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Abstract

Changing speed limit leads to proportional changes in average speeds which may affect

the number of traffic accident occurrences. It is however critical and challenging to eval-

uate the impact of a speed limit alteration on the number and severity of accidents due

primarily to the unavailability of adequate data and the inherent limitations of exist-

ing approaches. Although speed is regarded as one of the main contributory factors in

traffic accident occurrences, research findings are inconsistent. Independent of the ro-

bustness of their statistical approaches, accident frequency models typically use accident

grouping concepts based on spatial criteria (e.g. accident counts by link termed as a link-

based approach). In the link-based approach, the variability of accidents is explained by

highly aggregated average measures of explanatory variables that may be inappropriate,

especially for time-varying variables such as speed and volume. This thesis re-examines

accident-speed relationships by developing a new accident data aggregation method that

enables improved representation of the road conditions just before accident occurrences

in order to evaluate the impact of a potential speed limit increase on the UK motorways

(e.g. from 70 mph to 80 mph).

In this work, accidents are aggregated according to the similarity of their pre-accident

traffic and geometric conditions, forming an alternative accident count dataset termed

as the condition-based approach. Accident-speed relationships are separately developed

and compared for both approaches (i.e. link-based and condition-based) by employing

the reported annual accidents that occurred on the Strategic Road Network of England

in 2012 along with traffic and geometric variables. Accident locations were refined using

a fuzzy-logic-based algorithm designed for the study area with 98.9% estimated accuracy.

The datasets were modelled by injury severity (i.e. fatal and serious or slight) and by

number of vehicles involved (i.e. single-vehicle and multiple-vehicle) using the multivari-
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ate Poisson lognormal regression, with spatial effects for the link-based model under a full

Bayesian inference method.

The results of the condition-based models imply that single-vehicle accidents of all sever-

ities and multiple-vehicle accidents with fatal or serious injuries increase at higher speed

conditions, particularly when these are combined with lower volumes. Multiple-vehicle

slight injury accidents were not found to be related with higher speeds, but instead with

congested traffic. The outcomes of the link-based model were almost the opposite; sug-

gesting that the speed-accident relationship is negative. The differences between the

results reveal that data aggregation may be crucial, yet so far overlooked in the method-

ological aspect of accident data analyses. By employing the speed elasticity of motorway

accidents that was derived from the calibrated condition-based models it has been found

that a 10 mph increase in UK motorway speed limit (i.e. from 70 mph to 80 mph) would

result in a 6-12% increase in fatal and serious injury accidents and 1-3% increase in slight

injury accidents.
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Chapter 1

Introduction

1.1 Background

Road transport infrastructure is an important growth and productivity indicator for na-

tional economies (Mačiulis et al., 2009). Despite the undoubtable benefits to society, road

transport systems have also negative social and economic impact. Traffic congestion,

pollution (i.e. emissions and noise) and accidents are defined as the main externalities

of road transport systems (Maddison et al., 1996). Relative comparisons between these

three problems are not particularly meaningful as all of them have different and severe

impact on road transport systems. Congestion mainly affects road networks’ operation,

causing disruption and delays, pollution is linked with environmental changes that have

adverse consequences on human health and traffic accidents, which are the focus of this

thesis, have impact on the physical integrity of road users and the networks’ operation.

Accidents are defined as unwanted or unintended sudden events or a specific chain of

such events which have harmful consequences (ITF et al., 2009). They cause serious traf-

fic delays, congestion and property damage but more importantly they are linked with

road traffic injuries that remain an unsolved global public health problem (WHO, 2013).

The multiple problems that are linked with accidents and their inherent complexity make

them one of the most challenging problems that policy makers and other stakeholders

have to address.

During 2014 in the UK there were 194,477 reported traffic accidents and 12.6% of them
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had at least one killed or seriously injured casualty (Department for Transport, 2015b).

A significant proportion of these accidents occurred on the motorway network. More

specifically, although the length of motorways is only 1% of the total road network of the

country, motorways account for almost 5% of accidents on the entire UK road network

(Department for Transport, 2015b,c). This is certainly related with the fact that motor-

ways carry approximately 21% of the total road traffic but it might be also due to the

presence of potential accident triggering factors such as speed.

There is an endless list of potential accident contributory factors that are related either to

the road environment or the users. Traffic conditions, road configuration, weather, driver

demographic characteristics are only a few of the factors that are believed to be linked

with accidents. The relationships between these factors and accidents are examined from

different perspectives (e.g. behaviour, external conditions, infrastructure) especially since

the middle of the 20th century; however, the complexity and individuality of road acci-

dents make the explanation of these phenomena ambiguous.

Speed, along with alcohol consumption and failure to use a seatbelt, are the top three

factors related with 65% of fatal accidents in the UK (Clarke et al., 2010). Speed has been

reported to be a contributory factor for 36% of fatal and 14% of all accidents in the UK

during 2013 (Department for Transport, 2014). Driving with excessive speed is a poten-

tial contributory factor that is particularly interesting for high-speed road environments

such as motorways. The percentage of fatal accidents on high speed environments is more

than double than the corresponding percentage on roads with lower average speeds (Keep,

2013). This fact implies that a causal relationship between serious accidents and speed

might exist. To control the negative impact of speeding, traffic authorities set and enforce

speed limits on motorways and other main roads. The national motorway speed limit in

the UK is 70 mph for all types of vehicles except for goods vehicles with laden weight

over 7.5 tonnes and cars that tow caravans or trailers that should not exceed 60 mph

(Department for Transport, 2007).
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1.2 Problem Statement

Speed limits should not be considered as the target speed, however a great proportion

of motorway drivers in the UK systematically exceed the speed limits; in 2014 46% of

cars violated the 70 mph speed limit, leading to an annual average speed and an 85th

percentile as high as 68 mph and 77 mph respectively (Department for Transport, 2015a).

One could argue that these figures indicate the necessity of an update to the current speed

limit that was firstly set in 1966. It is a fact that many factors related to road safety

have been changed over time. For instance, vehicle technology, vehicle-based active and

passive safety systems, driver training and education, emergency responses and medical

services have been significantly improved. Based on the above and arguing that safety

cannot be the only consideration when setting speed limits the Department for Transport

expressed their intention to increase motorway speed limits from 70mph to 80 mph in

2011 (Department for Transport, 2011a). The reason behind this idea was that a speed

limit increase could lead to reduced travel times and less congestion that can be translated

to economic benefits for the region.

As expected, this announcement raised questions concerning the possible negative conse-

quences that a regulation like this could bring to the number of traffic accidents on the

UK motorways. To assess whether such an increase in the speed limit is sensible it is

necessary to estimate its future effect on road safety. The relationship between speed and

accidents is the key to quantify the impact of speed limit changes. Increases in speed

limit are related with average speed raises (Freedman and Williams, 1992) that could

potentially cause more accidents on the network. Previous studies on the impact of speed

limit changes primarily concluded that the changes in accident frequency and severity are

proportional to the speed limit alterations (e.g. Elvik, 2009). Nevertheless, the individual

examination of the relationship of speed with accidents provides less clear results. Speed-

ing is confirmed to be related with higher accident severity but it is not clear whether

this is true for accident frequency (e.g. Aarts and Van Schagen, 2006; Kockelman and

Ma, 2007; Quddus, 2013). The lack of a generalised conclusion and the absence of British

studies on the impact of speed limit increases show that the relationship of speed with

accidents should be further explored.
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The dissimilar findings of existing research on the relationship of accident frequency with

speed may be due to various methodological limitations of accident analyses that reduce

the accuracy of representation of the actual circumstances that are related with, and

probably caused, accidents. In conventional accident analyses accidents are typically ag-

gregated using spatial criteria such as road links. Link-based analyses use variables that

are by default highly aggregated as they represent the conditions on an entire link with

one characteristic value (e.g. time-varying measures are usually represented by annual

averages). In this way it is likely that the spatial and temporal variations within the link

are not captured, making the representation of the pre-accident conditions practically

impossible. Moreover, analysing all accident types together may reduce the capability

of models to reveal the actual accident contributory factors as those are found to vary

between different accident generation processes (Geedipally and Lord, 2010).

The speed limit increase that was proposed by the Department for Transport after the

replacement of the Secretary of State for Transport (former Secretary Philip Hammond

was replaced by Patrick McLoughlin) did not continue to be a priority and did not reach

the implementation stage (Chorley, 2013). Nevertheless, the relationship of speed and

traffic accidents is still an interesting and relatively unexplored subject for the motor-

way network of England. This thesis examines speed-accident relationships on the UK

motorway attempting to overcome the current methodological limitations. This includes

the exploration of alternative accident data aggregation approaches that will enable the

accurate representation of the pre-accident traffic conditions in statistical models and

the evaluation of the effects of speed and other contributory factors on different accident

types. The results intend to increase the understanding of accident occurrences and the

methods for analysing them.

