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Abstract

To describe learning, as an alternative to a neural network recently dynamical systems
were introduced whose vector fields were plastic and self-organising. Such a system
automatically modifies its velocity vector field in response to the external stimuli. In
the simplest case under certain conditions its vector field develops into a gradient
of a multi-dimensional probability density distribution of the stimuli. We illustrate
with examples how such a system carries out categorisation, pattern recognition,
memorisation and forgetting without any supervision.

Crucially, such a plastic dynamical system remains a mathematical abstraction that
does not seem to describe any phenomenon or a system existing in the real world.
Here we explore various possibilities to implement the plastic dynamical system in
hardware. Since neural networks can be implemented in practice, we first apply
a neural network comprising N continuous-state neurons undergoing unsupervised
Hebbian learning in the attempt to approximate the simplest one-dimensional gradient
plastic system. Two coding methods are proposed to represent the one-dimensional
state of a plastic system by N neurons. It is shown with examples of numerically
generated input that at least with the coding methods used, this neural network does
not reproduce evolution of the plastic velocity field with sufficient accuracy.

We therefore consider another approach based on the fact that any polynomial
function can in practice be implemented in an electronic circuit. Within this approach
we approximate the probability density function of the input by polynomials with co-
efficients involving various moments of the input. It is shown that a one-dimensional
evolving plastic vector field can be approximated by derivatives of Legendre or Her-
mite polynomials with reasonably high accuracy.

This moment-based approximation method is then generalised to approximate
a two-dimensional plastic system. With two-dimensional Hermite polynomials, the
evolving plastic vector field can be approximated with satisfactory accuracy.

Key words: Nonlinear dynamics, Learning, Neural networks, Moment-based ap-
proximation
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CNN: Continuous-state nonlinear neural network

DS: Dynamical system

MBDA: Moment-based density approximation

NN: Neural network

PDF: Probability density function
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or plastic dynamical system
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Chapter 1

Introduction

Mathematicians and physicists have been working on creating artificial intelligent

devices reproducing some features and functions of the human brain for decades.

Artificial neural network (NN) is a popular paradigm and the basis of many modern

artificial intelligent devices. The physical and mathematical theory of NNs has been

developing rapidly since 1950s. During this period, NNs have been developing from

binary to linear and then to continuous nonlinear models of increasing complexity, and

from single-layer networks to multi-layer ones. The range of applications of NNs has

also broadened to encompass recognition, machine vision, prediction, language pro-

cessing, etc. To perform these tasks, the parameters of the NNs, such as the strengths

of inter-neuron connections or the excitability thresholds of individual neurons, are

controlled by certain pre-defined algorithms, which are known as learning algorithms.

For example, NNs applying supervised learning, in which target output and feedback

are provided for every input pattern from the training set, are capable of classifica-

tion and optimisation. Also, estimation of statistical distribution and filtering can

be achieved by unsupervised learning, which does not require supervision or target

output.

However, some natural features of NNs limit their capabilities. One feature is its
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rigid architecture. A NN can be regarded as a dynamical system (DS) which consists

of individual units (neurons) with rigid structure and flexible coupling between them.

In a NN, the only flexibility is provided by control of the strengths of connections, that

is, of the parameters of the system. We are not able to modify the whole structure

of the vector field freely by modifying only the connection strengths. This leads to

problems such as spurious attractors that do not correspond to any categories. Another

feature of a NN is its reliance on algorithms. Namely, the NN employs algorithms at

least at the stage of learning [35]. The most popular learning algorithm in a NN is

a supervised one, while unsupervised learning requires considerable complication of

the algorithms. This does not seem to agree with how biological NNs work, which

do not perform algorithms. Also, artificial NNs can store memories, but their storage

capacity is limited, so that some old memories may be destroyed while new memories

are formed in response to the new input.

Recently an alternative model of an artificial learning system was introduced

[42; 43]. This model can serve the same purposes as artificial NNs but without their

limitations such as the bounded phase space or a finite memory size. Mathematically

it is a DS, which shapes its velocity vector field in response to external stimuli auto-

matically according to some rule. In such a system the velocity vector fields is fully

plastic and self-organising and for brevity we call it a Plastic Dynamical System (PDS).

In the simple example introduced in [42; 43], the vector field converges to the gradient

of the probability density distribution of the input process, taken with negative sign.

Such a system represents a mathematical model that naturally learns without supervi-

sion and can perform pattern recognition, categorisation, memorisation and forgetting

simultaneously. However, at this stage, this model is only a mathematical concept.

Hence the purpose of this work is to explore the possibility to implement this abstract

model in practice to make it possible to eventually develop an intelligent device of a

new type.
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In Chapter 2, we provide the background knowledge related to this work, including

some historical remarks on neuroscience and some basic concepts associated with

artificial NNs. The structure and learning algorithms of NNs are introduced, followed

by the discussion of their limitations. Finally, the motivation for this work is explained.

In Chapter 3, it is reminded about the concept of a system with plastic self-

organising velocity field. The simplest form of a one-dimensional PDS is illustrated

by examples of numerically generated random input data to demonstrate how such

DSs self-organise their velocity vector fields and perform categorisation and pattern

recognition without any supervision. The advantages of such systems as compared to

models of NNs are discussed.

To implement the PDS, one possible way is to represent its velocity field in terms

of some well defined analytical functions, which can be implemented in electronic

circuits. Two approaches are considered. One is by means of a conventional model of

a NN, which is also a DS that modifies its velocity field in response to stimuli by means

of adjusting its inter-neuron couplings. In Chapter 4, a NN consisting of continuous-

state neurons is trained using the conventional unsupervised Hebbian learning with

the same sequence of one-dimensional input stimuli as the one given to the PDS

whose performance we are trying to imitate. In order to compare the performance

of the ”ideal” PDS, whose phase space is unbounded with the one of the NN with a

fundamentally bounded phases space, we need to find a way to represent the state

of the former by the state of the latter. The question about memory representation in

biological NNs remains open so we developed two methods by which a NN could

code the state of a system with an unbounded phase space. The plastic vector field is

approximated by NN with both coding methods.

Given that the vector field of the simplest perfectly PDS converges to some ap-

proximation of the gradient of the probability density distribution of the input, taken

with negative sign, we consider another way to implement such a system in hardware,
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that is, to approximate its vector field by a series of polynomials, whose coefficients

would involve the moments of the input. The advantage of this approach as compared

to NNs would consist in not needing to code the state in an unbounded space by

the state in a bounded one. In Chapter 5, to start with, we explore the possibility to

use this approach in order to reproduce the evolution of a plastic velocity field of a

one-dimensional DS. The one-dimensional probability density function of the input

is approximated by Legendre and Hermite polynomials, respectively. We show that

with either polynomial, this method can approximate the plastic velocity vector field

with acceptable error. We also demonstrate the analytical calculations and numerical

simulations of the error.

In Chapter 6, we extend the approach developed in Chapter 5 for a one-dimensional

PDS to a multi-dimensional one. Although all analytical expressions obtained here

can be derived for a general multi-dimensional case, we illustrate this method for

two-dimensional PDS for clarity. Specially, we approximate the vector field of the two-

dimensional plastic system by Hermite polynomials, which is usually called Gram-

Charlier series in multi-dimensional case. The evolving joint probability density dis-

tribution of two correlated random variables is approximated by Gram-Charlier series

and by the PDS, respectively. We demonstrate how the quality of this approximation

depends on the parameters of the series used, and obtain an analytical estimate of the

approximation error for a general case.

In Chapter 7, we draw some main conclusions of this work. Namely, it seems

that the idea of using polynomials with evolving parameters, that are determined by

various statistical characteristics of the input received earlier, is promising for the pur-

pose of implemental plastic velocity fields. In this respect, polynomial approximations

seem to have more potential than the conventional artificial NNs with a rigid structure

of each neuron and of each inter-neuron connections, in which flexibility is limited to

only the values of couplings.



Chapter 2

Background

This Chapter gives a general introduction to the evolution of our understanding of

the brain and some historical remarks about the artificial NNs. Some basic concepts

in biological and artificial NNs are introduced. The advantages and limitations of

artificial NNs are discussed and thereafter the motivation for this work is described in

detail.
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2.1 Historical background of neuroscience

2.1.1 Understanding of the brain based on natural philosophy

The mystery of the brain has been attracting people since the ancient Egypt. The

first written reference to the word ”brain” was found in the Edwin Smith Surgical

Papyrus, which was an ancient paper-like document written by an ancient Egyptian

around 1700 BC [27]. By the middle of the fifth century BC, a Greek medical scientist

Alcmaeon first described sensory nerves and concluded that the brain is the seat of

sensation and cognition [49]. Brain’s controlling role in sensation and intelligence was

also appreciated by the Greek physician, Father of Western Medicine, Hippocrates, and

by the famous Greek philosopher Plato [27]. However, the brain was not always held

in high regard. Plato’s student, an ancient Greek philosopher and a biologist Aristotle,

believed that heart controls mental activity, while the brain was cold and bloodless

and therefore without sensation [52]. In the second century, the Greek physician and

philosopher Galen described the anatomy of the brain accurately and in detail, and

confirmed by systematic experiments that sensation and motion are controlled by the

brain through the nerves [59].

The discovery of the neuron

Due to the development of the surgery techniques in anatomy and physiology, sci-

entists were able to conduct some groundbreaking research from the 1700s onward.

In the middle of the 19th century, the idea of a German histologist Gerlach that the

brain and the nervous system could not be split up into distinct structural units gained

popularity. These ideas were rejected in 1887 by a Spanish neuroanatomist Cajal

who improved the Italian physician Goldi’s experiments to investigate nervous tis-

sue and showed that the nervous system was made up of what he called ”absolutely

autonomous units” [46]. Soon afterwards in 1891, a German anatomist Waldeyer com-
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bined Cajal’s research with some previous findings in cell theory to form the neuron

doctrine: the nervous system is composed of individual units, which were named

”neurons” [67]. Each neuron comprises the cell body, the axon and the dendrites to

transmit signals between neurons as will be further explained in Section 2.2.1. Early

in the 20th century, it was already understood that neurons have an electrical poten-

tial across their membrane, and the signal transmission along the synapse occurs by

a propagated electrical pulse. These findings provided the fundamental theory of

neuroscience.

2.1.2 Interdisciplinary studies of the brain in the 19th century

In the 19th century, the study of the brain became an interdisciplinary field. Famous

scientists in physics, such as Helmholtz, Maxwell and Mach, made significant contri-

butions to the understandings of vision [32]. German Physicist Helmholtz measured

the velocity of electrical signals in nerve axons and provided empirical theories on

colour vision, visual perception and the sensation of a tone [9]. However, mathematics

of the 19th century was not developed sufficiently to help understand these phenom-

ena. The mismatch between a relatively advanced experimental physics and the state

of mathematical theories underlied the crisis in the attempts to understand the brain.

Meanwhile, a schism between physics and psychology occurred towards the end of the

19th century [32]: theoretical physicists and psychologists abandoned the knowledge

of the other field and there was a barrier between theories and experiments. Despite

all these difficulties, relevant theories of the brain were still developing during the 19th

century. In 1890, an American psychologist James described the functions of different

parts of the brain and offered a physiological explanation for how the brain develops

habits [27]. This provided an idea of how the brain learns.
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2.1.3 Development of artificial neural networks

In the middle of the 20th century, the work of Helmholtz has been re-evaluated, and

researchers started to utilize the approaches from theoretical physics and mathemat-

ics to describe cognitive phenomena. At the same time, improvements in electronic

techniques gave rise to the hopes to reproduce the key functions of the brain in ma-

chines. With the assistance of digital computers, scientists started to model the brain

and gradually built the field of artificial intelligence. While some work considers

biologically relevant models, much work in this area has been focused on the funda-

mental mechanisms of cognition rather than on biological details. Specifically, it was

well appreciated that in biological brains learning is accompanied by the creation and

destruction of inter-neuron connections, and by modification of their strengths. With

this, modelling of a NN involves two stages: formulating models of individual neu-

rons and of couplings between them, and mathematically specifying rules according

to which these couplings evolve while the network is learning, i.e. the training rules.

Each of these stages is discussed below.

Development of models of network units and connections

A highly simplified model of a discrete-time binary-state neuron constructed by Mc-

Culloch and Pitts in 1943 [53] opened the modern era of NNs. In the McCulloch-Pitts

model, each neuron has two states characterised by either 1 (”firing”) or 0 (”not fir-

ing”) in response to whether the weighted sum of the input signals received from other

neurons is above (firing) or below (not firing) some threshold value. The strength of

a synaptic connection from one neuron to another is modelled as a factor (called

”weights”) by which the input from one neuron is multiplied before it is applied to

the other neuron. This model has made a seminal contribution to the development of

artificial NNs. McCulloch and Pitts proved that it is possible in principle to perform

any universal computation that an ordinary digital computer can, by assembling neu-
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rons into a network with a certain architecture with suitably chosen weights [35]. It is

noteworthy that von Neumann’s idea of construction of EDVAC (Electronic Discrete

Variable Automatic Computer) was derived from the McCulloch-Pitts neural elements

[7], and was later developed to build the digital computer.

In 1958, a new approach to the NNs was introduced by Rosenblatt. He designed and

developed the perceptron, which was constructed according to biological principles

and displayed the ability to learn [63]. A perceptron consists of three layers: an input

layer, a middle layer and an output layer, with each layer fully connected to the next one

uni-directionally. The perceptron was thought to be a great improvement as compared

to McCulloch-Pitts model and made it possible to produce a machine. However, in

1969, Minsky and Papert highlighted the limitations of the perception with one middle

layer, that it could not be trained to recognise a certain type of functions, those which

are not linearly separable, i.e. those which cannot be separated by a single line on

the plane in the space of all possible patterns (e.g. XOR, i.e. exclusive-or, problem)

[57]. It was in 1980s when more powerful learning rules have been developed and

extensions of the perceptron architecture were proposed, being multilayer networks

with additional layers of neurons and connections that could be trained without such

limitations [65]. Multilayer networks are now widely used models in various research

domains. However, the monograph of Minsky and Papert at that time discouraged

not only researchers working on perceptron, but also agencies supporting their work.

As a result, very little improvement was done in the area throughout the 1970s.

In 1988, Broomhead and Lowe introduced radial basis functions (RBF) to design a

NN [13]. The RBF network provides an alternative approach to multilayer perceptrons.

It is composed of three layers: an input layer (sensory units), a high-dimensional

hidden layer, in which the input is transformed by nonlinear basis functions, which are

radially symmetric, and an output layer comprising linear combinations of responses

from the hidden layer nodes [33].
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On the other hand, researchers who pursued to model NNs with continuous-state

dynamics made some significant achievements in reproducing cognitive abilities. To

describe the continuous features of neural dynamics, some models applied the con-

cepts from linear systems theory. One such system, named Adaline (Adaptive linear

element), was developed in 1960 by Widrow and Hoff [75] and later in 1962 Widrow

developed it into Madaline (multiple-adaline), which is a NN with multiple adaptive

elements [74]. The Adaline model was an adaptive pattern recognition machine, which

employed the Least-Mean-Squares learning rule. From then on, researchers began to

describe their intuitions within a mathematically familiar engineering framework and

to progressively represent more nonlinear interactions, being inspired by biological

findings.

Continuous-state nonlinear networks (CNN) are closer to biological NNs than

their discrete-state versions. One classical continuous-state model arose from the

investigations of the spiking behaviour of neurons. The original experiments and the

model were produced by Hodgkin and Huxley in 1952 [38]. But the model equations

were quite complicated and not easily amenable to mathematical analysis. In 1961,

Fitzhugh and Nagumo simplified this model so that the dynamics of the system could

be analysed [21; 58]. However, this kind of models focused on individual neurons

rather than on networks of neurons.

Instead of studying the neural mechanism itself, Grossberg (1967, 1968) proposed

another CNN, named additive model, which assumed the adaptive behaviour of

individual neurons. Namely, this model described how an individual neuron adapts

to the evolving environmental influence in real time [28; 29; 30; 31]. His model has the

form of an ordinary differential equation, in which the rate of change of the neuron

state is determined by passive decay, the sum of the feedback from the other neurons,

and the external input. Each feedback is the product of a state-dependent nonlinear

signal and a connection weight. This model is a cornerstone of NN research and has
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been implemented in various applications, including computational analysis in vision,

pattern recognition and associative pattern learning [32].

At the same time, mathematical analysis in order to find under what conditions

the network could produce associative content-addressable memory was performed in

[29; 30]. In the language of dynamical systems theory, to produce content-addressable

memory in NNs, a certain stored pattern should be represented as an attractor, which

should form in response to a sustained input pattern. One approach introduced to

such analysis of NNs in 1970s is to construct a global Lyapunov function, also called

energy function of the NN [32]. An important property of an energy function is that

it always decreases (or remains constant) as the system gradually evolves towards the

attractor. In 1982, Hopfield introduced an associative memory model with binary-

state neurons which were learning without supervision using Hebbian learning rules

inspired by a famous hypothesis of Donald Hebb that neurons which fire together wire

together [39]. This model and its various generalizations are usually called Hopfield

models. In addition, Hopfield used an energy function to explain the behaviour of this

network. Although the origin of Hopfield’s work may be traced back to the earlier

work of some other researchers, Hopfield’s influential paper for the first time brought

them together and explicitly stated the principle of storing information as dynamical

attractors. In 1984, Hopfield introduced another associative memory model with

continuous-state neurons, which can be seen as one application of Grossberg’s additive

model [32; 41]. Through Hopfield’s papers, this class of NNs attracted more attention

in the 1980s. Cohen and Grossberg then described a general model for which a global

energy function had been explicitly constructed in 1983 and included Hopfield’s energy

function as a special case [15]. In 1984, Hopfield constructed another form of energy

function for a simpler version of the former continuous nonlinear model produced by

Cohen and Grossberg [41]. Hopfield’s energy function gained popularity and led to

an important breakthrough in computational neuroscience.
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Development of learning algorithms

In addition to the achievements in neural modelling, the research in learning algo-

rithms of NNs also made a considerable progress in the 20th century. In 1949, Hebb

first presented an explicit statement of a hypothesised physiological learning rule for

synaptic modification [34]. This gave birth to the theory of synaptic plasticity that

enables the strength of connections between neurons to change in response to inputs

[66]. In Hebbian learning, the synaptic coupling between two neurons is strength-

ened when both of them are active. Hebb’s book ”The Organization of Behavior”

inspired the development of computational models of learning and adaptive systems.

