the induction of particulates and prevent any stagnation on the surfaces of the 

sample pipe (Figure 3.5.3). 
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Figure 3.5.3: DMS500 exhaust sample pipe overlaid over exhaust manifold 

To maximise the accuracy of the PN measurements, fired engine operation was extended from 

a 3 minute limit, which was dictated by thermal loading on optical components, to 10 minutes. 

Longer sample times allowed a larger quantity of particles to be sampled, improving the 

accuracy of mean-averaged data and improving the understanding of PN emission variability 

over a longer period of time. The increased time also facilitated the data capture of PN 

emissions during a complete engine warm-up to full operating temperature, from cold-start 

conditions. To allow extended fired operation, an aluminium piston crown insert was 

manufactured and used in combination with the steel cylinder liner. The optical pent roof 

window remained as it was embedded within the aluminium cylinder head and as a result able 

to withstand the thermal loading during extended runs. 

In all engine tests a gas sample rate of approximately 8 litres/min was taken from the exhaust 

manifold, which was kept constant by the DMS500. The dilution ratio was manually controlled 

during engine operation to maintain an appropriate range of sampled particulates, this 

allowed the DMS500 to account for any dynamic changes in PN during engine combustion. 
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 3.5.2 Unburned Hydrocarbon (HC) Emissions Measurement 
Unburned hydrocarbon (HC) emissions are generally caused by poor fuel atomisation and 

vaporisation, air-fuel mixture heterogeneity and cold-surface impingement prior to 

combustion. An understanding of the precise in-cylinder location of these emissions can help 

the development of HC reduction through engine calibration and control strategies. 

A Cambustion HFR500 fast flame ionisation detector (FID) was used to measure the exhaust HC 

emissions during a range of engine operating temperatures as well as whilst simulating a cold-

start engine start-up strategy. The fast FID was instrumented into the main data acquisition 

system and synchronised with the engine crankshaft encoder allowing fully cycle-resolved 

emissions analysis with a response time as low as 0.7 ms. 

To minimise the HC measurement delay time and more accurately synchronise the results to 

the engine crank angle, the fast FID measurement probe was located close to one of the 

engine’s exhaust valves. An adapter was manufactured to position the probe angularly in the 

exhaust manifold, allowing location within the exhaust port with the probe tip approximately 

5 mm from the valve head (Figure 3.5.4).  

 
Figure 3.5.4: Fast FID exhaust adapter installed on exhaust manifold and exhaust probe located in exhaust 

port 
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To calibrate the Fast FID, a propane span gas with a known HC concentration (ie. propane 

2000 ppm C3H8) was used along with a pure air source to zero the equipment. The output 

voltage was adjusted with a potentiometer at these two known calibration points. When 

testing various engine operating conditions with the HFR500, it was necessary to skip fire the 

engine to prevent the cumulative accumulation of residual HCs in the cylinder and exhaust 

manifold, which has been detailed in Chapter 7. This also allowed the comparison of HC 

emissions between individual engine cycles. 

3.6 HIGH-SPEED PARTICLE IMAGE VELOCIMETRY (HSPIV) SETUP  
The in-cylinder flow field has a dominant influence on the fuel spray penetration, atomisation 

and vaporisation, as well as the proceeding flame kernel growth and propagation. To develop 

better knowledge and understanding during cold-start conditions, particle image velocimetry 

(PIV) was used to measure the in-cylinder flow field during the induction and compression 

strokes. More recently, advancement in high-speed PIV (HSPIV) systems have enabled high 

temporal and spatial resolution data to be capture over a large spatial areas within engines 

(Jarvis et al. 2006, Stansfield et al. 2007b, Rimmer et al. 2009, Rimmer et al. 2012, Disch et al. 

2013). This detailed data can be used to validate computer-aided engineering (CAE) models 

and further develop the knowledge and understanding of fluid dynamics within engines. The 

following section details the experimental setup on the optical engine. A fundamental analysis 

of the PIV technique and sources of error, as well as an in-depth PIV error analysis is detailed 

later in Chapter 6. 

 3.6.1 Light Source, Beam Delivery and Image Recording 
A Litron LDY304 ND:YLF laser with pulse energy of 30 mJ/pulse was projected onto the 45° 

mirror under the Bowditch piston to produce a laser sheet approximately 1 mm thick through 

the cylinder, full specifications of the laser are given in Table 3.6.1. The collimated raw beam 

was passed through a bi-convex spherical lens with a variable focal length and a cylindrical lens 

in series. This created a laser sheet approximately 100 mm wide with a focussed waist at the 

area of interest. 

The laser sheet was positioned on the central axis of the cylinder in between the both sets of 

valves in order to capture the flow field structure created by both intake valves (Figure 3.6.1). 

A LaVision Imager pro HS 4M high-speed camera and synchroniser unit was used to image the 

seeded flow area of 60 x 90 mm, at a resolution of 1008 x 1512 pixels and a record rate of 

3 kHz, producing a PIV rate of 1.5 kHz and a spatial resolution of 0.060 by  0.060 mm/pixel. The 
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PIV rate was limited by the resolution of the images and subsequently the available processing 

power of the camera. 

Litron Nd:YLF Laser 
Parameter Specification 

Wavelength [nm] 527 
Pulse Energy [mJ] 30 

Pulse Duration [ns] 150 
Peak Power [W] 30 

Pulse Frequency [kHz] 3 
Beam Diameter [mm] 5 

Table 3.6.1: Nd:YLF Laser Specifications 
 

 

    
Figure 3.6.1: Experimental setup of PIV system setup with optical cylinder liner and piston crown 
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The camera’s on-board memory of 18 GB allowed 4100 image pairs to be recorded per engine 

run which equated to approximately 97 engine cycles for the majority of speeds tested during 

the cold-start cycle. 

 3.6.2 Flow Seeding 
A TSI six jet atomiser was used to generate seeding particles with nominal diameters of 1-2 μm 

from a source of silicon oil (Dow Corning 200). Dow Corning 200 oil was used due to its non-

abrasive, lubricating properties and high vapour pressure, allowing the particles to remain 

visible during the increased temperatures of the compression stroke. 

Fundamentally, seeding particles need to be small enough to accurately follow the complex 

flow path in an engine, especially the high frequency turbulence structures which are 

important to SI engine combustion. They also need to be large enough to scatter a sufficient 

quantity of light, so that there location can be accurately recorded. The ability of the used 

seeding particles to follow in the in-cylinder engine flow has been assessed in Chapter 6 using 

Stokes’ drag law. 

3.7 CONCLUDING REMARKS 
This chapter has described the experimental procedure that was undertaken to setup and 

modify the single cylinder optical engine to simulate cold-start operational conditions. The 

methodology to capture high-quality optical imaging and diagnostics data from the engine has 

been described along with the implementation of exhaust emissions analysis. The 

simultaneous utilisation of these techniques has enabled the capture of data which develops 

the understanding of cold engine operation and particulate formation during these conditions. 

The data collected from this experimental setup is presented and discussed in the following 

chapters. Chapter 4 investigates the effect of operating temperature on the combustion 

processes within the engine. 
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4.1 INTRODUCTION 
Chapters 1 and 2 discussed the effects of low operating temperatures on the fuel injection and 

proceeding combustion processes. Cold-start conditions have been shown to lead to poor fuel 

spray atomisation and vaporisation, as well as combustion chamber surface impingement 

(Stanglmaier et al. 1999, Whitaker et al. 2011, Efthymiou et al. 2013). These factors adversely 

affect AFR distribution during the combustion process and are known to contribute to 

unburned HC and PM generation. 

This chapter presents the results collected from the optical investigation of operating 

temperature on in-cylinder DISI engine combustion. High-speed optical diagnostics were 

employed to capture the combustion processes following spark ignition, which include flame 

kernel growth and development, and lead on to flame propagation, until being extinguished at 

the cylinder and piston surfaces. Simultaneous in-cylinder pressure data were recorded in 

order to analyse combustion performance and cycle-to-cycle variability, as well as correlating 

results and findings with the processed optical data. 

The experimental setup of the engine simulated continuous steady-state combustion at engine 

operating temperatures from 80°C to -7°C. This facilitated analysis of the complete engine 

temperature range and allowed any intermediate effects between temperatures to be 

observed. A detailed explanation of the experimental setup of the optical engine and ancillary 

systems were described in Chapter 3. In this chapter, the specific test conditions and optical 

setup are described. 

A range of data processing routines were developed to transpose the in-cylinder pressure data 

into mass fraction burned (MFB) and indicated mean effective pressure (IMEP) parameters as 

well as there corresponding COVs. The high-quality qualitative optical combustion data 

combined with the in-cylinder pressure data provides a novel insight into cold-start DISI 

combustion in an optical engine. Results show striking differences between the flame growth 

structures at various operating conditions with the notable presence of significant fuel-rich 

regions which are understood to be prominent areas of PM formation. A clear link was also 

shown between operating temperature, engine performance and in-cylinder combustion 

parameters which contribute to the formation of PM. 
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4.2 OPTICAL ENGINE EXPERIMENTAL CONFIGURATION 
High-speed visualisation of the in-cylinder combustion processes was obtained through the 

quartz optical piston crown as previously shown in the experimental arrangement in 

Chapter 3. A 105 mm Nikon lens with a wide-open aperture of f2.8 was used to record through 

the 45° mirror, which allowed as much light as possible from the combustion to be detected 

without the need for added illumination or image intensification. Figure 4.2.1 outlines the 

optical engine and its ancillaries when set up for temperature-varied combustion imaging. 

 
Figure 4.2.1: Experimental setup of optical engine for combustion imaging at various operating temperatures 

(showing engine cooled to -7°C) 

In order to change the operating conditions of the engine, three key aspects of the engine 

system were modified:  

1. Head and liner temperature: These affect in-cylinder surfaces that act as a heat source 

or heat sink for the air flow, fuel spray and flame kernel. These regions also create 

impingement zones which can lead to the build-up of liquid fuel, particularly during 

cold conditions. 

2. Fuel injector temperature: This is governed by head and liner temperature, directly 

influences the fuel in the injector sac and affects fuel atomisation, penetration, 

breakup and vaporisation. The detrimental effect this has on the fuel spray is 

compounded by the increased potential for cold-surface impingement. 
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3. Intake air temperature: This affects the temperature of the charge and acts as a heat 

transfer medium for the fuel spray and flame kernel. 

The temperature of the coolant circulating through the cylinder head and liner was set to 

achieve engine operating temperatures of 80°C, 23°C, 10°C and -7°C as described in Table 

4.2.1. The vapour chiller was used for all temperatures at 23°C and below whilst the 

immersion heater was used to heat the coolant during the 80°C test condition. Intake 

temperatures of 23°C and -7°C were used in conjunction with all head and liner test 

conditions. The main throttle plate was utilised solely to regulate the intake charge during 

the 23°C intake condition. When -7°C intake air was required, the throttle plate was sealed 

off and flow was controlled using the intake throttle valve between the vortex tube and 

plenum (Figure 4.2.1). The intake plenum thermocouple was used to monitor the intake air 

temperature, which was adjusted by means of altering the hot exhaust valve on the vortex 

tube. 

Cylinder Head and 
Liner Temperature 

Description 

80°C Fully heated engine 
23°C Ambient lab conditions 
10°C Intermediate condition 
-7°C Euro 6 cold-start temperature (DieselNet 2015) 

Table 4.2.1: Description of selected engine head and liner temperatures 

4.3 PRESSURE DATA AND IMAGE POST-PROCESSING 
Analysis of the in-cylinder combustion events was carried out using a number of post-

processing routines on the recorded in-cylinder pressure data. The data acquisition system 

saved a data file of all recorded output channels at the end of each run, which was 

subsequently transcribed into Matlab for further processing. The parameters that were 

deduced from the pressure data included: 

• Peak pressure and the crank angle (CA) location at which this occurred (PMax, θPMax); 

• Gross indicated mean effective pressure (IMEP); 

• Mass fraction burned (MFB) times for 10%, 50% and 90% of the total charge. 

The in-cylinder pressure was deduced using the absolute pressure from the piezo-resistive 

pressure transducer located either in the cylinder liner or intake plenum. At bottom dead 

centre (BDC) of the intake stroke, the absolute pressure from the piezo-resistive sensor was 

used as a reference pressure for the in-cylinder pressure transducer. Pressures throughout the 

entire engine cycle were recorded at a temporal resolution of 0.1 °CA.  
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The data acquisition (DAQ) system was triggered to record after receiving a TDC voltage signal 

from the crankshaft encoder. For the start of each recorded engine run, it was necessary to 

determine whether the outputted data file commenced at TDC of the intake stroke or 

compression stroke. This was completed in the Matlab code by analysing the in-cylinder 

pressure at TDC to determine whether compression had taken place. If so, the preceding 

360 °CA of pressure data was removed to ensure every engine run commenced at TDC of the 

intake stroke. 

The calculation of PMax, θPMax and dP/dθ was straightforward from the available pressure data 

and this could also be referenced to the crank angle from the encoder. The cylinder 

volume (V) could be calculated from the equation (Heywood 1988) 

 
𝑉𝑉 = 𝑉𝑉𝑐𝑐 +

𝜋𝜋𝜋𝜋2

4
(𝑙𝑙 + 𝑎𝑎 − 𝑠𝑠) Eqn. (4.3.1) 

where Vc is the clearance volume, B is the engine bore, l is the connecting rod length, a is the 

crank radius and s is the distance between the crank axis and piston pin axis given by 

 𝑠𝑠 = 𝑎𝑎 cos𝜃𝜃 + (𝑙𝑙2 − 𝑎𝑎2𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃)1/2 Eqn. (4.3.2) 

where θ is the crank angle (in degrees) from the encoder. 

To calculate the mass fraction burned, the well-established technique developed by Rassweiler 

and Withrow (1938) was utilised. The combustion process was considered using a series of 

very small crank angle intervals (Δθ), each of which contains a change in pressure (ΔP) that is 

caused by two processes: the pressure rise due to the motion of the piston (ΔPV) and the 

pressure rise due to combustion (ΔPC). It was assumed the charge was compressed as a 

polytropic process after which some of the charge was burned and caused a rise in pressure. 

Utilising the knowledge of in-cylinder volume at any known crank angle, the change in 

pressure due to the piston motion over a time step (ΔPV) can be approximated as a polytropic 

process at any known point, i, such that  

 
∆𝑃𝑃𝑉𝑉= 𝑃𝑃𝑖𝑖 ��

𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖+1

�
𝑛𝑛
− 1� Eqn. (4.3.3) 

where Pi is the known pressure,Vn+1 is the cylinder volume in the next time step and n is the 

polytropic index. 
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The pressure change due to combustion was then defined as  

 
∆𝑃𝑃𝐶𝐶= 𝑃𝑃𝑖𝑖+1 − 𝑃𝑃𝑖𝑖 �

𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖+1

�
𝑛𝑛

 Eqn. (4.3.4) 

where Pi+1 is the cylinder pressure in the next time step. Since combustion is not taking place 

at a constant volume, a known arbitrary reference volume is needed. This was chosen at TDC 

(the clearance volume of the engine, Vc) so the normalised change in pressure due to 

combustion (ΔPC*) could be normalised and expressed as 

 ∆𝑃𝑃𝐶𝐶
∗= ∆𝑃𝑃𝐶𝐶 �

𝑉𝑉𝑖𝑖
𝑉𝑉𝐶𝐶
� Eqn. (4.3.5) 

The time taken to reach a specific MFB percentage was then calculated from the time taken to 

reach a proportion of the total normalised pressure change due to combustion (ΣΔPC*). 

The IMEP was calculated from the in-cylinder pressure data. It is defined as the ratio of work 

on the piston per cycle to the swept volume of the cylinder and is defined as  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  
1
𝑉𝑉𝑆𝑆
�𝑃𝑃.𝑑𝑑𝑉𝑉𝑆𝑆 Eqn. (4.3.6) 

where VS is the swept volume of the cylinder and P is the cylinder pressure (Heywood 1988).  

The coefficient of variation (COV) has also been stated for all presented parameters and is 

defined as the ratio of the standard deviation (σ) to the mean (μ). The COV is a useful 

indicator of the cycle-to-cycle variability and of an engine’s combustion stability. 

 4.3.1 IMAGE POST-PROCESSING 
The combustion images from the camera were stored as an 8-bit uncompressed grey-scale 

video file (AVI format). Photron PFV software was then used to separate these frames into 

uncompressed image files (TIF format) for further processing in Matlab. The steps taken in the 

program are outlined below: 

1. Image files are loaded into Matlab and the filename is read to identify the operating 

conditions and frame number in the cycle; 

2. The cylinder walls of the engine run to be processed are edge detected and a 

geometric mask is applied; 
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3. The presence of a flame is detected for each image and is the image is binarised. The 

threshold of the flame detection was predetermined depending on operating 

condition; 

4. The binary flame images are processed to calculate parameters such as flame 

perimeter, flame area and flame growth speed; 

5. The calculated parameters are exported in Excel for data interpretation and 

presentation. 

For the presented image-processed parameters, calculations were made based on a 

straightforward pixel count of the binarised images (with respect to time when calculating 

flame growth speeds). In order to convert the units of measurement into SI units, a calibration 

grid was used to accurately calculate the total number of pixels per mm, which was 

subsequently integrated into the Matlab code. To identify the flame centroid location a 

function named ‘regionprops’ was used on the binarised image, which extracts measurement 

properties of a supplied image. The threshold level within the Matlab program was iterated for 

each operating condition until the flame was no longer overestimated or underestimated for 

the majority of combustion cycles during each engine run. As no image intensification was 

used, relatively low threshold levels of approximately 8/255 were used so that the early flame 

kernel growth was captured. Figure 4.3.1 illustrates the results from the flame image 

processing routine on a single arbitrary engine cycle. Flame growth speed (𝑆𝑆𝑓𝑓(𝑖𝑖)) was 

calculated based on the change in flame area (𝐴𝐴𝑓𝑓(𝑖𝑖+1)) across images (i), flame perimeter (𝑃𝑃𝑓𝑓) 

and time between images (dt) such that 

 𝑆𝑆𝑓𝑓(𝑖𝑖) =
𝐴𝐴𝑓𝑓(𝑖𝑖+1) − 𝐴𝐴𝑓𝑓(𝑖𝑖)

𝑃𝑃𝑓𝑓𝑑𝑑𝑑𝑑
 Eqn. (4.3.7) 

where dt is the camera frame rate. 

The viewable region of the optical piston crown had a diameter of 68.0 mm, which allowed 

58% of the 89.0 mm cylinder bore to be viewed during combustion. The processed optical data 

enabled a significant proportion of the flame kernel growth and expansion to be described and 

correlated with in-cylinder pressure data, however, the pressure data was required to 

accurately describe the latter part of the combustion process to the cylinder walls.  
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Original Image Binarised Image Edge-Detected and Flame Centroid 
Image 

   

   

   

   

   

Figure 4.3.1: Results from Matlab flame image processing routine at various points after ignition timing (AIT) 
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4.4 RESULTS AND DISCUSSION 
The data presented in this section aims to develop an understanding of the effect that 

operating temperature has on in-cylinder combustion and particulate emission generation. 

The combination of optical and quantitative in-cylinder data has allowed a better 

understanding of the in-depth physical processes occurring during spark ignition and flame 

growth, along with the benefit of detecting flame features such as burning fuel droplets. 

 4.4.1 In-Cylinder Pressure 
The graphs in Figure 4.4.1 outline the in-cylinder pressure relative to after top dead centre 

(ATDC) of the compression stroke as well as the mass fraction burned (MFB) profile for all head 

and liner temperatures tested with an intake temperature of 23°C. There is clear and strong 

correlation evident between the engine operating temperature and the peak cylinder pressure 

achieved, with a range from 13.16 bar at 80°C, to 8.79 bar at -7°C.  