1.3 Research Importance

Although over the last decades accidents have a decreasing trend especially in the Western

world, their number is still unacceptably high (WHO, 2013). In addition to the devas-

tating personal losses, the annual loss to society due to accidents in the UK is estimated
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to be £15 billion (the value for preventing a fatal accident is approximately £2 million)

(Department for Transport, 2012b). As a consequence, mitigation of traffic accidents re-

mains one of the top priorities of traffic management agencies in the UK and all over the

world (e.g. Whitelegg and Haq, 2006). To decrease the number of accidents effectively by

introducing new policies or technologies, it is necessary to firstly understand the mecha-

nisms that lead to these events. Road safety research aims to reveal causal relationships

and contributory factors of accidents so as to develop targeted preventive measures in the

future.

The majority of accidents are related with combinations of human error with defects

of the road environment (e.g. Wagenaar et al., 1990). While controlling drivers’ errors is

not always possible, designing and managing roads in a manner that hazardous situations

are avoided is more feasible. Developing road infrastructure of high safety standards is

one straightforward way for securing effective accident mitigation. Accident modelling is

a key method for achieving this as it provides information on the relationships of road

characteristics with accidents. This research project is meaningful because it provides

qualitative results on the relationships of several contributory factors with accidents and

also provides new methodological insight on accident modelling.

1.4 Aim and Objectives

This thesis aims to examine the relationship between motorway accidents and speed. This

will be accomplished through the following objectives:

• To review the impact of speed and other contributory factors on accidents

• To examine existing statistical approaches in accident modelling

• To refine and merge data from multiple sources so as to enhance the quality of the

analysis

• To develop accident-speed relationships using a new condition-based modelling ap-

proach
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• To compare and contrast the results between the conventional and the condition-

based modelling approach

• To evaluate the impact of a potential speed limit increase on accidents

1.5 Thesis Outline

This thesis consists of seven chapters. An outline of the chapters is provided below:

• Chapter 2 conducts an extensive literature review on the relationship of accidents

with traffic and geometric contributory factors, the main statistical approaches in

accident analyses and the existing accident location refinement methods;

• Chapter 3 presents the methodology of this thesis. The chapter starts with the

description of an accident mapping algorithm that is applied to the accident data.

Following are the two accident aggregation methods that are examined and the

statistical models that are employed. The final section of this chapter explains the

modelling strategy that was followed in this work;

• Chapter 4 illustrates the accident, traffic and geometric data and the outcomes

of the data pre-processing methods that are used before proceeding to the main

analysis;

• Chapter 5 shows and explains the results of the statistical models that are developed.

The chapter also discusses methodological implications for accident analyses that

were derived from the modelling outcomes;

• Chapter 6 provides estimations on the impact of a potential speed limit increase

and provides policy recommendations for mitigation of traffic accidents;

• Chapter 7 summarises this research project and outlines its contributions to knowl-

edge and limitations. Finally, some thoughts for future research directions are pro-

vided.
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Chapter 2

Literature Review of Findings and

Methods of Accident Analyses

2.1 Motivation

Accidents impose social and personal costs on drivers, passengers and generally the road

network users. Traffic managers and local authorities for at least the last century are

working on decreasing the number of road accidents with an emphasis on accidents with

casualties (Norton, 2015). Prevention relies on the in-depth understanding of the factors

and the mechanisms related with accidents. There are numerous factors associated with

driving attitudes, traffic or external conditions (e.g. alcohol consumption, traffic conges-

tion, adverse weather) and often combinations of such factors that may lead to accidents

(Brown, 1982; Montella, 2011). The first systematic accident analyses emerged approx-

imately seven decades ago and since then there have been constant significant advances

on our understanding of accident causation (Hagenzieker et al., 2014). The randomness

and the complexity that characterises road accidents though have not yet permitted a full

explanation of these phenomena.

In order to develop an appropriate methodology for this research it is necessary to under-

stand the existing knowledge and to identify the methodological limitations of previous

accident analyses. The focus of this literature review is the main outcomes and the quan-

titative approaches that have been employed in accident modelling. The first part of this

chapter outlines the findings of previous research on the relationships of accidents with
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speed, traffic volume and road geometric features that are the contributory factors that

will be examined in this thesis. Following that, there is a discussion on the main statistical

approaches that have been used in accident analyses and their strengths and limitations.

The final section of this review outlines the significance of reported accident locations in

accident analyses and the existing accident mapping techniques.

2.2 Speed and Accidents

Speed is related with a large proportion of traffic accidents (Aarts and Van Schagen,

2006; Clarke et al., 2010). This is explainable considering that speed is a potential ac-

cident contributory factor that is always present on the network in contrast to many

others that have random (e.g. rainfall) or periodic character (e.g. darkness) (Elvik et al.,

2004). As drivers do not always succeed in choosing appropriate speeds, speed regulation

measures such as speed limits are necessary because they offer some guidance for correct

speed choices (Elvik, 2010). Speed limits can therefore indirectly represent the typical

traffic conditions on the roadway. Accepting that an accident-speed relationship exists,

speed limit changes are expected to have impact on the safety levels of a road network.

Network-level accident-speed relationships have been examined either by estimating the

impact of speed limit changes or by developing statistical models that explain the number

of accidents as a function of speed as a traffic variable.

High speeds are proven to increase the severity of accidents and there are also indica-

tions that they have a negative impact on accident frequency. Although the number of

studies that attempted to quantify the accident-speed relationship is significant, the high

complexity of accidents and some methodological restrictions have not permitted the gen-

eration of a relationship with general acceptance and application. The findings of the

most significant studies on this topic are presented in the sections below.
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2.2.1 Speed limits and accidents

2.2.1.1 Speed limit increases

The aim of setting speed limits is to maintain the equilibrium between road safety, traffic

flow and energy consumption in road networks (TRB, 1998; Department for Transport,

2006). A speed limit does not necessarily represent a speed that is safe at all conditions

and is definitely not a target speed. Except for denoting what is legal, properly set speed

limits reflect the range of speeds that are considered sensible for a specific road environ-

ment according to its characteristics (Department for Transport, 2006).

Setting speed limits requires a thorough data collection and analysis of various factors

related with the road environment. The most common factors that are taken into con-

sideration are the design speed, the 85th percentile, the mean speed, the road function,

previous accident and enforcement experience, roadway geometry and the impressions

a road gives to its users (TRB, 1998). The existence of appropriately set speed limits

though does not ensure the keeping of speeds at safe levels; violating the speed limit is

one of the most common road traffic law offences (Department for Transport, 2015a).

As a consequence, speed limit enforcement is particularly important for effective speed

regulation (Wilson et al., 2006). Among the numerous different methods for enforcing

speed, speed cameras and speed guns are considered to be some of the most efficient.

For instance, average speed drop and accident mitigation have been reported at roadway

locations that are equipped with speed cameras (e.g. Mountain et al., 2005; Soole et al.,

2013; Li et al., 2013).

In some cases, road management authorities decide to use special types of speed lim-

its when it is believed that they will suit better the roads’ characteristics and needs. As

an example, some roadway sections have variable speed limits that adapt to the external

conditions (e.g. weather, traffic) or differential speed limits that apply for some specific

types of vehicles such as trucks (TRB, 1998). Since 2005, variable speed limits are imple-

mented on some sections of the Strategic Road Network of England forming the so-called

smart motorway network that is continuously expanding (Highways England, 2014). The

smart motorway is a dynamic response to the continuously increased traffic demand that

is also cost-effective compared to an expansion of the existing network (Highways Agency,

9



2010). For that purpose, except for using hard shoulders as lanes variable, mandatory

and highly enforced speed limits are used. Variable speed limits are set in order to corre-

spond efficiently to the traffic and environmental conditions on the motorway (Highways

Agency, 2006; Department for Transport, 2012a).

Speed limits are measures that generally have long-term or even permanent character.

Traffic authorities usually decide to change a speed limit only if they consider it as nec-

essary for promoting safety or relaxing congestion. The distribution of speeds on the

roadway is typically a function of the posted speed limit. As a consequence speed limit

changes will lead to changes in the average driving speeds. Research has shown that

these changes are proportional but comparatively moderate and that is possibly because

new speed limits reflect better the current speed choices of the users (Rock, 1995). More

specifically, the average speed change equals approximately to one quarter to half of the

speed limit difference (e.g. Freedman and Williams, 1992; Finch et al., 1994; Baruya,

1998b; Aljanahi et al., 1999; Ossiander and Cummings, 2002; Elvik et al., 2004; Vadeby

and Forsman, 2010; De Pauw et al., 2014). Assuming that speed is related with accidents,

a speed limit change, if all other factors remain unchanged, should have an impact on

the number of accidents on a road network and probably on the adjacent roads too (i.e.

spill-over effect) (e.g. Garber and Grahman, 1990; Wagenaar et al., 1990). According to

a meta-analysis by Elvik et al. (2004) 70.5% (weighted percentage) of the before-after

included studies found a proportional change in accidents after a speed limit alteration.

There are quite a few examples from countries all over the world where the speed limits

were changed (increased or decreased) and the differences in road accidents shed more

light on the effect of speed limits on road safety. To be in line with the aim of this thesis,

this review will focus on studies that examined the impact of increased speed limits on

accidents.