In 1956, Rochester, Holland et al, tested Hebb’s postulate of learning in a computer

simulation and suggested to add inhibition to the theory [62]. In the same year, Uttley

demonstrated that a NN with adjustable connections can learn to do classification of

simple binary patterns [70]. In 1979, Uttley proposed a hypothesis that the strength

of a connection depends on the statistical relationship between the changing states of

neurons on either side of that connection [71]. Hebbian learning algorithm nowadays

is still a widely used unsupervised learning rule, which requires no learning goal and

no feedback from the environment.

In 1989, Zak proposed a new concept for unsupervised learning in continuous-

state NNs in which each input pattern is considered as an interpolation node of the

velocity vector field of the DS describing the NN [77; 79]. The connection strengths

are being modified in response to stimuli in such a way that the resultant velocity

field is intended to develop attractors that would represent categories of input signals.

However, no demonstration of the workability of this approach has been provided

with sufficiently complex realistic examples. In [78] Zak proposed to link dynamical

systems in the form of a system of ODEs with an equation describing evolution of the

PDF and called them self-supervised DSs. However, such systems are not associated

with the traditional learning goals posed before artificial intelligent devices. In [78]
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Zak introduced an idea of ”smart” particles interacting with information flows in such

a manner that the velocity field of the dynamical system describing their collective

motion in the physical space was coupled with an equation describing the evolution

of the PDF.

Another type of learning is supervised learning, in which target output and feed-

back are required. In 1960, based on his idea of a nonlinear adaptive filter, Gabor

invented a machine which could be trained by being presented examples from various

categories, and also inform about these categories, i.e. by showing how to match input

patterns with the required outputs using a set of training examples [25]. In addition,

in 1983, Barto, Sutton and Anderson introduced reinforcement learning and its appli-

cation [8]. Reinforcement learning is a special type of supervised learning, in which

the only feedback given to the system is whether the output is correct or incorrect, and

it was first considered by Minsky in 1954 [56].

To date, the most widely used tool in supervised learning is backpropagation which

was developed and applied in practice by Werbos in 1974 [73]. In 1985 and 1986, Parker

and Le Cun discovered the backpropagation learning algorithm for multilayer percep-

trons [17; 60]. This method to train a NN was widely known after Rumelhart, Hinton

and Williams published their paper in the book ”Parallel Distributed Processing” in

1986, which played a vital role in the development of this field [64]. In this method,

the connection weights are carefully chosen to minimize a loss function calculated by

subtracting of the actual output from the desired output for each input value. If the

training is completed correctly, the actual output should be close to the target.
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2.2 Artificial neural networks

An artificial NN is a highly simplified mathematical model of biological memory. It

comprises a large number of interconnected units, called neurons. Artificial NNs

learn from examples by adjusting the strength of the connections, called connection

weights. In this Section, we will recall a basic model of a continuous-state neuron

and a continuous-state NN, which is closer to biological NNs than their discrete-state

versions. The models of learning algorithms are also illustrated at the end of the

Section.

2.2.1 Biological neurons and artificial neurons

To study the collective behaviour of a NN, one first needs some basic understanding

of the structure of a single neuron.

Biological neurons

There are about 1011 neurons of many types in a human brain [35]. Fig. 2.1 shows

a schematic diagram of a typical single neuron. Connected to the neuron cell body

(soma) depicted as a shaded circle, there are some tree-like structures of nerve fibers,

called dendrites. A single long and thick fiber called axon extends from the cell body

and eventually branches into strands, which terminate at the transmitting ends of the

synaptic junctions, or synapses, to other neurons.

To transmit a signal, one cell releases specific transmitter substances from the

sending side of the synaptic junction [35]. In response to this, the electrical potential

inside the body of the receiving cell will either decrease or increase, depending on

whether the sender neuron is inhibitory or excitatory. If this potential reaches a

threshold, the cell ”fires” by sending a spike or action potentials of fixed strength and

duration down the axon. The spike then branches out to synaptic junctions to other
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Figure 2.1: Schematic diagram of a biological neuron [35].

neurons. After firing, the cell has to wait during the time period called the refractory

period before it can fire again. This signal transmission between neurons through

synapses is a complex chemical process.

Artificial neurons

An artificial neuron is a highly simplified reconstruction of a biological neuron. A

neuron number i is usually described as an input-output device with many inputs

received from other neurons in the network (i.e. outputs of the other neurons) and one

output, denoted by vi as illustrated in Fig. 2.2. The output vi is a function of its net

input ui, called activation function [35]:

vi = si(ui) = si(
∑

wi jv j), (2.1)

where wi j is the strength of connection between neuron i and neuron j defined as

wi j


> 0 excitatory synapse;

< 0 inhibitory synapse;

= 0 no synapse.

(2.2)
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Figure 2.2: A simple artificial neuron.

The activation function si can be different for different neurons but in most NNs every

neuron has the same activation function, denoted by s.

In a discrete-state NN, vi can only be −1 (not firing) or 1 (firing) and the activation

function is the unit step function

s(x) =


1 if x ≥ 0;

− 1 otherwise.
(2.3)

In a continuous-state NN, vi can take any value in the rage [−1, 1] and the activation

function is a continuous and monotonically increasing function, typically a sigmoid

function, such as the one given below

s(x) =
2

1 + exp(−4x)
− 1, (2.4)

which asymptotically tends to 1 or −1 as x tends to a positive infinity or a negative

infinity, respectively.

Sometimes it might be desirable to have vi and s take value either 0 or 1 in the

discrete-state NN or range from 0 to 1 in the continuous-state NN.
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2.2.2 Continuous-state neural network

Continuous-state nonlinear networks (CNNs) are closer to biological NNs than the

discrete-state NNs. One famous and widespread model of this type is Hopfield model,

although Hopfield was not the first researcher proposing such models. In a CNN all

neurons update their states continuously and simultaneously. The evolution of the

neuron state can be represented by a set of differential equations [16; 41]:

ai
dui

dt
= −ui +

N∑
j=1

wi js(u j) + Ii, (2.5)

where N is the number of the neurons in the network, ai is the time constant, and Ii is

external input to the i-th neuron.

Equation (2.5) includes a term of passive decay −ui, feedback from other neurons∑N
j=1 wi js(u j) and external input Ii. The feedback is a weighted sum of outputs of the

other neurons.

2.2.3 Content-addressable memory and energy function

Hopfield [39; 40] and Hinton [37] demonstrated that a system of highly interconnected

neurons is capable of classification, generalization, error correction, etc. These collec-

tive computational properties are only weakly sensitive to errors in the input pattern.

A content-addressable memory (or associative memory) created by such networks

enables a retrieval of a specific memory (stored pattern) when prompted by an input

pattern which has some similarity, but not identical to it.

A content-addressable memory can be quite powerful. For example, suppose we

store coded information about many famous writers and their literature works in a

network, such as an item ”Charlotte Bronte (1847), Jane Eyre”. A general content-

addressable memory would be capable of retrieving this entire memory based on

sufficient partial information. The starting pattern ”Charlotte (1847)” might be suffi-
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cient to recall this masterpiece, despite the error in the input pattern, such as ”Sharlotte

(1847)”. Note that unless we invent a pattern that is not stored in memory, the network

will always retrieve some pattern from the clue provided and the network will pick

the best match from the set of stored patterns rather than retrieve a linear combination

of them [35].

In the phase space of a CNN, a typical or average member of a certain class of

patterns is represented as an attractor and all possible members of the same class as

points in its basin of attraction. The property of a content-addressable memory can

be interpreted mathematically as follows: a NN always evolves to an attractor after

being presented with an arbitrary input pattern as the initial state, i.e., the solution

of system (2.5) always settles down to one of its attractors. This process is known as

pattern recognition. And therefore such NNs are usually called attractor NNs.

Hopfield showed that the system can produce content-addressable memory, with

symmetric synapses wi j’s, i.e. wi j = w ji [41]. This feature is shown by constructing an

energy function E(v1, v2, ..., vN), where N is the network size, also called a Lyapunov

function, which always decreases (or remains constant) as the system evolves according

to its dynamic rule.

One appropriate energy function is [41]

E(v1, v2, ..., vN) = −
1
2

∑
i

∑
j

wi jviv j +
∑

i

∫ vi

0
s−1(v)dv −

∑
i

Iivi, (2.6)

where the matrix of connection weights w is symmetric, i.e. wi j = w ji. Here s−1(x) is

the inverse function of s and s is a monotonically increasing function taking values

from −1 to 1, typically a sigmoid function.

The self-coupling terms wii may actually be omitted altogether from the energy

function. They make no appreciable difference to the stability of the patterns when N

is large [35], but they do affect the dynamics, so Kanter and Sopolinsky suggested to
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omit them [47]. Therefore in the following, we define wii = 0 for all neurons.

One can prove that E is monotonically decreasing as the system evolves by taking

its time derivative for a symmetric w:

dE
dt

= −
∑

i

dvi

dt

(∑
i, j

wi jv j − ui + Ii

)
= −

∑
i

ai

(dvi

dt

)(dui

dt

)
= −

∑
i

ai
ds−1(vi)

dvi

(dvi

dt

)2

(2.7)

as the terms inside the parentheses in the first line represent the right-hand side of Eq.

(2.5).

Since s−1(vi) is a monotonically increasing function and ai is positive, each term in

this sum is nonnegative. Therefore,

dE
dt
≤ 0, and

dE
dt

= 0 ⇒
dvi

dt
= 0 for all i. (2.8)

Thus the change ∆E is negative under the algorithm, i.e., E is a monotonically decreas-

ing function. The state of the CNN keeps changing until it reaches a local minimum of

E. Given the boundedness of E, evolution of the state of the CNN must lead to one of

the stable states. Hence the attractors (memorized patterns) of the system correspond

to the local minima of this energy landscape. Importantly, these attractors are fixed

points and cannot be limit cycles or any other more complex attractors, since other-

wise there would have been an oscillations of energy values, which would imply the

possibility of its increase at some stages.

The concept of energy function is widely used in many fields where there is a state

function that is monotonically decreasing during dynamical evolution, or that must be

minimized to find a stable or an optimum state. Similarly, when the function increases

or must be maximized, the convention is reversed.
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2.2.4 Learning

Before the NN can start recognising patterns correctly, it should learn by receiving

an appropriate training. When input patterns are presented to the NN, the network

memorises this information or adjusts its connection weights according to some algo-

rithm. Learning in algorithm-based devices can be generally divided into supervised

learning and unsupervised learning. The type of learning is determined by the manner

in which the connection weights change [36].

Supervised learning

In a supervised learning environment, a teacher is required to specify the desired

output for every input pattern from the training set. Learning is done by comparing

the actual output of the network with the known answer and adjusting the values of

wi j based on the error calculated [35]. This method is also known as error-correction

learning [33]. Backpropagation method is another form of supervised learning [33].

Reinforcement learning is sometimes similar to supervised learning, but the only

feedback from the teacher is not what the correct answer is, but whether the output is

correct or incorrect. This learning method is widely used in optimal control problems

[35].

Unsupervised learning

In unsupervised learning, there is no target output or feedback. The network must

discover categories and regulations in the input patterns without any supervision [35].

The oldest and most famous unsupervised learning is Hebbian learning.

On-line and off-line learning

Another way to classify the learning methods is based on their ability to work on-

line or off-line. In off-line learning, learning phase and operation phase are distinct.
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In on-line learning, the NN learns and operates at the same time, in other words, it

can categories and recognises the input patterns simultaneously. Usually, supervised

learning is off-line, whereas unsupervised learning is typically on-line [51].

Here we demonstrate Hebbian learning to illustrate how to train a NN by a set of

examples through a learning algorithm.

Hebbian learning

Hebbian learning is a widely used unsupervised learning method. In the Hebbian

synaptic modification hypothesis, the change in the synaptic strength is proportional

to the correlation between the pre- and postsynaptic signals [50]. The strength wi j of

a connection depends on time and is adjusted according to a set of equations which

involve the neuronal activity.

Hebbian learning in a CNN can be described by [19]

dwi j

dt
= ε(−wi j + s(ui)s(u j)), (2.9)

where ε is the learning rate constant. A decay term −wi j is introduced in Eq. (2.9)

to prevent the weights from diverging. Note that the Hebbian prescription (2.9)

automatically yields wi j = w ji, which means that energy function can be introduced in

a NN using Hebbian learning.

Hebbian learning is an interactive mechanism [33]. The rate of change of con-

nection wi j depends on an interaction between the neuron i and j on either side of

the connection. Also, the synaptic modification is produced by the co-occurrence of

activities of both neuron i and neuron j.

Here we show an example illustrating a CNN undergoing Hebbian learning, which

was originally obtained by Dong and Hopfield [19]. The dynamics of both the mod-

ification of connection weights wi j and the recall of memories are combined in the
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following set of the dynamic equations

ai
dui

dt
= −ui + β

N∑
j=1

wi js(u j) + αIi, (2.10)

dwi j

dt
= ε(s(ui)s(u j) − wi j), (2.11)

where s is the sigmoid function given by Eq. (2.4). In this NN, two scale constants α

and β are introduced before the external input Ii and the feedback from other neurons

respectively. Therefore, when α > β, the external input is stronger than the sum

of signals coming through the interconnections, and the neural activities are largely

determined by the current Ii.

A CNN of 81 neurons taking the form of Eq. (2.10) is trained according to Eq.

(2.11) after being presented with 6 input signals Ik = (Ik
1, Ik

2, · · · , Ik
81), k = 1, · · · , 6.

The values Ik
i are randomly chosen binary numbers. To generate the values Ik

i , we first

generate 6 random vectors xk = (xk
1, xk

2, · · · , xk
81), k = 1, · · · , 6, whose components xk

i

are uniformly distributed random numbers, ranging from −10 to 10. Then we obtain

Ik
i by taking

Ik
i =


1 if xk

i ≥ 0,

− 1 if xk
i < 0.

(2.12)

A sequence of input patterns, obtained by looping these input vectors Ik for a certain

times, is then presented to the network. The learning parameters are β = 0.3, ε = 1/300.

Evolution of the strengths of connections to/from neuron 1 is illustrated in Fig. 2.3.

When α is large, e.g. α = 30, the connection weights wi j’s tend to 7 different values

(shown in Fig. 2.3(a)), which correspond to the values of an average over 6 patterns

of the outer product of input patterns, i.e. wi j = 1
6
∑6

k=1 Ik
i Ik

j . All 6 of the input patterns

are stored in the network [19]. But when we take the same parameters, but a smaller
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Figure 2.3: Evolution of the connection strengths according to Eq. (2.11) in the course
of Hebbian learning.

value of α, α = 3.0, which means the connections become dominating, the network

selects only one input pattern to memorise.
This example illustrates the process of learning in the NN. As shown in Fig. 2.3, the

connections between neurons are very weak at the beginning, thus the internal input

terms wi js(u j) contribute much less to the change of connections than the external input

patterns Ii. Note that in the beginning of the learning process, the connection weights

in Fig. 2.3(b) are the same as in Fig. 2.3(a), and before t ≈ 800, there are 6 attractors in

the energy landscape with shallow and small basins representing the stored patterns

as required. However, at a smaller value of α, the interconnections influence the neural

activities stronger than the external input, and the contribution from the input patterns

Ii becomes small in comparison and can be ignored. In this case, the connections tend to

either +1, or −1, or 0, and the network chooses to remember only one pattern [19]. The

stability of the respective attractor makes the network ignore other incoming patterns

unless they are very strong.

This example also demonstrates the restricted storage capacity in NNs. The net-

work finds it difficult to learn any other patterns once it has selected a pattern to store,

unless the input pattern is strong enough to lead the network. This will be discussed

in the next Section.
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2.2.5 Storage capacity of a neural network

Networks that can create associative content-addressable memories are designed to

be able to recall a previously learnt pattern when given an example pattern that

is similar to one of the stored patterns. This property is inherent in CNNs and is

implemented through the synaptic plasticity in which connections are being changed

in response to input according to certain rules. However, Amit and Fusi showed

that this mechanism does not achieve long-lasting memory storage and is inefficient

for many types of memory, such as memorising patterns of mean spike rates [22],

memory of an uninterrupted flow of uncorrelated stimuli [3] and memory generated

by Hebbian learning with low rate of presentation of patterns [2]. Therefore, CNNs

possess fundamental limitations such as bounded storage capacity and memories that

are short-lived. Storage capacity is the maximum number of patterns that can be stored

in a network of the given size. It influences both the efficiency of information storage,

and the time of information processing.

The main reason for the limited storage capacity is that the old memories created

by a suitable choice of connections are destroyed when these connections change

to form new memories [23; 24]. Connections retaining one stored pattern can be

overwritten when some of them are used by the new memory. There is evidence

available from neurobiology that in biological NNs old memories are destroyed by the

ongoing neural activity and the acquisition of new memories, rather than simply due

to their passive decay with time. Specifically, in [23; 24] evidence is provided from

models, experiments and psychophysical studies. Therefore, protecting the stored

memories from being corrupted by ongoing modifications of connections is the main

challenge in modelling long-lasting memory with new memories being continually

generated.

Storage capacities of NNs were estimated analytically in a series of papers [1; 2; 4;

5; 6]. One of such estimates is based on the mean field analysis of a stochastic neural
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network, in which some function describing the given neuron depends on a random

signal, as described in [35].