The location of the peak pressure in the engine cycle remained relatively consistent at 23 °CA 

with a maximum deviation of 2 °CA. Notably, the difference in peak pressure increased as 

operating temperature deviated from 80°C, with a less significant difference in peak pressure 

evident between the 10°C and -7°C operating conditions. 

The MFB profiles presented show the rate at which the charge is consumed from spark ignition 

to the complete consumption of the unburned charge and is mathematically defined as a 

fraction between 0 - 1. When observing the initial 30 °CA after ignition, the ignition delay and 

start of pressure rise was shown to be longer for the colder operating conditions, with the 10°C 

and -7°C test points showing very similar profiles. The rates at which MFB increased were also 

lower at colder conditions, indicating longer times for the charge to be burned. These key 

differences can be used to further explain the contrasting peak pressures that were shown. 

The increased rate of pressure rise and therefore energy release at warmer temperatures, 

allowed a greater proportion of the charge to be burned by the time the piston reached TDC. 

After this point, the remaining charge was burned into an increasing cylinder volume and at a 

lower flame growth speed during the expansion stroke, resulting in a decrease in peak 

pressure. 
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The in-cylinder pressure traces and burn profiles when -7°C intake air was introduced into the 

engine are also illustrated in Figure 4.4.2. As expected, the correlating trends relating to head 

and liner temperature were again present, along with the differences in the MFB rates. A 

consistent rise in peak pressures of approximately 0.5 to 0.6 bar was observed at all cylinder 

head and liner temperatures, which can be attributed to a denser charge caused by the colder 

intake air.  

 

 
Figure 4.4.1: Mean in-cylinder pressure and mass fraction burned profile for a range of cylinder head and liner 

temperatures tested at a 23°C intake temperature 
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These subtle peak pressure differences are highlighted in more detail in Figure 4.4.3 with 

corresponding coefficients of variation (COV). The COV of IMEP was analysed for a number of 

properties processed from the pressure data and are defined as the ratio of the standard 

deviation to the mean. Interestingly, the MFB profile of the 23°C head and liner operating 

condition was much more similar to the colder cases when a cooled charge was used, this 

demonstrates the notable effect a cooled charge had on the flame growth speed. 

 

 
Figure 4.4.2: In-cylinder pressure and mass fraction burned profile for a range of cylinder head and liner 

temperatures tested at a -7°C intake temperatures 
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The upper bar graph in Figure 4.4.3 illustrates the peak pressures and their corresponding 

COVs for all operating points tested. The COV of the peak cylinder pressures can be seen to 

have risen from 10% to 17% as engine operating temperature was decreased. This rise in 

variation is further compounded with the colder -7°C intake air condition which increases COV 

by up to a further 2% in each operating temperature case. The COV parameter is a measure of 

the cycle-to-cycle variability during an engine run and gives a good indication to combustion 

stability. As expected, colder operating conditions in terms of head and liner temperature as 

well as intake air led to increased combustion instability in the engine, this is discussed later in 

the chapter. 

 

 
Figure 4.4.3: Mean peak pressures and corresponding COVs for a range of engine operating temperatures 

and intake temperatures 

Pressure 
COVPressure 

PLocation 
COVPLocation 



4.4 RESULTS AND DISCUSSION 
 

99 
 

The location of peak cylinder pressure has been presented in the lower bar graph in Figure 

4.4.3 and shows a fairly consistent peak pressure location across the range of operating 

conditions due to the consistent fuel spray and spark ignition timings. Interestingly, the 23°C 

condition peaks above the other temperatures with a slightly later peak pressure location, 

however, the relatively high COV at this condition means that the mean of this data does not 

give an overall accurate representation of the individual  engine cycles in the data. A striking 

trend is the large increase in the COV of peak pressure location at lower engine temperatures. 

The COV of the -7°C condition reaches 50% highlighting the instability of the combustion 

events and wide spread of data.  

This variability has been highlighted further in Figure 4.4.4, which illustrates the raw peak 

pressure locations for the coolest and most unstable condition (-7°C head, liner and intake 

temperature). The peak pressure locations can be seen to range from 0.4 °CA to 40.5 °CA ATDC 

and are grouped into two distinct locations at approximately 30 °CA and 5 °CA ATDC. The 

extremely large spread of peak pressure locations highlights the instability of the engine, 

which limits the delivery of an efficient power stroke. As the charge had not burned at an 

optimum crank angle position during the compression and expansion stroke, the flow 

conditions to deliver a fast flame growth (and therefore efficient burn) are not present. The 

different colours in the scatter graph plot represent separate engine test runs and highlight the 

consistency of the collected data. 

 4.4.2 MFB and IMEP  
When the processed MFB times to 10%, 50% and 90% of the charge are considered (Figure 

4.4.5), the trend of poorer performance at lower operating temperatures continues. The 90% 

MFB time varied as much 14.6 °CA AIT from the 80°C to the -7°C operating condition, which 

supports the hypothesis that the flame growth speed is slower at lower temperatures. 

As with the other presented parameters, the COV of MFB time shows a clear correlation with 

decreasing operating temperature, the effect of which is compounded at higher MFB 

percentages due to the increased time from spark ignition. Cooling the charge to -7°C (not 

presented here) had a very small effect on the MFB times and COV which increased by 

1 - 2 °CA AIT and 1% respectively. 
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Figure 4.4.4: Peak pressure location of engine cycles at -7°C cylinder head and liner conditions, -7°C intake air 

temperature (engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, 
ignition timing = 325 °CA ATDC, λ = 1.0) 

 
Figure 4.4.5: Mean mass fraction burned to 10%, 50% and 90% times after ignition timing (AIT) and 

corresponding COVs for a range of cylinder head and liner temperatures tested at 23°C intake temperature 

Gross indicated mean effective pressure (IMEP) is a universally recognised parameter when 

analysing and comparing engine performance and efficiency. In this thesis the values of IMEP 

are relatively low, which is indicative of the start-up conditions tested. Figure 4.4.6 compares 

gross IMEP for all engine operating temperatures as well as their COV values. IMEP decreased 

as the temperature of the engine was reduced, correlating with the observed reduction in 

peak pressures, rates of MFB and poor in-cylinder combustion performance, which is 

described later in this chapter. COV increased significantly with falling temperatures, 

highlighting the effect on engine stability, particularly at the -7°C condition. Higher COVs 

during cold-start in a DISI engine have also been shown by Bruno et al. (2003). 

MFB Time 
COVMFB Time 
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A number of factors that contribute to instability in spark ignition (SI) engines were reviewed 

by Ozdor et al. (1994), such as fluctuations in equivalence ratio and flow field turbulence, as 

well as random convection of the spark kernel away from the electrodes. Williams et al. 

(2008), when using a similarly configured engine, showed a 10% variation in fuel distribution at 

the time of ignition using a quantitative planar laser induced fluorescence (QPLIF) technique. 

At the colder temperatures tested on this engine, with non-ideal mixing conditions, these 

factors will certainly contribute to the combustion instability observed. Persson et al. (2004) 

showed that reducing intake temperature alone in a gasoline engine significantly increased its 

COVIMEP. Twiney et al. (2010) also found in a similar engine that the presence of fuel on the 

spark plug earth electrode modified the location of the spark and in worst cases, contributed 

to misfire. The increased presence of un-atomised fuel in these tested cases (which are 

discussed in Chapter 5) contributes to this effect. 

 

 
Figure 4.4.6: Mean gross IMEP and corresponding COVs for a range of engine operating temperatures and 

intake temperatures 
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 4.4.3 In-Cylinder Combustion Imaging 
This section of analysis aims to observe the in-cylinder combustion process through the piston 

crown in order to further explain the engine instabilities and performance effects that have 

been observed in the processed in-cylinder pressure data. 

To understand the progressive growth of the flame after spark ignition, a time sequence of in-

cylinder images has been presented at various operating conditions in Figure 4.4.7 to Figure 

4.4.11. A crank angle range after ignition timing (AIT) of 15 °CA to 48 °CA in 2 °CA increments 

was selected as this allowed the early flame kernel growth to be captured along with the 

combustion of the remaining visible charge. The visible imaging region of the recorded 

combustion images and the orientation of the intake valves, exhaust valves, spark plug and 

fuel injector have been presented schematically in Chapter 3. The conditions shown in the 

combustion images are 80°C, 23°C, 10°C and -7°C cylinder head and liner temperatures with a 

23°C intake air temperature. The -7°C intake temperature condition is shown for the 80°C 

cylinder liner and head condition only. The objectives of using these test points was to 

highlight the key differences in flame growth structure across the cylinder head and liner 

temperature range and to observe the independent effect that intake air temperature has on 

the combustion process. 

Observation of the start of the combustion imaging time sequence allows flame kernel 

creation to be detected as early as 5 °CA, 0.55 ms AIT. Over several engine cycles the early 

flame kernel was seen to be stretched and manipulated in a number of different directions to 

varying degrees. This represents the differing scales of complex high frequency and small scale 

turbulent flow components that are present in the pent roof combustion chamber and, 

notably, in the spark plug region around the time of ignition (Rimmer et al. 2009). This initial 

flame kernel displacement is important in the proceeding propagation of the flame and 

consumption of unburned charge, since adequate interaction with the in-cylinder turbulent 

structures are known to be paramount in successful and efficient flame propagation. 

High-speed particle image velocimetry (HSPIV) data (Jarvis et al. 2006, Rimmer et al. 2009) has 

previously shown that global flow motion in this type of engine around the time of spark 

ignition is directed from the intake to the exhaust side of the combustion chamber. These 

conclusions correlate with the presented sets of combustion images and show the global 

convection of the flame towards the exhaust valves as it propagated through the cylinder. The 

images following flame kernel establishment show a high magnitude of flame growth speed, 

which then decreases in magnitude as a higher proportion of the unburned charge is 
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consumed. During flame growth, local interaction between the flame front and the known 

small-scale structures of turbulence were apparent in the form of observed flame wrinkling. 

Striking differences are apparent between the sets of presented combustion images in the 

form of flame growth speed, high luminosity regions, local flame front structure and global 

flame luminosity. 

The high intensity fuel-rich regions that were abundant in the flame during combustion at -7°C 

(Figure 4.4.11) represent poorly atomised and un-vaporised liquid fuel. They can be detected 

in the form of burning regions with diameters up to 2 mm in diameter and ligaments of liquid 

fuel with regions burning up to 5 mm long, which were seen to form from these droplets. This 

liquid fuel burned at a much lower rate than the bulk flame and continued to burn later into 

the expansion stroke due to a combination of lower surface area and local equivalence ratio. 

These locally fuel-rich regions are known sources of PM generation (Gupta et al. 2000) as their 

high carbon to oxygen ratio results in carbon atoms which can combine to form aromatic ring 

structures that nucleate to form particulate matter (PM) (Cromas and Ghandhi 2005, Price et 

al. 2006). Mixing after combustion, however, allows some of these particles to oxidize (Cromas 

and Ghandhi 2005). 

In the fully heated engine condition of 80°C with an ambient intake air temperature (Figure 

4.4.7), the presence of high luminosity liquid fuel was contrastingly small when compared to 

the -7°C case. The specific reasons for this are outlined in the next chapter, whereby the fuel 

spray structure has been analysed at various operating conditions. However, the resulting 

combustion images indicate that the majority of fuel spray particles were atomising and 

vaporising adequately to facilitate homogeneous stoichiometric combustion. 

The effect that a cooled intake charge has independently on combustion when the head and 

liner are kept constant at 80°C is shown in Figure 4.4.8. Expectedly, the flame structure, 

growth speed and luminosity were similar to that of the ambient charge case, which 

exemplifies the dominant effect the head and liner (and therefore fuel) temperature have on 

the flame. Interestingly, however, the cooled charge induced the presence of burning liquid 

fuel droplets with burning regions with sizes up to approximately 1.5 mm, albeit in a lesser 

quantity than when the head and liner were cooled to -7°C. This highlights the profound effect 

that intake charge temperature alone has on the atomisation and vaporisation of the 

interacting fuel spray during intake, along with the potential to create conditions which 

promote PM formation.  
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 4.4.7: Flame imaging sequence through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC,  

ignition timing = 325 °CA ATDC, λ = 1.0) 
80°C cylinder head and liner conditions, 23°C intake air temperature 
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 4.4.8: Flame imaging sequence through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC,  

ignition timing = 325 °CA ATDC, λ = 1.0) 
80°C cylinder head and liner conditions, -7°C intake air temperature 
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The 23°C and 10°C operating condition test points (Figure 4.4.9 and Figure 4.4.10) exhibited 

similar flame structures with similar levels of un-vaporised fuel contained within the flame. 

The images highlight a faster flame growth speed in the 23°C condition that was previously 

confirmed in the mass fraction burned times. The 10°C operating condition consistently 

displayed a more uneven flame growth than the warmer temperatures, particularly in the 

earlier phases of the flame kernel. A potential cause of this is poor atomisation and 

vaporisation producing a less homogeneous charge and reducing the uniformity of the local 

equivalence ratio, particularly across the interacting flame front. Areas of different equivalence 

ratios will burn at different rates producing non-spherical flame growth. 

Differences in global flame luminosity can be observed across the different operating 

conditions. The two main forms of light emission that the camera detected were:  

i. the incandescence of soot particles within fuel-rich regions of the flame and  

ii. natural light emission of combustion known as chemiluminescence, which when using 

hydrocarbon fuels, originate from combustion radicals OH, CH, C2 and the broadband 

emission from CO2 (Kuwahara et al. 1998, Rimmer et al. 2012). 

The understanding of a flame’s dynamic stoichiometry that can be inferred from these light 

emissions are discussed in Chapter 6 with the utilisation of colour high-speed combustion 

imaging. Chemiluminescence can help better understand the differences observed in global 

flame luminosity, as most of the light emitted in the 80°C case originated from combustion 

radicals, whilst the majority of high intensity light emission detected in the colder -7°C case 

was caused by soot incandescence in the rich areas of the flame. Another potential reason for 

the differences in global luminosity is the uniformity of the local equivalence ratio, particularly 

across the interacting flame front. Areas of different equivalent ratios would have burned at 

different speeds, which are observed as inhomogeneous areas of flame luminosity. The 

wrinkled flame front, as observed in the fully heated condition, is less distinguishable at colder 

operating conditions. A combination of mixture homogeneity and uneven flame luminosity 

may have obscured the flame, as it is reasonable to assume that the turbulent flow structures 

were both still present and similar at the colder operating conditions. 
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 4.4.9: Flame imaging sequence through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC,  

ignition timing = 325 °CA ATDC, λ = 1.0) 
23°C cylinder head and liner conditions, 23°C intake air temperature 
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 4.4.10: Flame imaging sequence through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC,  

ignition timing = 325 °CA ATDC, λ = 1.0) 
10°C cylinder head and liner conditions, 23°C intake air temperature 
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 4.4.11: Flame imaging sequence through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC,  

ignition timing = 325 °CA ATDC, λ = 1.0) 
-7°C cylinder head and liner conditions, 23°C intake air temperature 
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The images presented for the -7°C condition (Figure 4.4.11) interestingly appear to show a 

faster flame growth than both the 10°C and 23°C conditions, which was not consistent with the 

MFB times calculated from the pressure data. This may be due to a difference in flame 

luminosity between conditions, which allows an increased fraction of the flame to be visible to 

the camera. One must also bear in mind that the flame was recorded in a two-dimensional 

plane so an absolute understanding of the complex three-dimensional flame growth cannot be 

inferred from this data alone. The next section discusses image processed parameters from the 

same flame images, so will further the understanding of the flame’s growth and structure. 

 4.4.4  In-Cylinder Combustion Image Analysis 
Image processing of the recorded flame images was carried out to better understand the 

effect that operating temperature had on the flame. As entire data sets can be processed and 

mean-averaged, statistical analyses also remain accurate. This section has quantified various 

parameters from the recorded flame images which were presented previously. 

Figure 4.4.12 shows the flame growth speeds AIT as for the entire head and liner temperature 

range at 23°C intake (upper graph) and the two extreme head and liner temperatures tested 

with both 23°C and -7°C intake temperatures (lower graph). A striking difference can be seen 

between the 80°C operating condition and the remaining temperatures, with a flame that is 

detected earlier and reaches a peak of 9.5 m·s-1 approximately 5°CA earlier. These findings are 

analogous with those from the in-cylinder pressure data, which showed the 80°C condition has 

a notably faster burn rate and peak pressure than the other operating temperatures. The 

remaining colder temperatures exhibited very similar flame growth speed profiles with peak 

speeds within a range of 5.0 - 5.5 m·s-1, despite there appearing to be larger differences in the 

presented images. The colder operating temperatures maintained their peak flame speeds for 

longer, highlighting the increased time it took for the flame to reach the cylinder wall and 

therefore consume the unburned charge. 

The lower graph (Figure 4.4.12) highlights a profound difference in both the flame growth 

speed and the time the flame was first detected when a cooled charge was used. This 

exemplifies the effect a cooled charge has on limiting the speed of the flame, which is 

detrimental to engine performance. The in-cylinder pressure data analysis did not highlight the 

effect of the cooled charge as strikingly as the image-processed optical data.  
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The most extreme case of -7°C head, liner and intake temperature was shown to have a peak 

flame growth speed not too dissimilar to the average flame growth speed as well as the flame 

being detected nearly 10°CA later compared to an ambient temperature charge. This delay in 

the early creation and growth of the flame kernel has a detrimental effect on the flame’s 

growth as the burning charge is not exposed to the highest magnitude in-cylinder frequency 

components near TDC, which typically aid with rapid flame propagation and consumption rate 

(Long et al. 2008). 

 

 
Figure 4.4.12: Flame growth speeds for a range of cylinder head and liner temperatures tested at 23°C 

and -7°C intake temperatures 
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4.5 CONCLUDING REMARKS 
The effects of cooling an optical DISI engine down to operating temperatures of -7°C have 

been discussed with a detailed optical analysis of flame combustion and quantitative 

discussion of in-cylinder pressure data. A number of cylinder head and liner temperatures 

were tested along with ambient and cooled charge conditions. The results showed significant 

differences in the flame growth speeds and structures, as well as the calculated engine 

performance parameters. The main conclusions from this part of the investigation are: 

1. In-cylinder peak pressures were seen to drop by up to 5 bar when the engine was 

cooled from 80°C to -7°C, alongside a rise in COV of 7%.  Further processing of the in-

cylinder pressure data was completed and showed an overall decrease in IMEP as well 

as significant increases of COV from 3% to 15%. 

2. High-speed imaging of the in-cylinder combustion highlighted contrasting flame 

growth structures between operating temperatures, and in the coolest cases, the 

widespread presence of fuel-rich regions and lower flame growth speeds. These rich 

regions are known areas of particulate formation and highlight the impact that 

temperature has on the critical early phase of a cold-start. 

3. Image processing analysis of the flame images correlated with results seen from the in-

cylinder pressure data. The effect of operating temperature was exemplified further 

with striking differences seen in the time to start of combustion and flame growth 

speed when comparing the fully heated 80°C condition to the colder temperatures. 

The combination of using optical and pressure data analysis allowed a better understanding of 

the in-cylinder combustion structures and a thorough characterisation of the reasons for the 

detrimental performance recorded by the in-cylinder pressure transducer. 

The next chapter aims to further build on this understanding by analysing the critical phase of 

fuel injection to observe the effect that operating temperature has on fuel spray atomisation, 

vaporisation and surface impingement. These factors are fundamental to engine performance 

and particulate emission formation. 
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5.1 INTRODUCTION 
The significant effects that operating temperature has on in-cylinder combustion were 

discussed in Chapter 4. The most notable was considered the presence of liquid fuel droplets in 

the flame at colder temperatures. As a known region of PM generation, these areas are of 

particular interest and are linked directly with the atomisation, vaporisation and surface 

impingement from the fuel injection event. 

This chapter analyses the fuel injection process in detail to better understand the results 

observed during the combustion process. High-speed optical diagnostics and laser illumination 

were used in conjunction with a full length optical cylinder liner in order to capture as much 

information from the fuel injection spray plumes as possible. 