There are a considerable number of before and after studies that are focused on speed

limit changes in the United States. Almost a decade after the general speed limit reduc-

tion (to 55 mph) due to the petrol crisis, the US government in 1987 gave the permission

to the States that they wished to, to increase their speed limits up to 65 mph. Fol-

10



lowing this, in 1995 the responsibility of setting speed limits completely returned to the

States and from that point until today each State selects its own speed limit (TRB, 1998).

After the 10-mph increase of speed limits (from 55 to 65 mph), in 40 of the States in

1988; most of the state and national studies report a general trend of increased fatal ac-

cidents and fatalities (TRB, 1998; Houston, 1999). In their before and after study Brown

et al. (1990) found that in the State of Alabama a year after the speed limit increase,

19% more accidents were reported on rural interstates. Wagenaar et al. (1990) apply-

ing an ARIMA time series model estimated that there was a 19% increase in fatalities

and a 25-40% increase in injuries in rural interstates of Michigan. They suggested that

the frequency of fatalities also rose in limited access freeways that did not experience a

speed limit change, as a side effect of higher driving speeds in neighbouring roads, the

so-called spill-over effect. Using ARIMA models Rock (1995) also suggested the existence

of spill-over effects due to increased speed variance in the State of Illinois in addition to

a substantial monthly increase of accidents on rural inter-states (345 more accidents and

15 more fatalities).

Baum et al. (1991) examined the impact of the speed limit rise in 40 states using as

a reference eight states where the speed limit was unchanged for their before and after

analysis. Controlling for the increased vehicle miles travelled and vehicle occupancy, they

found a 29% increase in fatalities of rural interstates of the states that adopted higher

speed limits (Baum et al., 1991). On the other hand, the eight states that did not apply

the measure had a 12% reduction in fatalities that according to the confidence interval

of the odds ratio that was used for the estimation was not found to be statistically sig-

nificant. However, when accidents were examined disaggregated by state, the impact of

speed limit increases was not uniform. Although the median of fatal accidents increased

by approximately 15%, Garber and Grahman (1990) found that only 28 out of the 40

states experienced more fatal accidents. Chang et al. (1993) suggested that the increase

was more significant in the comparatively smaller states noting the existence of several

unobserved exogenous factors that contribute to these changes.

Arguing that the majority of the before and after studies focus on local effects only
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Lave and Elias (1994) opposed the view that speed limit increases have a negative im-

pact on road safety. Setting as their dependent variable state-wide instead of interstate

fatalities, they estimated a 3.4% to 5.1% decline. They explained that this might was the

effect of traffic diversion (i.e. faster drivers tended to avoid non-interstates), more efficient

distribution of resources for road safety by the authorities and speed variations decrease

despite the fact that such data were not available to them to confirm these explanations.

The effect of the speed limit relaxation in several main roads in Hong Kong was neg-

ative for accidents of all severities. The impact on fatal and serious accidents though

was considerably more significant when the speed limit increased from 70 to 80 km/h (∼

43.50 to 49.71 mph) (fatal and serious accidents increased by 18%) than from 50 to 70

km/h (∼ 31.07 to 43.50 mph) (fatal and serious accidents increased by 1%)(Wong et al.,

2005). The European examples of speed limit increases in rural highways and motorways

have also shown with some consistency that the impact of this measure is rather negative

for road safety (OECD/ECMT, 2006). A 10km/h (∼ 6.2 mph) speed limit increase lead

to 13% more fatalities in Hungary and in considerably more personal injury accidents

in Sweden and Denmark (OECD/ECMT, 2006; Hels, 2012; Vadeby, 2015). The impact

on speed limits increase on Greek motorways varied based on their geometric and traffic

characteristics. More specifically, motorways with lower geometric standards had more

fatal accidents, but this was not true for motorways with better geometrical features and

relatively lower traffic (Yiannis et al., 2015) .

2.2.1.2 Meta-analyses

Regardless of their results, the common feature of the above studies is that they examine

local effects of speed limit changes having available accident data before and after the

period of the measure implementation. In order to take strategic policy decisions though,

it is useful to know in advance the potential impact of a speed limit increase. There have

been several attempts in the literature to define general rules for the impact of speed limit

changes; most of them are based on the combination of the outcomes of previous studies

(i.e. meta-analyses).
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The effect of changing speeds after the implementation of traffic measures on road safety

was examined in-depth in the meta-analysis conducted by Elvik et al. (2004). The study

primarily aimed to identify a generic relationship that could estimate the manner in which

speed changes influence the number and severity of traffic accidents and additionally to

test to what extent the Power Model (Nilsson, 2004) describes this relationship. Nils-

son (2004) introduced the Power Model as a group of six power functions (see equations

2.1-2.6) that estimate the expected number of accidents or casualties by accident severity

after a certain change in mean speeds on a road network assuming that the number of

occurrences and casualties is always proportional to speed. Although the power functions

are obviously quite simplistic to provide very accurate results, Nilsson (2004) supported

that they are applicable for all network environments.

Fatal Accidents: y1 =

(
v1
v0

)4

y0 (2.1)

Fatalities: z1 =

(
v1
v0

)4

y0 +

(
v1
v0

)8

(z0 − y0) (2.2)

Fatal and Serious Accidents: y1 =

(
v1
v0

)3

y0 (2.3)

Fatal and Seriously Injured Casualties: z1 =

(
v1
v0

)3

y0 +

(
v1
v0

)6

(z0 − y0) (2.4)

All Accidents: y1 =

(
v1
v0

)2

y0 (2.5)

All Casualties: z1 =

(
v1
v0

)2

y0 +

(
v1
v0

)4

(z0 − y0) (2.6)

Where:

y0 and y1: the number of accidents before and after the change respectively
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v0 and v1: the mean speed before and after the change respectively

z0 and z1: the casualties before and after the change respectively.

For their meta-analysis Elvik et al. (2004) identified 98 valid projects from all over the

world conducted between 1960 and 2004. The topic of these studies was mainly about

the consequences due to mean speed changes that have occurred due to a new road safety

measure. As a part of their exploratory analysis Elvik et al. (2004), after standardising

the explanatory power of the studies, found that average speeds were decreased 95% af-

ter a speed limit reduction and this was consistent with the Power model, which means

that accident number and speed changed proportionally. The respective figure for the

estimates of increasing mean speeds was 70.5%. Applying a meta-regression analysis

they estimated new exponents applicable for equations 2.1-2.6 that are summarised in

Table 2.1. The authors appeared to be confident about the results of their meta-analyses

suggesting that the existing limitations such as study inclusion biases, omission of other

factors are unlikely to have drastically affected the outcomes.

Figure 2.1: Best estimates of exponents for different accident or injury severity groups
(source: Elvik et al., 2004)

Nevertheless, the Power Model has a drawback that is unavoidably reflected on its re-

sults. The use of power functions is straightforward and transferable but the exponents

provided are independent of the baseline speed and that might lead to inaccurate estima-

tions (Hauer and Bonneson, 2006). As an example, the estimated proportional changes

14



on the frequency of accidents are equal when mean speed increases from 30mph to 33mph

and from 60mph to 66mph, because in both the cases there is a 10% increase of speeds.

Hauer and Bonneson (2006) using the data from the meta-analysis by Elvik et al. (2004)

proved the dependence of accident frequency on the baseline speed and examined whether

other factors apart from mean speeds should be taken into consideration. Hauer and Bon-

neson (2006) and Hauer (2009) also developed new exponential prediction models that

incorporated manoeuvre time and distance for collision avoidance.

Elvik (2009) suggested that the power model is simpler than the exponential and modified

the power model in a way that the initial speeds were indirectly taken into consideration.

Using an updated and richer dataset he estimated two different sets of exponents for high

and low speeds that can be seen in Table 2.2. Although this approach provides improved

results, the baseline speeds are still not taken into account and that is why Elvik (2013)

re-parametrised these exponents in order to compare it with the exponential model. The

exponential model had slightly better fit for injury and PDO accidents but for accidents

with fatalities the power model fitted better. Elvik (2013) concluded that the analysis

supports exponential models as they are more suitable for modelling the impact of speed

changes on road safety. Despite that, Elvik’s (2009) approach due to its simplicity is used

as a point of reference by many transportation agencies in the world (e.g. Hels, 2012;

Vadeby, 2015).

Figure 2.2: Best estimates of exponents for different accident or injury severity groups by
road type (source: Elvik, 2009)
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2.2.2 Speed and speed variance

Meta-analyses’ results are useful for identifying general data patterns, but are not accurate

enough for predicting the effect of a speed limit increase on a particular road network as

they cannot take into account the area-specific characteristics (geographic, cultural etc.)

that may differentiate the outcomes. Consequently, to predict the impact of a potential

speed limit increase on a road network it is necessary to define its accident-speed rela-

tionship. As has already been discussed, the majority of the before and after studies

report proportional changes in accident frequency following speed limit alterations (e.g.