There are several different expressions for the memory capacity, depending on the

criterion imposed on the acceptable error in memory retrieval. In a CNN of N neurons,

each pattern is coded as an N-dimensional vector, i.e. each pattern comprises N tuples

of real numbers. If p stored patterns are chosen randomly, the storage capacity of the

network is the maximum value of p such that p original memories can be recalled with

a certain level of error. If we accept that every component of the vector representing

the given stored pattern is recovered correctly with probability 99%, the capacity is

p = 0.138N and this is known as relative capacity [6]. Another expression of capacity

is based on the assumption that most of the memories are recovered perfectly, that

is, if we get all N dimensions of one pattern right with 99% probability, then p can

be no more than N/(2 ln N) asymptotically as N approaches infinity [54; 72]. If we

add a restriction that all the p patterns can be recalled exactly, which requires correct

recovery of Np tuples with 99% probability, the capacity p becomes N/(4 ln N) [54]. A

capacity suggesting that all memories are recoverable without unacceptable errors is

called absolute capacity [68].

Now we can see that the storage capacity is proportional to the number of neurons

N, if a finite number exceptional memories are allowed. If we require that most of the

patterns stored can be recovered exactly, the capacity is proportional to N/(ln N). This

implies that in order to store more patterns, a larger network is required.
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2.3 Motivation for this work

However, NNs have well-documented limitations, such as finite memory capacity

and inability to retain old memories when the new ones are created. Note that the

fundamental feature of a NN is the fact that the architecture of its individual units is

rigid, and flexibility is present only in connections.

Low storage capacity of CNNs can be understood in terms of DS theory. If every

neuron of the NN is described by one or several differential equations, i.e. as a DS,

the network of coupled neurons becomes a high-dimensional continuous-time DS, in

which connection strengths play the role of control parameters. By changing one or

several parameters of a DS, one alters the structure of the whole velocity field. If a

certain local modification of the field occurs as desired, e.g. to form an attractor, the

shape of the field in other parts of the phase space can occur uncontrollably and make

some other attractors disappear. Such DSs are inflexible in the sense that there is an

upper limit on the number of attractors that can coexist in their phase space. When

a new attractor is created by changing some parameters of the system, some of the

old attractors will disappear. To have more attractors in the system, the nature of the

functions describing the dynamics has to change, which means that the structure of

every neuron has to change. This is impossible because each neuron is constructed

with a fixed architecture, which determines the velocity vector field of the whole CNN.

On the other hand, the inflexibility of a NN leads to the problem of spurious attrac-

tors, which are attractors that do not correspond to any stored memories, or categories

[35]. They tend to have rather small basins of attraction as compared to those of the

stored patterns, but from suitable initial condition the network evolves towards one

of these attractors which represent no meaningful category. These spurious attractors

affect pattern recognition, but are created unavoidably.

To overcome these limitations of NNs, Janson and Marsden proposed an alterna-
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tive approach to model memory formation [42; 43]: a DS with plastic self-organising

velocity field or a self-shaping DS. For brevity, in this dissertation we will call such

system plastic DS (PDS). In [42; 43] a simple model was introduced that described

memory formation and spontaneous categorization of incoming patterns occurring

without supervision and online. This is achieved by assuming that the whole velocity

field of the DS is fully flexible and can be affected by the external stimuli directly rather

than through modification of some control parameters. In a simple PDS of a gradient

type, in response to the incoming stream of patterns, the vector field converges to the

probability density distribution of the input process, taken with negative sign. This

model will be discussed in Chapter 3.

At this stage, a PDS is a mathematical abstraction. Namely, the velocity field of

even the simplest gradient PDS is a function that evolves and can develop any number

of maxima or minima inside any bounded area of the phase space. Moreover, new

minima are formed in such a manner that the ones formed earlier are not affected.

There are no analytic functions possessing such features, and one cannot achieve the

same effect by taking a DS with a velocity field described by some analytic function

and modifying its parameters. Our goal is to explore the possibility to implement a

conceptual idea of a PDS in practice. One possibility is electronic circuits, which can

implement analytic functions. Specifically, we will try to approximate the evolving

velocity field by series of evolving analytic functions in a number of ways. If our

approach is successful, it will pave the way to constructing PDS based on electronic

devices.



Chapter 3

Dynamical systems with plastic

self-organising velocity fields

Recently, Janson and Marsden [42; 43] proposed a new mathematical approach to

describe artificial learning systems by introducing a new type of DSs, which automat-

ically modify their velocity vector fields in response to external stimuli. In a simple

example of a gradient PDS subjected to a time-dependent stimulus arising from a

stationary and ergodic input random process, the vector field tends to the gradient of

the negative of the probability density distribution of the input process. Such systems

can automatically create categories from the stimuli and recognize familiar patterns at

the same time, that constitutes the online unsupervised learning. In the phase space

of such a PDS, a single pattern is represented by a single point, the most probable

patterns by the minima of energy landscape, and the categories of patterns by the

basins of attraction. With this, attractors and basins are formed automatically at the

right locations.
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3.1 Simple plastic dynamical system (PDS)

The simplest PDS is derived from a conceptual analogy that our memory works like

a memory foam, as found in some bed mattresses. This foam pits when you press

against it but slowly returns to the initial shape after the pressure is removed.

In the text of [51] evolution of the auxiliary function was analysed rather than the

one of the actual landscape of the gradient PDS. Here we derive the same PDS model

in a slightly different way and focus on the analysis of the evolution of the actual

landscape function.

As mentioned in Section 2.2.3, the energy function of a NN provides a convenient

framework that allows one to describe the formation and retrieval of memories. Sim-

ilarly in this model, the shape of this memory foam is described by a certain energy

function V. The simplest PDS is the gradient system, which describes the behaviour

of a massless particle placed in the landscape V,

dx
dt

= −
∂V(x, t)
∂x

, (3.1)

where x represents the location in the N-dimensional space that represents a certain

pattern. The particle goes to the nearest minimum at the rate which is equal to the

negative of the gradient of the landscape. Note that the energy function V is being

continually reshaped by the incoming stimuli, i.e. evolves in time t. Equation (3.1) can

be rewritten as a set of N equations for every component of vector x as

dx1

dt
= −

∂V(x1, x2, · · · , xN, t)
∂x1

,

dx2

dt
= −

∂V(x1, x2, · · · , xN, t)
∂x2

,

...

dxN

dt
= −

∂V(x1, x2, · · · , xN, t)
∂xN

.

(3.2)
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(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Figure 3.1: Sketch of the idea of the one-dimensional PDS energy landscape stretched
in x direction. The landscape is assumed to be initially flat, i.e. U(x, 0) = 0 (see (a)). A
”rock” (the input) drops onto the landscape at position x = η and generates a dent in
the landscape (see (b)), which is the deepest exactly at x = η. If aother rock drops at a
new position x = η at a new time moment, another dent appears in the landscape (see
(c)). With further rocks dropping at different positions (see (d)), the ”foam” is shaped
in response to the stimulus continuously.

This energy landscape V is a Lyapunov function, and can only decrease monotonically

while the system evolves. Hence the only possible attractors of the system are fixed

points.

To convey the general idea of a PDS, the energy landscape is first described by an

auxiliary function U(x, t). The landscape is assumed to be initially flat, i.e. U(x, 0) = 0,

and infinitely elastic. At time t, for example, an external stimulus η(t) coded as an

N-dimensional vector is applied to the landscape. This stimulus can be seen as a

”rock” that drops onto the the landscape at position x = η(t) and generates a dent

in the landscape. This dent is deepest exactly at x = η(t) and get shallower at larger

distances from η. This way, the landscape learns about the occurrence of the rock

and its position. With further rocks dropping at different positions, more dents are

generated and some may merge into a larger dent, which corresponds to a larger

category. The forgetting capacity is introduced by assuming that the landscape is

elastic with elasticity factor k ∈ [0, 1) and that the deeper the dent at position x is, the

faster the landscape tries to revert to its initial flat state. Areas not subjected to stimulus

will stay at their original state. With this formulation, the landscape evolves with time
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in response to a continually varying external stimulus. This process is illustrated for a

one-dimensional landscape in Fig. 3.1, which is only a sketch.

The shaping of the function U is first expressed by a discretized equation

U(x, t + ∆t) = U(x, t) − g(x − η(t))∆t − kU(x, t)∆t, (3.3)

which describes how the landscape changes over a small but finite time interval ∆t.

g(z) is some non-negative bell-shaped function, such as a Gaussian function, which

represents the shape of a single dent,

g(z) =
(
2πσ2

)−N/2
exp

(
−

1
2

∑ z2
i

σ2

)
, (3.4)

where σ determines the width of the dent and is chosen manually. In principle, a

dent can have different values of widths in different dimensions. Here we assume

for simplicity that the width of the dent in every dimension takes the same value σ.

With a relatively large value of σ, the landscape will generate a small amount of wide

dents and some initially small categories will merge and form larger categories. On

the other hand, when σ is relatively small there will be many peaked dents with small

basins making the landscape too detailed. This principle can be relevant to the human

cognitive system in that different individuals have different capacity for categorisation

and capturing the detail.

In Eq. (3.3), it is assumed that the difference between two subsequent states of the

landscape is proportional to the waiting time ∆t in response to a certain stimulus. That

is, the longer the stimulus is applied at one location, the deeper the dent becomes.

Hence the effect from applying the pressure to the landscape comes from the shape of

the pressure plus its duration.

In Eq. (3.3) move U(x, t) to the left-hand side, divide both sides by ∆t and take the
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limit as ∆t→ 0, to obtain a differential equation for U,

∂U(x, t)
∂t

= −g(x − η) − kU(x, t). (3.5)

One can show by numerical simulation of Eq. (3.5) with k = 0 that U(x, t) has a

linear trend and goes to−∞ as time tends to∞ [42; 43; 51]. In order to keep the shape of

the landscape, but eliminate the trend, the following change of variables was applied

when t , 0

V(x, t + ∆t) =
U(x, t + ∆t)

t + ∆t
,

V(x, t) =
U(x, t)

t
.

Substituting U(x, t + ∆t) = V(x, t + ∆t)(t + ∆t) and U(x, t) = tV(x, t) into Eq. (3.3) one

obtains

V(x, t + ∆t)(t + ∆t) = V(x, t)t − g(x − η(t))∆t − k∆tV(x, t)t, (3.6)

V(x, t + ∆t)t − V(x, t)t = −V(x, t + ∆t)∆t − g(x − η(t))∆t − k∆tV(x, t)t.

Assuming that t , 0 and ∆t , 0, one can divide all terms by t · ∆t to obtain

V(x, t + ∆t) − V(x, t)
∆t

= −
1
t

(
V(x, t + ∆t) + g(x − η(t))

)
− kV(x, t). (3.7)

Taking the limit as ∆t→ 0, we obtain the continuous-time version of the system

∂V(x, t)
∂t

= −
1
t

(
V(x, t) + g(x − η(t))

)
− kV(x, t). (3.8)

Therefore, the full description of the simplest PDS consists of Eqs. (3.1), (3.8) and the

initial condition for V

V(x, 0) = 0. (3.9)
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In [51] it was shown that with k = 0 all input patterns equally contribute to the

formation of the landscape V regardless of their ordering in time. However, the

behavior of this landscape with non-zero k was not considered. Below we analyse the

evolution of the plastic landscape under the assumption that k ∈ [0, 1).

Return to the discrete form (3.6) of equation for V(x, t) and rearrange terms in it as

follows

V(x, t + ∆t) =
t

t + ∆t
(1 − k∆t)V(x, t) −

∆t
t + ∆t

g(x − η(t)). (3.10)

Write out several consecutive values of V(x, t) separated by the time step ∆t

V(x, 0) = 0,

V(x,∆t) = −g(x − η(0)),

V(x, 2∆t) =
∆t

2∆t
(1 − k∆t)V(x,∆t) −

∆t
2∆t

g(x − η(∆t))

= −
1
2

(1 − k∆t)g(x − η(0)) −
1
2

g(x − η(∆t)),

V(x, 3∆t) =
2
3

(1 − k∆t)V(x, 2∆t) −
1
3

g(x − η(2∆t))

= −
1
3

(1 − k∆t)2g(x − η(0)) −
1
3

(1 − k∆t)g(x − η(∆t)) −
1
3

g(x − η(2∆t)),

...

V(x,n∆t) = −
1
n

(1 − k∆t)n−1g(x − η(0)) −
1
n

(1 − k∆t)n−2g(x − η(∆t))

− · · · −
1
n

(1 − k∆t)g(x − η((n − 2)∆t)) −
1
n

g(x − η((n − 1)∆t)).

When k , 0, we have

0 < k < 1, 0 < ∆t < 1 ⇒ 0 < (1−k∆t)i < 1, and (1−k∆t)i+1 < (1−k∆t)i, (i = 1, 2, ...,n).

The latter implies that the more recent stimuli make more impact on shaping the energy

landscape V. The stimuli applied in the more distant past are being erased from the

landscape faster than the more recent ones.
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When k = 0, the landscape does not forget any information, namely

V(x,n∆t) = −
1
n

g(x − η(0)) −
1
n

g(x − η(∆t)) − · · · −
1
n

g(x − η((n − 1)∆t)), (3.11)

which coincides with the expression obtained in [51] and confirms that every single

stimulus at every time moment makes the same contribution to the landscape.

Equation (3.8) describes how the landscape V(x, t) evolves in time in response to

a continually varying external stimulus η(t). It is shown in [42; 43] that under if the

PDS does not forget any information it learnt, i.e. k = 0, and the stimulus represents a

realization of a stationary and ergodic random process, the energy landscape tends to

the multi-dimensional probability density distribution P(η) of this process taken with

negative sign. This way, the system automatically creates categories from the input

patterns. Since we only consider gradient systems in which the only possible attractors

are fixed points, the most probable patterns from each category are represented by

stable fixed points, and categories are represented by their basins of the attraction.

Online pattern recognition in the PDS (3.1), (3.8), (3.9) is achieved by using the

input twice: not only to shape the landscape V, but also as an initial condition for Eq.

(3.1). The state of the system will start at the location of the input and then evolve

to the local minimum. Thus, after the landscape is altered by the stimulus, the same

stimulus is recognised by the system as belonging to one of the existing, but slightly

adjusted, categories, or to a category just created. The procedure is repeated in time,

resulting in continually evolving classification rules.

In this dissertation we will use the PDS defined by Eqs. (3.1), (3.8) and (3.9) as the

reference model whose performance we will be trying to imitate in models, that can

potentially be implemented in practice.
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3.2 Examples of learning in the plastic dynamical system (PDS)

Here we illustrate how the one-dimensional PDS (3.8) without the forgetting term

(k=0) performs categorisation using random data as an input.

We produce random stimuli consisting of a sequence of numbers coming from two

and three different categories. We assume that these numbers are randomly taken

from a probability density distribution (PDF) with two and three peaks, respectively.

The values corresponding to the maxima of the PDF would be the most probable

(typical) representatives of a certain category, and the vicinities of each maximum are

the members of the respective category.

The easiest way to generate such a signal is by launching an Ornslein-Uhlenbeck

process [26] through the creation of a potential L(η) of the required shape with gradient

l(η) and formulating a stochastic gradient DS with an applied random Gaussian white

noise ζ(t) with zero mean and unit variance as follows:

dη
dt

=
∂L(η)
∂η

+
√

Dζ(t)

= l(η) +
√

Dζ(t),
(3.12)

where D is the variance of the random force. Equation (3.12) describes the behaviour of

a massless particle on a landscape L(η) under the influence of a stochastic force Dζ(t).

The stimulus η(t) generated this way is correlated, which means that the current

and the future values of this random process depend on its previous values. Correlated

stimulus helps to illustrate how the plastic landscape evolves while the PDS learns.

An example using uncorrelated stimulus is given in [42; 43].
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Example: stimuli from two categories

We first generate the stimuli taking values from the PDF with two peaks, and for

this purpose construct the landscape L(η) for Eq. (3.12) with two minima, such that
∂L(η)
∂η = l(η) reads

l(η) = 0.36η(1 − 0.6η)(1 + 0.4η). (3.13)

By applying to Eq. (3.12) the random noise with D = 0.625, we obtain a sequence of

values of η(t) shown in Fig. 3.2(a) that models a collection of patterns belonging to two

categories.

One can formulate a Fokker-Planck equation for the evolution of the PDF of the

random process η(t), which would correspond to Langevin equation (stochastic differ-

ential equation) (3.12) [10]:

∂
∂t

P(x) = −
∂
∂x

(l(x)P(x)) +
1
2
∂2

∂x2 (DP(x)). (3.14)

A stationary solution to this Fokker-Planck equation describing an equilibrium PDF

of η(t) can be obtained analytically [10] and reads

P(x) =
1
C

exp
(
2
∫

1
D

l(x)dx
)
, (3.15)

where the integral inside the brackets is an indefinite integral. Substituting the formula

of l(x) expressed by Eq. (3.13) and the value of D into the integral, one obtains

∫
1
D

l(x)dx =
0.36

0.625
(0.5x2

− 0.067x3
− 0.06x4).

In Eq. (3.15) C is a constant such that
∫
∞

−∞
P(x)dx = 1. Then C can be found as

C =

∫
∞

−∞

exp
(
2
∫

1
D

l(x)dx
)
dx.
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(a) (b)

Figure 3.2: Illustration of the input patterns belonging to two categories.
(a) Stimulus applied to the PDS in which values are randomly taken from two cate-
gories.
(b) Analytically estimated PDF taken with negative sign.

Substituting the formula of l(x) and the value of D, one obtains

P(x) =

exp
(
2
∫

1
0.625 l(x)dx

)
∫
∞

−∞
exp

(
2
∫

1
0.625 l(x)dx

)
dx

=
1

17.562
exp

(
1.152(0.5x2

− 0.067x3
− 0.06x4)

)
.

We express this PDF as a function of x rather than of η for the convenience of its

comparison with the shape of the landscape V(x) of the PDS. The PDF of the random

process η(t) taken with negative sign is shown in Fig. 3.2(b). With the chosen shape of

l(η) all values of η are in the range [−4, 4].