The experimental setup was chosen such that it accurately represented the combustion 

experiments to allow correlation with the findings of the fuel spray studies. The complete 

engine temperature range from 80°C to -7°C was tested during steady-state motoring of the 

engine. The test conditions used in the presented results are outlined in this chapter with a 

more detailed explanation of the overall engine setup previously described in Chapter 3. 

The detailed optical fuel-spray data were further processed to deliver statistical data relating 

to the location of the in-cylinder fuel spray during the intake stroke over entire engine runs. A 

striking difference was observed in both the fuel spray structure and rates of vaporisation 

when comparing the fully heated operating condition to the colder engine temperatures. 

These results correlated with the combustion data analysed in Chapter 4 and help further 

understand the effects of cold temperatures on the complex in-cylinder processes that lead to 

the formation of PM. 
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5.2 OPTICAL ENGINE EXPERIMENTAL CONFIGURATION 
Imaging of the in-cylinder fuel injection process was facilitated by utilising both the quartz 

optical cylinder liner and piston crown as explained in detail in Chapter 3. The use of a 28 mm 

lens with a wide-open aperture of f2.8 allowed the fuel spray droplets to be detected 

throughout the entire cylinder bore. This was of particular importance since the mechanisms 

of cold-surface impingement and wall-wetting (that potentially cause PM formation regions) 

needed to be further understood.  

Figure 5.2.1 shows the experimental arrangement of the optical engine during imaging of the 

fuel spray through the optical cylinder liner. The optical cylinder liner in this image mostly 

obscured due to the laser safety guarding that minimised the level of scattered laser light from 

45° mirror and other reflective engine surfaces. 

 
Figure 5.2.1: Experimental setup of optical engine for fuel-spray imaging at various operating temperatures 

(showing engine cooled to 23°C) 

The traversable laser optics (shown in Figure 5.2.2) allowed fine adjustment of a spherical lens 

relative to the fixed laser fibre. This enabled the precise focussing of the conical beam angle in 

order to maximise the quantity of light entering the cylinder during the entire intake stroke.  
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Figure 5.2.2: Traversable lens system used for fine adjustment of conical copper-vapour laser beam 

The tested operating conditions of 80°C, 23°C, 10°C and -7°C cylinder head and liner 

temperatures with 23°C and -7°C intake air temperatures were kept the same as those used in 

Chapter 4 so that the fuel-spray imaging best represented previously presented combustion 

data with a λ ratio of 1.0. Since the quartz liner could not be directly cooled by the vapour 

chiller, the engine was continuously motored and not fired to prevent temperature build up 

from combustion. This also kept the injector and fuel sac temperature consistent across engine 

runs, which allowed repeatable fuel injection events to be captured. To cool the quartz liner 

and better replicate the cold surface temperatures of the steel liner, the engine was left to 

‘cold soak’ for approximately an hour before each engine run. This period of time allowed the 

system to sufficiently cool, as confirmed by the thermocouples instrumented across the 

engine. The differences in thermal properties between the quartz and steel liner were noted 

when the fuel spray data was analysed. 

5.3 FUEL SPRAY DATA ANALYSIS 
The captured fuel spray images required no image enhancement and minimal image 

processing. The well-controlled laser illumination and the smaller diameter of the quartz 

piston crown window ensured that only the fuel-spray droplets were illuminated and scatter 

from in-cylinder surfaces was minimised. The presented images were inverted for presentation 

and to aid the clarity of the fuel droplets, particularly in areas of low droplet density.  
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As discussed in the literature review in Chapter 2, a number of studies have used optical 

diagnostics techniques to analyse fuel spray parameters such as droplet size, atomisation and 

vaporisation rate. Wigley et al. (1998) commented that a single technique alone can lead to 

false conclusions regarding the atomisation of fuel and multiple complementary diagnostics 

techniques such as laser Doppler anemometry (LDA), phase Doppler anemometry (PDA) and 

imaging analysis helps to facilitate the successful interpretation of a complex spray flow field 

(Wigley et al. 2004). The fuel spray data presented in this chapter was not image processed to 

calculate parameters such as vaporisation rate and spray angle due to the lack of size 

distribution data from PDA techniques as well as the fact that all spray plumes had been 

illuminated, preventing the isolation of a single plume angle. A qualitative and statistical 

analysis of the fuel spray images proved sufficient due to the wide range of operating 

conditions being tested and the distinct differences that were observed. 

To develop an understanding of the bulk spay structure at each operating condition, the first 

25 °CA of each fuel injection event was ensemble mean-averaged at each crank angle across 

300 engine cycles. The recording rate of 9 kHz allowed a temporal resolution of 1 °CA/frame 

equating to 0.11 ms time between frames. This chosen time separation captured the injection 

process up to the point of impingement on the piston crown, after which the main plume 

structure collapsed and the visible droplets vaporised. To show an overall representation of 

the spray structure at each point, these ensemble mean-average images at each crank angle 

were then averaged. The resulting images highlight the location of visible fuel in the cylinder 

during this initial spray period. To quantify the level of temporal variability between injections 

cycles during engine runs, the root mean square (RMS) of the first 25 °CA of each injection was 

also calculated. The RMS calculation first averaged all spray images before calculating the RMS 

as shown by 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = �

1
𝑛𝑛 − 1

�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2
 

𝑖𝑖

 Eqn. (5.3.1) 

where n is the number of images, xi is the pixel intensity of image i and 𝑥̅𝑥 is the mean across all 

images, given by 
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5.4 RESULTS AND DISCUSSION 
The following section presents both raw, ensemble-averaged and RMS fuel spray images to 

better understand the fuel injection process and further elaborate on the effect of operating 

temperature. In-cylinder pressure data and combustion imaging analysis highlighted a 

detrimental effect on performance as well as stability with lower operating temperatures.  

A time sequence of images from a single arbitrary injection event is presented from Figure 

5.4.2 to Figure 5.4.7 for the complete range of cylinder head and liner operating conditions. A 

crank angle range after start of injection (ASOI) of 6 °CA to 20 °CA in 1 °CA increments is 

shown. This range allowed the entire fuel spray injection event to be captured along with the 

early spray breakup and fuel mixing. 

Observation of the fuel injection sequence at operating conditions of 80°C (Figure 5.4.2) 

depicts a highly atomised fuel spray with a main body that visibly penetrated a maximum of 

approximately 30 mm into the cylinder. The early spray plume showed a structure that is 

representative of the 6-hole injector arrangement discussed in Chapter 3. Two groups of 3 

holes are seen to form, but due to the level of atomisation, vaporisation and plume 

divergence, no individual spray plumes were fully distinguishable within the main spray body. 

As the bulk spray body initially progressed through the cylinder, the interaction of the 

surrounding air with the spray boundary can be observed. The atomised fuel spray 

experienced primary breakup, whereby the shear forces at the gas-liquid interface are 

responsible for the breakup of the liquid jet into droplets (Charalampous et al. 2009) and 

secondary atomisation as described by (Lasheras et al. 1998) as it detached itself from the 

main spray body in the first 10 °CA and was transported to the edges of the cylinder, as is 

typical in the air distortion process (Heywood 1988). This is an important part of the mixing 

process since atomised fuel transportation is required to achieve a sufficiently homogeneous 

mixture before the spark ignition event. 

This highly atomised and well distributed fuel spray structure helps elucidate why the 80°C 

operating condition had the best recorded engine performance, lowest mass fraction burned 

time and the lowest quantity of liquid fuel present in the flame, as discussed in Chapter 4. An 

in-cylinder peak pressure of up to 40% higher than the colder operating temperatures was 

recorded, which can be attributed to how well homogenised the charge was prior to spark 

ignition. This allowed a rapid flame growth that maximised the work delivered at the optimum 

crank angle during the expansion stroke. The lack of visible high-intensity fuel-rich regions in 
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the recorded in-cylinder combustion images are a result of the well atomised spray that 

impinged less on engine surfaces and vaporised more completely before combustion. 

In the last 5 °CA of the presented fuel spray images at 80°C (Figure 5.4.2), the dominant effects 

of the in-cylinder flow structures on the fuel spray are apparent. The right hand plume is 

observed continuing its path along the cylinder liner wall towards the surface of the piston 

crown before being swept into a clockwise vortex which re-joins the remaining body of fuel 

spray. Previous analyses of in-cylinder flow structures in a similarly configured engine during 

intake (Stansfield et al. 2007) showed that at low valve lift, the small effective flow area and 

large pressure difference across the intake valves resulted in conical jets forming and travelling 

at velocities of 50 m·s-1 during the current engine speed and setup. Rimmer et al. (2012) also 

highlighted the importance of these in-cylinder vortices during the injection process in a 

similarly configured engine and noted that these flow structures have the potential to assist 

with the transportation of impinged liquid fuel back into the cylinder to aid vaporisation.  

Progression through the latter part of the intake stroke showed a consistent reduction in the 

luminosity of the light scattered by the fuel spray body indicative of fuel vaporisation taking 

place. The rate of this observed vaporisation increases as the stroke progresses due to the 

expanding volume that the spray is exposed to and the time available for the fuel to vaporise. 

Care must be taken, however, when commenting on vaporisation with the method of 

visualisation used. The level of detected fuel spray was dependent on the detected scattered 

light from fuel-spray particles of a particular size range. In this investigation, particles 

approximately 1 μm and above were detectable. 

A cold -7°C temperature charge was introduced into a fully heated engine at 80°C to observe 

the effects and interaction with the heated fuel spray (shown in Figure 5.4.3). No discernible 

differences between the -7°C and 23°C intake temperatures were seen in the shape and 

structure of the spray plume but a slight increase in plume penetration before breakup was 

apparent. This was especially noticeable at 17 °CA ASOI, where impingement on the piston 

crown window surface was imminently taking place in the cooled charge case. This small 

difference in penetration is also highlighted later in this section when the fuel spray images are 

statistically processed. These results correlate with the data presented in Chapter 4 that 

showed a subtle difference of approximately 0.5 bar in peak pressure and 0.25 bar engine 

performance (IMEP) between 23°C and -7°C intake air temperatures, but did highlight an 

increase in high intensity fuel-rich regions in the flame at -7°C, which could have been caused 

by the noted increase in spray plume penetration and therefore impingement. 
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The cold-start simulated operating condition of -7°C, as well the 23°C and 10°C operating 

conditions revealed a strikingly different fuel spray structure when compared to the fully 

heated 80°C case (Figure 5.4.4, Figure 5.4.5 and Figure 5.4.6). As expected at these colder 

cylinder head and liner conditions, flash boiling of the fuel did not occur, producing a far less 

vaporised spray with a higher concentration of liquid fuel. The length of the continuous liquid 

jet core was higher than in the 80°C condition, this important factor determines the extent of 

the primary atomisation region (Charalampous et al. 2009). The initial momentum of these 

spray particles, due to their mass, caused the spray plumes to penetrate the cylinder at a 

greater rate than in the full heated engine case. Piston impingement was consistently apparent 

in all runs and occurred as early as 10 °CA ASOI. The difference in fuel-spray structure at the 

fully heated engine case was also observed by Serras-Pereira et al. (2007) highlighting a 

reduction in liquid-core spray area of up to 15% at 90°C compared to 50°C in a similarly 

configured engine. 

The consistent piston crown impingement that occurred at the colder operating conditions 

aligns with the combustion data in Chapter 4 that highlighted an increased quantity of fuel-rich 

regions below 80°C and is indicative of impinged fuel unable to vaporise before spark ignition. 

No detectable differences were observed between the instantaneous imaging data of the 

three colder operating conditions, with impingement occurring on the piston crown at the 

same time during the intake stroke and the same level of global luminosity visibly apparent. 

Image processing described later in this section was utilised to detect the subtle dissimilarities 

between the three coldest temperatures.  

The distillation curve for the Shell Pura gasoline fuel that was used throughout engine testing 

is shown in Figure 5.4.1. This aids the understanding of why flash boiling occurred at 80°C and 

not the lower operating temperatures. At 80°C, the graph indicates that approximately 35% of 

fuel is a vapour, which likely consists of the lighter weight and more volatile compounds of the 

fuel composition that were seen to flash boil in the fuel spray images. Below 33°C, the graph 

indicates that the majority of the fuel is composed of liquid, which is why flash boiling was not 

observed at any of the colder operating conditions and the visible rate of vaporisation 

appeared lower than that of the 80°C operating condition. As in most SI engine combustion 

systems, the charge was throttled so the pressure within the cylinder was below atmospheric. 

In this instance, the vapour pressure of the fuel was higher meaning the saturation 

temperature was also higher, allowing a larger quantity of fuel to vaporise. 
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Figure 5.4.1: Distillation curve for Shell Pura gasoline RON: 95.7 (Shell Global Solutions (1998) - See 

Appendix A) 

The fuel spray images were further processed to investigate the consistency of the fuel spay 

injection events and highlight any dissimilarities that were not detectable in the instantaneous 

images. Ensemble-averaged and RMS images of the in-cylinder fuel spray were created from 

300 engine cycles for each crank angle at all operating conditions. They have been presented 

as contour plots of spray intensity that range from 0 - 100. The ensemble-averaged images in 

Figure 5.4.8 illustrate the striking differences in fuel spray structure between the 80°C 

operating condition and all colder engine temperatures. The flash boiling that is present when 

the engine is fully heated results in a highly atomised spray with a significantly reduced level of 

piston crown impingement. This observed and consistent spray structure agree with the 

previous conclusions made regarding the improved engine performance at 80°C (Chapter 4) 

being a direct result of the fuel spray structure. The highly atomised spray impinged less on the 

engine surfaces and was more readily transported and vaporised, which produced a more 

homogeneous charge and burned more efficient during combustion. 

Subtle differences were seen in the colder operating conditions in the right hand spray plumes 

after 20 °CA ASOI. For example, the plumes appear slightly wider and there is a larger 

impingement region on the piston crown surface as the temperature decreases. Despite these 

subtleties, the overall structure of the spray remains consistent between the three colder 

temperatures. 

These small differences in surface impingement correlate with the increasing quantity of fuel-

rich regions in the flame that were observed in Chapter 4 when the operating temperature was 

decreased. It is reasonable to assume that a significant contributor to the fuel rich regions in 
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the flame was the quantity of impinged fuel that remained from the injection process and was 

unable to fully vaporise. 

The RMS images (Figure 5.4.9) highlight the areas of highest variability across the experimental 

test run. The 80°C condition exhibited a high variability near the central tip of the spray plume 

throughout the presented images that increased up to 24 °CA ASOI. This variation in recorded 

luminosity could be indicative of the dominant interaction between the highly atomised spray 

and the intake air flow, which has a velocity 10 times that of the mean piston velocity 

(Heywood 1988) and could have been attributed to the variability of the spray plume. Chapter 

6 highlights the variability in the in-cylinder flow field around the time of injection and analyses 

the flow field structure to better understand the complex interaction with the fuel spray. 

The colder operating conditions highlight very similar areas of high variability to each other, 

indicating that operating temperature, dominated by fuel temperature, did not affect the 

variability of the injection process with a spray that had not flash boiled. As with the 80°C 

condition, high RMS levels were present in the spray plume tip up until the plumes start to 

break up and impinge on the piston crown surface at 20 °CA ASOI. The reduction in variability 

after this time was likely due to the strong in-cylinder air flow structures dominating the 

transportation of the fuel spray once the spray event had relinquished most of the its initial 

momentum. 

The findings from the fuel spray imaging data have helped further explain the main differences 

observed during combustion between the 80°C operating condition and the three colder 

temperatures. Conclusive differences in the fuel spray data, however, have not been easily 

detectable between the 23°C, 10°C and -7°C conditions despite the more profound differences 

in engine combustion performance noted in Chapter 4. This suggests that the differences in 

engine performance could be attributed to the level of surface impingement and evaporation 

that is governed by operating condition and surface temperature. This is not conclusive, 

however, as the Mie scattering technique did not detect the effect of temperature on the 

smallest of the fuel droplets or vapour distribution, as these were not detectable. 
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18 °CA ASOI 19 °CA ASOI 20 °CA ASOI 

   
Figure 5.4.2: Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
80°C cylinder head and liner conditions, 23°C intake air temperature 
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Figure 5.4.3: F Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
80°C cylinder head and liner conditions, -7°C intake air temperature 
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Figure 5.4.4: Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
23°C cylinder head and liner conditions, 23°C intake air temperature 
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Figure 5.4.5: Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
10°C cylinder head and liner conditions, 23°C intake air temperature 
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Figure 5.4.6: Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
-7°C cylinder head and liner conditions, 23°C intake air temperature 
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6 °CA ASOI 7 °CA ASOI 8 °CA ASOI 

   
9 °CA ASOI 10 °CA ASOI 11 °CA ASOI 

   
12 °CA ASOI 13 °CA ASOI 14 °CA ASOI 

   
15 °CA ASOI 16 °CA ASOI 17 °CA ASOI 

   
18 °CA ASOI 19 °CA ASOI 20 °CA ASOI 

   
Figure 5.4.7: Fuel injection imaging sequence through piston crown window 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
-7°C cylinder head and liner conditions, -7°C intake air temperature 
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Head and Liner Temperature 
80°C 23°C 10°C -7°C 

    
16 °CA ASOI 
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20 °CA ASOI 

    
22 °CA ASOI 

    
24 °CA ASOI 

  Intensity 
  0                                                                70 

Figure 5.4.8: Ensemble-averaged  imaging sequence of fuel injection through piston crown window at various 
cranks angles during injection 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
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Head and Liner Temperature 
80°C 23°C 10°C -7°C 
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  Intensity 
  0                                                                70 

Figure 5.4.9: RMS  imaging sequence of fuel injection through piston crown window at various cranks angles 
during injection 

(engine speed = 1500 rpm, intake manifold pressure = 0.5 bar, fuel injection = 80 °CA ATDC, λ = 1.0) 
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5.5 CONCLUDING REMARKS 
To better understand the profound effects on the combustion process when an optical DISI 

was cooled down to an operating temperature of -7°C, the preceding in-cylinder fuel spray 

process was optically investigated. The same test temperatures were used as the combustion 

analysis in order to accurately reproduce the conditions and successfully correlate the results. 

Striking differences were observed in the fuel spray structure between different engine 

operating conditions and the effects of the in-cylinder flow structures on the fuel spray were 

also highlighted. The key conclusions from this part of the study are: 

1. Flash boiling consistently occurred when the engine was operating at 80°C resulting in 

a highly atomised fuel spray that penetrated only 30 mm into the cylinder and did not 

visibly impinge on the piston crown surface. This fuel spray demonstrated a higher 

level of visible atomisation and was observed to be influenced and transported more 

by the intake flow structures that were present. This spray structure is a contributing 

factor in the improved engine performance and flame structure identified in Chapter 4. 

2. Colder operating temperatures exhibited a very different fuel spray structure that did 

not flash boil. This structure penetrated much quicker into the cylinder and contained 

a denser liquid core that consistently impinged on the piston crown surface as early as 

10 °CA ASOI. All tested temperatures below 80°C and as low as -7°C show strikingly 

similar spray structures with only marginal visible differences in structure and 

penetration depth. This type of spray structure was shown in the previous chapter to 

result in a lower peak cylinder pressure, poorer combustion performance and the 

abundance of fuel-rich regions within the flame. 

3. Statistical analyses of the fuel spray images illustrated the consistency of the main core 

of the different plume structures and highlighted the areas of the spray that interacted 

most with the intake flow structures as having the most variability during the injection 

process. This demonstrates the important effect that the complex in-cylinder flow 

structures has on the transportation and vaporisation of the fuel spray as well as the 

proceeding combustion process.  