Elvik et al., 2004; Aarts and Van Schagen, 2006). This effect is always attributed to the

increase of average speeds on the roadway; however, the individual examination of the

relationship of speed with accidents does not always support this idea.

Based on the amount of the kinetic energy that is released during a collision (EKinetic =

mV 2

2
), accidents that occur under high speed conditions are definitely more likely to lead

to more serious outcomes (e.g. Joksch, 1993; Kloeden et al., 1997; Aarts and Van Scha-

gen, 2006; Pei et al., 2012). High travel speeds are also associated with many accident

triggering factors such as lower reaction times, longer decisions, breaking and stopping

distances, reduction of manoeuvrability and increased possibilities of manipulation error,

loss of control and exceeding the critical speed on a curve (Solomon, 1964; Godwin, 1984;

Hale, 1990; Fildes and Lee, 1993; Patterson et al., 2000; Navon, 2003; Aarts and Van

Schagen, 2006). On the other hand, higher speeds are also related with more uniform

distribution of speeds (i.e. lower speed variance) that is considered to be beneficial for

road safety (Lave, 1985; Graves et al., 1993; Navon, 2003).

There is a considerable amount of research on the accident-speed relationship but several

points of disagreement between studies. Most of the studies found driving speeds to be

linearly or exponentially related to accidents (e.g. Fildes et al., 1991; Baruya and Finch,

1994; Kloeden et al., 1997; Quimbly et al., 1999; Taylor et al., 2000; Kloeden et al., 2002).

A few studies contradicted the common belief though, proposing that speed is inversely

proportional with accidents (e.g. Baruya, 1998a; Stuster, 2004) and others reported sta-

tistically insignificant relationships (Lave, 1985; Garber and Gadiraju, 1989). Some of

the most recent papers that explored the impact of speed on accidents using advanced
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statistical modelling did not find a statistically significant relationship between speed and

accidents (e.g. Garber and Ehrhart, 2000; Kockelman and Ma, 2007; Quddus, 2013). Pei

et al. (2012) attempted to explain the results’ inconsistencies suggesting that the esti-

mated accident-speed relationship by models strongly depends on the selected measure

of exposure; the relationship was shown to be negative for distance-based exposure (i.e.

vehicle miles travelled) but positive for time-based exposure (i.e. vehicle hours travelled).

The inconsistent results between research papers in fact might be related with a variety

of methodological and data limitations that do not permit the accurate evaluation of the

speed-accident relationship. This will be further discussed in section 2.4.

The work of Solomon (1964) on the relationship of speed and accidents is one of the

widely cited, replicated and criticised studies; maybe more than any other relevant study.

This is because one of its main outcomes was that speed dispersion and not speed is

related with accident frequency; contrasting what was believed so far and the findings of

many subsequent studies. Speed dispersion (or speed variance) is defined as speed differ-

ences between or within lanes between individual vehicles or in a road section level (Aarts

and Van Schagen, 2006). Speed differences lead to more vehicle passes that are related

with more accident prone interactions (Lave, 1985; Navon, 2003) In his case-control study

Solomon (1964) employed 10,000 accident reports that included information on the speed

before the accident (based on police officers’ estimations and a combination of other rel-

evant data in accident reports). The control data included spot speed observations for

290,000 drivers that were measured with concealed, speed measuring devices. Solomon

(1964) comparing the two speed distributions that stemmed from the case and the compar-

ison groups (defining an accident involvement rate) observed that that accident-involved

drivers were travelling at speeds that deviated from the average speed and more specif-

ically were considerably lower than it. Accident involvement rates were calculated by

dividing the number of accident-involved drivers by the respective vehicle-miles of travel

and it was plotted against speed forming a U-shaped curve (see Figure 2.3) that according

to Solomon (1964) represents the chance of a driver being involved in an accident as a

function of their speed. It can be noticed that the involvement rate reaches a peak at very

low speeds (15 mph) and its lowest value is for a speed approximately 5 mph above the

average speed that was 50 mph. From that point and onwards, involvement rate increases
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constantly. As a consequence, Solomon (1964) suggested that the greater the variation

(positive or negative) from the average in a vehicle’s speed, the more likely it is for this

vehicle to be involved in a road accident or differently put, relatively high driving speed

is safer than either low or excessively high speed driving. His finding for accident severity

was different and consistent with literature, as he suggested that accident severity and

speed are directly proportional.

Figure 2.3: Accident involvement rate as a function of driving speeds for day (solid line)
and night (dashed line) (source: Solomon, 1964).

Solomon’s (1964) work was followed by some similar studies, in terms of methodology

and results, that supported the existence of a U-shaped curve between the chance of ac-

cident involvement and speed (Cirillo, 1968; Munden, 1967; RTI, 1970). The validity of

this result however is questionable if the limitations of these studies are considered. The

inclusion of vehicles whose speed was not chosen such as turning vehicles and vehicles in

congested conditions (46% of the sample) is one factor that could distort the results of

these studies (Hauer, 1971; Frith and Patterson, 2001; RTI, 1970). Also, the use of the
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ratio of distributions of data that originate from dissimilar in terms of accuracy measure-

ment methods (i.e. vehicle speeds before the accidents and driving speeds) by default

leads to a U-shaped curve even if the two distributions were equal (Hauer, 2009).

Speed variance has been examined as a potential contributory factor several times and

with different approaches ever since. One of the main challenges is the quantification of

speed variance (Wang et al., 2013); speed differences cannot be directly measured like

other traffic variables (e.g. volume, mean speed) so the researchers employed several dif-

ferent surrogate measures. For instance, Lave (1985) used the difference of the mean speed

and the 85th percentile of the speed distribution and estimated a positive relationship be-

tween speed variations and accidents. This finding agrees with the majority of studies

where speed variance was defined as the standard deviation of speed (Baruya and Finch,

1994; Baruya, 1998a; Taylor et al., 2000; Quddus, 2013). Pei et al. (2012) however reported

that there is not a statistically significant relationship between the standard deviation of

speed and accidents. This is consistent with the findings of Kockelman and Ma (2007)

who used more complex expressions for defining separately speed variance between and

across lanes aiming to reflect disaggregate estimates of instant variation. All these results

should be seen with some caution though as they probably reflect default mathematical

properties of the data rather than actual causal relationships between speed variance and

accident frequency (Davis, 2002). In fact, the mechanism of the impact of speed vari-

ance cannot be explicitly explained until individual vehicle-level second-by-second data

are available (Kockelman and Ma, 2007).

2.3 Other Explanatory Variables

Speed is not an independent traffic characteristic; vehicles’ speed is usually a function of

the surrounding traffic conditions and infrastructure features. Therefore the relationship

of speed with accidents cannot be defined without controlling for the simultaneous effect

of other road characteristics (Aarts and Van Schagen, 2006). Various traffic characteris-

tics have been examined and found that they have significant impact in traffic accidents

such as traffic flow, traffic density, vehicle-capacity ratio and others. The effects of road
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geometry (e.g. curvature, gradient) and construction quality (e.g. pavement conditions)

on road safety have also been widely studied in the literature. The relationship of traffic

volume, horizontal and vertical alignment and the number of lanes will be mainly dis-

cussed here as these are variables that are included in the available datasets.

2.3.1 Traffic characteristics and accidents

Traffic flow is considered to be one of the most important accident precursors in the lit-

erature. Naturally, the number of vehicles on the roadway is directly proportional with

the number of vehicle interactions that can potentially lead to collisions (Navon, 2003).

Most studies represent traffic flow with the Annual Average Daily Traffic (i.e. AADT) or

Average Daily Traffic (i.e. ADT) mainly because these variables are normally available

in traffic datasets. AADT has been found by a large number of researchers to have a

proportional relationship with accident frequency (e.g. Miaou and Lum, 1993; Milton and

Mannering, 1998; Abdel-Aty and Radwan, 2000; Chang, 2005; Anastasopoulos and Man-

nering, 2009), that in other words means that the busier a road is, the more accidents are

expected to occur on it. In addition, studies that examined Levels of Service (LOS) as a

surrogate measure for traffic conditions and density, confirmed that accident frequency is

the highest for the lowest LOS and vice versa (Frantzeskakis and Iordanis, 1987).

There are however some exceptions to these findings; the study of Garber and Ehrhart

(2000) reports slight decreases in accident rates when the flow per lane increases for the

range of 90 to 100 vehicles per hour per lane. Gwynn (1967) and Ceder (1982) also found

that the relationship of traffic flow and accident rates form a U-shaped curve meaning that

accident probability rises at very high or very low traffic conditions and it is at its lowest

levels under moderate traffic. The form of a U-shaped curve also takes the relationship of

the vehicle-capacity ratio (i.e. v/c ratio) that is also a measure that represents, probably

with higher precision, the traffic flow conditions on the roadway (Zhou and Sisiopiku,

1997).