Evolution of the landscape V(x, t) being subjected to η(t) is illustrated in Fig. 3.3(a)

in 3D. Also, in Fig 3.3(b) V(x, t) is shown together with input η(t): the depth of the

landscape is represented by color and η(t) by dots. Here in g(x) we use σ2 = 0.1. When

a new value of η is applied at each consecutive time moment t, the landscape adjusts

itself and finally develops two dents. The landscape V(x, t) at the end of learning is

shown in Fig. 3.3(c). Eventually the landscape shapes into the negative of the PDF P(x)

shown in Fig. 3.3(d) which is estimated as a distribution histogram from the realisation

of the stimulus.
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Figure 3.3: Energy landscape of the PDS (with σ2 = 0.1) processing input patterns that
come from two categories.
(a) Evolution of PDS V(x, t) illustrating the development of two wells representing two
categories.
(b) Evolution of V(x, t) (same as in (a)) with the value of V shown by color on the (x, t)
plane, and input stimuli shown by blue points.
(c) Energy landscape at the end of learning.
(d) Distribution histogram of input stimuli.
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(a) (b)

Figure 3.4: Illustration of the input patterns belonging to three categories.
(a) Input to PDS: a sequence of values randomly taken from three categories.
(b) Analytically estimated PDF taken with negative sign.

Example: stimuli from three categories

In the second example, a sequence of input patterns belonging to three categories

is used. The input is generated by numerically solving Eq. (3.12) but with a new form

of l(η) described by

l(η) = −0.08η(1 − 0.5η)(1 + 0.5η)(1 − η)(1 + η). (3.16)

The input η and its analytically estimated PDF taken with negative sign are plotted in

Fig. 3.4. The stationary PDF reads

P(x) =

exp
(
2
∫

1
0.625 l(x)dx

)
∫
∞

−∞
exp

(
2
∫

1
0.625 l(x)dx

)
dx

=
1

5.344
exp

(
− 0.256(0.5x2

− 0.3125x4 + 0.04167x6)
)
.

The inputs can be categorised into three classes and the most probable patterns are

−2, 0, and 2, respectively. The PDF P(x) is symmetric with respect to x = 0.

Figure 3.5 shows that in response to the input signals shown by blue points in Fig.

3.5(b), the PDS develops the landscape with three wells representing three categories.

The landscape V(x, t) at the end of learning (Fig. 3.5(c)) shapes into the PDF P(x) (Fig.
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Figure 3.5: Energy landscape of the PDS (with σ2 = 0.1) processing input patterns that
come from three categories.
(a) Evolution of PDS in response to stimulus given in Fig. 3.4(a).
(b) Evolving V(x, t) (same as in (a)) with the values of V shown by color on the (x, t)
plane together with input signal (same as in Fig. 3.4(a)) shown by blue points.
(c) Energy landscape at the end of learning.
(d) Distribution histogram from the realization of the input η(t) to the PDS.

3.5(d)), which is calculated from the given input data.

In Fig. 3.6, for a range of values of σ2 from 0.05 to 0.5 the plastic landscape

reproduces the general shape of the PDF (taken with negative sign) of the input signal

from a relatively short sequence of input data containing only 1000 points whose

distribution histogram from the realization is shown in Fig. 3.5(d). It has three minima

at the correct locations compared with Fig. 3.5(d). It was checked for other values

of σ2 that the general shape of V can be reproduced. However, if compare with the



3. DYNAMICAL SYSTEMS WITH PLASTIC SELF-ORGANISING VELOCITY
FIELDS 41

analytically estimated PDF shown in Fig. 3.4(b), the depths and the details of the

shape of the individual wells are not reproduced very well, although this is not a

problem from the viewpoint of the ability of the system to recognise patterns. In order

to illustrate the performance of the plastic landscape with longer stimuli, we run the

simulation with a sequence of 20, 000 values of input signal (Fig. 3.6). One can see

from Fig. 3.6(d) that the resultant landscape is much closer to the correct analytically

estimated PDF shown in Fig. 3.4(b) because it reproduces the shapes and depths of

individual wells with much better accuracy.

Another demonstration using musical data is given by [42; 43]. The gradient PDS

automatically discovers and memorises musical notes and phrases (collection of notes).

Further illustrations of multi-dimensional PDS will be shown in Section 6.4.
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(a)
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σ2 = 0.1

σ2 = 0.5

σ2 = 1

(b)

Figure 3.6: Energy landscape of the PDS with different values of σ2 processing input
patterns that come from three categories. Each row corresponds to a single value of
parameter σ2 with the values of σ2 given in the field of the figure.
(a) Evolution of PDS in response to stimulus given in Fig. 3.4(a).
(b) Energy landscape at the end of learning (compare with Fig. 3.5(d)).
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(a) (b)

(c) (d)

Figure 3.7: Energy landscape of the PDS (with σ2 = 0.05) processing input patterns
that come from three categories.
(a) Input to PDS: a sequence of 20, 000 values randomly taken from three categories.
(b) Distribution histogram from the realization of the input given in (a).
(c) Evolution of PDS in response to stimulus given in (a).
(d) Energy landscape at the end of learning (compare with Fig. 3.4(b)).
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3.3 Similarity between the plastic dynamical systems (PDSs)

and artificial neural networks (NNs)

PDSs are amending their velocity fields in response to external stimuli. From this

viewpoint, both biological and artificial NNs are doing the same, but indirectly through

modification of synaptic connections, which evolve under the influence of sensory

stimuli. Also, the PDS of the form (3.1), (3.8) can perform an online unsupervised

learning. The same task can in principle be solved by NNs if they use an appropriate

learning rule, such as Hebbian learning. In addition, in the PDS (3.8) and in CNNs

of Hopfield type with symmetric couplings, the ability to perform categorization and

pattern recognition can be explained in terms of the energy function that evolves

during training.

Biological NNs are known to be able to carry out the full set of cognitive functions

modelled by the PDS (3.1)-(3.6) at the very least. It is natural to suggest that the same

functions could be implemented in models of NNs, such as artificial NNs of Hopfield

type. In Chapter 4 we will compare the performance of NNs with that of PDS (3.1),

(3.8) in order to assess their ability to carry out the same combination of tasks. We

anticipate that NNs might not be able to mimic the performance of the PDS accurately

for the following reason.

The PDS (3.8) is infinitely plastic but it has no prototype in the real world. Artificial

NNs, on the other hand, have real-world prototype, and are plastic, but only to some

extent, because both the architecture of any neuron, and the architecture of the network

are usually fixed and only the connection strengths are allowed to vary. Thus, the

velocity field of the PDS describing a NN with plastic connections will only have a

limited amount of plasticity. Nevertheless, the NNs seem to have more features in

common with PDSs than any other devises known to date.



Chapter 4

Neural approximations of plastic

self-organsing vector fields

In the previous Chapter, we introduced the DSs which self-organise their velocity

vector field in response to external stimuli. Neural networks, including biological

NNs and artificial NNs with continuous time and state, are natural systems that are in

the same class. Namely, if every neuron is described as a DS and every inter-neuron

coupling can be modelled as some coupling term in the respective equation, the whole

NN is also a DS with a high-dimensional phase space. This motivates us to explore

the possibility to approximate the PDS by an artificial NN, so that the PDS could

eventually be implemented in a device. In this Chapter, we try to approximate the

vector fields of PDS by NNs and compare them to see whether a NN can do the same

job as the PDS does with acceptable accuracy.
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4.1 The model

We consider the NN comprising continuous-valued units, which is discussed in Section

2.2.2.

The PDS (3.1), (3.8) employs completely unsupervised learning and spontaneously

creates categories from the external input. We want the NN to behave in the same way

and need to choose an appropriate learning method. The most famous unsupervised

learning technique is Hebbian learning which we adopt here and study how the

velocity vector field of the NN is automatically modified in response to the evolution

of inter-neuron connections. We will compare the performance of the NN learning in

an unsupervised Hebbian manner with that of the PDS (3.8) and evaluate its potential

to reproduce the cognitive functions as required.

The CNN of Hopfield type comprising N neurons undergoing Hebbian learning

can be represented by Eqs. (2.10) and (2.11).

4.2 Representation of the state of the PDS by the state of the

NN

There is an important problem that needs to be solved in order to make a comparison

between the PDS and a NN. Namely, in the PDS (3.8) the phase space is not bounded,

i.e. x can vary between −∞ and ∞, so that the system can process the incoming

stimuli of any magnitude. However, in any NN the states are principally bounded,

and specifically in (2.10) they vary between −1 and 1. So we need to find some way

to represent the value of the stimulus to PDS by a combination of states of neurons

entering the NN (2.10), i.e. to code the state of the PDS by the state of a NN.

In conventional problems associated with artificial NNs, it is assumed that the

stimuli take values from bounded range [a, b], where a and b are some real numbers
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and b > a. In order to enable the network to process these stimuli, they are simply

rescaled, to fall within the range of values in which the states of the NN are allowed

to be, e.g. to [−1, 1] for Eq. (2.10). However, rescaling needs an a-priori knowledge

of the range [a, b] of the stimuli values, which in the on-line unsupervised learning

should not be available because it can only be found after all stimuli values arrive.

Also, it does not seem plausible that in a biological NN all stimuli are simply rescaled

and shifted based on the fixed values of parameters a and b before reaching a specific

neuron. In fact, the question about the way memories are represented in biological

NNs remains open to date.

Below we introduce two possible methods, which are both based on the same idea:

a single scalar number is represented by a combination of states of a chain of neurons,

so that to represent numbers from broader ranges longer chains are needed. Our

approach does not require rescaling of sensory signals and is quite general, because

one can in principle make a chain of neurons of any length, and also such chains exist

in biological NNs.

To convey the idea of the coding technique proposed, assume that the state of, or

the value of stimulus to, the one-dimensional PDS (3.1), (3.8) is denoted by x∗ and

x∗ ∈ [a, b]. We split the interval [a, b] into N segments of equal size numbered from 1

to N and associate each segment with one neuron. The cell in which x∗ is located has

number h which can be found as h = [ x∗−a
∆x ] + 1, where ∆x = (b − a)/N, which is the

width of each cell, and [x∗] denotes the largest integer less than or equal to x∗.

Gaussian representation method

This method is illustrated in Fig. 4.1(a). We draw a bell-shaped Gaussian curve

whose peak is located at the point (x∗, 1) and the width is determined by some constant

σ. The value of the Gaussian curve at each grid point number i is taken to be the state

ui of the corresponding neuron, whose number is i. More specifically, ui is coded as a
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value of a shifted Gaussian function:

ui = −1 + 2 exp
(
−

(i∆x + a − x∗)2

σ2

)
, (4.1)

such that ui ∈ [−1, 1]. Thus, a single number x∗ is converted into a discretised Gaussian

curve with a peak at x∗.

Note, that a Gaussian curve never takes zero values, so to represent the whole

discretised curve, a neural chain of an infinite length would be needed. However, at

a large distance from its maximum, Gaussian curve is very close to zero, so its values

which are considerably different from zero are located close to x∗. Thus, the neural

chain representing the value x∗ can have finite length. Also, when x∗ is very close to

the boundary a or b, one tail of the ”bell” will tend to −1 such that many neuron states

will be very close to −1. To avoid this, we ”wrap” the the other tail as a replacement

by assigning
uh+ j = − 1 + 2 exp

(
−

((h + j)∆x + a − x∗)2

σ2

)
, for j = 1, 2, ..., k and h + j ≤ N;

uh− j = − 1 + 2 exp
(
−

((h − j)∆x + a − x∗)2

σ2

)
, for j = 1, 2, ..., k and h − j ≥ 1.

(4.2)
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Figure 4.1: Illustration of Gaussian representation.
(a) Representation method after wrapping for x∗ = −1.6. Here N = 11, a = −3, b = 3
and σ2 = 7.
(b) Three dimensions, u1, u5, and u10 of the phase space of the NN. The curve shows
the location of the units in the phase space after coding.

Linear representation method

Another possible coding method is illustrated by Fig 4.2(a). Here we draw a

straight line through the point (x∗, 0), such that the slope of the line is 2
b−a ,

u(x) =
2

b − a
(x − x∗). (4.3)

To prevent the values of u from leaving the range [−1, 1], we wrap them to fit inside

this interval. Then the states ui of neurons can be founded as follows


uh+ j =

2
b − a

((h + j)∆x + a − x∗), for j = 1, 2, ..., k and h + j ≤ N;

uh− j =
2

b − a
((h − j)∆x + a − x∗)), for j = 1, 2, ..., k and h − j ≥ 1.

(4.4)
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Figure 4.2: Illustration of Linear representation.
(a) Representation method after wrapping for x∗ = −1.6.
(b) Three dimensions, u1, u5 and u10 of the phase space of the NN. Location of the
units in the phase space after coding are shown by lines of points.

With both Gaussian and linear coding methods, any feasible value x∗ is coded by

a single point in an N-dimensional phase space of a NN (2.10) that belong to the same

closed curve. The projections of the respective curves for both coding methods are

shown in Figs. 4.1(b) and 4.2(b).
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4.3 Visualisation of the energy landscape of the NN

To test the performance of a CNN (2.10), (2.11) against the one of a PDS (3.1), (3.8),

we need to compare the evolution of their energy landscapes in response to the same

stimulus. At any time moment t, the signal η(t) is applied to the one-dimensional PDS

as described by (3.8), and the energy landscape V changes. Since at any fixed time

t, V is a function of only one variable x, its evolution can be visualised by plotting a

surface V(x, t) as shown in Fig. 3.3(a). As to the N-dimensional NN (2.10), its learning

will be implemented through the spontaneous adjustment of connection weights wi j

in response to the incoming vector stimulus I(t) = (I1(t), I2(t), · · · , IN(t)). Given that the

weights are symmetric, i.e. wi j = w ji, energy function E can be introduced according

to the rule (2.6). However, E is a function of N variables u1,u2, · · · ,uN and cannot be

easily visualised for the full set of all possible states of the NN. Here we note that the

stimulus I(t) is applied only at the points of the state space that belong to some closed

curve illustrated in Fig. 4.1(b) and Fig. 4.2(b).

We appreciate that even if the initial conditions of the NN are set on this curve, the

state of the NN (2.10) can in principle deviate from it during evolution. Nevertheless,

for visualisation purposes, we pick the values of energy E of the NN only corresponding

to this stimulus curve, and thus obtain a one-dimensional function E(x) at any time

moment t. Here x is the path length along the stimulus curve from the reference point

representing the smallest possible value of η(t), i.e. point a. Thus, E(x) is a cross-section

of the full energy function of the NN along the stimulus curve. Evolution of E(x) can

be visualised in the same manner as evolution of V(x). Importantly, the minima of

the cross-section E(x) might not be the minima of the full energy function of the NN,

but their location should indicate the approximate location of the minima of E(x). The

procedure for comparing the functions of the PDS with those of the CNN is illustrated

in Fig. 4.3.
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(a)

(b)

Figure 4.3: Schematic diagram of the simulation process.
(a) Coding for neural approximation.
(b) Coding for energy visualisation.
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4.4 Results

In the neural approximation of the PDS by Eqs. (2.10), (2.11) used in this Chapter we

use the same parameters as in [19] and Fig. 2.3, namely, the standard parameters are

taking values as shown in Table 4.1.

Parameter Value
N 81
ai 1
ε 1/300
β 0.3
α 30

Table 4.1: Standard parameter values used in neural approximation.

The inputs shown in Figs. 3.2 and 3.4 are submitted to the NN after being converted

into stimulus vectors I(t). The 3-D view of evolution in time of the cross-section of the

energy function and of its snapshot at one instant at the end of learning when Gaussian

and linear representation methods were used to code the stimulus are shown in Figs.

4.4 and 4.5, respectively. In addition, the evolution in time of the respective connection

weights is illustrated in Figs. 4.4(c) and 4.5(c), where the connections to/from neuron

1 are given.

With either coding method, the NN develops the landscape with two dents repre-

senting two categories as required. Evolution of the cross-section E(x) of the energy

function of the NN can be compared with evolution of the landscape V(x) illustrated

in Fig. 3.3, when the PDS was subjected to the same input η(t). Although in both

the PDS and the NN two wells are spontaneously developed, the shape of the energy

is different: in the PDS the wells are of non-equal depth. However, this distinction

does not affect the ability of the NN to recognise the pattern correctly, since it is the

location of the input inside one of the wells that matters rather than the depth or the

shape of the well. However, as seen from Figs. 4.4(c) and 4.5(c), at the end of learning,
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the connection weights are small and have not converged to any values. Therefore, it

seems that longer time is needed for the connections to settle down and for the NN to

memorise the patterns firmly. Given that we only have a finite sequence of data, one

way to artificially extend the learning time is to repeat the sequence of input patterns

as we did in illustration of Hebbian learning in Section 2.2.4.
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Figure 4.4: Neural approximation with Gaussian representation using input belonging
to two categories, which is illustrated by Fig. 3.2. The parameters take values shown
in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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Figure 4.5: Neural approximation with linear representation using input belonging to
two categories, which is illustrated by Fig. 3.2. The parameters take values shown in
Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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(a) (b)

Figure 4.6: Input patterns applied in neural approximation artificially extended by
repeating training dataset from Fig. 3.2(a) and Fig. 3.4(a).
(a) Input patterns belonging two categories.
(b) Input patterns belonging three categories.

To generate the stimulus formally having a larger number of input training patterns,

the sequences of input shown in Fig. 3.2(a) and Fig. 3.4(a) are repeated several times,

resulting in data sets shown in Fig. 4.6, which are then applied to the PDS and to the

NN. The PDFs of the new sequences of input do not change as compared to the ones

of the original data shown in Fig. 3.2(b) and Fig. 3.4(b).
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(a) (b)

Figure 4.7: PDS (withσ2 = 0.1) processing a repeated input belonging to two categories.
(a) Evolution of PDS V(x, t).
(b) Energy landscape at the end of learning.

For the NN processing the cyclically repeated input, the evolution and the final

shape of the cross-section E(x) of the energy function and the evolution of the con-

nection weights are shown in Figs. 4.8 and 4.9 with Gaussian and Linear codings,

respectively. From Figs. 4.8(a) and 4.9(a), one can see that as the NN learns from the

input signals, two dents are developed on the energy landscape, that is, the network

acquires the knowledge of two classes.