The complex interaction of in-cylinder flow structures with the fuel spray and combustion 

processes have been discussed in this chapter and Chapter 4 and have shown to have a 

significant effect at all operating temperatures. To further understand and quantify this effect, 

the next chapter describes the use of optical diagnostics to analyse the in-cylinder flow during 

the intake and compression strokes of a cold-start strategy used on a production DISI engine as 
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well as investigating the combustion process to better understand the effects of in-cylinder 

flow during cold-start. 
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5.7 APPENDIX A 
Fuel data sheet for Shell Pura fuel (SPL1995/03) used throughout experimentation. 

Owner/Requestor  EN228 GENRL 
Description/Ref No  UK SPL1995/03 
Description/Ref No    D. Pura 
    dye only 
     
Additive info.     
Density @15°C Kg/L  0.720-0.775 0.7243 
ISO3675:93/D4052:91     
     
RVP (Reid Vapour Pressure) mbar (hPa) S=450-700 574 
EN12:94 kPa W=700-1000  
     
VLI (10xRVP + 7xE70)     
     
LEAD g/L 5mg/L  
TMS401:88/ IP352:90  EN237  
     
RON  MIN 95.0 95.7 
MON  MIN 85.0 87.6 
(T) = TRC, (S) = SGS     
     
DISTILLATION   %REC     
ISO3405:88     
IBP °C   33.1 
10%    53.4 
20%    62 
30%    72.4 
40%    86.1 
50%    101.8 
60%    111.8 
70%    118.6 
80%    126.9 
90%    141.3 
95%    150.8 
FBP  MAX 210 168.8 
Recovery    98.2 
Residue  MAX 2  
Loss     
      
E70  S=20-48, W=22-50 27.9 
E100  S=46-71, W=46-71 48.7 
E120    72 
E150  75 MIN 94.6 
E180  S & W = 85 MIN  
E120 - E70     
     
FIA ANALYSIS (%v)     
  Aromatics  42 max  
  Olefins  18 max  
  Saturates    



5.7 APPENDIX A 
 

136 
 

Benzene, %v , UK2729-85  1 max.  
     
GC - CF/STP/36     
C    6.77 
H    13.48 
O    0 
PARAFFINS          (%v) (ALL %v)   7.58 
ISO-PARAFFINS    63.53 
i +n Paraffins    71.11 
OLEFINS    4.41 
NAPTHENES    2.47 
AROMATICS    21.87 
OXYGENATES  2.7 max 0 
TOTAL    99.86 
Benzene (+ Me CyC5 ene)    0.36 
AFR(stoichiometric)    14.74 
Enthalpy Comb MJ/Kg (gas)    -43.903 
Enthalpy Comb MJ/Kg (liq.)    -43.546 
thus, heat of vap. MJ/Kg    0.357 
Calculated H/C   1.99114 
 O/C   0.00000 
 CWF   0.85682 
     
Sulphur Content, mg/kg    
ASTM D2622-94, (WDXRF, A/43)  150 12 
IP 336 (EDXRF, Stanlow)      
MERCAPTAN S, %m/m     
Polar Sulphur mg/kg     
     
EXISTENT GUM, (IP131)     
Unwashed mg/100ml   4 
Washed mg/100ml <5 <1 
  ISO 6246  
IR     
ADDITIVE TYPE     
COMMENTS    
      
INDUCTION PERIOD, mins  360  
(IP40) 100°C     
     
Copper corrosion  1  
Copper Content, ppb (ug/kg)    
Iron Content, ppb (ug/kg)     
H2S     
     
WATER UK3367-97 (mg/kg)    
     
Rusting ASTM D665(mod) (LTP/4)    
     
Dehazing ASTM D1094(mod) (LTP/3b) 1.5/1/1/1  
     
APPEARANCE UK 1636     
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 INTRODUCTION 6.1
The effects of cold-start conditions on the fuel spray and combustion processes were discussed 

in Chapters 4 and 5, which highlighted the detrimental impacts on engine performance and the 

increase in potential PM generation regions. During the analysis of both the injection and 

combustion processes, the effects of the in-cylinder flow structures were visibly apparent.  

This chapter aims to elaborate on the important influence of the in-cylinder flow structures 

with the aim of understanding the challenges of cold-start and how to accomplish it efficiently 

whilst meeting the stringent demands of emissions legislation. It is well understood that the 

highest concentration of PM emissions in DISI engines occur within the first 100 seconds of the 

Euro 5 new European drive cycle (NEDC) (Piock et al. 2011, Whitaker et al. 2011)  whilst the 

engine is still at a cool temperature and during the first transient events.  

In the work presented in this chapter, the in-cylinder flow during the intake and compression 

strokes of a NEDC cold-start process was quantified and analysed. In addition, the proceeding 

combustion process was analysed utilising high-speed colour optical diagnostics and analysis of 

the in-cylinder pressure data was performed. This allowed the dynamic stoichiometry of the in-

cylinder combustion process to be commented on and correlated with the in-cylinder flow 

data. 

The engine was setup at a temperature of 23°C to simulate an NEDC cold start-up transient 

cycle. This was achieved by selecting five operating points from the cold start-up and 

simulating them continuously in steady-state. This enabled a sufficient amount of data to be 

collected in order to analyse and understand the effects of the transient start-up process. The 

important test parameters along with a detailed description of the HSPIV setup and error 

analysis is described in this chapter. A comprehensive description of the complete engine 

system was given in Chapter 3.  

Results showed a striking range of flame structures occurring at different times in the start-up 

cycle with significant differences in flame propagation rates and flame front structures 

resulting from a wide range of and local AFRs. Analysis of the preceding in-cylinder flow field 

highlighted clear links between flow structures and the subsequent combustion processes as 

well as the identification of important turbulence structures that could be enhanced to 

improve combustion and emissions. 
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 DISI ENGINE COLD-START STRATEGIES 6.2
Several strategies are implemented during DISI cold-start with the ultimate aim of increasing 

the exhaust gas temperature to achieve catalyst light-off whilst maintaining stable 

combustion. Retarding the spark timing in SI engines during the warm-up phase of a three-way 

catalyst (TWC) has been used extensively and has shown to meet the important requirements 

of increasing exhaust gas temperatures whilst minimising HC emissions before the light-off 

temperature is reached (Hallgren and Heywood 2003, Eng 2005). This is achieved by 

minimising the amount of work extracted from the burnt gas, increasing the exhaust 

temperature. The lower in-cylinder peak pressures reduce the mass of unburnt charge trapped 

in crevices that are typically oxidised by the flame. A limitation of this method, however, is that 

cycle-to-cycle variation can increase and the stability of the engine has been shown to 

decrease (Russ et al. 1999, Hallgren and Heywood 2003). 

The cold-start process analysed in this chapter contained a two-stage injection strategy. A 

number of studies (Miyamoto et al. 1994, Hattori et al. 1995, Ando 1997, Iwamoto et al. 1997, 

Kuwahara et al. 1998, Zhao et al. 2002) have shown that using a two-stage injection strategy 

whereby a premixed homogeneous charge is formed during the intake and a rich mixture is 

created near the spark plug with a subsequent injection, provides a more stable ignition and 

faster combustion. As a result of the second injection, the exhaust gas temperature is also 

increased. Kuwahara et al. (1998) showed a high luminous diffusion flame from liquid fuel can 

be observed whilst using this strategy when injecting fuel close to top dead centre (TDC), this 

can be attributed to the broadband light emission from the incandescence of soot particles in 

fuel-rich regions. 

In addition to these strategies, other important factors contribute to an engine’s emissions and 

stability during start-up. High levels of small-scale turbulence, created from the dissipation of 

bulk air flow structures (Jarvis et al. 2006, Rimmer et al. 2009) such as tumble and swirl 

(discussed in Chapter 2) are essential for enhancing the air-fuel mixing process and improving 

the evaporation of fuel which has impinged onto cold surfaces. Low-speed and transient 

engine operating conditions, such as those found during engine start-up, typically reduce levels 

of controlled turbulence and contribute to poorer charge mixture preparation and emissions. 
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A number of studies have analysed combustion processes, stability and emissions of SI engines 

during start-up conditions (Kuwahara et al. 1998, Yamada et al. 2002, Piock et al. 2011, 

Whitaker et al. 2011) but there is limited literature that optically analyses cold-start strategies 

tested on an optical research engine with colour combustion data. This investigation has 

examined a typical cold-start strategy and optically observed the in-cylinder combustion 

processes in colour whilst monitoring the in-cylinder pressure. The colour aspect of the optical 

analysis allows a deeper understanding of the flame’s dynamic stoichiometry during the highly 

variable and complex start-up process of an SI engine. The natural light emission of 

combustion known as chemiluminescence, allows information regarding flames to be inferred, 

as these emissions when using hydrocarbon fuels originate from OH*, NH*, CN*, CH*,C2* and 

the broadband emission from CO2* (Kuwahara et al. 1998, Rimmer et al. 2012).  

  OPTICAL ENGINE EXPERIMENTAL CONFIGURATION 6.3
High-speed colour imaging of the in-cylinder combustion processes was obtained through the 

quartz optical piston crown as previously shown in the experimental arrangement in Chapter 4 

and detailed in Chapter 3. A 105 mm Nikon lens with a wide-open aperture of f2.8 was used to 

record from the 45° mirror beneath the Bowditch piston, which allowed as much light as 

possible from the combustion process to be detected without the need for additional 

illumination and excessive image intensification, in the form of gamma level image correction. 

The temperature of the coolant circulating through the cylinder head and liner was controlled 

with the vapour chiller and set to achieve and maintain an engine operating temperature of 

23°C to simulate the typical conditions of a Jaguar Land Rover cold-start test along with an 

intake air temperature of 23°C. During the recording of high-speed particle image velocimetry 

(HSPIV) data, the engine was motored without combustion. Fuel injection was also negated as 

the scattered light from the fuel spray particles obscured the seeding particles. This also 

allowed the cooled head, liner and in-cylinder charge temperature to remain as consistent as 

possible. 

The pressure data post-processing was completed in the same manner as previous analysis, 

discussed in Chapter 4. Some image intensification was required to clearly reproduce the 

combustion images for publication due to the lower sensitivity of the colour charge-coupled 

device (CCD) of the camera. An image gamma correction factor of 0.45 was consistently 

applied to all combustion images, a method used to improve visual clarity by artificially 

increasing low light levels in a non-linear representation and enhance images (Svensson et al. 

2005) . 
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 6.3.1 Experimental Test Point Selection 
A typical cold-start strategy was provided by Jaguar Land Rover and a schematic of the first 

8 seconds of this strategy are shown in Figure 6.3.1 with detailed parameters given in Table 

6.3.2. This type of start-up strategy must draw a careful balance between engine stability, 

exhaust emissions, exhaust temperature, customer requirements and noise, vibration and 

harshness (NVH). These factors have been considered when commenting on the quantitative 

and optical analysis of the engine data. 

To simulate the cold-start process, five points were selected that best represented the entire 

process, the parameters from these points were then run in steady-state operation. The 

collection of a large amount of data allowed an accurate understanding of the combustion 

process with the ability to distinguish the combustion effects from engine parameters and due 

to cycle-to-cycle variation. 

Points 1 and 2, which were not designed to be run continuously, were skip-fired due to the 

amount of excess fuel remaining in the cylinder after each cycle. This was so severe for Point 1 

that repeated combustion was not possible due to the overly rich mixture present before spark 

ignition. This method also enabled repeatable combustion imaging data to be collected across 

an entire engine run. 

The graph in Figure 6.3.1 shows an initial engine cranking period within the first second, after 

which point the first firing cycle (Point 1) initiates an engine acceleration ramp-up. As this 

acceleration continues, the crank driven fuel pump starts to increase the common rail fuel 

pressure (Point 2) until peak pressure is reached and the engine reaches its maximum speed. 

The peak in engine speed (Point 3) is a customer-driven requirement and does not directly 

benefit the cold-start combustion process. The next phase of the start-up process focusses on 

generating high exhaust gas temperatures through a combination of injecting fuel into a pre-

existing flame kernel (Point 4) and retarding spark ignition until close to TDC of the 

compression stroke (Point 5), all of which involve rich combustion. A summary of the selected 

points and their key attributes is given in Table 6.3.1. 

  



6.3 OPTICAL ENGINE EXPERIMENTAL CONFIGURATION 
 

142 
 

Point 1 
1. First engine crank motion 
2. Very low fuel pressure 
3. Retarded spark 

Point 2 
1. Engine speed ramp-up 
2. Undeveloped fuel pressure 

 

Point 3 
1. Engine over-speed (customer-driven) 
2. Fully developed fuel pressure 
3. Very lean combustion 

Point 4 
1. Initial catalyst heating phase 
2. Double injection 
3. Second injection after ignition 

Point 5 
1. Final catalyst heating phase 
2. Double injection 
3. Heavily retarded spark 

 

Table 6.3.1: Summary of selected points in cold-start strategy 
 

 

Figure 6.3.1: Schematic graph of cold-start strategy parameters 
 

Engine 
Test Point 

Engine 
Speed 
(rpm) 

Manifold 
Pressure 

(bar) 

Injection 
Pressure 

(bar) 

Injection 
Timing(s) (°CA) 

Spark Timing 
(°CA) 

λ 
Ratio 

1 150 0.96 30 60 335 0.8 

2 1500 0.67 80 60 335 1.1 

3 2000 0.26 150 60 335 1.5 

4 1500 0.5 150 60, 360 (3 : 1) 334 0.7 

5 1340 0.74 150 60, 367 (4.5 : 1) 361.5 0.7 

Table 6.3.2: Detailed engine test point parameters and timings relative to ATDC of the intake stroke 

The next section details the experimental setup of the HSPIV system that simulated the five 

points from the cold-start process outlined in Figure 6.3.1.  
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 HIGH-SPEED PARTICLE IMAGE VELOCIMETRY (HSPIV) SETUP 6.4
Figure 6.4.1 shows the HSPIV system during engine operation with a detailed experimental 

arrangement of the individual HSPIV system components on the engine presented in 

Chapter 3. To create a laser sheet with an optimum width of approximately 100 mm and waist 

thickness of 1 mm within the cylinder, which was measured using a calibration grid within the 

cylinder, a cylindrical lens with a focal length of -63 mm was used in conjunction with a 

telescopic spherical lens with an equivalent focal length of 1000 mm. This facilitated the 

capture of particle images with a size of 60 mm by 90 mm. 

 
Figure 6.4.1: Experimental configuration of PIV system with optical cylinder liner and piston crown 

 

 6.4.1 Flow Seeding 
Dow Corning 200 silicone oil was used to generate seeding particles due to its high vapour 

pressure and lubricating properties, which allowed it to be detectable during the compression 

stroke and lubricate the engine’s piston rings at high engine speeds. An important factor for 

Flow Seeding Inlet 

Nd: YLF Laser 

High-Speed Camera 
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45° Mirror 

Throttle Body 
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seeding particles is their ability to accurately follow the complex flow that is being measured. 

Stokes’ Drag Law can be used in conjunction with equations of motion for a particle to 

calculate the viscous drag force being exerted and the associated frequency response of the 

particle. By neglecting shear effects, the forces due to centripetal acceleration and assuming 

the seeding particle velocity can differ from the local mean velocity of the fluid by 1%, Drain 

(1980) showed the radius of the required seeding particle (ap) is given by 

 𝑎𝑎𝑝𝑝2 < 0.1
𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑓𝑓𝑢𝑢𝜌𝜌𝑝𝑝

 Eqn. (6.4.1) 

where μfluid is the viscosity of the fluid being studied, fu is the maximum frequency the particles 

can follow and ρp is the density of the seeding particles. 

Rearranging the equation and substituting the density of silicon oil, the radius of the seeding 

particle and the viscosity of air at 300 K yields the result 

 
𝑓𝑓𝑢𝑢 = 0.1�

𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑎𝑎𝑝𝑝2𝜌𝜌𝑝𝑝

� = 0.1�
1.84 × 10−5[𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−1 ∙ 𝑠𝑠−1]

(0.5 × 10−6)2 × 963[𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−3]�
 Eqn. (6.4.2) 

𝑓𝑓𝑢𝑢 ≈ 9.64 𝑘𝑘𝑘𝑘𝑘𝑘. 

Tennekes and Lumley (1972) devised an approximation of the maximum frequency of flow 

oscillations in an engine to an order of magnitude using the Kolmogorov scale, 𝜂𝜂𝑘𝑘, defined as 

𝜂𝜂𝑘𝑘 ≅ 𝐿𝐿𝑅𝑅𝑅𝑅−
3
4 

where 𝐿𝐿 is approximated as the size of the largest eddies or the width of the flow (Tennekes 

and Lumley 1972) and given as the engine bore by Heywood (1988). 𝑅𝑅𝑅𝑅 is calculated as  

𝑅𝑅𝑅𝑅 =
𝑢𝑢𝑢𝑢
𝜐𝜐

=
4.5 [𝑚𝑚 ∙ 𝑠𝑠−1] × 89 × 10−3[𝑚𝑚]

1.539 × 10−5[𝑚𝑚2 ∙ 𝑠𝑠−1]
= 26023 

where 𝑢𝑢 is the mean piston speed (over the typically tested engine speed of 1500 rpm), 𝐿𝐿 is 

the engine bore and 𝜐𝜐 is the kinematic viscosity of air at 23°C. This yields an approximate 

maximum frequency of flow oscillations, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, as 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑢𝑢

2𝜋𝜋𝜂𝜂𝑘𝑘
=

4.5 [𝑚𝑚 ∙ 𝑠𝑠−1]
2𝜋𝜋 × 4.344 × 10−5

= 16.5 𝑘𝑘𝑘𝑘𝑘𝑘 
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This shows that maximum of flow oscillations expected in the engine are of the same order 

that the silicone oil particles are capable of following but are somewhat higher in magnitude. It 

has been shown that the highest frequency turbulent structures with integral length scales up 

to 10 mm have been measured in IC engines with frequencies above 600 Hz when cut-off 

filtering techniques have been applied (Li et al. 2004, Rimmer et al. 2009). These high-

frequency turbulent components are generated during compression and peak around the time 

of TDC around the spark pent-roof and spark plug area. The presented flow fields focussed on 

analysing the low-frequency in-cylinder bulk flow structures with a resultant spatial resolution 

of 0.060 by 0.060 mm/pixel. Furthermore, the intake stroke and early compression stroke 

were focussed on and flow measurement through the pent-roof window was omitted. This 

indicates that the maximum frequency flow oscillations have not been measured in the 

presented HSPIV images due to spatial averaging and any error associated with the seeding 

particles’ ability to follow this flow can be negated within the scope of this study. 

 6.4.2 Diffraction Limited Particle Imaging 
To provide an accurate assessment of particle displacement in digital particle image 

velocimetry (DPIV) requires control of the particle images recorded on the imaging sensor. 

Recording an extended two-dimensional flow field results in light waves from the scattered 

particles diffracting with each other and creating a diffraction pattern (Airy disc) that defines 

the theoretical maximum resolution for an optical imaging system. 

The diffraction limited spot size, ddiff, represents the diffraction pattern created by the 

scattered light of the seeding particle required to accurately detect particles-shift and calculate 

flow velocity. It is calculated from the equation (Raffel et al. 2007) 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �(𝑀𝑀𝑀𝑀𝑝𝑝)2 + (2.44(𝑀𝑀 + 1)𝑓𝑓#𝜆𝜆)2 Eqn. (6.4.3) 

 

where dp is the diameter of the seeding particle, f# is the f-number of the camera lens, λ is the 

wavelength of the laser light and M is the magnification factor, calculated from 

 𝑀𝑀 =
𝐴𝐴𝑐𝑐
𝐴𝐴𝑖𝑖

 Eqn. (6.4.4) 

where Ac is the camera chip size and Ai is the imaged area size. 