At first glance the statement that the traffic flow and accidents are proportional seems

valid, but it has been proven to be too generic and not representative of all accident
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types. There are studies that show that the effect of traffic volume has different impacts

on different collision types. Specifically, single vehicle accidents have been found to be

related to lower traffic flows while the number of multiple vehicle accidents increases at

higher traffic volumes (Gwynn, 1967; Ceder, 1982; Martin, 2002; Qin et al., 2004; Lord

et al., 2005; Kim et al., 2006; Ye et al., 2009; Bham et al., 2012). This finding can be

the explanation for the U-shaped curves that were found to represent the relationship

of accidents with traffic flow when all accidents are examined aggregated (Ceder, 1982;

Martin, 2002). The left part of the U-curve might be related with single vehicle accidents

that occur at low flow conditions and the right one refers to multiple vehicle accidents

that are more likely to occur under more congested conditions.

Although at least for multiple vehicle collisions accident frequency and traffic flow have

a positive relationship, more serious accidents tend to occur under lower flows and espe-

cially at off-peak times (Martin, 2002). This is probably because lower flows are indirectly

related with high speed and speed variance (as traffic builds up) that are also thought

to be significant accident precursors (e.g. Garber and Ehrhart, 2000; Elvik et al., 2004).

The fact that the latter two traffic characteristics are considered to trigger accident fre-

quency complicates their examination along with traffic flow and the interpretation of

the findings. Recent research on real-time accident prediction models suggests that acci-

dents occur due to turbulences of the traffic flow under particular combinations of traffic

conditions attempting to provide a more complete definition for the role of traffic flow in

accidents (e.g. Abdel-Aty and Pande, 2005; Hossain and Muromachi, 2013).

2.3.2 Road geometry and accidents

The geometrical characteristics of a road are thought to be related with accident frequency

and severity in various ways (AASHTO, 2010). Particular road configurations can con-

tribute to restricted visibility (e.g. sharp curves), higher stopping distances (e.g. downhill

sections) or even indirectly encourage inappropriate driving behaviour (e.g. speeding on

long straight segments). The effect of the road design on accidents is a very popular

subject in road safety research due to the increased interest from the road managing

agencies and data availability. It is a fact that in some cases the results of the studies are
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not always consistent. This is because of the variations in the land, construction, traffic

and demographic characteristics (e.g. Haynes et al., 2007, 2008) that are difficult to be

controlled and the differences in the statistical approaches and the surrogate measures

that are used to represent geometry. The core literature findings for the relationship of

curvature, gradient and number of lanes are presented here.

2.3.2.1 Curvature

One of the commonly accepted ideas about road geometrical characteristics is that sharp

curves are related with higher accident rates (e.g. Miaou et al., 1992; Milton and Man-

nering, 1998; Abdel-Aty and Radwan, 2000; Caliendo et al., 2007; Anastasopoulos and

Mannering, 2009; Gitelman et al., 2014) and more severe injuries (Ma and Kockelman,

2006). Curves with small radiuses that often do not provide the necessary sight distance,

are related with more driving errors and raise the lateral acceleration that can cause loss

of vehicle control (Peters and Iagnemma, 2009). Chang (2005) however found that ac-

cident likelihood reduces at sharper curves. His counterintuitive result was explained as

the effect of more careful driving when the road configuration is more challenging.

Radius is an important but not the only determinant of hazardous horizontal alignment;

the frequency of curves on a road segment has also been found to be related with the

number of accidents. According to Milton and Mannering (1998) the higher the length

of a straight section just before a curve, the higher is the accident frequency. That is

because when drivers traverse long tangent segments they are less likely to expect curves

and might enter the curve with inappropriate speed. Shankar et al. (1995) found that

fewer curves per mile are related with more serious accidents. This explains to a certain

extent the finding of Caliendo et al. (2007) who found that apart from sharp curves, very

long straight segments are also hazard prone. Some area-wide studies proposed that areas

with more curves experience overall less accidents (Haynes et al., 2007, 2008; Wang et al.,

2009b; Li et al., 2015). Wang et al. (2009b) explained this outcome suggesting that in more

curved configurations drivers tend to be more cautious and aware of the road. However,

since the sharpness of the curves was not separately available in the data (curvature was

expressed with bend density), it is not possible to determine whether that was the effect
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of the number or the radius of the curves.

According to the findings outlined above, changes in the horizontal alignment should

normally lead to some changes in the number of accidents and that has been confirmed

from the study of Vogt and Bared (1998) who found that decreased curvature lead to less

traffic accidents. In contrast, a panel-data analysis by Noland and Oh (2004) suggested

there was not a significant effect on accidents related with area-wide changes neither in

the sharpness nor in the number of curves.

2.3.2.2 Gradient

High vertical grades are associated with high accident frequency (Shankar et al., 1995;

Milton and Mannering, 1998; Chang, 2005; Anastasopoulos and Mannering, 2009; Gitel-

man et al., 2014). Milton and Mannering (1998) refer that the increase in accidents on

upgrades is related to speed decreases, especially for heavy vehicles that might lead to

more overtaking from faster cars. Downgrades, on the other hand, lead to higher vehicle

speeds and therefore stopping distances. Yuan et al. (2008) suggest that not only the

grade but also the length of downgrades is related with higher accident frequency.

Road geometrical characteristics do not act independent of one another. It has been sug-

gested that the combination of poor horizontal and vertical curvature is mainly related

with more traffic accidents (May, 1994; AASHTO, 2010). A recent simulation-based study

has shown that the lateral acceleration (that was used as the proxy for accident proba-

bility) is high on downhill curved segments as well as crests or sags that are combined

with curves (Wang et al., 2015). Uphill segments are not related with increased lateral

acceleration. This study provides a new insight on the impact of road geometry on safety

but it examines the impact of only one risk factor related with geometrical combinations

so its results cannot be considered as generic.
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2.3.2.3 Number of lanes

The number of lanes is linked with lane changes and increased vehicle interactions that

can be potentially dangerous. Kononov et al. (2008) defined the possible vehicle conflicts

as a function of the number of lanes as follows:

Cn = n · (n− 1) for n = 2 (2.7)

and

Cn = n · (n− 1) +
n!

3!(n− 3)!
for n > 2 (2.8)

where Cn: the number of possible conflicts and n: the number of lanes.

Most of the researchers who examined the influence of the number of road lanes on

accidents have found that the number of lanes is proportional with accident frequency

(Persaud, 1992; Milton and Mannering, 1998; Chang, 2005). Noland and Oh (2004) sug-

gested that a higher number of lanes is increasing the fatality rates too. Milton and

Mannering (1998) refer that the number of lanes as a variable might act as a proxy for

separate road categories meaning that the estimated coefficients might additionally reflect

the differences between roads rather than the number of lanes alone.

Ma and Kockelman (2006) estimated that the number of lanes is related with decreases

in non-fatal accidents and that it has no effect on fatal accidents. The authors did not

provide an explanation, but this result might imply that roads with more lanes are less

congested and so they tend to have fewer accidents related with congested conditions, that

are usually non-fatal. Park et al. (2010) suggested that the relationship of the number

of lanes with accidents forms a U-shaped curve; 6-lane roads were found to be the least

accident prone compared to 4 and 8-lane roads. The authors explained that roads with

more lanes provide more space for accident avoidance manoeuvring.
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2.4 Statistical Approaches in Accident Modelling

2.4.1 Evolution of the statistical approaches

Each accident is the outcome of a unique sequence of events related to the involved

driver(s), vehicle(s) and the road environment. The in-depth examination of all accidents

of a network individually though, is rarely possible due to the high number of accidents

and the limited data availability. As a consequence, the accidents of a road network are

usually analysed aggregated in a way that their volume is reduced while they remain

informative (Lord and Mannering, 2010). The dominant accident aggregation method is

based on topological and temporal criteria. Accident counts that occurred on pre-defined

road links (i.e. link-based models) or areas (i.e. area-wide models) during a certain

time period are aggregated and modelled against selected explanatory variables. From a

methodological perspective, during the last decades the modelling approaches which are

employed for modelling accident data have evolved reaching high levels of sophistication.

Table 2.1 presents many of the papers presented in this literature review, that include

link-based models, grouped by statistical approach.

The initial statistical model that has been used was Linear Regression. Linear Regression

is very simple to apply and interpret and thus was employed by numerous researchers

(e.g. Ceder and Livneh, 1982; Ceder, 1982). However, some of the properties of accident

data, namely non-negativity, heteroscedasticity and non-normality of the error term, make

linear regression unsuitable (Jovanis and Chang, 1986). These characteristics of accident

data may lead to inaccurate predictions and invalid tests of significance. Instead of Linear

Regression modelling Poisson regression has been applied by a number of researchers (e.g.

Jovanis and Chang, 1986; Jones et al., 1991; Miaou and Lum, 1993; Miaou, 1994).

Poisson regression is applicable for non-negative integers that are usually characterised by

low mean values, over-dispersion and heteroscedasticity like accident count data (see also

Mannering and Bhat, 2014). One of the main assumptions of a Poisson model is equidis-

persion (i.e. the variance is equal to the mean) in the dependent variable. Accident data

are actually rarely equidispersed. In fact, accident counts are usually overdispersed (i.e.

the variance is higher than the mean) and in some cases underdispersed (i.e. the vari-
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Table 2.1: Link-based accident analyses grouped by statistical approach employed.