As shown in Figs. 4.8(c) and 4.9(c), the connections between neurons are very weak

at the beginning, implying that the internal input term wi jv j contributes much less to

the evolution of the network than the external input values Ii. When the connection

weights become much larger, the small input values Ii can be ignored. The connection

weights do not converge to any fixed value but continue to fluctuate, and the period of

their fluctuations coincides with that of the duration of the original input dataset before

it was repeated. This can be explained as follows: while processing new information a

portion of the connection weights need to change, leading to reshaping of the energy

landscape of the NN, i.e. to alterations of the depths and widths of the wells, and

even possibly of their number. When the same sequence of input data is applied to the

NN repeatedly, the weights undergo modifications of a similar kind again and again,
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Figure 4.8: Neural approximation with Gaussian representation using cyclically re-
peated input belonging to two categories, which is illustrated in Fig. 4.6(a). The
parameters take values shown in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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Figure 4.9: Neural approximation with linear representation using cyclically repeated
input belonging to two categories, which is illustrated in Fig. 4.6(a). The parameters
take values shown in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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(a) (b)

Figure 4.10: PDS (with σ2 = 0.1) processing a repeated input belonging to three
categories.
(a) Evolution of PDS V(x, t). (b) Energy landscape at the end of learning.

resulting in repeated changes in the landscape shape.

Figures 4.11 and 4.12 illustrates the neural approximation of the PDS affected by

stimulus belonging to three categories shown in Fig. 4.6(b). This stimulus is obtained

by a cyclic repetition of the dataset shown in Fig. 3.4(a). The PDS subjected to this

stimulus behaves in a manner similar to the one when only one cycle of the input signal

was applied, as can be appreciated by comparing Fig. 3.5 and 4.10. The only difference

resulting from the respetitive nature of the input consists in the slight fluctuations of

the energy V(x), but its shape was well formed already after the first portion of data.

However, the energy E(x) of the NN appears unable to form the required three wells

even after many repetitions of the same input, as evidenced by Figs. 4.11 and 4.12: at

any time instant the landscape has only two wells.

Figures 4.13 and 4.14 illustrate the neural approximation with either Gaussian or

linear coding method using stimulus belonging to three categories shown in Fig. 4.6(b),

but with different values of parameter α. When α is relevant small, such as α = 3, the

connection weights converge to −1, 0 or 1. With larger values of α the external input

becomes much more pronounced. However, the neural approximation only generates

two wells for α� β.
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Figure 4.11: Neural approximation with Gaussian representation using cyclically re-
peated input belonging to three categories, which is illustrated in Fig. 4.6(b). The
parameters take values shown in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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Figure 4.12: Neural approximation with linear representation using cyclically repeated
input belonging to three categories, which is illustrated in Fig. 4.6(b). The parameters
take values shown in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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Figure 4.13: Neural approximation with Gaussian representation taking different val-
ues of parameter α using cyclically repeated input belonging to three categories, which
is illustrated in Fig. 4.6(b). Each row corresponds to a single value of parameter α
with the values of α given in the field of the figure. The other parameters take values
shown in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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Figure 4.14: Neural approximation with linear representation taking different values
of parameter α using cyclically repeated input belonging to three categories, which is
illustrated in Fig. 4.6(b). Each row corresponds to a single value of parameter α with
the values of α given in the field of the figure. The other parameters take values shown
in Table 4.1.
(a) Evolution of the cross-section E(x) of the energy landscape of the NN.
(b) Energy landscape E(x) at the end of learning.
(c) Evolution of connection weights wi j, j = 1, 2, · · · , 81, during learning.
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4.5 Summary and conclusions

We explored the possibility for the CNN to imitate the performance of a PDS while

performing unsupervised online learning. The NN of Hopfield type with symmetric

couplings was chosen because one could introduce energy function for such a system,

which would hopefully approximate the energy function of the PDS of a gradient type

described by Eqs. (3.1), (3.8). In order to compare the two systems, it was necessary

to solve a problem of coding the state of the PDS in an unbounded phase space by the

state of the NN, whose phase space is fundamentally bounded. We introduced and

tested two coding methods, and found that with both methods the performance of the

NN was largely similar.

We also needed to find a way to compare energy function in the simplest PDS de-

pending on a single state variable with that in the NN depending on N > 1 state vari-

ables. We proposed to consider the energy of the NN only along the one-dimensional

curve in its N-dimensional phase space being an image of a set of all possible stimuli

to the system. Such a one-dimensional cross-section of the full energy function of the

NN does not describe the behaviour of the NN completely, and its minima do not

necessarily coincide with those of the full energy. However, the dips of this function

approximately indicate where the minima of the full energy are located and give a

rough idea of the expected evolution of the NN. Introduction of the cross-section of

the energy of the NN allowed us to make comparisons as necessary. We discovered that

while different coding methods resulted in different behaviours of connection weights

during learning, the shape of the cross-section of energy of the NN was qualitatively

similar.

It was found out that the NN with symmetric couplings does not generally re-

produce the behaviour of the PDS during unsupervised learning in cases when the

number of categories of input values is larger than two. This can be explained by
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the limited memory capacity of a NN discussed in Section 2.2.5. Because the largest

number of memories/categories that can be held by a network is limited, to accommo-

date a new category, one of the old ones should disappear. Namely, while processing

new stimuli, the NN adjusts its connection weights, thus altering the energy landscape

and modifying the locations, the depths, the widths and the number of its minima,

i.e. the knowledge of the network about the categories of the sensory data. Since the

structure of every neuron and of every connection it makes is rigidly fixed, and the

only flexibility in the NN arises from the variable connection strengths, the velocity

field of the NN (i.e. the derivative of the energy function in the given example) is quite

inflexible and can have room for not more than a certain number of attractors (here

minima of energy function). This feature distinguishes the NN from a PDS, in which

the number of minima in the landscape, i.e. memories/categories, can be unlimited.

Moreover, the network is sensitive to the learning parameter in Eq. 2.10. As shown

in [19], with smaller value of α, all connections ultimately go to a single magnitude

and reflect that the network selects some of the input patterns to memorise and will

be unable to learn any other patterns or to notice the inputs. Therefore, the observed

smaller efficiency of the NN is not surprising in itself.



Chapter 5

Implementing plastic velocity field

through moment-based density

approximation: one-dimensional

case

In Chapter 4 we have shown that a continuous-state NN cannot readily reproduce

the learning abilities of a PDS and suggested that the main reason for that is the lack

of plasticity of the velocity field of such a network. In this Chapter we explore an

alternative idea to implement a PDS in hardware, in particular in electronic circuits

based on standard elements. As demonstrated in [51], in the simplest PDS (3.1), (3.8) the

energy function V tends to take the shape of the PDF of the random process generating

the incoming sensory stimulus. Moreover, at every time moment the instantaneous

shape of the energy V is in fact the estimation of the PDF based on the input signals

processed so far. Thus, our idea is to replace the energy V in the equation describing

the gradient PDS by the estimation of the PDF of the random process affecting the
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learning system.

We note that one can easily construct an electronic circuit carrying out multiplica-

tions and summations of input voltages by means of analogue multipliers and adders

[76], and thus implement any polynomial function. With this, it is well known that a

PDF of a random variable or a process can be represented as a polynomial expansion

with coefficients formed by combinations of its moments [18]. Thus, it seems possible

to establish an explicit connection between the PDS of a gradient type and an elec-

tronic circuit multiplying and adding voltages. Since the expansion of a PDF generally

requires an infinite number of terms, while the number of circuit components can

only be finite, only an approximation of a PDF could be achieved with this approach.

However, similarly to NNs, the ability of a PDS to recognize a pattern is not very

sensitive to the details of the shape of its energy landscape, so an approximation might

be sufficient.

An important question here is how to find the coefficients of polynomials approxi-

mating the PDF. Since the energy V of the PDS is continually evolving while processing

stimuli, the PDF estimation replacing V should be evolving correspondingly, implying

evolution of the coefficients of its polynomial expansion. We need to determine the

laws of their evolution correctly so that the circuit could reproduce not only the final

shape of the energy V, but also all stages of its development.
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5.1 Evolving landscape from a one-dimensional moment-based

density approximation

The density function can be represented by expansions in an infinite series involving

the moments of the variate, called moment-based density approximation (MBDA).

Namely, the PDF f (x) of a continuous random process X(t) can be represented as [18]

f (x) =

∞∑
k=0

Ckψk(x), (5.1)

where {ψk, k ≥ 0} is a given family of basis functions, which are independent of f ,

such as Legendre, Laguerre, Hermite or Jacobi polynomials. Here we assume that

X(t) is stationary, i.e. its PDF f (x) does not depend on time t. The coefficients in the

expansion, denoted by Ck, could be linear combinations of finite numbers of moments.

The jth moment of X, denoted by µ j is defined as

µ j = E(x j) =

∫
∞

−∞

x j f (x)dx. (5.2)

All moments are determined by the same f (x), which in our problem is unknown. The

approximation (5.1) is valid only for the PDFs whose moments are finite [18]. Also, the

moments determine the PDF uniquely only for such continuous random variables (or

processes), whose support is a closed interval. We can safely assume both the above

properties in the random processes being considered here, since they are fairly generic.

Given the first n moments of X(t), µ1, µ2, ... µn, and setting µ0 = 1, f (x) can be

approximated by a truncated series as

f (x) ≈ fn(x) =

n∑
k=0

Ckψk(x). (5.3)

Note, that the PDF approximation with a finite number of terms of the series may have
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negative values particularly near the tails, which violates one of the main properties of

a PDF, namely its positivity. Also, the integral of fn(x) might not be equal to 1, which

violates the normalization condition of a PDF. For these reasons such finite series

are not very useful in problems that require the knowledge of PDF for estimation of

various statistical characteristics. However, in our problem we need to use the PDF

estimation only as a substitute of an energy function, which can be either positive, or

negative, and does not have to obey normalization condition.

Both the expansion of the PDF (5.1) and its approximation (5.3) are valid under the

assumption that the moment µ j of the given random process are known exactly, i.e.

are estimated based on the full (usually infinitely large) ensemble of its realizations

known during infinitely long observation times. However, in our problem all we know

about the random process is a sequence of values at the input to the learning system,

i.e. only a single realization, instead of the full ensemble of realizations. Moreover, at

every time moment t we know only a segment of this realization on the interval [0, t].

Certainly, as time goes by, the amount of information about the realization grows, but

we need to update the shape of the energy landscape based on the information we

have by the given moment.

Firstly, the lack of information associated with the unavailability of the ensemble

of realizations of the random process can be overcome if the random process X(t) is

not only stationary, but also ergodic. In that case, all of its moments can be obtained

from any single realization x∗(t) by averaging over time rather than over the ensemble

[69], namely

µ j =

∫
∞

−∞

x j f (x)dx = lim
T→∞

1
T

∫ T

0
(x∗(t)) jdt. (5.4)

As a consequence, in ergodic random processes the PDF can also be obtained from

a single realization. Although ergodicity cannot be proved if nothing is known about
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the random process beyond its single realization, it is a common assumption used

when processing experimental data.

Secondly, we need to determine how to update representation of the energy land-

scape V by means of the PDF expansion (5.3) while gradually incorporating the newly

arriving values of the input. The most natural step would be to approximate the

moments µ j by their estimates during finite time intervals, i.e. to abandon the limit

T →∞ in Eq. (5.4). This way, at each time instant t the moments µ j could be replaced

by their estimates

µ j(t) ≈
1
t

∫ t

0
(x∗(s)) jds. (5.5)

Thus, in Eq. (5.3) the coefficients Ck will become linear combinations of µ j, and the

function fn(x) an updated approximation of the PDF (and thus of V(x)) corresponding

to time t.

In Sections 5.2-5.4 we investigate how the MBDA allows one to approximate the

energy of the PDS at the final stage of learning with various examples of input signals.

We assess the performance of two different basis functions, Hermite and Legendre

polynomials, used in expansion (5.3).

Note, that although technically Eq. (5.5) should give a satisfactory approximation

of the moments µ j at each time t, it is not convenient for applications for the following

reason. The use of Eq. (5.5) assumes that at each time instant t one should integrate

all values of the input available by this time, with their number steadily growing

with t. This implies that not only all values of input x∗(t) need to be stored in the

memory of the circuit, but also that the time required to find the moments is steadily

growing as t increases. These two requirements are certainly impractical and need to

be avoided when designing an electronic circuit. We would like to determine the rules

for updating the values of µ j such that the storage of input data is not required and the

time for obtaining the next value of µ j(t) is the same for all time instants t. With this,
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in Section 5.5 we derive the rules according to which µ j can be updated in agreement

with specifications above.

In Section 5.6 we analytically estimate the error of approximation of the energy

V(x) by Eq. (5.3) and demonstrate the accuracy of this estimation by comparing with

errors obtained numerically. In Section 5.7 we summarise the findings of this Chapter.
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5.2 Density approximation based on Legendre polynomials

In what follows, to convey the idea of the approach, we will be referring to a random

variable, bearing in mind that the same ideas apply to random processes which are

also random variables, albeit varying in time.

5.2.1 Approximation with Legendre polynomials

Assume that X is a continuous random variable defined on the interval [−1, 1]. The

density function f (x) of X can be approximated by the series [18]:

fL(x) =

n∑
k=0

CL
k Lk(x), (5.6)

where Lk(x) is a Legendre polynomial of degree k in x, which is expressed as

Lk(x) =
1

2kk!
∂k

∂xk
(x2
− 1)k

=

[k/2]∑
i=0

(−1)i2−k
(
k
i

)(
2k − 2i

k

)
xk−2i

=

[k/2]∑
i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

xk−2i

(5.7)

where [k/2] denotes the largest integer less than or equal to k/2. The middle expression

is known as Rodrigues’ formula [18]. Figure 5.1 shows the polynomials up to order 5.

CL
k are parameters involving moments of X, and their expression is derived from the

orthogonality of the Legendre polynomials, which is formulated as

∫ 1

−1
Li(x)L j(x)dx =


0 for i , j,

2
2i+1 for i = j.

(5.8)



5. IMPLEMENTING PLASTIC VELOCITY FIELD THROUGH MOMENT-BASED
DENSITY APPROXIMATION: ONE-DIMENSIONAL CASE 71

x
-1 -0.5 0 0.5 1

L
k(x

)

-1.5

-1

-0.5

0

0.5

1

1.5

k=0
k=1
k=2
k=3
k=4
k=5

Figure 5.1: Legendre polynomials up to 5th order.

Multiplying both sides of Eq. (5.6) by Lr(x) and integrating from −1 and 1, we obtain

for r = k, ∫ 1

−1
fL(x)Lr(x)dx =

n∑
k=0

CL
k

∫ 1

−1
Lk(x)Lr(x)dx =

2
2k + 1

CL
k ,

so that the coefficients CL
k can be expressed as

CL
k =

2k + 1
2

∫ 1

−1
fL(x)Lk(x)dx. (5.9)

Substituting the third of Eqs. (5.7) into Eq. (5.9) we obtain

CL
k =

2k + 1
2

[k/2]∑
i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

∫ 1

−1
fL(x)xk−2idx

=
2k + 1

2

[k/2]∑
i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

µk−2i,

where µk−2i is the (k − 2i)th moment of X.

The polynomial expansion (5.6) is proved to be the least squares’ approximation
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of f (x) by the polynomial of degree n that minimises the integrated squared error∫ 1
−1( f (x) − fL(x))2dx [11].

5.2.2 Generalisation of Legendre polynomial approximation

Expansion (5.6) of f (x) using Legendre polynomials can be generalized to approximate

the density of a continuous random variable X defined on the interval [a, b]. Applying

a linear transformation

Y =
2X − (a + b)

b − a
,

which maps X ∈ [a, b] onto Y ∈ [−1, 1], the density function of X can be approximated

by an expansion as [61]:

fL(x) =
2

b − a

n∑
k=0

CL
k Lk

(2x − (a + b)
b − a

)
. (5.10)

Here Lk(x) is defined by Eq. (5.7) and the coefficients are expressed as

CL
k =

2k + 1
2

[k/2]∑
i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

µY
k−2i, (5.11)

where µY
k defined as

µY
k =

1
(b − a)k

k∑
j=0

2 j(−a − b)k− j k!
j!(k − j)!

µ j (5.12)

is the kth moment of Y, and µ j is the jth moment of X. The expression (5.12) is obtained

from the expected value of the binomial expansion of
(

2X−(a+b)
b−a

)k
[18].
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5.3 Density approximation based on Hermite polynomials (Gram-

Charlier series)

Now we consider another density approximation based on Hermite polynomials.

Suppose X is a continuous random variable defined on the interval (−∞, ∞), and the

density function f (x) has tails congruent to that of a normal density function. Then

f (x) can be approximated by a polynomial given by [48]

fH(x) =

n∑
k=0

CH
k

dkg∗(x)
dxk

, (5.13)

where g∗(x) is the standard normal distribution

g∗(x) =
1
√

2π
exp

(
−

1
2

x2
)
, (5.14)

obtained by substituting E(X) = mx = 0, Var(X) = σ2
x = 1 in the normal distribution

ĝ(x) =
1√

2πσ2
x

exp
(
−

1
2

(x −mx

σx

)2
)
. (5.15)

The Hermite polynomial Hk(x) of the order k is defined by the identity

(−1)k dkg∗(x)
dxk

= Hk(x)g∗(x). (5.16)

From Eq. (5.16) one can express Hk(x) as

Hk(x) = (−1)k 1
g∗(x)

dkg∗(x)
dxk

= (−1)k exp
(1
2

x2
) dk

dxk
exp

(
−

1
2

x2
)
.

(5.17)
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Figure 5.2: Hermite polynomials up to 5th order.

Since
dk

dxk
exp

(
−

1
2

x2
)

=

[k/2]∑
i=0

(−1)i−k k!
i!(k − 2i)!2i xk−2i exp

(
−

1
2

x2
)
,

we have

Hk(x) =

[k/2]∑
i=0

(−1)i k!
i!(k − 2i)!2i xk−2i, (5.18)

where [k/2] denotes the largest integer less than or equal to k/2. The first ten polyno-

mials are listed in Appendix A and the plots of the polynomials up to 5th order are

shown in Fig. (5.2). Therefore, the expansion (5.13) becomes

fH(x) =

n∑
k=0

DH
k Hk(x)g∗(x), (5.19)

where DH
k = (−1)kCH

k are the coefficients.