Table 6.4.1 lists the parameters used to calculate an estimate of the diffraction limited spot 

size.  
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Parameter Symbol Units Result 
Magnification Factor M - 0.08 

Seeding Particle Diameter dp μm 1 

F-number f# - 8 

Wavelength λ nm 527 

Diffraction Limited Spot Size ddiff pixels 2.34 

Table 6.4.1: Calculated diffraction limited spot size  

The calculated diffraction limited spot size lies meets the optimum size range requirements of 

at least 2-3 pixels, close to the optimum of 2.5 pixels (Raffel et al. 2007) and 2.8 pixels 

(Anandarajah 2005). This allowed errors in particle displacement (and therefore velocity) to be 

minimised by avoiding peak-locking, whereby a correlation peak is only 1 pixel wide and locks 

location to an integer pixel offset (Anandarajah 2005). Particle clipping was also minimised, 

whereby a particle of too large a size (greater than 3 pixels) is clipped out of the interrogation 

region, resulting in skewed particle displacement (Anandarajah 2005). 

 6.4.3 HSPIV Image Recording, Processing and Sources of Errors 
The primary aim of the HSPIV investigation was to quantify the flow structures during the 

intake and compression strokes prior to spark ignition in order to understand the influence 

they have on the subsequent flame growth. Recording of the flow field during the combustion 

process, although not required, was not readily available as the silicon seeding particles were 

vaporised by the propagating flame front. It is well understood that the in-cylinder charge 

motion prior to spark ignition has a dominant effect on the initial flame growth and the 

turbulence during this time has been shown to have a strong correlation with MFB times up to 

5% (Bianco et al. 1991, Johansson 1991, Pajot and Mounaïm-Rousselle 2000, Rimmer et al. 

2009) 

Due to the range of engine speeds tested in the cold-start strategy and the limitations of the 

camera memory and record-rate, a different number of PIV images were recorded for each 

engine run in each data point. To ensure an adequate number of recorded cycles to yield an 

accurate representation of the mean in-cylinder flow field, at least three engine runs, equating 

to approximately 300 engine cycles, were recorded for each data point. The PIV rate was kept 

constant at 1.5 kHz and in-cylinder flow data was recorded from 60 °CA ATDC to 320 °CA ATDC 

(relative to the intake) as this was when the flow field was visible to the camera. Table 6.4.2 

lists the PIV parameters for each data point. 
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Engine 
Test Point 

Engine 
Speed 
[rpm] 

Seeding 
Pressure 
(and jets) 

[PSI] 

Image Pair 
dT [μs] 

Recorded 
Images Per 

Cycle 

Crank Angle 
Change Per 

Frame 
[°CA/frame] 

1 150 10 (2) 200 58 4.5 

2 1500 20 (6) 20 43 6 

3 2000 20 (6) 10 33 8 

4 1500 20 (4) 20 43 6 

5 1340 20 (4) 25 49 5.4 
Table 6.4.2: Detailed engine test point parameters and timings relative to ATDC of the intake 

stroke 

Each of these parameters represents a source of systematic bias and random errors within the 

PIV measurement. Considerable past research has been devoted to minimising these errors by 

identifying and optimising experimental parameters critical to obtaining accurate PIV data 

(Keane and Adrian 1990, Lawson 1995, Mergerle and Sick 2002, Anandarajah 2005, Raffel et al. 

2007, Rimmer 2010). The following section discusses the optimisation of these parameters and 

experimental considerations in order to minimise the impact of these errors. 

The HSPIV vector calculation was performed using cross correlation in DaVis with no pre-

processing of the raw images or post-processing of the vector fields. A geometric mask was 

created to shroud the moving piston and avoid any scattered light being detected in the PIV 

calculation. The cross-correlation routine in DaVis, like most commercial PIV systems, 

generated the correlation plane in the frequency domain using fast Fourier transforms (FFT). 

FFTs reduce the computational processing demand with only a small increase in error (Raffel et 

al. 2007), which is beneficial when processing large quantities of temporal PIV data, as with the 

completed engine HSPIV. A final multi-pass interrogation region size of 16 x 16 pixels was used, 

equating to approximately 5950 velocity vectors when the cylinder was unobscured by the 

piston at BDC. An interrogation region that reduced in size was used in DaVis (from 64 x 64 to 

16 x 16 pixels) to capture and compensate for particle displacement across different 

integration regions. This final interrogation region size was chosen to capture any complex 

flow features, such as vortices, which are typically present within in-cylinder engine flow. The 

complex nature of engine flow can also produce large velocity gradients that can cause 

problems in generating a well-defined correlation peak. Peak splintering, whereby the velocity 

correlation splinters in to a number of peaks can induce errors, as only the highest correlation 

peak is used to calculate the particle velocity. Maintaining a relatively small interrogation 

window size of 16 x 16 pixels helped to reduced peak splintering in areas such as cylinder wall 

boundary layers and intake valve jet flow. 
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Throughout testing, the strengths of the particle correlation peaks were monitored to ensure 

that all test parameters remained optimal. Figure 6.4.2 shows an arbitrary three-dimensional 

vector shift plot from a 32 x 32 pixel interrogation region, highlighting a single strong Gaussian 

peak from the cross correlation routine. The analysed vector is within a dominant bulk flow 

structure driven by the intake valve jet flow interaction with the cylinder wall. 

 

 
 Figure 6.4.2: Pixel shift plot for an arbitrary vector (Point 3) within a 32 x 32 pixel interrogation region 
 

As Table 6.4.2 listed, the seeding pressure and number of jets used in the atomiser was varied 

in order to maintain an optimum seeding density of approximately 6-8 particles per 

16 x 16 pixel interrogation window region. The image pair separation ΔT was also optimised to 

keep the particle displacement less than a quarter of the 16 pixel interrogation window size, 

which minimised the amount of out-of-plane displacement across the thickness of the 1 mm 

laser sheet. The complex three-dimensional nature of the in-cylinder flow consisted of highly-

turbulent flow structures with high degrees of curvature, which increased the prevalence of 

out-of-plane displacement. Optimisation was of paramount importance to avoid bias to lower 

velocity particles (as higher velocity particles are more likely to leave the interrogation window 

and plane). 

The imaging of PIV image pairs through the curved surface of optical cylinder liner can produce 

image distortion near the edges of the cylinder where the angle of incidence is at its highest. 

Reuss et al. (2002), however, calculated and demonstrated on a similarly sized optical engine 

that correlation detection and successful vector production remains above 90% in the central 

Interrogation region 

10 mm 
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66 mm region around the cylinder centreline for a similar sized optical engine cylinder. As the 

recorded velocity vector fields had a width of 60 mm, no distortion correction was applied to 

the seeding images. 

In order to establish a more detailed understanding of the bulk flow motion, the individual 

flow fields were ensemble-averaged.  The ensemble average represents the global motion of 

flow and was calculated over at least 100 engine cycles at each test point. The DaVis software 

performed the calculation using the following equation that was applied to each vector field 

such that 

 𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦) =
1
𝑛𝑛
�𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦)

𝑛𝑛

𝑖𝑖=1

 Eqn. (6.4.5) 

where 𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦) is the ensemble average velocity at crank angle θ, position x, y and 𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦)  is 

the instantaneous velocity of cycle for n cycles. 

The recording of temporal PIV data facilitated the use of Reynolds decomposition to describe 

the in-cylinder turbulent velocity fields. This method decomposes the flow into low-frequency 

bulk motions (ensemble-averaged flow) and high-frequency fluctuations (turbulence intensity). 

The turbulence intensity, or root mean square (RMS) velocity fluctuation, 𝑢𝑢′(𝜃𝜃) was calculated 

over at least 100 engine cycles at each test point in the DaVis software using the equation 

 

𝑢𝑢′(𝜃𝜃) = �(𝑈𝑈 − 𝑈𝑈�)2������������ = �
1
𝑁𝑁
�(𝑈𝑈(𝜃𝜃,𝑖𝑖,𝑥𝑥,𝑦𝑦) − 𝑈𝑈�(𝜃𝜃,𝑥𝑥,𝑦𝑦))2
𝑁𝑁

𝑖𝑖=1

 
Eqn. (6.4.6) 

 

 

The following sections have analysed and correlated the results from the in-cylinder pressure 

transducer data and combustion imaging before investigating the recorded and processed 

vector fields, which have been used to help further deduce and understand the flame’s 

complex structure and interaction with the unburned charge and interaction with the fuel 

injection process. 
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 IN-CYLINDER PRESSURE MEASUREMENTS 6.5
This investigation has examined a typical cold-start strategy and optically observed the in-

cylinder combustion processes in colour whilst monitoring the in-cylinder pressure and HC 

exhaust emissions. The colour aspect of the optical analysis allows a deeper understanding of 

the flame’s dynamic stoichiometry during the highly variable and complex start-up process of 

an SI engine. The natural light emission of combustion known as chemiluminescence, allows 

information regarding flames to be inferred, as these emissions when using hydrocarbon fuels 

originate from OH*, NH*, CN*, CH*, C2* and the broadband emission from CO2* (Kuwahara et 

al. 1998, Rimmer et al. 2012). 

Mean in-cylinder pressure traces for all test points and a histogram of the mean peak 

pressures are illustrated in Figure 6.5.1 across 300 engine cycles (relative to after top dead 

centre (ATDC) of the compression stroke). The upper graph highlights the distinct differences 

and distribution of peak in-cylinder pressures achieved within the first few seconds of the 

start-up cycle with a range from 3.20 bar at Point 3 to 15.99 bar at Point 2.  

There was also a notable difference in the location of the peak pressure, which is due to 

parameter scheduling as well as the nature of combustion structures. Point 2 has parameter 

scheduling which is more typical of the Jaguar Land Rover standard test point optimised for 

homogeneous stoichiometric combustion and has been used on previous research on the 

engine (Long et al. 2008, Rimmer et al. 2009, Rimmer et al. 2012, Efthymiou et al. 2013). A 

smooth rise in pressure during the compression stroke is continued after an optimised spark 

timing, this delivers a maximum in-cylinder peak pressure (located at 30°CA ATDC) and extracts 

the most amount of work from the cylinder with a near-stoichiometric λ ratio recorded at 1.1. 

During the initial acceleration ramp-up of an engine, maximising work from the engine is 

particularly important. Once a faster speed is achieved, mechanically driven pumps such as the 

fuel pump for example, can deliver the optimum pressure to the fuel rail required for correct 

fuel atomisation and subsequent idealised combustion. Despite the fuel pressure not being 

fully developed, resulting in poor atomisation and sub-optimal combustion (discussed in the 

next section), work extraction has been maximised for this point. 
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Figure 6.5.1: Mean in-cylinder pressure profiles and peak cylinder pressure bar graphs and corresponding 

COVs for points tested along the cold-start cycle at 23°C cylinder head, liner and intake conditions 

The first firing cycle (Point 1) exhibits an interesting pressure trace in which two peaks are seen 

occurring at TDC and 30°CA ATDC that is similar to the premixed and main combustion peaks 

commonly seen in Diesel engines (Heywood 1988, Sahoo et al. 2009). It is likely that the very 

low engine speed and resulting flame speed and structure produced a burn rate lower than 

that of typical premixed turbulent combustion. The second peak, however, does show that 

some useful work has been extracted from the cylinder which is required to initiate successful 

operation of the engine after cranking. 
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The pressure distribution of the remaining three points of the start-up are similar in the fact 

that less work is extracted from the cylinder due to the injection and spark scheduling. This 

produced a peak pressure at TDC of 3.07 bar, similar to mechanically motored piston 

compression. Point 3 was observed to have unstable lean combustion when run continuously 

on the optical engine. This point is known to be a customer-driven rapid increase in engine 

speed and noise so can be assumed to serve no specific benefit to engine emissions or exhaust 

temperature. A recorded λ ratio of 1.5, however, outlines why combustion instability could 

have occurred, excess air may have provided an overly lean charge mixture which prevented 

the flame from successfully propagating. A possible reason for this seemingly lean parameter 

setup is the presence of excess fuel which was present after combustion in Point 2, requiring 

skip-firing during testing. This excess fuel will subsequently be present in the cylinder for Point 

3. The in-cylinder optical analysis will provide a further insight into this.  

Points 4 and 5, from their parameters, can be identified as catalyst warm-up points both with 

different natures as to how exhaust temperature is generated. Both points use a large amount 

of fuel injected twice per cycle and in different ratios to combust at a very rich λ ratio of 0.7. 

The pressure trace for Point 4 demonstrates this late burning with a characteristic low-gradient 

pressure trace ‘tail-off’ during the exhaust stroke. Point 5 also exhibits an interesting pressure 

trace during exhaust which occurs much later. This is due to further retarded spark scheduling 

that causes combustion to occur after TDC and into the exhaust stroke. Point 5 forms the main 

period of the catalyst heating phase and entails a higher manifold pressure and a further 

retarded spark than Point 4 to generate a larger quantity and flow rate of high temperature 

gas during the exhaust stroke. 

The lower graph in Figure 6.5.1 illustrates the mean peak pressures on a histogram and is 

overlaid with their corresponding coefficients of variation (COV). The COV parameter is a 

measure of the cycle-to-cycle variability (defined as the ratio of the standard deviation to the 

mean) of a certain parameter and gives a good indication to engine stability. A distinct 

correlation was seen between the time from engine start and COV with the last three points 

having lower COV values. As the final three points generated much lower peak pressures 

because of the combination of retarded ignitions and partial-burn characteristics, it is 

reasonable to assume that the COVs in these cases indicated mechanical piston compression 

variations, which is inherently very low. 
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Figure 6.5.2: In-cylinder pressure profiles for 10 arbitrary engine cycles tested along the cold-start cycle at 

23°C cylinder head, liner and intake conditions 

To help understand the relatively high COV of pressure and IMEP values (discussed later in this 

section), the graph in Figure 6.5.2 illustrates arbitrary raw pressure traces for 10 arbitrarily 

selected cycles at Points 1, 2, 4 and 5. The general trend of the pressure trace was fairly 

consistent for Points 1 and 2, but large differences in peak pressure of up to 3 bar and 5 bar 

respectively were apparent. Points 4 and 5 on the other hand, exhibited consistent peak 

pressures to each other with variations in gradient during the expansion stroke, which 

indicated inconsistencies in combustion, which are discussed in analysis of the combustion 

imaging. 

A better indication of combustion stability is IMEP, which is illustrated in Figure 6.5.3 and is 

overlaid with their COVs for each point. As expected, the IMEP values themselves mostly 

correlate with the peak cylinder pressure data, highlighting the work produced by the first two 

points. The first two points show COVs of 5% and below, indicating good stability, as would be 

expected from premixed, early-spark conditions that are designed to maximise piston work. 

The COV of Point 3, can be considered anomalous, due to negligible work being generated 

above mechanical-piston work, this is further elaborated upon when the in-cylinder 

combustion is observed in the next section. When the spark is retarded in Points 4 and 5, 

however, the overly rich and poor combustion performance leads to much lower combustion 

stability with COV values peaking at 60%. The subsequent in-cylinder combustion imaging 

elaborates on these identified trends. 
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Figure 6.5.3: Mean gross IMEP and corresponding COVs for start-up points 1, 2,4 and 5 at 23°C cylinder head, 

liner and intake conditions 
 

Figure 6.5.4 presents MFB times for Point 1, 2, 4 and 5 which represent the time taken for each 

change in pressure with crank angle (dp/dθ) to reach either 10%, 50%, or 90% of the total 

mass burned. Point 3 has been omitted as the unstable combustion produced times exceeding 

reasonable tolerances, this indicates that the charge in the cylinder had very little effect over 

the natural in-cylinder pressure when the engine is motored. The graph shows that Points 1 

and 2, despite using a fuel pressure that is not fully developed, produced burn times faster 

than those of points and 5 (up to 50°CA in the 90% MFB case) and similar to those in a similarly 

configured engine at 23°C with a fuel pressure of 150 bar (Rimmer et al. 2009, Efthymiou et al. 

2013). This highlights the dominant effect that injection and ignition scheduling had on the 

latter points in the aim of generating exhaust temperature and the slower burn rate was not 

detrimental to the primary aim of generating high exhaust temperatures. The COVs of the 

presented data show the adverse effect of cycle-to-cycle variability on the burn rate of the 

Point 1. The detrimental effect of scheduling parameters to generate exhaust heat can also be 

seen in Points 4 and 5, despite having a fully developed fuel rail pressure and well established 

in-cylinder turbulence at these speeds (Long et al. 2008, Rimmer et al. 2009). The effect of 

parameter scheduling on flame kernel creation, growth and speed has been investigated in the 

next section and aims to build a further understanding upon what has been observed from the 

in-cylinder pressure data. 
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Figure 6.5.4: Mean mass fraction burned to 10%, 50% and 90% times after ignition timing (AIT) and 
corresponding COVs for start-up points 1, 2,4 and 5 at 23°C cylinder head, liner and intake conditions 

 IN-CYLINDER COLOUR COMBUSTION IMAGING 6.6
To better understand the nature of combustion and the wide range of parameter 

configurations encountered during start-up, a sequence of in-cylinder combustion images have 

been presented from the point after ignition timing (AIT). The crank angle between the images 

varies from 1 °CA to 6 °CA depending on the flame speed. This range allowed the capture of 

early flame kernel growth and the combustion of the remaining visible unburned charge up to 

the cylinder walls. A schematic of the imaging region and the orientation of the valves, injector 

and spark plug are the same as Chapter 4 and outlined in Chapter 3. Images of all five selected 

points in the start-up have been presented in order to analyse the unique range of occurring 

combustion structures Figure 6.6.1 to Figure 6.6.5. 

The early flame kernel was visible in all points of the test matrix but varied significantly in 

shape and the way it initially propagated through the combustion chamber. The initial 

displacement of the flame is important in the subsequent consumption of the charge and the 

interaction with in-cylinder turbulence scales. High-speed particle image velocimetry (HSPIV) 

research has shown that due to the arrangement of the intake ports and pent roof combustion 

chamber in this type of engine, there is a global flow motion across the spark plug towards the 

exhaust side of the cylinder near TDC (Rimmer et al. 2009). Evidence of this flow motion was 

visible in all test points apart from Point 1, with the global convection of the flame towards the 

exhaust side of the cylinder during the expansion stroke. The low engine speed at Point 1 and 

resulting weaker tumble motion due to less flow energy conserved during the compression 

stroke significantly reduced this flame convection (Figure 6.6.1). 
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The flame propagation of Point 1 (Figure 6.6.1) was clearly distinct from typical SI combustion 

behaviour, in that a laminar flame kernel was seen propagating at a relatively slow rate and 

took 13 °CA, 14.3 ms after ignition to reach the cylinder walls, compared to a typical turbulent 

combustion time of around 4 ms (Efthymiou et al. 2013).  A light blue and smooth unwrinkled 

flame front was observed throughout the flame’s expansion in the cylinder. This was the 

primary light emission from OH, CH and C2 (Kuwahara et al. 1998, Rimmer et al. 2012) and is 

typical of premixed stoichiometric combustion. In the centre of the flame, orange and white 

high-luminous regions were observed increasing in intensity as the flame progressed. These 

features are indicative of the natural infra-red light emission of soot particles formed within 

fuel-rich regions of the flame. A single ligament of slow-burning fuel was consistently observed 

near the injector and spark plug region throughout the recorded engine cycles. This feature 

was potentially an area of fuel impingement on cold surfaces in the pent roof region, likely on 

the spark plug electrode. Poor atomisation and the spray shape of the fuel at a low injector 

pressure were the most likely causes of this fuel ligament. An investigation by Berndorfer et al. 

(2013) in a DISI engine, showed similar results in DISI at low injection pressures, which led to 

the formation of diffusion flames due to poor charge mixing and impingement. These high 

luminous fuel-rich regions are known sources of soot generation which have the potential to 

contribute greatly to PN emissions (Gupta et al. 2000). The rich areas of the flame continued to 

burn past the presented images, through the expansion stroke and into the exhaust stroke of 

the engine. 

For Point 2 (Figure 6.6.2), as the engine ramped up in speed along with the fuel rail pressure, a 

much quicker flame speed was observed that reached the cylinder walls in 42 °CA, 4.6 ms AIT. 