Model Research Papers

Linear Regression Ceder (1982); Ceder and Livneh (1982); Lave

(1985); Fildes et al. (1991); Quimbly et al. (1999);

Taylor et al. (2000); Garber and Ehrhart (2000)

Poisson Regression Jovanis and Chang (1986); Jones et al. (1991);

Miaou et al. (1992); Miaou and Lum (1993); Miaou

(1994); Baruya (1998a); Ivan et al. (1999, 2000);

Kim et al. (2006); Caliendo et al. (2007);Qin et al.

(2004) (zero-inflated Poisson)

Negative Binomial Regression

(Poisson-Gamma)

Miaou (1994); Shankar et al. (1995); Vogt and

Bared (1998); Milton and Mannering (1998);

Abdel-Aty and Radwan (2000); Martin (2002);

Chang (2005); Lord et al. (2005); Kim et al. (2006);

Haynes et al. (2007); Caliendo et al. (2007); Haynes

et al. (2008); Wang et al. (2009b); Park et al.

(2010); Pei et al. (2012); Gitelman et al. (2014)

Poisson-Lognormal Regression Lord and Miranda-Moreno (2008); Aguero-

Valverde and Jovanis (2008)

Random Effects (including spa-

tial correlation)

Quddus (2008); Guo et al. (2010); Quddus (2013)

Random Parameters Anastasopoulos and Mannering (2009); El-

Basyouny and Sayed (2009a)

Multivariate Poisson Regression Ma and Kockelman (2006); Ye et al. (2009)

Multivariate Poisson Lognormal

Regression

Park and Lord (2007); Ma et al. (2008); Aguero-

Valverde and Jovanis (2009); El-Basyouny and

Sayed (2009b)

Multivariate Poisson Lognormal

Regression with Spatial Correla-

tion

Aguero-Valverde (2013); Barua et al. (2014)
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ance is lower than the mean) (Lord and Mannering, 2010). To control for overdispersion

the negative binomial or Poisson-gamma regression has been proposed. A negative bino-

mial model assumes that the Poisson parameter follows a Gamma distribution and it is

probably the most widely applied statistical model in safety analyses (e.g. Miaou, 1994;

Shankar et al., 1995; Milton and Mannering, 1998; Abdel-Aty and Radwan, 2000). An-

other model that is suitable for over-dispersed data is Poisson lognormal regression, where

the Poisson parameter is lognormally distributed. Although Poisson lognormal regression

is more flexible as a model (Lord and Mannering, 2010) its estimation is more challenging

because the Poisson lognormal distribution does not have a closed form and has been

used in less studies such as Lord and Miranda-Moreno (2008) and Aguero-Valverde and

Jovanis (2008).

More recent studies control for heterogeneity caused by unobserved correlations between

the models’ observations. As most of the models represent accident data as counts aggre-

gated on a spatial basis it is reasonable to believe that observations from neighbouring

regions have some characteristics in common (Lord and Mannering, 2010). Also, when

panel data are available observations of the same area over different periods of time are

likely to be correlated. Adding to the models random effects, that are assumed to follow

a specific distribution, spatial or temporal correlations are controlled (e.g. Quddus, 2008;

Guo et al., 2010). A more complex extension of the random-effects model are the random-

parameters models which allow the models’ parameters to vary among the observations

(Anastasopoulos and Mannering, 2009; El-Basyouny and Sayed, 2009a).

Most of the papers in the literature that examine accident frequency employ the total

number of accidents as a dependent variable. However, different accident mechanisms

could be by definition related with different combinations of circumstances (Kim et al.,

2006). As a consequence, the examination of accident contributory factors to an aggre-

gate level might distort the results of the analyses. Researchers who studied the effects

of accident contributory factors by accident type confirmed that there are indeed signif-

icant variations in the estimated coefficients by collision type and severity (Ivan et al.,

1999, 2000; Qin et al., 2004; Kim et al., 2006; Ye et al., 2009; Geedipally et al., 2010;

Bham et al., 2012). A limitation of these studies is the use of separate models for each
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accident type that cannot take into account the existing correlations between them as it

was highlighted by Park and Lord (2007) and Geedipally and Lord (2010). Multivariate

Poisson (Ma and Kockelman, 2006) and Multivariate Poisson lognormal models (Park

and Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis, 2009; El-Basyouny and

Sayed, 2009b) have been proposed for modelling simultaneously different accident types

(e.g. by level of severity) and controlling for the unobserved heterogeneity that arises from

the correlations between them. Multivariate models can incorporate multivariate spatial

correlation random effects to control for the relationships between their spatial entities.

Aguero-Valverde (2013) and Barua et al. (2014) have applied multivariate Poisson log-

normal regression with multivariate conditional autoregressive (CAR) random effects that

was shown to perform better than separate CAR models.

2.4.2 Limitations

The inconsistencies of the outcomes between studies that have been reviewed here can be

related to data quality, the complex nature of accidents and methodological limitations.

The rapid evolution of the accident modelling statistical approaches over the last decades

allows some confidence on their explanatory potential. On the contrary, accident data

aggregation approaches have a less dynamic trend; current methods are based on spatial

adjacency of accidents. This approach is logical and effective from a practical point of

view as the traffic data are usually available at the link level. However, a source of vari-

ability in the research outcomes might be due to the information losses caused by the

conventional accident data aggregation approaches that employ spatial criteria such as

the link-based method.

Deterministic link-based accident models imply that accident frequency on a particu-

lar link can be explained by its most frequently observed conditions. This can be proved

invalid for two reasons. Firstly, the assumption of homogeneity within links may not

necessarily be true. A typical link includes up to several miles of roadway and in some

instances both directions of traffic. It is a fact that traffic and geometric conditions at

the roadway may vary significantly even for adjacent parts of the same link (e.g. due

to road topography and on-off ramps). Therefore, the observations used for representing
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the conditions on a road link might not be representative of all the parts of it. Secondly,

the assumption that a relationship that applies at a group level (link-level) necessarily

applies at an individual level is not always true. The characteristic values used in link-

based models for representing each of the examined variables are usually central tendency

statistics (e.g. annual average speed). These characteristic values can be proved to be

totally unrelated with the actual conditions at the time and location of the accidents on

this link. This situation is defined as an ecological fallacy (or aggregation bias) (Clark and

Avery, 1976; Davis, 2002, 2004; Black et al., 2009) and it is suggested that when studies

analyses are based on such an assumption they might produce erroneous outcomes.

Studies focusing on proactive accident prediction confirm that accidents are related to

suddenly developing and often extreme traffic conditions (e.g. high and low speeds) that

cannot be captured from aggregated measures such as hourly or annual averages (e.g.

Pande and Abdel-Aty, 2005; Abdel-aty et al., 2005; Hossain and Muromachi, 2013). The

use of these variables therefore leads to loss of information and under-representation of

extreme conditions that may be crucial in explaining accident occurrences. These lim-

itations of link-based accident modelling are likely to be reflected in the results of the

analysis leading to, possibly, erroneous and inconsistent conclusions found in the litera-

ture especially for time-varying measures that might be more sensitive to aggregation bias.

To overcome this limitation, the data aggregation approach that should be developed

must minimise the information losses as much as possible (Clark and Avery, 1976). This

means that the data aggregation method should enable the representation of the actual

conditions related with accidents and the risk that is related with these conditions (Davis,

2002). Considering the form of the available data developing an aggregation method that

will represent the conditions just before accidents is a challenging and data demanding

task, compared to the conventional approach. However, this approach will probably lead

to deeper understanding of the relationships between potential contributory factors and

accidents that is expected to contribute to the mitigation of their negative impact.
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2.5 Accident Mapping

2.5.1 The role of accident mapping

Analysis of accident data aims to identify and explain the factors that lead to traffic

accidents in order to mitigate the negative impact through the development of effective

countermeasures. Accident analyses rely on the reporting of key variables such as acci-

dent time and location, road, driver and vehicle characteristics and contributory factors

related to drivers’ errors, vehicles’ defects and problems with the road environment. The

quality and reliability of the accident data is closely related to the validity of the analyses’

outcomes (Austin, 1995; Loo, 2006; Tarko et al., 2009; Tegge and Ouyang, 2009; Deka

and Quddus, 2014) .

The spatial nature of accidents makes location one of the primary attributes of acci-

dent databases (Koike et al., 2000; Tegge and Ouyang, 2009) which at the same time

is very likely to be unreliable (Austin, 1995; Loo, 2006; Tarko et al., 2009; Deka and

Quddus, 2014). Accidents are geographic events that can be represented by applying

appropriate geocoding methods (Thill, 2000; Kam, 2003). Police officers who visit the

accident scene just after an accident occurrence are usually in charge for reporting the ac-

cident locations with several different methods around the world (e.g. linear referencing,

address, coordinates etc.). A common practice followed by the UK Police and by other

authorities worldwide is recording the coordinates of the collision spot, obtained by grid

maps or Geographic Information Systems (GIS), so as to achieve a higher level of accuracy.