The coefficients DH
k can be obtained from the orthogonality property of the Hermite

polynomials. Namely, these polynomials are orthogonal with respect to the weight
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function g∗(x), ∫
∞

∞

Hi(x)H j(x)g∗(x)dx =


0 for i , j,

i! for i = j.
(5.20)

The proof of the orthogonality is shown in Appendix A.

Multiplying both sides of Eq. (5.19) by Hr(x) and integrating from −∞ to ∞, we

obtain for r = k∫
∞

−∞

fH(x)Hr(x)dx =

n∑
k=0

DH
k

∫
∞

−∞

Hk(x)Hr(x)g∗(x)dx = k!DH
k ,

so that the coefficient DH
k can be expressed as

DH
k =

1
k!

∫
∞

−∞

fH(x)Hk(x)dx. (5.21)

Substituting Eq. (5.18) into the above equation we obtain the expression for DH
k

DH
k =

1
k!

[k/2]∑
i=0

(−1)i k!
i!(k − 2i)!2i

∫
∞

−∞

fH(x)xk−2idx

=

[k/2]∑
i=0

(−1)i 1
i!(k − 2i)!2iµk−2i,

where µk−2i is the (k − 2i)th moment of X.

This polynomial expansion is also known as Gram-Charlier series of type A. This

type of expansions is often truncated after terms of forth order since the third order

term makes allowance of skewness and kurtosis while the forth order terms enable the

MBDA to approximate the density function which has more than one peak [44].

Another series, which is formally identical with Gram-Charlier series, was de-

rived by Edgeworth [20] through a different approach. The Edgeworth series involves

derivatives of standard Gaussian function g∗(x) and the coefficients based on cumu-

lants. The cumulants can be expressed through moments as shown in [48]. Therefore,

it is straightforward to transform either of the two series into another.
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5.4 Moment-based approximations of the landscape at the end

of learning

In this Section we compare the final stage of evolution of the energy landscape of the

PDS according to Eq. (3.8) at the end of learning, with the polynomial approxima-

tion of the PDF of random processes generating the training signal η(t). The idea to

approximate an unknown function by a sum of standard functions with unknown

parameters is due to Galerkin [12]. However, in this Section we are testing the possi-

bility to approximate the final shape of the landscape function by using the unknown

parameters in a very specific form as combinations of estimates of moments of the

input signals with the subsequent goal to implement this idea in electronic circuits.

Both the landscape and the polynomial expansion of the density develop into their

final shapes under the influence of the same signal η(t). For the MBDA the moments

µk at time t are estimated as

µk ≈
1
t

∫ t

0
(η(s))kds.

We compare the performance of two polynomial expansions, Legendre and Hermite,

of various orders.

5.4.1 Input data from two categories

Here we illustrate the formation of the MBDA in response to input data coming from

two categories, i.e. when the PDF of the generating random process has two peaks.

The input signal η(t) is shown in Fig. 3.2(a). In Fig. 5.3 the energy landscape of the

PDS at the end of learning is shown by blue line against the negative of the MBDA

with Legendre polynomials of various orders shown by orange line. The difference

between the two functions in (a) is given in (b) and is called the ”Error”.

When we compare the PDS with its MBDA, we focus on not numerical quantitative

coincidence between the approximation and the PDS landscape but the location of the
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minima and the boundaries of the respective basin of attractions. As long as the

approximation reproduce the width of the wells and their location of the minima, then

we will regard the approximation as successful.

From Fig. 5.3 one can see that in all cases approximation satisfactorily produces

functions with two large wells corresponding to two large categories, and the shapes

of both wells are broadly similar to those of the target energy function. The most

probable patterns which correspond to the local minima, and the boundaries of each

category coincide with those of the PDS approximately.

When the polynomial order n is small, such as n = 10, on the final MBDA after

learning there are several ripples outside the range of inputs, i.e. [−3, 3], whereas the

landscape of PDS here is flat. In other words, the polynomial approximations generate

several spurious minima besides the two desired attractors. Spurious minima are

local minima that do not correspond to any of the classes. In the approximations with

higher-order polynomials, such as n = 20, 25, 30, 40, more ripples appear on both tails

but with smaller amplitude. Besides, within the range [−3, 3], some spurious states

occur inside the basin of attraction.

Hermite polynomial approximations, shown in Fig. 5.4, generate two categories

more successfully in two respects. Firstly, the location of the attractors, i.e. of criti-

cal points, and the shapes of the basins of all desired attractors coincide with those

of the PDS with smaller errors. Secondly, the number and amplitude of spurious

minima outside the interval [−3, 3] are much smaller than that of Legendre polyno-

mial approximation. With both kinds of polynomials spurious minima appear inside

[−3, 3]. However, when higher-order terms are included, n > 30, these minima are

more pronounced in Hermite polynomial expansion.
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(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.3: The final landscapes of the PDS (blue line) and the final MBDA (orange
line) based on Legendre polynomials of various orders n indicated in the field of each
panel after all input data belonging to two categories were processed.

(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.4: The final landscapes of the PDS (blue line) and the final MBDA (green line)
based on Hermite polynomials of various orders n indicated in the field of each panel
after all input data belonging to two categories were processed.
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5.4.2 Input data from three categories

Here we illustrate the formation of the MBDA in response to input data coming from

three categories, i.e. when the PDF of the generating random process has three peaks.

The input signal η(t) is shown in Fig. 3.4(a) and is used to shape the PDF approximation

based on Legendre and Hermite polynomials, shown in Figs. 5.5 and 5.6, respectively.

With this input, the effect of the order of polynomials applied in approximating the

density function is more pronounced. When only lower-order polynomials are used

in the MBDA, such as with n = 10, both methods fail to capture three categories

appropriately. With higher-order terms added to the approximation, three categories

are generated with acceptable error. However, spurious minima appear when the

order exceeds a certain value.

The spurious minima problem of the MBDA is caused by the property of polyno-

mial itself. As is shown in the plots of Hermite polynomials (Fig. 5.2) and Legendre

polynomials (Fig. 5.1), the number of extrema increases as the order of polynomial

grows. In the two examples that we illustrated here, the MBDA using Hermite poly-

nomials performs an approximation with a smaller number of spurious minima.
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Figure 5.5: The final landscapes of the PDS (blue line) and the final MBDA (orange
line) based on Legendre polynomials of various orders n indicated in the field of each
panel after all input data belonging to three categories were processed.
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Figure 5.6: The final landscapes of the PDS (blue line) and the final MBDA (green line)
based on Hermite polynomials of various orders n indicated in the field of each panel
after all input data belonging to three categories were processed.
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5.5 Moment-based approximations of an evolving landscape

In Section 5.4, we have demonstrated with numerical stimulations that the MBDA

can satisfactorily approximate the final energy landscape of the PDS when learning

is finished. However, the main goal of this work is to find the way to approximate

the energy of the PDS at all stages of its evolution in response to stimuli, and with

an approach not requiring memory storage or a linearly growing computation time.

Here we derive an evolution equation for the moments µ j, which describes how these

can be updated with account of the newly arriving stimuli without the need to store

all values of the input.

In PDS (3.8), when there is no forgetting, i.e. k = 0, the energy landscape is updated

according to
∂V(x, t)
∂t

= −
1
t

(
V(x, t) + g(x − η(t))

)
. (5.22)

In other words, the energy function is modified in response to the input based on

its previous state. On the other hand, in Chapter 3 we have shown that under the

condition that the initial landscape V(x, 0) = 0, Eq. (5.22) can be discretized according

to Eq. (3.11), from which one can see that V(x,n∆t) is an average of the ”dents”

resulting from the input.

In MBDA, the approximation is updated according to the moments estimated as

the current accumulated averages of the input signal, i.e.

µ j(t) =
1
t

∫ t

0
(η(s)) jds, (5.23)

where µ j(t) is the jth moment at time t. The discrete form of Eq. (5.23) is

µ j(n∆t) =
1
n

n∑
i=0

(η(i∆t)) j, (5.24)
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which can be expressed as

µ j(n∆t) =
n − 1

n
1

n − 1

n−1∑
i=0

(η(i∆t)) j +
1
n

(η(n∆t)) j

=
n − 1

n
µ j((n − 1)∆t) +

1
n

(η(n∆t)) j,

µ j(n∆t) − µ j((n − 1)∆t) = −
1
n
µ j((n − 1)∆t) +

1
n

(η(n∆t)) j.

Substituting (n − 1)∆t = t and n∆t = t + ∆t, we obtain

µ j(t + ∆t) − µ j(t) = −
∆t

t + ∆t
µ j(t) +

∆t
t + ∆t

(η(t + ∆t)) j.

Divide both sides by ∆t given that ∆t , 0, and take the limit as ∆t→ 0, to obtain

dµ j(t)
dt

= −
1
t

(
µ j(t) − (η(t)) j

)
. (5.25)

Hence the moments are updated according to this non-autonomous differential equa-

tion. Comparing the continuous-time updating equations (5.22) and (5.25) and their

discrete forms (3.11) and (5.24) of PDS and MBDA, one can notice that both systems

are evolving in a similar way. This is confirmed by the plots illustrating the evolution

of both systems shown in Figs. 5.7-5.10. With both Hermite and Legendre polyno-

mials, the evolution of the MBDAs broadly reproduces the evolution of the plastic

self-organising energy landscape.
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(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.7: 3D plots illustrating evolution in time of the MBDA given input patterns be-
longing to two categories based on Legendre polynomials of various orders n indicated
in the field of each panel.

(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.8: 3D plots illustrating evolution in time of the MBDA given input patterns be-
longing to two categories based on Hermite polynomials of various orders n indicated
in the field of each panel.
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(a) n = 10 (b) n = 20 (c) n = 30

(d) n = 40 (e) n = 50

Figure 5.9: 3D plots illustrating evolution in time of the MBDA given input patterns
belonging to three categories based on Legendre polynomials of various orders n
indicated in the field of each panel.

(a) n = 10 (b) n = 20 (c) n = 30

(d) n = 40 (e) n = 50

Figure 5.10: 3D plots illustrating evolution in time of the MBDA given input pat-
terns belonging to three categories based on Hermite polynomials of various orders n
indicated in the field of each panel.
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5.6 Analysis of error of the approximation

In this Section, we numerically plot the difference between the MBDA using Legendre

or Hermite polynomial of various orders and the PDS. We illustrate the error of the

MBDA by comparing the location of the local minima of the plastic landscape and of

its approximation. In addition, we analytically derive the expression of the difference

between the PDS and the MBDA and hence prove that the moments of the latter are

updated according to the rule (5.25).

Figures 5.11-5.14 show the difference between the PDS landscape and its MBDA

based on Legendre and Hermite polynomials of various orders n, i.e. the difference

between the curves in Fig. 5.3-5.6, denoted by ”Error”. The error has a shape similar

to that of the final landscapes, that is, the closer to either of the class centres, the larger

the error is.

(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.11: The difference between the PDS landscape and its MBDA using input
data belonging to two categories based on Legendre polynomials of various orders n
indicated in the field of each panel, i.e. the difference between the curves in Fig. 5.3,
denoted by ”Error”.
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(a) n = 10 (b) n = 20 (c) n = 25

(d) n = 30 (e) n = 40

Figure 5.12: The difference between the PDS landscape and its MBDA using input
data belonging to two categories based on Hermite polynomials of various orders n
indicated in the field of each panel, i.e. the difference between the curves in Fig. 5.4,
denoted by ”Error”.
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Figure 5.13: The difference between the PDS landscape and its MBDA using input
data belonging to three categories based on Legendre polynomials of various orders n
indicated in the field of each panel, i.e. the difference between the curves in Fig. 5.5,
denoted by ”Error”.
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Figure 5.14: The difference between the PDS landscape and its MBDA using input
data belonging to three categories based on Hermite polynomials of various orders n
indicated in the field of each panel, i.e. the difference between the curves in Fig. 5.6,
denoted by ”Error”.

Now we analytically estimate the error of MBDA of the energy landscape V(x).

Since in the simplest PDS (3.1), (3.8) the energy function V can be estimated by MBDA

fH(x) (5.19) using Hermite polynomials, i.e. V ≈ − fH, we have

∂V
∂t
≈ −

∂ fH
∂t
.

Here we use Ji,k = (−1)i k!
i!(k−2i)!2i as abbreviated notation such that

Hk(x) =

[k/2]∑
i=0

Ji,kxk−2i, DH
k =

[k/2]∑
i=0

1
k!

Ji,kµk−2i. (5.26)
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Taking partial derivatives of V and of − fH with respect to t, we obtain

∂V
∂t

= −
1
t

(
V + g(x − η)

)
≈ −

1
t

(
− fH + g(x − η)

)
=

1
t

n∑
k=0

Hk(x)g∗(x)DH
k −

1
t

g(x − η)

=
1
t

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,kµk−2i −
1
t

g(x − η),

and

−
∂ fH
∂t

= −

n∑
k=0

Hk(x)g∗(x)
dDH

k

dt

= −

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,k
dµk−2i

dt
.

Applying Eq. (5.25), we get

−
∂ fH
∂t

= −

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,k

(
−

1
t
µk−2i

)
−

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,k

(
−

1
t
ηk−2i

)
.

Then the difference between these two derivatives becomes

∂Error
∂t

= −
∂ fH
∂t
−
∂V
∂t

=

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,k

(1
t
ηk−2i

)
+

1
t

g(x − η). (5.27)
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Using Taylor’s theorem, we can expand g(x − η) with respect to x − η at x and obtain

g(x − η) =

n∑
k=0

(−1)k

k!
ηk dkg(x)

dxk

=

n∑
k=0

(−1)k

k!
ηk dkg∗(x)

dxk

( 1
σx

)k

=

n∑
k=0

(−1)k

k!
ηk(−1)kHk(x)g∗(x)

( 1
σx

)k

=

n∑
k=0

1
k!

Hk(x)g∗(x)
( η
σx

)k
.

In the above, the following relation was used

dkg(x)
dxk

=
dkg∗(x)

dxk

( 1
σx

)k
,

and the definition of the Hermite polynomial is expressed as

dkg∗(x)
dxk

= (−1)kHk(x)g∗(x).

After the above expansion of g(x − η) is substituted into Eq. (5.27), the difference

becomes

∂Error
∂t

= −
∂ fH
∂t
−
∂V
∂t

=

n∑
k=0

Hk(x)g∗(x)
[k/2]∑
i=0

1
k!

Ji,k

(1
t
ηk−2i

)
+

1
t

n∑
k=0

1
k!

Hk(x)g∗(x)
( η
σx

)k

=
1
t

n∑
k=0

1
k!

Hk(x)g∗(x)
( [k/2]∑

i=0

Ji,kη
k−2i +

ηk

σk
x

)
=

1
t

n∑
k=0

1
k!

Hk(x)g∗(x)
(
Hk(η) +

ηk

σk
x

)
.

(5.28)

Hence we analytically derived the expression of the derivative of the error between
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the MBDA using Hermite polynomial of the order n and the PDS. To demonstrate

the accuracy of this estimation, the derivative of the error calculated both numerically

and analytically is plotted in Fig. 5.15 for a range of values of the expansion order n

and with input patterns belonging to two categories. Fig. 5.15(a) shows the difference

−
∂ fH(x)
∂t −

∂V(x)
∂t calculated numerically according to Eq. (5.19) and (5.22) and Fig. 5.15(b)

is the plot of Eq. (5.28). It is shown that the derivative of the error calculated numer-

ically coincides with the analytical one with minor difference. This confirms that the

moments of the PDF are updated according to the Eq. (5.25).

Since it is the location of the patterns inside one of the categories that matters rather

than the depth or the shape of the wells, here we measure the error of the polynomial

approximation by comparing the location of the local minima on the PDS landscape

and on its MBDA.

After processing the input data belonging to two categories, the PDS generates

two wells and the location of the local minima are plotted by red lines in Fig. 5.16(a).

The polynomial approximation using Hermite polynomials of lower order, such as

n < 5, only generates one local minima. With higher order polynomials used in the

approximation, the MBDA produces these two main local minima correctly and their

locations are getting closer to that of the respective minima on the PDS landscape as

the order grows. However, one spurious minima appears for some values of n, e.g.

n ∈ [40, 55] and n ∈ [80, 100], but the amplitude of the spurious minima is relatively

small compared with the depth of the main categories.

Figure 5.16(b) shows the location of the local minima of the landscapes after pro-

cessing stimuli belonging to three categories. The MBDA produces only one local

minimum with n taking smaller values, e.g. n = 1 or 5, and it generates two minima

when n grows to 10. With n >= 20, three minima are produced and they are getting

closer to the respective minima generated by the PDS as the order n grows.
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(a)

n = 10

n = 20

n = 30

n = 40

(b)

Figure 5.15: The derivative of error of MBDA using Hermite polynomials with input
from two categories calculated numerically and analytically. Each row corresponds
to a single value of order n, which increases from top to bottom, with the values of n
given in the field of the figure.
(a) Numerically calculated derivative of error, i.e. the difference −∂ fH(x)

∂t −
∂V(x)
∂t calcu-

lated numerically according to Eq. (5.19) and (5.22).
(b) Analytically calculated derivative of error expressed by Eq. (5.28).
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(a)

(b)

Figure 5.16: The location of the local minima generated by the PDS (red lines) and by
the MBDA (blue points) using Hermite polynomials of various orders n from 1 to 100.
Only minima which are deeper than a certain threshold (5% of the amplitude of the
deepest well) are considered.
(a) The location of minima of the landscapes after processing input data belonging to
two categories.
(b) The location of minima of the landscapes after processing input data belonging to
three categories.
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5.7 Concluding remarks

We have considered another approach to imitate the performance of the gradient PDS.

Namely, given that the energy of the latter converges to the negative of the density of the

input process, the density can be approximated by polynomials, and polynomials can

be implemented in electronic circuits. We approximated the density by an expansion

in a series of polynomials with coefficients based on the moments of the input. Two

examples, Legendre and Hermite polynomials, are used in the MBDA. The expressions

for the polynomials and their coefficients are derived for each stage of data processing.

The same example sets of input which were given to the PDS in Section 3.2 were also

applied to the MBDA assuming that the input is a realisation of an ergodic random

process, its moments can be estimated by the current updated accumulate time average,

which does not require the knowledge of the density distribution.