The highly wrinkled turbulent flame had a blue stoichiometric flame front which interacted 

with the unburned charge to achieve a more rapid rate of consumption. These small scale 

high-frequency turbulence structures, generated in the compression stroke are well 

understood and are of paramount importance to rapid flame propagation in SI engines 

(Heywood 1988, Rimmer et al. 2009). Despite having a recorded overall lean λ ratio at the 

exhaust of 1.1, a large quantity of rich regions in the form of slow burning liquid droplets and 

ligaments were seen throughout the presented images in (Figure 6.6.2). This suggests that not 

all of the in-cylinder charge was completely combusted by the time of exhaust. The visible 

burning liquid droplets (which had burning regions with an average diameter of approximately 

1.5 mm) remained visible throughout the expansion stroke and are known sources of soot 

generation as their high carbon-to-oxygen ratio results in carbons atoms that can nucleate to 

form particulate matter (PM) (Price et al. 2006). At this test point, the fuel rail pressure was 
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only at half of its maximum, inhibiting the proper atomisation of the fuel as well as the correct 

spray penetration and divergence into the cylinder during injection. The presented optical 

results emphasise the importance of achieving a maximum rail pressure in DISI engines as soon 

as possible due to the dominant effect the fuel spray can have on the subsequence 

combustion event. 

Point 3 (Figure 6.6.3) used injection and ignition scheduling parameters similar to those of 

typical stoichiometric operation but with a highly throttled air intake to produce a very lean λ 

ratio of 1.5. The combustion images for this condition showed an abundance of blue light 

emission at a very low light intensity with very few fuel-rich regions and soot incandescence 

present. This indicated premixed stoichiometric combustion at the flame front and in areas of 

the flame during the entire consumption of the unburned charge. Over several engine cycles, 

however, a large amount of dissimilarity was apparent in the shape and structure of the flame 

and the way it propagated, indicating that the flame had reached its lean limit in areas 

(Heywood 1988). This highlighted the combustion instability that was present during this test 

point and that was detected previously in the pressure data. A potential reason for this 

instability was the steady-state method in which this test point was run. It is reasonable to 

assume that because the initial three test points are scheduled to occur only once during the 

start-up strategy, they may be affected by residuals left in the cylinder from the previous cycle. 

During testing of Point 2, excess fuel was certainly present in the cylinder after exhaust due to 

the poor atomisation of fuel, which remained in crevice regions. This excess fuel may have 

been enough to increase the AFR of the flame above its lean limit in Point 3 and restore 

stability when run in transient operation. 

The remaining test points of the start-up strategy were focussed on generating high exhaust 

temperatures by retarding ignition and injecting large quantities of fuel in more than one 

injection event per cycle. These test points were run continuously without skip-firing as they 

were intended. Point 4 was unique in the fact that a flame kernel was first established, in a 

homogeneous charge combustion mode, before another injection took place into the flame 

itself. The second image at 42 °CA (4.8 ms AIT) in Figure 6.6.4 showed the second fuel spray 

when it was first detectable. The rich flame kernel was initially disrupted by the un-ignited fuel 

spray jet, which began to ignite and combust as the jet dispersed into the cylinder. The ignited 

fuel jets, which were the regions of highest luminosity, were clearly visible from 46 °CA 

(5.3 ms) AIT until 62 °CA (7.1 ms) AIT. The following images showed an orange and white highly 

luminous diffusion flame burning slowly towards the centre of the combustion chamber until it 

was subsequently exhausted. This region was likely to be a dominant soot generation region 
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contributing to PN. From the presented images and published literature, it is reasonable to 

assume that the second fuel injection helped maintain a rich region at TDC providing more 

stable ignition and faster combustion. This would assist in the burning of the charge and 

maintain stability when injection and spark scheduling are not optimised for engine 

performance. 

Point 5 retarded the flame ignition to near TDC and used a wider throttle to maintain a λ ratio 

of 0.7 whilst injecting an increased quantity of fuel. The effect of retarding ignition was 

immediately seen in the flame images with a flame speed that was noticeably slower (Figure 

6.6.5). This due to the fact that combustion was not taking place within the peak concentration 

of high-frequency turbulent flow structures towards the end of the compression stroke. A 

second injection occurred around the time of spark ignition but was not detectable in the 

images since the flame kernel had not fully established by this point due to ignition delay. 

The slower flame structure in Point 5 had a distinct blue stoichiometric flame front as it 

propagated towards the cylinder liner wall, which took approximately 11 ms. Slow burning 

liquid fuel droplets were detected from early in the flame kernel growth that could have been 

caused by a combination of excess fuel in the cylinder and the second fuel spray near TDC, 

which was likely to impinge on the piston crown. The peak luminosity of the flame throughout 

combustion was lower than that of Point 4 indicating that the local AFRs throughout the flame 

were lower despite the global λ ratio being the same. As with Point 4, the flame had poor 

homogeneity in its structure. 

The next section aims to elaborate on the variety of observed flame structures by analysing 

the in-cylinder flow field during the intake and compression stroke up to the point of spark 

ignition. The intake stroke flow field is particularly important in further elucidating the 

mechanisms of fuel droplet transportation, mixing and vaporisation during conditions that lead 

to poor fuel atomisation. 
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2 °CA AIT 3 °CA AIT 4 °CA AIT 

   
5 °CA AIT 6 °CA AIT 7 °CA AIT 

   
8 °CA AIT 9 °CA AIT 10 °CA AIT 

   
11 °CA AIT 12 °CA AIT 13 °CA AIT 

Figure 6.6.1: Flame imaging sequence of cold-start Point 1 through piston crown window 
(engine speed = 150 rpm, intake manifold pressure = 0.96 bar, fuel injection = 60 °CA ATDC,  

ignition timing = 349.5 °CA ATDC, λ = 0.8)  
23°C cylinder head and liner conditions, 23°C intake air temperature 
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15 °CA AIT 18 °CA AIT 21 °CA AIT 

   
24 °CA AIT 27 °CA AIT 30 °CA AIT 

   
33 °CA AIT 36 °CA AIT 39 °CA AIT 

   
42 °CA AIT 45 °CA AIT 48 °CA AIT 

Figure 6.6.2: Flame imaging sequence of cold-start Point 2 through piston crown window 
(engine speed = 1500 rpm, intake manifold pressure = 0.79 bar, fuel injection = 60 °CA ATDC,  

ignition timing = 335 °CA ATDC, λ = 1.1)  
23°C cylinder head and liner conditions, 23°C intake air temperature 
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5 °CA AIT 8 °CA AIT 11 °CA AIT 

   
14 °CA AIT 17 °CA AIT 20 °CA AIT 

   
23 °CA AIT 26 °CA AIT 29 °CA AIT 

   
32 °CA AIT 35 °CA AIT 38 °CA AIT 

Figure 6.6.3: Flame imaging sequence of cold-start Point 3 through piston crown window 
(engine speed = 2000 rpm, intake manifold pressure = 0.26 bar, fuel injection = 60 °CA ATDC,  

ignition timing = 335 °CA ATDC, λ = 1.5)  
23°C cylinder head and liner conditions, 23°C intake air temperature 
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38 °CA AIT 42 °CA AIT 46 °CA AIT 

   
50 °CA AIT 54 °CA AIT 58 °CA AIT 

   
62 °CA AIT 66 °CA AIT 70 °CA AIT 

   

Figure 6.6.4: Flame imaging sequence of cold-start Point 4 through piston crown window 
(engine speed = 1460 rpm, intake manifold pressure = 0.54 bar, fuel injection = 60 °CA & 360 °CA ATDC,  

ignition timing = 335 °CA ATDC, λ = 0.7)  
23°C cylinder head and liner conditions, 23°C intake air temperature 
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48 °CA AIT 54 °CA AIT 62 °CA AIT 

   
68 °CA AIT 74 °CA AIT 80 °CA AIT 

   
86 °CA AIT 92 °CA AIT 98 °CA AIT 

   

Figure 6.6.5: Flame imaging sequence of cold-start Point 5 through piston crown window 
(engine speed = 1340 rpm, intake manifold pressure = 0.74 bar, fuel injection = 60 °CA & 367 °CA ATDC,  

ignition timing = 361.5 °CA ATDC, λ = 0.7)  
23°C cylinder head and liner conditions, 23°C intake air temperature 
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 HSPIV RESULTS 6.7
To further understand the in-cylinder flow’s interaction with the fuel injection and combustion 

processes, a sequence of flow field vector fields were recorded from 60 °CA TDC to 

approximately 260 °CA TDC (relative to the intake stroke). The crank angle between images at 

different test points varies due to differences in engine speed and the subsequent flow 

velocity. Test Points 2, 4 and 5 have been grouped together and represented by a single series 

of vectors (Figure 6.7.2 and Figure 6.7.4) due to similar engine speeds and intake pressure 

producing vector fields and bulk flow structures with no discernible differences. The presented 

range allows the in-cylinder bulk flow to be observed around the time of fuel injection and the 

subsequent flow structures, which are of paramount importance in fuel droplet transportation 

and evaporation. The compression stroke after BDC highlights the formation of characteristic 

tumble flow structures present in pent-room combustion systems as well as the dissipation of 

the bulk flow structures in to small-scale turbulence, required for turbulent flame propagation. 

At all test points, early in the intake stroke (at approximately 100 °CA for Point 1 and 70 °CA for 

all other points), the high-velocity jet flow was visible from the upper and lower surfaces of the 

intake valves, which were located on the upper left hand side of all images. At low valve lift, 

the small effective flow area and large pressure difference across the valves resulted in conical 

jets forming within the cylinder. These are visualised more clearly in the instantaneous vector 

flow field sequence (Figure 6.7.4) as two distinct jets travelling at velocities of over 60 m·s-1 

within their core, formed as resultant interaction between the two conical intake jets. These 

velocities were at approximately 10 times the meant piston speed at 1500 rpm, which agree 

with the expected intake structures during early induction as described by Heywood (1988). 

In the early stages of the intake stroke, an anticlockwise rotating vortex was seen on the left 

surface of the piston in all of the data points presented (Figure 6.7.1 to Figure 6.7.3), which 

was formed from the intake valve jet recirculating across the piston crown and cylinder wall. 

As the stroke progressed, this near-vertical jet dissipated and was dominated by the formation 

of tumble flow.  During this early stage of induction, the angle of the valve jet entering the 

cylinder was primarily influenced by geometric features such as valve seat angle and width. 

These geometric features of the intake valve have a direct influence on the conical jets and 

hence the formation and location of the large scale vortices within the cylinder.  
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At low valve lift these jets propagated horizontally outwards towards both the left side of the 

cylinder wall and the pent-roof chamber (Figure 6.7.1 to Figure 6.7.3). As the flow propagated 

from the valve to the cylinder wall, the wall deflected the majority of the flow downwards 

towards the piston  and caused the smaller vortex on the left hand side, which is typical of the 

flow field in a pent roof chamber (Heywood 1988). As the valve lift increased and the piston 

travelled towards BDC (at approximately 120 °CA), the direction of flow was less influenced by 

the geometric features of the valve heads (such as the seat) due to the larger effective flow 

area.  This resulted in the flow being directed more towards the pent roof chamber due to the 

increased influence from the intake manifold geometry upstream of the valves. 

Despite the significant difference in engine speed between Point 1 (Figure 6.7.1) and the other 

test points (Figure 6.7.2 to Figure 6.7.3), a clearly defined tumble flow was still present during 

the intake stroke. The reduced piston speed, which created much lower flow magnitudes 

within the tumble vortex, as well as the reduction of piston squish, meant it was reasonable to 

assume that the dissipation of large-scale flow couldn’t give rise to much high-frequency 

turbulence and resulted in the laminar flame structure observed during combustion (Figure 

6.6.1). This is due to the well understood phenomenon of high frequency turbulence  being 

generated by the squish of large-scale flow structures  (Zhao et al. 1999, Yasar et al. 2006, 

Stansfield et al. 2007), which enables fast flame propagation (Pajot and Mounaïm-Rousselle 

2000, Rimmer et al. 2009). The remaining test points (Figure 6.7.2 to Figure 6.7.3) operated at 

similar engine speeds and operating parameters so it is reasonable to assume that similar 

levels of high-frequency turbulence (not presented) were generated at TDC of the compression 

stroke. Small variations may have occurred, however, as different quantities of injected fuel 

have been shown to suppress the mean velocities of bulk flow during intake (Rimmer 2010). 

Typical times for the fuel injection event in DISI homogeneous combustion system are around 

60 °CA to 80 °CA. At these crank angle positions, striking differences in flow magnitude were 

seen in Point 1 (Figure 6.7.1), with mean peak valve jet velocities of only 2.0 m·s-1 compared to 

45 m·s-1 – 70 m·s-1 at other test points, due to the engine speed. Poorly atomised and 

vaporised fuel was apparent in the combustion imaging visualised as high luminosity rich 

regions and the quantified flow structures played an important role in aiding the fuel 

vaporisation and transportation processes. Although it was noted that the low fuel injection 

pressure was likely the dominant factor, the lower velocity jet flow will have likely had an 

effect on the breakup and vaporisation of the injected fuel,  as less shear forces were present 

at the gas-liquid interface, which are responsible for the breakup of the liquid jet into droplets 

(Charalampous et al. 2009). In addition, the lower velocity flow will have decreased the effect 
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of the tumble flow on impinged fuel, which has been shown to aid the transportation of liquid 

fuel deposits on the piston crown back into the centre of the cylinder (Rimmer et al. 2012). 

Observation of the ensemble-averaged intake flow between Points 2, 4, and 5 (Figure 6.7.2) 

compared to Point 3 (Figure 6.7.3), which was operating at a 500 rpm faster engine speed, 

revealed near-identical large-scale flow structures. The mean velocities of the flow structures 

in Point 5 were higher, however, and the structures were better defined, indicating that the 

strong induced flow structures (such as valve flow and tumble) drove the generation of these 

flow structures and reduced cycle-by-cycle variability. The reduction in variability, however, 

did not have a prominent effect on the flame propagation at Point 3, which was observed to 

be inconsistent and unstable. This was due to the operating parameters being close to the 

lean-limit and having a dominant effect on the combustion process. 

The compression stroke in all test points (Figure 6.7.1 to Figure 6.7.3) exhibited similar trends 

of bulk convection from the exhaust to the intake side along the surface of the piston once the 

intake valves had closed and the valve jet flow was no longer distinctly detectable (from 

approximately 170 °CA). This demonstrated the continuation of the tumble flow during the 

compression stroke until its eventual dissipation. The resultant high-frequency turbulence 

components, generated from piston squish, were not observable in the presented vector fields 

due to the spatial resolution of the vectors fields, but are well understood and have been 

measured in a similar engine configuration by (Jarvis et al. 2006, Long et al. 2008, Rimmer et 

al. 2009, Justham 2010, Rimmer 2010). The next part of this section aims to understand the 

variability in the flow using the processed temporal data available. 

The instantaneous flow fields from Points 2, 4 and 5 (Figure 6.7.4) highlighted the presence of 

smaller scale flow features due to the variability of the flow, contained within the bulk flow 

structures observed from the ensemble-averaged vector fields.  The areas of high contrasting 

velocity demonstrated the complexity of three-dimensional flow with the engine when viewed 

from the selected tumble plane. To quantify this variability further, Reynolds decomposition 

was performed on the temporal PIV data. Figure 6.7.5 illustrated the turbulence fluctuation 

velocity, or root mean square (RMS) velocity fluctuation from the mean for Points 2, 4 and 5. 

Peak areas of turbulence intensity corresponded to the strong valve jet flow from 60 °CA, 

which exemplified the effect that these flow structures had on fuel spray penetration and 

vaporisation throughout the stroke, as their presence remained in the cylinder until 120 °CA. 

The high levels of turbulence were seen to dissipate towards the latter part of the intake 

stroke, where the global turbulence steadily decreased through to the compression stroke. 
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The region near the intake valves, corresponding to the main valve jets, maintained a higher 

level of turbulence intensity throughout the presented images, which demonstrated the 

important effect that valve jet flow and the formation of tumble had on fuel transportation, as 

well as the generation of high-frequency turbulence scales during compression. 
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60 °CA ATDC 73.5 °CA ATDC 87 °CA ATDC 

   

100.5 °CA ATDC 114 °CA ATDC 127.5 °CA ATDC 

   

172.5 °CA ATDC 217.5 °CA ATDC 262.5 °CA ATDC 

 m·s-1
 

Figure 6.7.1: Ensemble average vector field sequence at Point 1 through cylinder liner 
(engine speed = 150 rpm, intake manifold pressure = 0.96 bar)  

23°C cylinder head and liner conditions, 23°C intake air temperature 

 

0 1.75 0.75 2.75 3.5 3.25 2.25 1.25 0.25 

10 mm 
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60 °CA ATDC 72 °CA ATDC 84 °CA ATDC 

   

102 °CA ATDC 120 °CA ATDC 138 °CA ATDC 

   

174 °CA ATDC 234 °CA ATDC 264 °CA ATDC 

 m·s-1
 

Figure 6.7.2: Ensemble average vector field sequence at Points 2, 4 and 5 through cylinder liner 
(engine speed = 1500 rpm, intake manifold pressure = 0.67 bar)  

23°C cylinder head and liner conditions, 23°C intake air temperature 

 

0 23 11 34 45 39 28 17 5.5 

10 mm 
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60 °CA ATDC 76 °CA ATDC 92 °CA ATDC 

   

108 °CA ATDC 124 °CA ATDC 140 °CA ATDC 

   

172 °CA ATDC 212 °CA ATDC 252 °CA ATDC 

 m·s-1
 

Figure 6.7.3: Ensemble average vector field sequence at Point 3 through cylinder liner 
(engine speed = 2000 rpm, intake manifold pressure = 0.26 bar)  

23°C cylinder head and liner conditions, 23°C intake air temperature 

 

0 35 18 53 70 61 44 26 9 

10 mm 



6.7 HSPIV RESULTS 
 

171 
 

   

60 °CA ATDC 72 °CA ATDC 84 °CA ATDC 

   

102 °CA ATDC 120 °CA ATDC 138 °CA ATDC 

   

174 °CA ATDC 234 °CA ATDC 264 °CA ATDC 

m·s-1
 

Figure 6.7.4: Instantaneous vector field sequence at Points 2, 4 and 5 through cylinder liner 
(engine speed = 1500 rpm, intake manifold pressure = 0.67 bar)  

23°C cylinder head and liner conditions, 23°C intake air temperature 

 

0 33 16 49 65 57 41 24 8 

10 mm 
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60 °CAATDC 72 °CA ATDC 84 °CA ATDC 

   

102 °CA ATDC 120 °CA ATDC 138 °CA ATDC 

   

174 °CA ATDC 234 °CA ATDC 264 °CA ATDC 

 m·s-1
 

Figure 6.7.5: Turbulence fluctuation velocity contour plots at Points 2, 4 and 5 through cylinder liner 
(engine speed = 1500 rpm, intake manifold pressure = 0.67 bar)  

23°C cylinder head and liner conditions, 23°C intake air temperature 

 

0 11 5 16 21 18 13 8 3 

10 mm 
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 CONCLUDING REMARKS 6.8
To further understand the effect of cold-start on a production engine start-up, this chapter 

simulated an engine cold-start and utilised colour optical and pressure data analysis, along 

with HSPIV to examine the preceding in-cylinder flow field. The colour combustion analysis 

enabled the complex flame stoichiometry to be observed, extending the understanding of the 

flame propagation processes observed during cold-start in earlier chapters. To elucidate the 

creation of these flame propagation structures, HSPIV facilitated the quantification of the in-

cylinder flow field during intake and compression and allowed various scales of intake flow and 

turbulence to be linked to the subsequent combustion events. The key conclusions are: 

1. In-cylinder peak pressures were shown to have varied significantly in the first few 

seconds of the cold-start cycle with a variation of 12.8 bar across the 5 chosen test 

positions and a range in COV of 13.8%, highlighting the key differences in operating 

modes, each with a different objective to the engine’s operation. MFB times also 

showed a wide variation with up to a 50 °CA difference in burn time and 8.5% 

difference in COV for the 90% MFB case. 