However, even when the accident location coordinates are recorded, it is not guaranteed

that the location of the accident can correctly be identified on a road network map. This

is due to the errors that these measurements may include as they are collected mainly for

administrative reasons (Loo, 2006) and the inconsistency between the network databases

and the actual road network. For example, there are many simplified digital road maps in

which roads are represented only by their centrelines and in some cases omitting features

of the actual road geometry. As the majority of accident locations do not fall exactly on

these centrelines, they have to be transferred and matched to the correct road segments.

This is a quite challenging process, especially when they occur at areas with complex road
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(a) Junction (b) Complex fly-over

Figure 2.4: Examples of complex accident mapping cases (source:BingMaps)

configuration where many road segments intersect, such as at junctions or flyovers (see

Figure 2.4) that may lead to inaccurate accident allocation.

It is not known to what extent these errors are acceptable because the differences of road

characteristics and the traffic conditions between two network points that are physically

very close to each other may be considerable (e.g. the difference between a main motor-

way and its slip road). However, there are indications that the estimated coefficients of

a safety model differ significantly when the corrected accident locations are used (Tegge

and Ouyang, 2009). As a result, spatial accident data need to be enhanced through some

special processing in order to be confident about their quality. Accident mapping is the

process of the identification of the location (i.e. road section and coordinates) where a col-

lision has occurred. Accident mapping can be useful for many types of accident analyses

but it is particularly important if their purposes are:

• Locating hazardous segments within a network so as to design effective engineering

countermeasures (e.g. altering road geometry) (e.g. Karlaftis and Golias, 2002; B́ıl

et al., 2013).

• Statistical modelling of traffic accidents with the aim of identifying the factors af-

fecting accident frequency (e.g. curvature, gradient, traffic density and flow) and

accident prediction (e.g. Miaou and Lum, 1993; Wang et al., 2009a).

• Estimation of the spatial distribution of safety risk across the network. This can

be employed for risk mapping that may lead to the introduction of targeted and

specialised accident prevention measures(e.g. Steenberghen et al., 2004; Loo, 2006).
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2.5.2 Review of accident mapping methods

Although accurate accident locations can be particularly useful for accident analyses the

majority of existing studies proceed to the analysis of accident location data without

reporting any sort of prior processing (e.g. Koike et al., 2000). The number of accident

mapping methodologies that can be found in the literature to date is relatively low as

accident mapping is not a common area of research in road safety. Existing accident

mapping techniques use all types of spatial data that are included in accident records in

order to increase the possibilities of accurate matching. The approaches vary according

to the aim of each study and the type of their locational input data. Accident locations

are reported either using linear referencing, offset from intersections, addresses, or GIS

coordinates. Table 2.2 provides the key features of existing algorithms found in the liter-

ature.

The linear referencing method is a straightforward and relatively accurate method of

accident location reporting that can be used on numbered roads (i.e. typically sub-urban

and rural networks). Studies that have available the indication of the closest milepost to

the accident define this point of the network as the accident location (Geurts et al., 2006;

Monsere et al., 2006). This approach demands minor processing from the researchers’

behalf but tends to be insensitive to reporting inaccuracies. Moreover, its location error

is equal to the half of the interval between two mileposts that can be as high as half a mile.

Accident locations are also reported using an offset from nearby junctions. To convert

this type of accident locations to coordinates it is needed to combine the attributes of the

accident and the network data. Dutta et al. (2007) and Qin et al. (2013) developed two

algorithms for identifying accident locations in urban and sub-urban environment using

On-At tables that demonstrate all the roads and their directions at each intersection.

These algorithms are strongly dependent on the accuracy of the information included in

the On-At tables and cannot be applied when junction information is missing. Qin et al.

(2013) report a relatively high overall matching percentage of 83% that reaches 89.7% for

local roads.

Address is an easily obtained spatial variable that can be used for identification of acci-
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dent locations mainly for urban networks. Burns et al. (2013) tested some of the online

geocoding APIs (Application Programming Interfaces) in terms of their capability to iden-

tify accident locations, when they are given the reported addresses. Google Maps API was

found to have the highest matching rate (78%) but the accuracy of matching could not be

quantified due to the ambiguity of the cases where the addresses include spelling or other

mistakes. Another accident mapping method that is indirectly related to addresses is the

method developed by Tarko et al. (2009) that attempted to link accident and network

records. The method was theoretically founded on probabilistic linking techniques (Fellegi

and Sunter, 1969) used for matching hospital data. Although their method succeeded in

matching all accidents with the correct roads, in some cases accidents were matched with

multiple roads making the final output ambiguous.

When GIS coordinates of accident locations are superimposed on digital maps of the

road network, they rarely fall exactly on road sections. Thus, in order to identify ac-

curate locations additional accident related information should be employed. When the

location coordinates are available accident mapping can be seen as a special case of map-

matching in the sense that the aim is the identification of the correct road segment on

which a vehicle is travelling as well as a specific position on the segment (Quddus et al.,

2003, 2007). The individual characteristics of accident mapping are that the process is

static, independent (i.e. location is not related with prior locations) and offline (i.e. post

processing).

Despite their differences in function and purposes, concepts used in map-matching can

be employed in accident mapping. Some of the GIS-based studies use straightforward

but simplistic approaches such as selection of the closest junction (Levine et al., 1995) or

closest road section with road name filtering, (Loo, 2006). These techniques resemble the

point-to-point matching and the point-to-curve matching (see: Bernstein and Kornhauser,

1996) respectively. A similar approach includes the use of restrictive, pre-defined buffer

zones along with some descriptive variables such as road name, class, speed limit and

junction details (Austin, 1995). These approaches may be effective for large datasets, but

not very precise.

33



A variable that can reinforce the matching accuracy of accident mapping algorithms

is vehicle direction. Wang et al. (2009a) introduced the use of vehicle direction in the

form of the angular difference between the intended direction of the involved vehicles and

a road segment. Wang et al. (2009a) used a maximum weighted score to combine the

distance and the angular difference to identify accident locations on the M25 motorway in

the UK. The weighted score approach, is not suitable though for more dense and complex

networks due to its strong dependency on vehicle direction. Direction difference was later

used by Deka and Quddus (2014) who developed an artificial neural network for matching

accidents within the entire primary road network of the UK that considered the distance,

vehicle direction, and the reported road name and type (accuracy level: 98.4%). One of

the main shortcomings of this method is the expression of the direction of an accident

by a single measure (i.e. the average of all the intended directions of all the involved

vehicles) that may result to information losses if the examined accidents include multiple

vehicles. A vehicle direction-based accident mapping algorithm that overcomes this limi-

tation and enables the identification of road accidents without taking into consideration

the reported road name was developed by Imprialou et al. (2015). This algorithm also

employs an error circle, a transformed map-matching technique, for the initial candidate

road segments selection (Zhao, 1997; Quddus et al., 2007). The final accident location

selection is based on a matching score that was estimated based on a multilevel logistic

regression model. The accuracy of the matches is high (97.1%), but the overall approach

is relatively complex and time-consuming.

Table 2.2: Characteristics of existing accident mapping techniques

Author Accident Location

Form

Method Advantages Disadvan-

tages

Austin (1995) Coordinates Buffer Zone Simple and

fast to imple-

ment; Trans-

ferable.

Strict buffer

zone limits;

Ambiguous

results for

junction acci-

dents.
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Levine et al.

(1995)

Coordinates Accidents

allocated

to the clos-

est junction

(point-to

point match-

ing)

Efficient

for large

datasets;

Transferable.

All acci-

dents were

allocated

to junc-

tions (53%

inaccurate

matches).

Loo (2006) Coordinates Accidents

allocated to

the closest

junction or

road with

road name

filtering(point-

to-curve

matching)

Relatively re-

liable results;

Transferable.

Lack of pre-

cision for the

location of

junction acci-

dents; Road

types are not

considered.

Dutta et al.

(2007)

Offset from junc-

tion

Conversion

of accident

location to a

set of coor-

dinates using

On-At infor-

mation

Accurate re-

sults.

Strong de-

pendence on

the accuracy

of On-At lo-

cation infor-

mation; Mod-

erate match-

ing percent-

age;

Wang et al.

(2009)

Coordinates Maximum

weighted

score

Straightfor-

ward; effi-

cient for se-

lection be-

tween the

two direc-

tions of a

motorway.

Not suitable

for dense

road net-

works; Strong

dependence

on angular

difference.

Tarko et al.

(2009)

Address Probabilistic

linking tech-

nique

Accident lo-

cation coor-

dinates not

necessary .

Identification

of more than

one matching

segments.
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Qin et al.

(2013)

Offset from junc-

tion

Conversion

of accident

location to a

set of coor-

dinates using

On-At infor-

mation

Relatively ac-

curate results

(intersecting

road informa-

tion enhance

the validity).

Strong de-

pendence on

the accuracy

of On-At lo-

cation in-

formation;

Inflexible if

junction in-

formation is

missing.

Burns et al.