The MBDAs with both Legendre and Hermite polynomials of various orders were

analysed. Both approximations can categorise the input patterns using an appropriate

order of polynomials with acceptable error. The most probable values of the input and

the basins of attraction of the respective attractors are in reasonably good agreement

with those generated by the PDS. However, there is a tendency of spurious noise to

appear in the tails of the MBDA. In the MBDA based on Legendre polynomials, as

the order grows, the number of the spurious minima increases while the magnitude of

these minima decreases. When the order of the MBDA exceeds a certain value, the tails

are smooth but spurious minima appear inside the basins of attraction of the desired

attractors. With Hermite polynomials, the noise in the tails is avoided.



Chapter 6

Multivariate moment-based density

approximation

In Chapter 5 we demonstrated the principle possibility to approximate the evolving

energy function of a gradient PDS by means of a polynomial expansion based on the

moments of the random process at the input of the learning system. For the first

demonstration this approach was probed for a system whose input was generated

by a scalar random process. However, in reality a scalar input signal will be of

limited practical interest, and with the prospect of practical applications one needs to

investigate the case of a multi-dimensional random input. Hence in this Chapter we

attempt to apply the MBDA to describe the energy function of several variables. While

the univariate MBDA is quite well developed by the present moment, it is a much less

advanced area for multivariate distributions.

The density approximation using Hermite polynomial is also known as Gram-

Charlier series. The Gram-Charlier series was generalised to an expansion for the PDF

of two independent variates X1, X2 by Kendall and Stuart in 1948 [48]. A trivariate

Gram-Charlier series was developed by Charlier to approximate the density function

of three independent variables [14]. A more general case of three correlated variables
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was discussed by Mihaila in 1968 [55], who also proved the convergence of this series.

In practice, it is quite unlikely that the stimuli arriving at different channels of

a learning system will be statistically independent, or uncorrelated. Therefore, we

need to study the cases of MBDA for the vector random processes whose components

are correlated, for which the only formula available is the multi-dimensional Gram-

Charlier series derived by Mihaila in [55] for a trivariate PDF. However, to visualise

a PDF of three random variables even at a single time moment one needs a four-

dimensional space, which is unavailable. With this, we adapt the latter expression to

the case of bivariate densities, which can be depicted as surfaces.
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6.1 Bivariate Gram-Charlier series

The joint PDF of two random variables X1, X2, which are statistically dependent, can

be expressed by the bivariate Gram-Charlier series of the form

f (x) =

∞∑
j1=0

∞∑
j2=0

C j1 j2
∂ j1+ j2

∂x j1
1 ∂x j2

2

g(x), (6.1)

where x = (x1, x2)T is used for a brief notation. In the bivariate case, the Gaussian

function becomes

g(x) =
1

2πσ1σ2
√

1 − ρ2
exp

[
−

1
2(1 − ρ2)

((x1 −m1

σ1

)2
−2ρ

(x1 −m1

σ1

)(x2 −m2

σ2

)
+
(x2 −m2

σ2

)2)]
,

(6.2)

where mi = E(Xi), and σ2
i = Var(Xi), (i = 1, 2) and ρ is the correlation between X1 and

X2 defined as

ρ =
E
[
(X1 −m1)(X2 −m2)

]
σ1σ2

. (6.3)

Here we denote the correlation matrix

1 ρ

ρ 1

 by

R =

R11 R12

R21 R22

 with R11 = R22 = 1, R12 = R21 = ρ,

and its inverse matrix by

A = R−1 =

a11 a12

a21 a22

 =


1

1−ρ2
−ρ

1−ρ2

−ρ
1−ρ2

1
1−ρ2

 with a11 = a22 =
1

1 − ρ2 , a12 = a21 =
−ρ

1 − ρ2 .
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To obtain Hermite polynomials, a standardisation transformation

yi =
xi −mi

σi
(i = 1, 2) (6.4)

is applied to the variables X1 and X2 to produce standard random variables Y1 and

Y2 with zero means and unit standard deviations. Hence the standardised bivariate

normal distribution is

g(y) =
1

2π
√

det(R)
exp

(
−

1
2

(
a11y2

1 + 2a12y1y2 + a22y2
2

))
. (6.5)

The bivariate Hermite polynomials are defined in the same way as univariate Hermite

polynomials, i.e.
∂ j1+ j2

∂y j1
1 ∂y j2

2

g(y) = (−1) j1+ j2H j1 j2(y)g(y),

H j1 j2(y) = (−1) j1+ j2
(
g(y)

)−1 ∂ j1+ j2

∂y j1
1 ∂y j2

2

g(y).
(6.6)

After standardisation of the variables according to Eq. (6.4), we have

dyi

dxi
=

1
σi
, (i = 1, 2),

and hence
∂ j1+ j2

∂x j1
1 ∂x j2

2

g(x) =
1

σ
j1
1 σ

j2
2

∂ j1+ j2

∂y j1
1 ∂y j2

2

g(y) (6.7)

Therefore the polynomial expansion in Eq. (6.1) becomes

f (x) =

∞∑
j1=0

∞∑
j2=0

D j1 j2H j1 j2(y)g(y) (6.8)

where D j1 j2 = 1
σ

j1
1 σ

j2
2

(−1) j1+ j2C j1 j2 . Note, that in the left-hand side of (6.8) the arguments

y1, y2 need to be converted into x1, x2 according to (6.4) to obtain an expression for
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f (x).

To find the expansion coefficients D j1 j2 , the following notation is introduced

φ(y) = a11y2
1 + 2a12y1y2 + a22y2

2,

with a reciprocal form of it

γ(ξ) = R11ξ
2
1 + 2R12ξ1ξ2 + R22ξ

2
2,

where

ξi =
1
2
∂φ

∂yi
, i.e., ξ1 = a11y1 + a12y2 and ξ2 = a12y1 + a22y2, (6.9)

and similarly

yi =
1
2
∂γ

∂ξi
, i.e., y1 = R11ξ1 + R12ξ2 and y2 = R12ξ1 + R22ξ2.

In other words, y = R · ξ and ξ = A · y where y = (y1, y2)T and ξ = (ξ1, ξ2)T.

Then the expression for Hermite polynomials reads

H j1 j2(y) = (−1) j1+ j2 exp
(1
2
φ(y)

)
∂ j1+ j2

∂y j1
1 ∂y j2

2

exp
(
−

1
2
φ(y)

)
.

The polynomial defined by

G j1 j2(ξ) = (−1) j1+ j2 exp
(1
2
γ(ξ)

)
∂ j1+ j2

∂ξ
j1
1 ∂ξ

j2
2

exp
(
−

1
2
γ(ξ)

)
.

is also a Hermite polynomial and the polynomials H and G satisfy the orthogonality

conditions
∞"
−∞

g(y)Gi1i2(y)H j1 j2(y)dy1dy2 =


0 for i , j,

i1!i2! for i = j,

(6.10)
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where i = (i1, i2) and j = ( j1, j2).

Applying this property, we multiply both sides of Eq. (6.8) by Gi1i2(y) and integrate

over the whole two-dimensional space of x1, x2 to obtain for i = j

∞"
−∞

Gi1i2((x1 −m1)/σ1, (x2 −m2)/σ2) f (x1, x2)dx1dx2

=

∞∑
j1=0

∞∑
j2=0

D j1 j2

∞"
−∞

Gi1i2(y)H j1 j2(y)g(y)dy1dy2

= j1! j2!D j1 j2 ,

(6.11)

In the right-hand side of Eq. (6.11) all functions under the integral depend on y1, y2

rather than on x1, x2 for brevity and the ease of calculation. Obviously, the integral

stays the same under the change of variables (6.4).

From (6.11) one can express D j1 j2 :

D j1 j2 =
1

j1! j2!

∞"
−∞

Gi1i2((x1 −m1)/σ1, (x2 −m2)/σ2) f (x1, x2)dx1dx2. (6.12)

The Hermite polynomials H j1 j2(y) up to the forth order, i.e. for j1 and j2 such that
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j1 + j2 ≤ 4, calculated according to Eq. (6.6) read

H00 = 1;

H10 = ξ1; H01 = ξ2;

H20 = ξ2
1 − a11; H02 = ξ2

2 − a22; H11 = ξ1ξ2 − a12;

H30 = ξ3
1 − 3a11ξ1; H03 = ξ3

2 − 3a22ξ2;

H21 = ξ2
1ξ2 − 2a12ξ1 − a11ξ2; H21 = ξ2

2ξ1 − 2a12ξ2 − a22ξ1;

H40 = ξ4
1 − 6a11ξ

2
1 + 3a2

11; H04 = ξ4
2 − 6a22ξ

2
2 + 3a2

22;

H31 = ξ3
1ξ2 − 3a12ξ

2
1 − 3a11ξ1ξ2 + 3a11a12;

H13 = ξ3
2ξ1 − 3a12ξ

2
2 − 3a22ξ1ξ2 + 3a22a12;

H22 = ξ2
1ξ

2
2 − a22ξ

2
1 − a11ξ

2
2 − 4a12ξ1ξ2 + a11a22 + 2a2

12.

(6.13)

In Eqs. (6.13) H j1 j2 are expressed in terms of ξ1, ξ2 for brevity. To obtain their expression

in terms of y1, y2, one needs to substitute ξ1 and ξ2 according to Eq. (6.9). The

expressions for G j1 j2 can be obtained from H j1 j2 by replacing the variable ξi by yi and

the coefficients ai j by Ri j [55]. For example, G20 = y2
1 − R11.

To calculate the coefficients D j1 j2 , we substitute the expressions of the polynomials

G j1 j2(y) into Eq. (6.12) and express y1, y2 through x1, x2 according to (6.4):

D00 =

∞"
−∞

f (x)dx1dx2 = 1,

D10 =

∞"
−∞

y1 f (x)dx1dx2 =

∞"
−∞

x1 −m1

σ1
f (x)dx1dx2 =

µ10

σ1
= 0, D01 = 0,

D20 =
1
2

∞"
−∞

(y2
1 − R11) f (x)dx1dx2 =

1
2

(µ20

σ2
1

− R11

)
, D02 =

1
2

(µ02

σ2
2

− R22

)
.

The coefficients are expressed in terms of the central moments of the variables X1 and
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X2, which are defined as

µ j1 j2 =

∞"
−∞

(x1 −m1) j1(x2 −m2) j2 f (x)dx1dx2.

The coefficients D j1 j2 of higher orders can be obtained in a similar manner.
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6.2 Generating test data

To assess the performance of a bivariate polynomial approximation of an evolving

energy landscape in a learning system experiencing stimulus from two channels, some

suitable test examples need to be produced. A two-dimensional stimulus is generated

by the method similar to the one used in the one-dimensional input generation.

Note that it is quite easy to generate two statistically independent (and hence un-

correlated) random variables X1 and X2, given that their joint PDF f (x1, x2) is equal

to the product of the univariate PDFs f1(x1) and f2(x2) of the individual variables,

i.e. f (x1, x2) = f1(x1) f2(x2). Then it is sufficient to construct two individual landscapes

V1(x1) and V2(x2) of the required shapes and launch two Ornstein-Uhlenbeck processes

[26] by analogy with (3.12):

dx1,2(t)
dt

= −
∂V1,2(x1,2)
∂x1,2

+ ζ1,2(t), (6.14)

with ζ1(t) and ζ2(t) being Gaussian white noises with zero mean values and possibly

differing standard deviations.

However, generation of two statistically dependent (and hence often correlated)

random variables requires some additional effort, since their joint PDF f (x1, x2) is not

equal to f1(x1) f2(x2). Namely, by analogy with a one-dimensional random process

obtained by means of Eq. (3.12), the idea is to produce an energy landscape Vd(x1, x2)

with the required number and location of potential wells corresponding to different

classes. Then, we can write down an equation for a particle moving in the given

landscape under the influence of stochastic forces ζ1(t) and ζ2(t):

dx1(t)
dt

= −
∂Vd(x1, x2)

∂x1
+ ζ1(t),

dx2(t)
dt

= −
∂Vd(x1, x2)

∂x2
+ ζ2(t),

(6.15)
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where we assume that ζ1(t) and ζ2(t) are as in (6.14). The PDF f (x1, x2) of the resultant

random variables X1 and X2 is determined by the shape of Vd(x1, x2), so that the location

of the peaks of f coincides with that of the minima of Vd, if the noises are not too strong.

Thus, the goal here is to construct the landscape Vd of an appropriate non-degenerate

shape, so that its minima are not lined up in the direction of any of the axes. There

could be several ways to obtain the required landscape, and we choose one of them as

follows.

We introduce two auxiliary random variables X̂1 and X̂2, which are statistically

independent, with one-dimensional (marginal) PDFs V1(x̂1) and V2(x̂2), respectively,

obtained by means of numerically solving Eqs. (6.14) with x1,2 replaced by x̂1,2. Their

joint PDF V(x̂1, x̂2) = V1(x̂1)V2(x̂2) has peaks lined up in the directions of axes x̂1 and/or

x̂2. For example, for V1 and V2 shown in Fig. 6.1, their product has two peaks which

lie on the line parallel to the axis x̂1. To avoid this degeneracy, we obtain Vd(x1, x2) by

rotating V(x̂1, x̂2) about the origin, i.e. by introducing the change of variables

x̂1

x̂2

 = T ·

x1

x2,

 (6.16)

where T is the rotation matrix

T =

cosθ − sinθ

sinθ cosθ

 , θ ∈ (0, 2π),

that rotates points in the (x1, x2)-plane counter-clockwise by an angleθ. Thus, Vd(x1, x2)

can be found as follows

Vd(x1, x2) = V1(x̂1)V2(x̂2)

= V1(x1 cosθ − x2 sinθ, x1 sinθ + x2 cosθ)V2(x1 cosθ − x2 sinθ, x1 sinθ + x2 cosθ).
(6.17)
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Figure 6.1: Plot of V1(x̂1) and V2(x̂2) used to generate a two-peak density Vd(x1, x2), see
text. (a) V1(x̂1). (b) V2(x̂2).

(a) (b)

Figure 6.2: Plot of Vd(x1, x2). (a) Vd(x1, x2) as a surface. (b) Contour graph of Vd(x1, x2).

6.2.1 Correlated random variables with a two-peak joint density

Here we take θ = π/4, Var(ζ1) = Var(ζ2) = 0.625 and

V1(x̂1) = 0.057 exp
(
− 0.069x̂4

1 − 0.077x̂3
1 + 0.576x̂2

1

)
,

V2(x̂2) = 0.428 exp
(
− 0.576x̂2

2

)
,

(6.18)

so that the landscape Vd(x1, x2) has two peaks of different heights along the diagonal

x1 = x2. The plots of V1(x̂1) and V2(x̂2) are shown in Fig. 6.1 and the landscape

Vd(x1, x2) shown as a surface and as its contour graph, is given in Fig. 6.2.
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(a) (b)

Figure 6.3: Plot of test data belonging to two categories and their distribution his-
togram.
(a) The series of x1 and x2. (b) Histogram of data points (x1, x2).

Ten thousand of the two-dimensional data points are produced by numerically

solving Eq. (6.15) with this form of Vd(x1, x2). The series of x1 and x2 and their

distribution histogram are shown in Fig. 6.3. The correlation between X1 and X2

calculated based on this sample is ρ = 0.779.

6.2.2 Correlated random variables with a four-peak joint density

A series of test data originating from (6.15) with a more complicated landscape is

generated by taking θ = π/6, Var(ζ1) = Var(ζ2) = 0.625 and

V1(x̂1) = 0.057 exp
(
− 0.069x̂4

1 − 0.077x̂3
1 + 0.576x̂2

1

)
,

V2(x̂2) = 0.044 exp
(
− 0.046x̂4

2 + 0.576x̂2
2

)
,

(6.19)

which are plotted in Fig. 6.4. Vd(x1, x2) has four peaks as shown in Fig. 6.5.

Ten thousand of the two-dimensional data points are produced by numerically

solving Eq. (6.15) with this expression of Vd(x1, x2) having four peaks. The series of x1

and x2 and their distribution histogram of the data point (x1, x2) are shown in Fig. 6.6.
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Figure 6.4: Plot of V1(x̂1) and V2(x̂2) used to generate a four-peak density V(x1, x2), see
text. (a) V1(x̂1). (b) V2(x̂2).

(a) (b)

Figure 6.5: Plot of Vd(x1, x2). (a) Vd(x1, x2) as a surface. (b) Contour graph of Vd(x1, x2)
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(a) (b)

Figure 6.6: Plot of test data belonging to four categories and the distribution histogram
estimated from this data.
(a) The series of x1 and x2. (b) Histogram of data points (x1, x2).

The correlation between X1 and X2 calculated based on this sample is ρ = 0.326.
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6.3 Results

Here we will demonstrate the performance of the bivariate MBDA based on Gram-

Charlier series using the two samples of input data generated in Section 6.2 as com-

pared to the vector field of the PDS. In practice, the Gram-Charlier series (6.8) is

truncated to a polynomial of some order n, that is

f (x) =

n∑
j1+ j2=0

D j1 j2H j1 j2(y)g(y) (6.20)

where yi = (xi − mi)/σi, (i = 1, 2) are the values of the standardised variables Y1 and

Y2.

To calculate the coefficients D j1 j2 , which are linear combinations of finite numbers

of moments, the central moments are obtained from realisations x∗1(t) and x∗2(t) of the

random processes X1(t) and X2(t) using the assumption of their ergodicity

µ j1 j2 =

∞"
−∞

(x1 −m1) j1(x2 −m2) j2 f (x)dx1dx2

= lim
T→∞

1
T

T∫
0

(x∗1(t) −m1) j1(x∗2(t) −m2) j2dt.

(6.21)

Here m1 and m2 are the mean values of X1 and X2, respectively, which are constants

because we assume stationarity of these random processes.

By analogy with a one-dimensional case described by Eq. (5.23), these averages

over time can be estimated as the current accumulate averages, i.e.