2. The effect of fuel pressure was shown to have a prominent effect on both the in-

cylinder pressure and combustion imaging data as well as a likely effect on engine 

emissions with a vast array of in-cylinder stoichiometry observed.  This emphasizes the 

importance of pressurising the fuel rail in a short as time as possible during DISI engine 

cold-start. 

3. Combustion imaging was correlated with the recorded in-cylinder pressure, identifying 

an array of contrasting combustion flame structures that behaved in very different 

ways depending on their parameter scheduling, fuel pressure and intake and flow 

conditions. 

4. High-speed imaging of the in-cylinder combustion identified a number of soot 

formation regions in nearly all of the experimental test points, which will have a 

detrimental effect on the PN count emissions. 

5. In-cylinder HSPIV flow field analysis identified the critical flow structures and 

turbulence that had an effect on fuel injection, transportation and mixing, as well as 

the subsequent combustion process, all of which were driven by engine speed. The 

identification of how these flow processes can affect combustion allowed potential 

flow enhancement techniques to be deduced during cold-start. 
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The next chapter will correlate the in-cylinder pressure, injection, combustion and flow field 

analyses with exhaust emissions by measuring the PN and HC exhaust emissions during cold-

start. This will allow the levels of PN generation to be linked to temperature and operating 

parameters as well as precisely identifying the main sources of HC emission within the 

cylinder, utilising a fast FID HC analyser. The understanding of the sources of these emissions is 

of paramount importance to reducing their levels and meeting the stringent targets set within 

current emissions legislation. 
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7.1 INTRODUCTION 
The optical diagnostics and pressure data analyses presented in Chapters 4, 5 and 6 have 

quantified the effects of operating temperature and cold-start operation on in-cylinder flow, 

fuel injection and combustion processes. The analysis highlighted the prevalence of regions for 

particulate and hydrocarbon (HC) formation. 

In this chapter, data is presented that links the in-cylinder optical diagnostics data with exhaust 

emissions analysis. Data was collected that measured the hydrocarbon (HC) and particulate 

number (PN) emissions during cold conditions similar conditions to those previously tested, in 

order to correlate the in-cylinder data with emissions. Steady-state operation of the engine 

from 80°C to -7°C with a 23°C and -7°C intake air temperature was completed as tested in 

Chapters 4 and 5.  

A new exhaust manifold was manufactured to facilitate the measurement and monitoring of 

up to seven sample points simultaneously, this has been detailed in Chapter 3, along with 

setup of the exhaust measurement equipment. In order to collect as much data as possible 

and observe the emissions for an extended period of time it was necessary to overcome the 

temperature-limited maximum operating time of 3 minutes for the optical engine. This was 

completed using thermodynamic versions of the optical piston crown and pent roof window to 

allow combustion operating times of 10 minutes and above. 

A clear link between PN emissions and operating temperature was found, along with 

differences in particle size distribution at different temperatures. The fast flame ionisation 

detector (FID) analyser revealed the quantity and precise location of UHCs during the exhaust 

stroke to help elucidate the formation regions of these exhaust emissions. 
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7.2 EXPERIMENTAL SETUP 
To keep emissions results consistent with the steady-state in-cylinder optical data obtained in 

Chapters 4 and 5, the temperature of the coolant was set to achieve the engine operating 

temperatures outlined in Table 4.2.1 in conjunction with intake temperatures of 23°C and -7°C.  

Cylinder Head and 
Liner Temperature 

Description 

80°C Fully heated engine 
23°C Ambient lab conditions 
10°C Intermediate condition 
-7°C Euro 6 cold-start temperature  

Table 7.2.1: Description of selected engine head and liner temperatures 

Two types of sampling equipment were used to characterise the exhaust gas particulate 

matter (PM) and unburned hydrocarbon (UHC) emissions during the outlined cold-start 

conditions. The Cambustion DMS500 MkII fast particle spectrometer measured particulate 

number (PN) count emissions of particles sized from 5 nm to 1 μm and the Cambustion 

HFR500 fast flame ionisation detector (FID) was used to measure the UHC levels up to 

10,000 ppm. The operating principles and detailed experimental setup of both these pieces of 

equipment are described in Chapter 2. 

The experimental test methodology comprised cold-soaking the engine until the desired 

operating temperature was achieved and then sampling from the exhaust manifold 

momentarily before firing the engine. This ensured the early emissions from misfire or poor 

combustion were captured and accurately recorded. During fired operation, the continuously 

cooled coolant was circulated through the engine whilst emissions measurements were 

recorded. This continuous cooling created a lengthened warm-up period as the operating 

temperature naturally increased due to combustion and is a method that has been used for 

other cold-start experimentation by (Price et al. 2007). This lengthened period allowed the 

engine to run for longer and enabled a larger amount of PM emissions data to be collected. 

Due to the nature of both types of emissions (low quantity PM and high variability HC), 

procedures were taken to ensure that data was kept accurate and repeatable. At least six 

separate engine test runs were completed for every operating condition. Each data set was 

examined to ensure that the emissions data followed the general trend and modal average of 

the other test runs and determine if further repeat testing was needed. 
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 7.2.1 DMS 500 Particle Analyser 
The sample pipe for the DMS500 entered the exhaust manifold at approximately 35 mm away 

from the exhaust head surface, centred axially with a 90° bend towards the direction of flow to 

prevent the stagnation of particles near the tube orifice (as shown in Figure 7.2.1). 

 
Figure 7.2.1: Modified optical engine exhaust manifold highlighting DMS500 sample point 

A sample pipe of approximately 700 mm was used to allow the sampled exhaust gas to cool 

sufficiently before entering the heat sample line, which had an inner plastic tube that could 

withstand up to 120°C. In order to optimise the concentration of particulates entering the 

DMS500 for measurement accuracy and to prevent saturation, primary and secondary dilution 

were applied (listed in Table 7.2.2). As the temperature of the engine increased in each 

experimental run period of 10 minutes, the particulate concentration was inherently affected 

and the dilution was adjusted accordingly to maintain the dynamic measurement range of the 

DMS500. These dynamic changes to dilution ratio expectedly produced momentary anomalies 

in the sampled particulate measurements, which have been considered in the analysis of the 

presented data. 
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Operating 
Temperature 

Primary Dilution Factor Secondary Dilution Factor 
(Initial) (Final) (Initial) (Final) 

80°C 5 20 
23°C 5 5 30 20 
10°C 5 5 30 1 
-7°C 5 5 50 1 

Table 7.2.2: Primary and secondary dilution factors at each engine operating temperature 

 

 7.2.2 HFR Fast FID UHC Analyser 
As detailed in Chapter 3, the fast FID exhaust probe was installed in the exhaust manifold via 

an adaptor that located it approximately 5 mm from one of the exhaust valve heads to 

minimise the measurement response time. The fast response time (0.7 ms) of the fast FID 

analyser coupled with the fact that the signal was recorded using the in-cylinder pressure DAQ 

enabled a high resolution signal of 0.1 °CA to be recorded. As with the DMS500, the Fast FID 

required calibration at each operating temperature test point to maximise the dynamic 

recording range of the equipment (which had a maximum output voltage of 10 V), this has 

been outlined in Table 7.2.3. A course ‘voltage gain’ option was first selected at each operating 

condition and then a fine potentiometer was adjusted to give a voltage to 

parts per million (ppm) relation. A span gas consisting of propane with 5000 ppm was used to 

perform the output voltage calibration and a zero gas consisting of bottled compressed air was 

used to zero the fast FID between each test point to accommodate for any voltage drift. 

Operating 
Temperature 

Gain Resultant Calibration 

80°C 500 1.0 V = 500 ppm 
23°C 500 1.0 V = 500 ppm 
10°C 500 1.0 V = 500 ppm 
-7°C 200 1.0 V = 1000 ppm 

Table 7.2.3: Fast FID gain values at each engine operating temperature 

A similar skip-firing technique to the one detailed in Chapter 6 was used for sampling UHCs at 

the coldest operating temperatures. This allowed all traces of UHCs to be exhausted from the 

cylinder and repeatable data to be collect during an engine run. 
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7.3 RESULTS AND DISCUSSION 
This section presents particulate number (PN) emissions data and unburned hydrocarbon (HC) 

emissions data over the engine operating temperature range described in the previous section 

and aligned with the testing throughout this thesis. The results have been correlated to the 

previously discussed in-cylinder fuel spray, combustion and pressure data presented in 

Chapters 4, 5 and 6 where possible in order to attain a more complete understanding of the in-

cylinder combustion processes occurring during cold-start. 

 7.3.1 PN Emissions Measurements 
Particulate number (PN) emissions data has been presented in two forms to help further 

interpret the effect that operating temperature had on particulate generation. A contour-time 

plot has been created for each operating temperature, this displays particle number 

concentration (dN/dlogDP/cm3) and particle diameter (nm) over the entire engine run time of 

600 seconds. This plot helps understand when different particle sizes were emitted and how 

the size distribution evolved over time as the engine warmed up. Furthermore, a particle size 

number distribution graph has been presented, encompassing all operating temperatures and 

highlighting the contrasting particle sizes emitted. 

Figure 7.3.1 to Figure 7.3.4 shows contour time plots for the four operating temperatures with 

a 23°C intake air temperature. In addition, Figure 7.3.1 illustrates the 80°C head and liner 

condition with a -7°C intake temperature for comparison. The effect of a -7°C intake charge on 

the colder head and liner temperatures was much less discernible, so was omitted. 

Major and minor striations within the contour plots can be observed in all the figures. As 

previously discussed, the major striations were caused due to the dilution factor being 

changed during the test run, in order to optimise the measurement range of the equipment. 

These can be observed as momentary changes in colour (striations) across the majority of the 

particle size range that lasted for a few seconds, until the equipment equalised the flow rate. 

The major striations could have been removed from the data but act as useful indicators of 

when dilution factor changes had taken place and prevent the misinterpretation of the data. 

The first dilution factor change typically occurred between 80 and 150 seconds after the start 

of the engine run, when an initial ‘drop-off’ of PN was seen due to the natural increasing of the 

engine operating temperature during combustion. 
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The minor striations (more prevalent at the 80°C operating condition) have been attributed to 

a number of factors. Fundamentally, the single cylinder research engine that operated at a 

throttled condition produced a relatively low quantity of PM along with an exhaust flow of a 

more defined pulsatile nature. As a result, the signal-to-noise ratio was low (compared to a 

multi-cylinder production engine), which is exemplified in the 80°C condition (Figure 7.3.1) in 

which a lower quantity of PM required a lower dilution factor and produced the noisiest signal. 

Additionally, the cycle to cycle variability that is inherent in IC engines will have had some 

contributory effect the PN signal instability. 

The 80°C operating condition with a 23°C intake temperature (shown in the top graph in Figure 

7.3.1) highlighted a clear but short peak in the PN emissions (1 x 108 dN/dlogDP/cm3) of 

particles up to 100 nm in the first 10 seconds when the engine was at its coolest. A sudden 

decrease in the emission of particles 20 nm – 100 nm to the order 1 x 107 dN/dlogDP/cm3 is 

then observed whilst a peak in large particles is then observed up to 200 nm. Particles of 

20 nm and below continue to be emitted for a further 140 seconds. At approximately 

150 seconds after the start of the test run, another decrease in PN emissions occurred to the 

point where small quantities of particles of 10 nm and lower were emitted and the signal was 

dominated by noise for the remainder of the test run (due to the low dilution factor required 

to detect any PN emissions). A more detailed discussion of the particle sizes emitted and their 

modes is given later in this section when referring to the particle size number distribution 

graphs in Figure 7.3.5 and Figure 7.3.6. 

The -7°C intake condition (shown in the lower graph in Figure 7.3.1) showed a similar trend but 

the larger particles up to 200 nm were emitted from the start of the test run and for a longer 

period. This increase in particle size emission can be attributed to the cold intake air’s 

interaction with fuel spray, which was shown to have a notable effect on the presence of liquid 

fuel in the fuel spray and subsequent combustion in Chapters 4 and 5. The colder intake air 

was previously shown to increase the presence of larger fuel droplet in the fuel spray and rich 

regions in the flame, which are known areas of PM generation. The -7°C intake air condition 

with operating temperatures lower than 80°C had no notable effect on the PN emission 

contour plots. A similar result was observed with the in-cylinder fuel spray and combustion 

data and it is reasonable to assume that the smaller temperature differences between the 

intake air and engine (when compared to the 80°C operating condition) minimised its effect. 

The significant drop-off in the quantity of PN emissions and their size observed in the 80°C test 

condition (Figure 7.3.1) around 130 seconds after engine start was most probably due to a 
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number of factors. Over time, the combustion process gradually heated up the internal 

surfaces such as the cylinder liner, piston crown and pent roof combustion chamber, which 

aided vaporisation of impinged fuel to a point that adequately minimised its presence by the 

time of spark ignition. The heating of the fuel injector tip, which was important at all operating 

conditions, will have also increased the effect of localised flash boiling of the fuel during 

injection (as observed in the 80°C condition in Chapter 5) promoting good atomisation and 

minimising impingement. 

 

 

 
Figure 7.3.1: DMS500 contour plot at 80°C operating temperature and 23°C intake (top) and -7°C (bottom) 

The colder operating conditions exhibit contrasting contour time plots to the 80°C condition in 

that significant drop-offs in PN emissions were not apparent (Figure 7.3.2, Figure 7.3.3 and 

Figure 7.3.4). Unlike the hottest operating temperature, particles of 5 nm – 200 nm at orders 

of 1 x 106 dN/dlogDP/cm3 and higher were consistently emitted. This was likely due to the 

colder recirculating coolant preventing the engine operating temperature rising, however, over 

longer operating times (approximately 300 seconds), it would be reasonable to assume that 
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the engine would heat up and affect the PN emissions in the same way that occurred in the 

80°C condition. 

The 23°C (Figure 7.3.2) and 10°C (Figure 7.3.3) operating conditions exhibited very similar 

emissions contour plots over time, as may be expected due to the similarity between their 

operating temperatures. Both contour plots highlighted the initial emission of particles up to 

200 nm at a high magnitude of 1 x 108 dN/dlogDP/cm3 before a reduction in particle emissions 

sized from 20 nm – 200 nm and the continued high magnitude emission of particles 20 nm and 

smaller. A second reduction in the emission in larger sized particles is then observed leaving 

the continued emission of particles sized 7 nm and lower at a magnitude of at least 

1 x 107 dN/dlogDP/cm3 until the end of the test run. The most apparent difference between the 

23°C and 10°C test condition was that the 10°C condition emitted larger size particles for 

approximately 20 seconds longer before each of the described reductions, which could be 

attributed to the difference in the initial operating temperature and the time required for the 

combustion process to heat the engine. 

 

 

 
Figure 7.3.2: DMS500 contour plot at 23°C operating temperature and 23°C intake 
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Figure 7.3.3: DMS500 contour plot at 10°C operating temperature and 23°C intake 

The -7°C operating condition (Figure 7.3.4), like the in-cylinder combustion flame imaging data, 

exhibited strikingly different results to all the other operating conditions, with a PN 

concentration comparable to that of diesel engines under steady-state operating conditions 

(Andersson et al. 1999, Kittelson et al. 2003, Price et al. 2007) . The flame imaging data 

presented in Chapter 4 highlighted a dramatically increased number of fuel rich regions with a 

high luminosity throughout the flame that consisted of large fuel droplets and ligaments. It 

was commented that these carbon-rich regions are known sources of PM generation as 

carbons atoms can combine to form aromatic ring structures that in turn nucleate to form PM 

(Gupta et al. 2000, Cromas and Ghandhi 2005, Price et al. 2006). These processes were 

confirmed in the PM emission data for the -7°C operating condition. A consistent emission of 

particles up to 200 nm at a magnitude of 1 x 108 dN/dlogDP/cm3 was recorded for the first 

80 seconds of the test, which was the highest by some margin. A more gradual reduction in the 

size of particles being emitted at this peak magnitude (as opposed to the highly stepped 

reductions seen previously) was then recorded until approximately 280 seconds when the 

highest magnitude of any particle size emitted reduced to 1 x 107 dN/dlogDP/cm3. This more 

gradual reduction was most probably due to the colder coolant (approximately -10°C) 

circulating though the engine throughout the test, which would have reduced the time for 

combustion to raise the engine operating temperature. By approximately 400 seconds into the 

test run, the PM emissions were comparable to the 10°C and 23°C conditions, which indicated 

that the engine had heated up to a similar temperature to these conditions (this was 

confirmed from the thermocouple measurements). A reduction in PN concentration (similarly 

by an order of magnitude) when coolant temperature was increased in a similarly configured 
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engine has been shown by Price et al. (2007) and during a cold-start test by Samuel et al. 

(2010). 

 

 
Figure 7.3.4: DMS500 contour plot at -7°C operating temperature and 23°C intake 

The next analysis interprets the PM emissions data on particle size number distribution graphs, 

which represent particles emitted in the nucleation and accumulation modes. There are a 

number of nucleation mode and accumulation mode size ranges that have been published, 

with slight differences between them. The work presented in this section has used the size 

ranges defined by (Kulkarni et al. 2011) with nucleation mode size range of dp = 5-100 nm and 

accumulation mode size range of dp = 100-1000 nm. It is well understood that primary soot 

particles, sized within the nucleation mode, are typically generated within the rich regions of 

combustion flames due to the heterogeneous charge mixtures (Heywood 1988, Virtanen et al. 

2004). This is dependent on engine load, however, as Andrews and Ahamed (1999) suggested 

that the soot fraction of PM generally only constitutes a small fraction of the total PM mass 

and Price et al. (2007) showed this to be only 29% in a DISI engine,  whilst Andersson et al. 

(1999) conversely discovered that PM emissions in a DISI engine were more similar to that of a 

diesel engine, with a 72% soot concentration. Accumulation mode particles can be considered 

to be agglomerates of these soot particles along with volatile matter, which have been shown 

to form from such compounds as HCs (Samuel et al. 2010). PM generation from lubrication oil 

can be neglected, as the optical research engine utilised torlon piston rings that required no 

form of lubrication when used with the steel liner. 
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Figure 7.3.5 shows a size number distribution graph comparing all engine operating 

temperatures with a 23°C intake temperature. The 80°C condition showed a lognormal 

distribution of particles with a peak centred at round 8 nm within the nucleation mode. As the 

operating temperature was decreased to 23°C and then 10°C, the number concentration of 

particles around 8 – 10 nm decreased but the lognormal distribution of particles started to 

transition to bimodal with some particles being emitted in the accumulation mode. This was 

also represented in the previously presented contour plots as brief peaks in particle emissions 

up to 200 nm at the start of each run. 

The -7°C operating condition shows a striking rise in the number concentration of particles and 

a bimodal lognormal distribution with a large peak at 12 nm and a smaller peak 140 nm. This 

rise correlates with the PM contour plot distribution over time and the in-cylinder flame 

analysis detailed in Chapter 4. At all test conditions, the emitted particles had a tendency 

towards the larger accumulation mode size range at the start of the test run before trending 

towards the nucleation mode as the engine heated up due to combustion, which was also 

shown by Price et al. (2007) in a similarly configured engine with a starting coolant 

temperature of -10°C. 

 
Figure 7.3.5: DMS500 size number distribution at all operating temperatures and 23°C intake 
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To independently observe the effects of a -7°C charge temperature on the emissions process, 

Figure 7.3.6 shows a PM size number distribution graph of the 80°C and -7°C operating 

conditions with both intake air temperatures. With the 80°C condition, a smaller number 

concentration of particles with a lognormal distribution centred around 6 – 8 nm was 

measured but a higher concentration of particle emissions up to a size of 100 nm was 

recorded. This increase in larger particle emissions correlated with the in-cylinder flame data 

discussed in Chapter 4, whereby the -7°C temperature charge was observed to interact with 

the fuel spray and cause locally rich areas of poorly vaporised fuel in the flame. In the -7°C 

operating condition, the effect of charge temperature was much less profound with no clear 

difference in lognormal size distribution. 