µ j1 j2 ≈
1
t

t∫
0

(x∗1(t) −m1) j1(x∗2(t) −m2) j2dt. (6.22)

At each time moment t, one input signal (x1(t), x2(t)), which is generated in Section
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6.2, is given to the density approximation. The mean value mi, (i = 1, 2) is calculated

based on the input values arrived before time t + ∆t. Then the moment µ j1 j2 is updated

thus updating the density approximation. In what follows we choose ∆t = 1 in the

numerical scheme.

6.3.1 Approximations of a two-dimensional landscape at the end of learning

In earlier literature, the Gram-Charlier series (6.8) was often truncated after the fourth-

order term since this allows the density function to be flatter than Gaussian [45]. In

the following, we approximate the density function, and hence the landscape of the

PDS, by series of various orders, evaluate the suitability of such an expansion and its

optimal order for two different cases of input data.

Figure 6.7 shows the negative of the energy landscape of the gradient PDS, formed

as a result of processing of two-dimensional input data generated by random processes

with a two-peak and a four-peak PDFs. The distribution histograms estimated from

this data (Figs. 6.3(b) and 6.6(b)) have very similar shapes and confirm that the

landscapes indeed converge to the negatives of the densities of the respective input

processes. With this the locations of maxima and the shapes of the respective peaks are

reproduced well, thus confirming that the PDS can successfully identify combinations

of input values corresponding to the most typical representatives from each category,

and the categories themselves.

The MBDAs of the final landscapes using various orders of polynomials are shown

in Figs. 6.8 and 6.9 for two different kinds of input data. Namely, in Fig. 6.8 the

approximations are illustrated for the two-peak landscape of Fig. 6.7(a) for a range of

polynomial orders from 4 to 20. When the Gram-Charlier series is truncated after terms

of 4th order, the polynomial density approximation only generates one peak, which

represents one category, almost covering the whole range of the input data. With terms

of higher order added to the approximation (such as n = 6, 8, ...), this MBDA correctly
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(a) (b)

Figure 6.7: Negative of the energy landscape V(x1, x2) of the PDS at the final stage of
processing the two-dimensional input signal originating from random processes with
(a) two, and (b) four, peaks in the PDF.

reproduces two peaks which coincide with those in the histogram given in Fig. 6.3(b)

and in the energy landscape of the PDS shown in Fig. 6.7(a). The most probable input

vectors, which correspond to the top of the peaks, also coincide.

With input data which led to formation of the four-peak landscape shown in Fig.

6.7(b), the MBDA of various orders is illustrated in Fig. 6.9. Just like in the previous

example, when only terms up to 4th order are used, only one peak is generated covering

a broad area. Approximations obtained by series of higher order polynomials (such

as n = 6, 8 and 10) generate the required number of peaks, each corresponding to

one category. However, the shape of the landscape is not reproduced correctly, and

the peaks are not clearly separated. With an increased order of polynomial, such as

n = 15 or 20, the target peaks become separated clearly, and the expansion correctly

captures their location, spread and height (compare with Fig. 6.7(b)). At the same

time, new ripples appear that correspond to spurious categories, however, the basins

of the respective attractors are small.



6. MULTIVARIATE MOMENT-BASED DENSITY APPROXIMATION 111

(a) n = 4 (b) n = 6

(c) n = 8 (d) n = 10

(e) n = 15 (f) n = 20

Figure 6.8: MBDA of the energy landscape of the PDS at the final stage of processing of
the two-dimensional input signal originating from a random process with two peaks
in its PDF. Approximation order n is given in the field of each panel. Compare with
Fig. 6.7(a).
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(a) n = 4 (b) n = 6

(c) n = 8 (d) n = 10

(e) n = 15 (f) n = 20

Figure 6.9: MBDA of the energy landscape of the PDS at the final stage of processing of
the two-dimensional input signal originating from a random process with four peaks
in its PDF. Approximation order n is given in the field of each panel. Compare with
Fig. 6.7(b).
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6.3.2 Approximations of the evolving landscape

In Section 6.3.1, we demonstrated that the bivariate Gram-Charlier series can satisfac-

torily approximate the energy landscape of the gradient PDS after all input patterns

are given to the system. Here we show that the bivariate Gram-Charlier series also

reproduces the evolution of the energy function while the PDS processes input data.

In Section 5.5, we derived the rules for updating the expansion coefficients in the

MBDA used for approximations of the one-dimensional energy landscapes. In the

two-dimensional case, one can prove that the moments are updated in the same way

using the same approach.

The correlation coefficient between variables X1 and X2 is defined as Eq. (6.3).

An important difference from the one-dimensional case becomes apparent if one

compares Eqs. (5.19) and (6.20), and more specifically the expressions for Gaussian

functions entering these equations described by (5.14) and (6.5), respectively. In the

two-dimensional case, the function g(y) in Eq. (6.20) is found using (6.5), in which

coefficients ai j are determined by the current value of the correlation coefficient ρ

calculated according to Eq. (6.3). Below we express ρ through the moments of the

two-dimensional random process (X1,X2). Namely

m1 = E(X1) =

∞"
−∞

x1 f (x)dx1dx2 = µ10, m2 = µ01,

σ2
1 = E[(X1 −m1)2] =

∞"
−∞

(x1 − µ10)2 f (x)dx1dx2 = µ20, σ2
2 = µ02,

E[(X1 −m1)(X2 −m2)] =

∞"
−∞

(x1 − µ10)(x2 − µ01) f (x)dx1dx2 = µ11.

Then ρ can be expressed as

ρ =
µ11
√
µ20µ02

. (6.23)
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Since with the new stimulus arriving at every new time moment, all moments entering

(6.23) evolve, the coefficient ρ evolves, too. Therefore, the Gaussian functions entering

the Gram-Charlier expansion (6.20) are updated with every new pair of values (x1, x2)

entering the learning system. This constitutes the main difference from the one-

dimensional case in which the Gaussian functions in the polynomial expansion do not

change with time.

For illustrations of the evolution of this approximation, we fix the order of polyno-

mials at which the Gram-Charlier series is truncated, so that it can achieve an acceptable

accuracy of approximation and save the calculation time. With input coming from two

categories, only the terms lower than 6th order are used in the MBDA. A number

of snapshots of the distribution histogram, the energy function of the PDS and of its

MBDA corresponding to different time moments are shown in Figs. 6.10 and 6.11. It

is shown that the number, location and magnitude of peaks in these three functions

evolve in the same way.

This property is more clearly seen in the example where input arrives from four

categories illustrated by Figs. 6.12 and 6.13. In approximating the four-peak density

function, the MBDA is truncated after the 10th order terms. The plots of the three func-

tions at different time moments show how various categories are gradually identified

by the PDS and its approximation as the input arrives. The changes in the number,

magnitude and location of the peaks in the landscapes agree well with the values of

the stimulus. These results confirm that the evolution of the MBDA approximates that

of the PDS with a satisfactory accuracy.
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Figure 6.10: Evolution of (a) distribution histogram, (b) negative of the self-shaping
landscape with σx

2 = 0.1 and (c) MBDA of the landscape with n = 6 while processing
a two-dimensional input signal generated by a random process with a two-peak PDF.
Each row corresponds to a single time moment t, which increases from top to bottom,
with the values of t given in the field of the figure.
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Figure 6.11: Evolution of (a) distribution histogram, (b) negative of the self-shaping
landscape with σx

2 = 0.1 and (c) MBDA of the landscape with n = 6 while processing
a two-dimensional input signal generated by a random process with a two-peak PDF.
Each row corresponds to a single time moment t, which increases from top to bottom,
with the values of t given in the field of the figure.
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Figure 6.12: Evolution of (a) distribution histogram, (b) negative of the self-shaping
landscape with σx

2 = 0.2 and (c) MBDA of the landscape with n = 10 while processing
a two-dimensional input signal generated by a random process with a four-peak PDF.
Each row corresponds to a single time moment t, which increases from top to bottom,
with the values of t given in the field of the figure.
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Figure 6.13: Evolution of (a) distribution histogram, (b) negative of the self-shaping
landscape with σx

2 = 0.2 and (c) MBDA of the landscape with n = 10 while processing
a two-dimensional input signal generated by a random process with a four-peak PDF.
Each row corresponds to a single time moment t, which increases from top to bottom,
with the values of t given in the field of the figure.
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6.4 Concluding remarks

In this Chapter, encouraged by the success of polynomial approximations of an evolv-

ing energy landscape of the one-dimensional gradient PDS, we investigated the pos-

sibility to extend this method to a multi-dimensional PDS under the same conditions.

It appeared that the MBDA used to describe a one-dimensional system can be ex-

tended for this purpose, and we demonstrated how this could be done using a two-

dimensional system to aid visualisation of the results obtained. We revealed how the

quality of the approximation depended on the number of terms involved and on the

complexity of the landscape to imitate.

The significance of the results obtained consists in reducing the DS (3.8), which

does not seem to be directly implementable in practice, to a collection of DSs of a

well-known non-autonomous type describing evolution of the moments participating

in the approximation. Unlike (3.8), non-autonomous DSs permit implementation, and

our results pave the way to create the devices self-organising their velocity fields in

a manner pre-determined by their purpose. This possibility comes at a price of an

error, which is unavoidable when approximating the desired velocity field, but it can

be made relatively small by choosing the expansion parameters appropriately.

In addition, the reduction above allows one to avoid storing all the incoming data

in order to find a suitable approximation for the landscape function at each stage of

information processing. The evolution rules for the moments require knowledge of

only the most recent input to the system, while the history of this input could be safely

forgotten. This means that the future devices with parameters evolving according to

these principles should be able to process a never-ending stream of information, just

like neural networks.

We detected an important difference between the one- and multi-dimensional cases,

to which MBDA was applied. Namely, in the one-dimensional case throughout the
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process of learning from the incoming data the basis functions are fixed, and only the

expansion coefficients are evolving in time according to some rules. However, in the

multi-dimensional case not only the coefficients, but also the basis functions (Gaussian

functions in Hermite polynomials) are evolving as the system processes information.

The purpose of the research in the given Chapter has been to provide a theoretical

basis for the future implementations of the PDS in electronic circuits. We chose polyno-

mial approximations of the plastic velocity field because polynomials can in principle

be realised in a circuit. Of course, the multi-dimensional cases are more relevant to

practical applications than the one-dimensional ones. Thus, when planning the design

of the suitable circuits, one will need to find the ways to implement the adjustment of

not only the amplification factors for the outcome currents/voltages of the individual

sub-circuits modelling the basis functions, but also of the internal parameters of these

sub-circuits.



Chapter 7

Summary, conclusions and outlook

One of the two most popular paradigms of an artificial learning system is that of a

neural network (NN); the other being a computer, which has not been discussed in

this thesis. The attraction of NNs consists in the relative ease of their implementation,

which requires building a collection of units with rigid architecture that need to be

coupled together in a rigid manner, such that only the connection strengths are allowed

to vary. The NN paradigm has been very promising for the future understanding of

cognition because the architecture of the artificial NN was inspired by the one of the

brain, which is the only truly cognitive system known so far.

However, despite much hope associated with NNs and several decades of effort in

the studies of their properties with mathematical tools, it would be fair to say that the

NNs did not quite fulfill expectations and did not lead to creation of artificial cognitive

systems with advanced functions close to those of the brain. Moreover, even in carrying

out most basic cognitive functions, such as memorization and categorization, the NNs

are known to possess flaws. Namely, their memories are limited and short-lived, and

contain errors caused by spontaneous and inevitable creation of spurious attractors.

The recently proposed way to model basic cognition in an alternative manner, i.e.

by means of a dynamical system (DS) with plastic spontaneously evolving velocity

field, can be regarded as a generalization of the concept of a NN. Namely, if every
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neuron entering the network is modeled as a continuous-state DS, the whole NN

becomes a high-dimensional DS with a certain velocity field. The NN learning from the

incoming data in an unsupervised manner is spontaneously adjusting its connections,

and hence its velocity field, in a manner typically leading to the birth of new and

disappearance of the old attractors, and simultaneously reshaping their basins of

attraction. Thus, such a NN would be a special case of a PDS, whose plasticity is

limited due to the rigidity of its architecture. The latter can explain the limitations of

the NNs mentioned above.

Despite the issues with the NNs, these might form the only class of systems know

to date which have the self-organised plasticity of their velocity fields. Since the brain

as a biological NN is phenomenally good at performing complex cognitive tasks, we

hoped that the models of NNs might be able to reproduce the very basic cognitive

tasks performed by the simple PDS (3.1), (3.8). With this, in Chapter 4 we compared

the performance of the PDS with that of a simple NN, both learning from the same

stream of input data without supervision. In order to be able to do that, we had to

find a way to code the state of the PDS by the state of the NN. A fundamental issue

had to be resolved: while the phase space of the NN is principally bounded, the

phase space of the PDS is not. Even assuming that any input signal and hence the

usable values of the PDS variables could in practice take values only within a certain

bounded interval, we wanted to avoid the traditional simple rescaling of the input to

fit it inside the range of values permitted for the NN. The reason is that this method

is not convenient and does not look biologically plausible. So we proposed a coding

method that essentially converted the value of the input (e.g. the voltage) into the

displacement along the neural chain, which seems more biologically realistic, albeit

without any biological evidence to support this idea. We tried two variations of this

method and demonstrated that against all hopes the given NN does not match the

abilities of the PDS. One reason for that could be a limited amount of plasticity in
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its velocity field. Another reason could be the non-optimal coding technique used.

Indeed, with the chosen coding method, only a small portion of the phase space of the

NN is used effectively, which belongs to a closed curve.

Unlike the NN, the simplest gradient PDS (3.1), (3.8) is infinitely plastic in the

sense that it can in principle form any number of attractors in such a way, that the

birth of the new attractors does not lead to the death of the old ones. However,

at the moment such a PDS remains a mathematical abstraction, which might not

be implementable in practice. In Chapters 5 and 6 we explored the possibility to

create a device, whose velocity field would be more plastic than in a NN, and whose

performance would better reproduce the one of the PDS. The proposed solution is

based on the knowledge that polynomials can be implemented in electronic circuits and

also be used to approximate other functions, including those describing the velocity

fields. The choice of appropriate polynomial approximations was inspired by the

fact that in the PDS (3.1), (3.8) the energy landscape is converging to a very specific

function, namely, to an approximation of the probability density of the random process

generating the incoming data. Thus, at each stage of learning from the data the energy

of the PDS is essentially an interim estimate of such a PDF, based on the data processed

so far. At every time instant, these PDF estimates were approximated by a polynomial

expansion based on the moments of the input random process obtained from the data

available before that.

Importantly, we were able to reduce the equations for the evolution of the energy

of the PDS to a set of non-autonomous equations for the evolution of the moments that

can be realized in hardware in principle. We derived the rules according to which these

moments need to evolve to reproduce the evolution of the PDS, such that there is no

requirement to remember the whole history of the applied stimuli. After establishing

the principal possibility to mimic the learning abilities of a one-dimensional PDS

with this approach, we examined a more complex and more practically relevant case
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of multi-dimensional systems. Interestingly, it appears that multi-dimensional cases

present an additional challenge for the design of the appropriate circuits as compared

to a one-dimensional case. Namely, in the one-dimensional case one needs to construct

a collection of circuits implementing basis functions (Hermite polynomials) of a fixed

form, whose outputs need to be multiplied by certain numbers evolving in time as the

system learns. However, already in the two-dimensional case the basis functions need

to evolve in time, too, which implies a more complex design for the respective circuits.

A number of problems were identified for the future work. Firstly, the method of

coding the state of the PDS by the state of the NN, which was proposed in this thesis,

might not be optimal and might have affected the performance of the NN against

the one of the PDS. Therefore, the problem remains to find a better coding method,

preferably using a much larger volume of the phase space of the NN. Secondly, it

might be possible to construct a NN consisting of more appropriate neurons, which

would lead to greater plasticity of the velocity field and result in better cognitive

abilities. Thirdly, while implementation of even the simplest gradient PDS presents

considerable difficulties, implementation of non-gradient PDSs not considered here

would be an even larger challenge for the future.



Appendix A

Hermite polynomials and their

properties

In Chapter 5, we applied Hermite Polynomials in the MBDA. Here we provide brief

proof of orthogonal property of such polynomials.

The explicit expression of Hermite polynomial is

Hk(x) =

[k/2]∑
i=0

(−1)i k!
i!(k − 2i)!2i xk−2i, (A.1)

The first ten polynomials are

H0(x) = 1

H1(x) = x

H2(x) = x2
− 1

H3(x) = x3
− 3x

H4(x) = x4
− 6x2 + 3

H5(x) = x5
− 10x3 + 15x
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H6(x) = x6
− 15x4 + 45x2

− 15

H7(x) = x7
− 21x5 + 105x3

− 105x

H8(x) = x8
− 28x6 + 210x4

− 420x2 + 105

H9(x) = x9
− 36x7 + 378x5

− 1260x3 + 945x

H10(x) = x10
− 45x8 + 630x6

− 3150x4 + 4725x2
− 945.

The polynomials have some interesting properties. The most important one is

its orthogonality, which is used for the derivation of the coefficients in MBDA. The

orthogonal property reads [48]

∫
∞

∞

Hi(x)H j(x)g(x)dx =


0 for i , j,

i! for i = j;
(A.2)

where g(x) is the standardised gaussian function

g(x) =
1
√

2π
exp

(
−

1
2

x2
)
. (A.3)

Integrating by parts, we get, if i� j,

∫
∞

∞

Hi(x)H j(x)g(x)dx =

∫
∞

∞

Hi(x)(−1) j djg(x)
dx j dx

= (−1) j
[
Hi(x)

dj−1g(x)
dx j−1

]∞
−∞

+ (−1) j−1
∫
∞

∞

dHi(x)
dx

dj−1g(x)
dx j−1

dx.

(A.4)

The term in square brackets is equal to 0. Due to the property that

dHi(x)
dx

= iHi−1(x), (A.5)
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which is proved in [48], the integral becomes

∫
∞

∞

Hi(x)H j(x)g(x)dx = i(−1) j−1
∫
∞

∞

Hi−1(x)
dj−1g(x)

dx j−1
dx. (A.6)

Repeating integrating by parts and this process, we get that if i , j, the integral equals

0 and if i = j, it equals to i!.
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