 
Figure 7.3.6: DMS500 size number distribution at 80°C and -7°C operating temperatures and 23°C and -7°C 

intake 
 

The PM emissions from the engine that were emitted during the range of tested operating 

temperatures are dominated by particles of less than 100 nm. This correlates with emissions 

data from a similarly configured engine by  Price et al. (2007) who also characterised these 

emissions as consisting of condensed material such as anamorphous and graphitised elemental 

carbon using transmission electron microscopy. 
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One must also bear in mind the effect that a three-way catalyst (TWC), although not installed 

on this research engine, will have on PM emissions once it has achieved light-off temperatures. 

Once heated, the TWC has been shown to reduce PN number concentrations of all size ranges, 

but in particular, those within the accumulation modes (Samuel et al. 2010) and has been 

shown to remove up to 30% of carbon from cold-start conditions (Andrews and Ahamed 

1999). 

It has been shown that HC emissions can participate in the formation of volatile nanoparticles 

in the dilution system of PM measurement equipment such as the DMS500 (Samuel et al. 

2010). As it has been deduced that a significant quantity of HC species exist in exhaust under 

cold-start conditions (Samuel et al. 2010) the fast FID HC analysis will aid the interpretation of 

the sources of PM emissions in addition to the in-cylinder sources of HC emissions. 

 7.3.2 HC Emissions Measurement 
Mean unburned HC emissions data has been presented for the complete range of engine 

operating conditions over the entire 300 engine cycle data set between a crank angle range of 

116 °CA to 366 °CA ATDCC in order to capture the exhaust valves opening and closing events. 

Outside of this crank angle range when the exhaust valves were closed, the HC emissions of 

the stagnant flow around the fast FID detector were measured, so were not included in the 

presented graph. Mean in-cylinder pressure data was overlaid on the same graph between a 

crank angle range of -90 °CA to 450 °CA ATDCC to help interpret the timing of the exhaust 

event after combustion. HC data was recorded using the DAQ system that captured in-cylinder 

pressure data in order to align the emissions data with valve events. Between exhaust valve 

opening (EVO) and exhaust valve closing (EVC) event, 1500 samples of HC emissions data was 

collected over a time period of 15 ms. The results from a cooled intake charge have been 

omitted as no considerable effect was observed in the HC emissions data. 

Figure 7.3.7 shows mean ensemble-averaged HC emissions plot for each operating condition 

as well as the mean in-cylinder pressure trace overlaid and EVO and EVC events indicated. In 

all plots, the HC emissions trace began with a background level before the exhaust valve 

opened. This is due to the quiescent gas left around the exhaust port area and in the vicinity of 

the fast FID probe from the previous firing cycle whilst the exhaust valves were still closed. 

Each of the HC plots exhibited a similar trend between the exhaust valve events that can be 

used to describe the location and nature of the HC emission. The initial level of HC emissions in 

all plots after the EVO event (around 110 °CA) represented the HC emissions from crevice 

regions in the valve area, this may include those around the valve seat or in the pent-roof 
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combustion chamber area in general. The plots then decreased gradually in HC levels until 

approximately 240 °CA, which represented the majority of the burned gas being exhausted 

from the cylinder. Exhaust HC measurements on a PFI engine typically reduce at a much 

greater rate after the exhaust valve is opened (Hoard and Moilanen 1997). The more gradual 

decrease shown in Figure 7.3.7 at all operating temperatures highlighted the increased 

presence of less vaporised fuel in the cylinder before and consequently after combustion, due 

to the nature of DISI in-cylinder fuel injection. 

From 240°CA in the exhaust stroke, up to TDC of the exhaust stroke (360 °CA) represented the 

‘scroll-up’ HC emissions. These ‘scroll-up’ emissions originated from the cylinder walls and 

crevice regions in the piston ring pack as the piston moved toward TDC (Hoard and Moilanen 

1997). The HC emissions then rose as the exhaust valves started to close and reached a peak at 

TDC that remained until the exhaust valves opened in the next cycle. This peak in emissions 

represented the stagnation of crevice HCs around exhaust port and the fast FID probe, which 

dipped slightly due to flow momentum before remaining stagnant. 

 
 

Figure 7.3.7: Fast FID mean HC emissions graph at all operating temperatures with in-cylinder pressure 
overlaid for 300 engine cycles (23°C intake) 

 

As with the PN emissions, the levels of HC emissions clearly correlate with engine operating 

temperature in that cooling the engine down produced an increased quantity of HC emissions 

(shown in Figure 7.3.7). The -7°C condition exhibited considerably higher mean HC emissions 
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concentration throughout the exhaust stroke when compared to the other conditions, with 

the emissions peaking at around 5500 ppm when the exhaust valves opened and remaining 

above 2700 ppm throughout the stroke. 

 

The shape of the mean emissions plot for -7°C condition (Figure 7.3.7) masked some of the 

subtle trends shown in the other temperature cases due to the variability of each individual HC 

emissions plot. This variability has been expounded later in this section. The 10°C condition 

displayed a short and distinct peak in HC emissions at approximately 180 °CA, which showed 

the consistent presence of HCs in the bulk of the burned gas during the exhaust stroke. The -

7°C operating condition also exhibited this trend when instantaneous emissions cycles were 

observed (Figure 7.3.8). This is consistent with the increased presence of rich-burning regions 

observed in the flame at colder operating temperatures, which was analysed in Chapter 4 and 

indicated the presence of HC emissions. The imaged fuel spray in Chapter 5 consistently 

highlighted the presence of surface impingement, particularly with the colder operating 

temperatures. It is reasonable to assume that the observed fuel impingement considerably 

contributed to the generation of HCs that were measured in the exhaust. 

 
Figure 7.3.8: Fast FID instantaneous HC emissions graph of 5 arbitrary at 80°C and -7°C operating 

temperatures with in-cylinder pressure overlaid (23°C intake) 

To analyse the consistency of HC emissions between individual engine cycles Figure 7.3.8 

presents five arbitrary HC emissions plots for the 80°C and -7°C operating temperatures. A 

striking inconsistency between cycles was observed at both operating temperatures and 

highlighted the inherent cycle-to-cycle variability that contributed to the HC emissions. This 
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considerable variability also elucidates why no clear effect was shown on by cooling the intake 

air. 

The 80°C HC emissions plots followed the same general trends as each other but were 

different in absolute magnitude. Conversely, the -7°C condition exhibited strikingly differences 

in the levels of HC emissions as well as the trends of these emissions. This correlates with the 

increasing COV of IMEP that was calculated in Chapter 4 and revealed a decrease in engine 

combustion stability at lower operating temperatures. 

7.4 CONLCUDING REMARKS 
In order to further elucidate and correlate operating temperature with in-cylinder fuel spray, 

combustion and pressure, this chapter presented data for measured PM and HC emissions of 

the optical engine at a range of operating temperatures. The PN emissions data allowed the 

lognormal distribution of particles along with their concentration to be recorded and 

correlated with both operating temperature and the warm-up process of the engine. The fast 

FID analysis provided cycle-resolved HC emissions data, which enabled the precise in-cylinder 

sources of HCs to be commented on. A distinct correlation was shown between these 

emissions and operating temperature along with a clear link to the previous in-cylinder 

analyses. The main conclusions from this part of the investigation are: 

1. A clear correlation between the size distribution and number concentration of 

particulates and operating temperature was shown. The coolest -7°C condition 

exhibited a number concentration of 3 x 108 dN/dlogDP/cm3
 over a wider lognormal 

distribution of particle sizes, compared to approximately 1.5 x 108 dN/dlogDP/cm3
 for 

the remaining temperature conditions. The presence of larger PM particles sized 

within the accumulation mode was also recorded for the coolest condition. This 

correlation agreed with both the HC emissions data and the in-cylinder flame analysis, 

which identified fuel-rich regions in the flame and highlighted the dominant effect of 

cooling the engine down to -7°C. 
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2. At an engine operating temperature of 80°C, the independent effect of cooling the 

intake air to -7°C was shown to generated particulates that were 100 nm larger than 

using an intake air temperature of 23°C. This effect was previously observed in the 

flame and fuel spray imaging analyses as droplets of fuel that subsequently formed 

rich regions in the flame. 

3. The fast FID analysis identified the dominant sources of HC emissions within the 

cylinder during the exhaust stroke across the range of operating conditions and drew 

particular focus to the striking inconsistencies between individual exhaust cycle 

emissions, particularly at colder temperatures. The analysis also helped determine the 

in-cylinder location of HC emissions, which are linked to fuel spray impingement 

observed in Chapter 5. 

This chapter has brought together the knowledge gained from optical diagnostics, in-cylinder 

pressure data and emissions data to help build an understanding of the effect that operating 

temperature has on the complex in-cylinder processes of the engine that subsequently form 

exhaust emissions. The next chapter will bring together the catalogue of achievements and 

conclusions from this thesis and recommend the potential areas for further investigation. 
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8.1 RESEARCH SUMMARY 
A single cylinder DISI optical research engine has been used to investigate the effects of cold-

start temperatures on combustion, fuel spray and emissions. The modifications to the research 

engine to simulate cold-start conditions and the range of experimental and analytical 

techniques used for analysis have been presented in this thesis. 

In-cylinder visualisation of both the combustion and fuel injection processes at a range of 

operating conditions has provided novel, new and valuable information to better understand 

the complex effects of cold-start. The dominant effects that engine operating and intake 

temperatures as low as -7°C have on flame propagation, fuel spray structure, fuel spray 

impingement and particulate formation have been identified. In-cylinder pressure and engine 

performance data has been collected and shown to correlate with optical analyses to help 

further classify these effects. 

A novel approach has been made that simulated a production engine cold-start strategy on an 

optical research engine over repeated engine cycles. Colour optical and in-cylinder pressure 

analysis of the combustion process have revealed a broad range of striking flame regimes and 

helped identify the dynamic stoichiometry of the flame propagation process and a number of 

sources of particulate generation. HSPIV was used to collect detailed temporal flow and 

turbulence data of complex in-cylinder flow field and identify its effect on the fuel injection 

and combustion processes, which ultimately lead to particulate formation. 

A thorough exhaust sampling study on particulates and unburned HCs has been used to 

validate much of the in-cylinder optical analyses and accurately quantify the effect of 

operating temperature on emissions. The different size regimes of emitted particulates and 

the in-cylinder location of emitted unburned HC have been accurately quantified. 
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8.2 CONCLUSIONS 
The work conducted has led to an improved understanding of cold-start and the effects that 

cold-start temperatures have on the complex combustion, fuel spray and emissions processes 

during DISI engine operation. The major conclusions that can be drawn from this experimental 

investigation are: 

Chapter 3 – Experimental Setup and Equipment 

1. The modification to an optical engine coolant system and air intake has enabled 

a -7°C cold-start condition and production cold-start strategy to be accurately 

simulated and the effects of this condition to be accurately analysed using a 

combination of high-speed optical diagnostics, in-cylinder pressure measurements 

and exhaust gas measurements.  

Chapter 4 – The Effect of Operating Temperature on DISI Engine Combustion 

2. Cooling the engine operating temperature to -7°C was shown to dramatically affect 

the in-cylinder peak pressure, performance and engine stability during the 

combustion process. Peak pressures were shown to drop by up to 5 bar when the 

engine was cooled from 80°C to -7°C and the COV of peak pressure rose by 7%. Gross 

IMEP decreased by 0.5 bar and the COV of gross IMEP increased by up to 15%. 

3. High-speed imaging of the in-cylinder combustion process highlighted contrasting 

flame growth structures at different operating temperatures and at lower operating 

temperatures, identified the widespread presence of fuel-rich regions, areas of flame 

heterogeneity and lower flame growth speeds. These fuel-rich regions are known 

areas of particulate formation and highlight the impact that temperature as on the 

early phase during cold-start. 

4. Flame image processing highlighted a striking difference in peak flame growth speed 

of up to 4 m·s-1 between the fully heated 80°C operating condition and the colder 

conditions. The processed flame data correlated well with the in-cylinder pressure 

data, highlighting high-speed flame imaging as a useful diagnostics tool in the 

analysis of engine combustion. 
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Chapter 5 – The Effect of Operating Temperature on DISI Fuel Injection 

5. High-speed fuel spray imaging at range of operating temperature revealed that flash 

boiling of the fuel spray consistently occurred when the engine was operating at 

80°C. This resulted in a highly atomised fuel spray that penetrated only 30 mm into 

the cylinder and did not visibly impinge on the piston crown surface. The flash-boiled 

spray demonstrated a higher level of visible atomisation and was observed to be 

influenced and transported more by intake flow structures in the cylinder, resulting 

in better charge mixing. These factors help understand the improved engine 

combustion performance and flame structure previously identified at an operating 

condition of 80°C. 

6. The fuel spray imaging at colder temperatures exhibited highly contrasting fuel spray 

structures that did no flash boil at lower operating temperatures. These fuel spray 

structures penetrated in to the cylinder at a quicker ate and contained a denser 

liquid core that was observed to consistently impinge on the piston crown surface as 

early as 10 °CA ASOI. This type of fuel spray structure was shown to contribute to a 

lower peak cylinder, pressure, poorer combustion performance and the abundance 

of fuel-rich regions in the flame, as highlighted in the previous combustion analyses. 

7. Statistical analyses of the fuel spray images over 300 cycles showed that the fuel 

sprays for the 23°C, 10°C and -7°C operating conditions exhibited very similar 

structures with only marginal differences in penetration depth.  RMS analysis of the 

fuel spray images highlighted the tip of the spray plumes (that interact with the 

intake flow structures) as having the most variability during the injection process. 

This reiterated the important effect that the complex in-cylinder flow structures have 

on the transportation and vaporisation of the fuel spray. 

Chapter 6 – The Influence of Turbulent Flow Structures on DISI Engine Cold-Start 

8. When simulating a production engine cold start-up process, in cylinder peak 

pressures were shown to vary significantly across the five test points representing 

the first few seconds of the cold start-up. A variation of 12.8 bar in peak pressure and 

range of COV of peak pressure of 13.8% was observed, highlighting the key 

differences in chosen operating modes, each with a different objective to the 

engine’s operation. MFB times also showed a wide variation with up to a 50 °CA 

difference in burn time and 8.5% difference COV for the 90% MFB case. 



8.2 CONCLUSIONS 
 

200 
 

9. The effect of fuel pressure, which varied considerably during the cold start-up, was 

shown to have a prominent effect on both the in-cylinder pressure and flame data. A 

vast array of in-cylinder stoichiometry was observed, which likely had an effect on 

the subsequent engine emissions and emphasised the importance of pressurising the 

fuel rail in a short as time as possible during DISI engine cold-start. 

10. Combustion imaging data during the cold start-up correlated with the recorded in-

cylinder pressure, identifying an array of contrasting flame structures that behaved in 

very different ways depending on their parameter scheduling, fuel pressure and 

intake and flow conditions. The very first firing cycle at 140 rpm, for example, 

exhibited an in-cylinder pressure trace that was analogous to diesel combustion and 

the flame imaging data revealed a laminar flame front that took nearly four times as 

long to reach the cylinder walls. 

11. High-speed imaging of the combustion process during the cold start-up identified a 

number of soot formation regions in nearly all of the experimental test points and 

highlight the detrimental effect that cold start-up has on PN count emissions. 

12. In-cylinder HSPIV flow field analysis of the cold start-up process identified the critical 

flow structures and turbulence present that had an effect on fuel injection, 

transportation and mixing, as well as the subsequent combustion and emissions 

formation processes. Over the five test points, the mean peak valve jet velocities 

were shown to range from 2.0 m·s-1 to 70 m·s-1 due to the range in engine speed. 

Chapter 7 – The Effect of DISI Engine Cold-Start on Emissions 

13. The particulate emissions analysis highlighted a clear correlation between the size 

distribution and number concentration of particulates with operating temperature. 

The coldest -7°C condition exhibited a number concentration of 

3 x 108 dN/dlogDP/cm3
 over a wider lognormal distribution of particle sizes, compared 

to approximately 1.5 x 108 dN/dlogDP/cm3
 for the remaining temperature conditions. 

The presence of larger PM particles that were sized within the accumulation mode 

was also recorded for the -7°C condition. This correlation agreed with both the HC 

emissions data and the in-cylinder flame analysis, which identified fuel-rich regions in 

the flame and highlighted the dominant effect of cooling the engine down to -7°C. 
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14. At an engine operating temperature of 80°C, the independent effect of cooling the 

intake air to -7°C was shown to generated particulates that were 100 nm larger than 

using an intake air temperature of 23°C. This effect was previously observed in the 

flame and fuel spray imaging analyses as droplets of fuel that subsequently formed 

rich regions in the flame. 

15. The fast FID analysis identified the dominant sources of HC emissions within the 

cylinder during the exhaust stroke across the range of operating conditions. These 

were shown to be the crevice regions around the exhaust valves at the time of 

opening and the cylinder walls and piston ring pack as the piston moved towards 

TDC. HC emissions levels showed a strong correlation with engine operating 

temperature and also drew particular focus to the striking inconsistencies between 

individual exhaust cycle emissions, particularly at colder temperatures. 

8.3 RECOMMENDATIONS FOR FURTHER WORK 
The work presented in this thesis has led to a number of significant conclusions regarding an 

improved understanding of the cold-start combustion, injection and emissions processes of 

DISI engines. During the course of this investigation, several areas of further study were 

identified that would further improve knowledge within this area and further aid the reduction 

of PN emissions to meet the needs of stringent upcoming PN legislation: 

1. Chapter 6 investigated a production cold start-up process by simulated five test 

points across the process in steady-state. Although this held the benefit of allowing 

the collection of a large amount of continuous cycle data, it was not how the start-up 

process was intended to operate. Operating the engine in a fully transient manner, 

with an engine driven fuel pump and fully variable intake throttle would facilitate the 

ability to run an engine cold start-up from a stationary engine speed. This would 

enable the effect of residual fuel from cycle-to-cycle to be observed and allow a 

novel methodology of cold start-up strategy testing to be devised. Considerable 

infrastructure upgrades would be required to facilitate this capability, which would 

include an upgraded motor control system, a new fuel pump and common rail 

system and an electronic intake valve and ECU system.  
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2. The presented in-cylinder velocity flow field data captured high temporal resolution 

data over a large area of the cylinder plane using HSPIV at a rate of 1.5 kHz. This 

single-camera technique only allowed two components of velocity to be quantified in 

the desired plane, which limited the understanding of the highly complex three-

dimensional in-cylinder flow. Using high-speed stereoscopic PIV will facilitate the 

ability to quantify three components of velocity within the desired measurement 

area. This will enable a much more accurate understanding of the complex in-

cylinder flow and critically, the interaction with the fuel spray and combustion 

processes. This can help improve the understanding of the charge mixing process as 

well as how to aid charge mixing and minimise heterogeneity, particularly at low 

engine velocities during cold-start, which have a limited presence of turbulence flow 

structures. To enable the extra optical access required by two cameras imaging the 

same plane, modifications would be required to the cylinder head supports of the 

engine. 

 

3. Utilising laser-induced fluorescence (LIF) on the engine during cold-start conditions 

would vastly improve the understanding of charge homogeneity during the charge 

mixing process and help identify critical areas of improvement, especially during 

cold-start. A multi-component fuel and tracer would need to be selected that 

provides the best excitation signal for the test conditions used. QPLIF could be used, 

as was performed by Williams et al. (2008), but the extensive time in selecting a 

suitable tracer, doping levels and calibration will limit its effectiveness when 

compared to standard LIF measurements. 
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