(2013)

Address APIs com-

parison

Applica-

tion of freely

available soft-

ware.

Moderate

matching

percentage;

Unknown ac-

curacy;

Deka & Qud-

dus (2014)

Coordinates Artificial

Neural Net-

works

Accurate re-

sults;

Black-box

technique;

Use of one

measure for

angular dif-

ference

Imprialou et

al. (2015)

Coordinates Multilevel

Logistic Re-

gression

Accurate

results; Ef-

ficient for

dense, urban

networks.

Relatively

high Com-

plexity.

Summary

This literature review presented the most interesting research findings on the impact of

speed, other traffic characteristics and road geometry on accidents. For all the variables

the results are not entirely consistent between studies. This highlights the inherent com-

plexity of accident analyses and some potential methodological limitations that might lead

to erroneous outcomes. In summary, based on the most frequent findings of the reviewed

literature:
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• Speed limit raises generally lead to increased average speeds and higher accident

frequency;

• Higher traffic speed is definitely associated with increased accident severity and

possibly with increased accident frequency too;

• High speed variance (especially when it is represented by the standard deviation of

speed) is related to higher accident frequency;

• Higher traffic flow is connected with higher (especially multiple-vehicle) accident

frequency.

• Sharp and sparse curves are related with higher accident frequency and severity;

• Steep vertical (especially negative) grades are associated with higher accident fre-

quency;

• Road segments with more lanes are considered to have higher accident frequency.

Among the various statistical models that have been employed in order to develop ex-

planatory and predictive accident models, Poisson has been proved to be the family of

models that has the most appropriate statistical properties for modelling accident counts.

Negative binomial (Poisson-gamma) regression is by far the most commonly employed sta-

tistical model in the current literature. More recent accident analyses add in their models

random effects that control for spatial and temporal correlations between observations.

Analysing accidents divided by type (severity or collision type) is gaining attention as

this approach seems to produce more informative and detailed results. The most suitable

approach for modelling simultaneously different accident types and controlling for the

correlations between them is multivariate Poisson-lognormal regression.

One of the most important limitations of current accident analyses is the aggregation

bias that is related with the link-based aggregation method that is employed for grouping

accidents. This aspect of accident analyses has not yet gained the attention of researchers

but it might have significant impact on the findings of accident analyses. Another rela-

tively overlooked and potentially very important subject is the accuracy of the accident

locational data. Accident mapping is the process of correcting the reported accident lo-

cation so as to improve the overall data quality and consequently the outcomes’ accuracy.
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Existing accident mapping techniques vary with respect to the type of the input accident

data. When accident locations are defined with coordinates, the vehicle direction just

before the collision and the road name have been found to be crucial variables for the

algorithms’ accuracy.
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Chapter 3

Methodology

3.1 Introduction

The aim of this thesis is to examine the relationship of traffic speed with accidents through

the development of robust statistical models. Modelling outcomes rely on the inherent

quality and the aggregation of the data as well as the statistical approach that is used

for the analysis. To derive accurate results, the methodology of this work includes new

data pre-processing techniques, that are expected to maximise the representation of the

available data, and appropriate and sophisticated statistical techniques.

Accident locations are often less accurate than desired, so in order to improve the overall

input data quality an accident mapping algorithm was developed. The algorithm, that

was designed for the study area, is based on a transformed map-matching technique com-

bined with an Artificial Intelligence concept. Recognising the major limitation of the

link-based accident data aggregation approach, which will be outlined in this chapter,

one alternative data aggregation method was developed termed as condition-based. The

condition-based approach enables the representation of the pre-accident traffic and geo-

metric conditions and is expected to define more accurate relationships between accidents

and the potential precursors.

Accident frequency split by accident type was modelled using multivariate count regres-

sion. By forming an appropriate framework, the models that will be developed will

respond to the research questions and will facilitate comparisons between the accident
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data pre-processing approaches.

3.2 Research Design

The aim of this thesis is divided into six objectives that will be achieved through methods

that are outlined below. Table 3.1 shows the objectives and the methods along with the

corresponding chapter(s) in this thesis.

Table 3.1: Research objectives and methods.

Objective Method Chapter

To review the impact of speed and

other contributory factors on ac-

cidents.

Literature review Chapter 2

To examine existing statistical

approaches in accident modelling.

Literature review Chapter 2

To refine and merge data from

multiple sources so as to enhance

the quality of the analysis.

Development of an accident map-

ping algorithm; identification of

pre-accident conditions

Chapter 3 and

Chapter 4

To develop accident-speed rela-

tionships using a new, condition-

based modelling approach.

Development of multivariate

count regression models for

datasets that are aggregated

according to the pre-accident

conditions

Chapter 5

To compare and contrast the re-

sults between the conventional

and the condition-based mod-

elling approach.

Development of multivariate

count regression models for link-

based datasets and evaluation of

the two aggregation methods (i.e.

link-based and condition-based)

according to their results

Chapter 5

To evaluate the safety impact of a

potential speed limit increase on

accidents.

Estimation of the expected

changes on accidents related with

speed limit alterations

Chapter 6
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3.3 Accident Mapping Algorithm

3.3.1 Introduction

As it has been mentioned in section 2.5.1, accident coordinates are usually not compatible

with the digital networks that are used for conducting accident analyses. Thus, in order

to identify the road segment where each accident occurred, it is necessary to use an ap-

propriate accident mapping method. The allocation of accidents to the closest segment or

junction (Levine et al., 1995; Loo, 2006) is the simplest approach but it is not expected to

provide very accurate results. The accuracy levels of the accident mapping algorithm is

crucial for this project because the accident datasets that will be used for modelling rely

on the quality of accident locations. As a consequence, an accident mapping algorithm

should be sophisticated enough to provide precise locations with the minimum possible

manual intervention.

To obtain accurate accident locations for the next steps of the analysis, a new accident

mapping algorithm was developed. The accident mapping algorithm is based on Fuzzy

logic, an Artificial Intelligence concept that estimates the degrees of truth of a statement

(e.g. Did this accident occur on this road section?) by aggregating a series of partial

truths (MathWorks, 1999). The algorithm will be henceforth referred as to AMF (i.e.

Accident Mapping Fuzzy logic). The AMF algorithm consists of three steps (Figure 3.1):

1. The network segments were firstly filtered in respect to their adjacency to the re-

ported accident location and their road name and type so as to form a set of can-

didate segments;

2. Each of the candidate segments was then evaluated for its goodness of matching

with the reported location and vehicle movement direction just before the accident

using a Fuzzy Logic (FL) Inference System;

3. Each accident was allocated to a suitable point on the selected segment that is

considered to be the actual location of the first impact.
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Figure 3.1: Flow chart of the main three steps of AMF

3.3.2 Candidate segment identification

This algorithm was developed to identify the road section that had the highest likeli-

hood to be the one where an accident occurred. Since the network map is represented by

211,247 piece-wise straight segments, it was essential to apply an initial selection process

where only the most relevant segments to the accident location would be kept for further

processing and for the final matching (hence termed as candidate segments).

Candidate segment identification followed the method outlined in Quddus et al. (2007)

and implemented by Imprialou et al. (2015) in which an error circle is formed around the

reported accident point. The radius of the circle is subject to the quality of the network

and accident location data. This was empirically derived from a sample.

Road segments that fell within the error circle or physically intersected with the error

circle were considered to be the candidate segments. This can be termed as a classical

circle-line intersection problem in which a segment can be considered as a candidate seg-

ment when one of the two following conditions is satisfied: a) both of the nodes of a

segment fall within the circle, or b) there exists at least one intersecting point between a

segment and the circumference of the circle. In other words a road segment (N1N2) (Fig-

ure 3.2) is candidate for an accident with reported location O(x, y) (error circle (O, r))

when:

(OP ) ≤ (r)

42



Unless:

~v1n ∗ ~v2n > 0 for n = 1, 2;

and

| ~vmn| > (I1I2) for m = 1 and n = 1, 2 or m = 2 and n = 1, 2.

Where: ~vmn = ~ImNn for m = 1, 2 and n = 1, 2.

Figure 3.2: Error circle and a candidate segment (N1, N2 : segment’s nodes, I1, I2:
intersections with the circle, OP: the perpendicular distance from the centre of the circle
to the segment)

Since road configuration close to junctions can be very complex, the number of candidate

segments with different characteristics was also high. To avoid to the extent possible the

number of mismatches the candidate segments were filtered based on their road name and

road type. Segments that had different road name and road type from that reported in

the accident database were excluded from the next step of the process. However, due to

some inconsistency that appears to exist between the databases, this filtering process was

proven to be very restrictive where no match was found. In these cases, the filtering rules

were relaxed and the segments that remained for further evaluation were those that had

either the same road name or road type with the reported.
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This process is displayed at Figure 3.3 in which the accident location is denoted by the

round symbol A. An error circle of radius 100m is formed around the accident point, A

(Figure 3.3(b)). The initial set of candidate segments are shown in Figure 3.3(c). Ac-

cording to STATS19 accident database, the accident (A) occurred on A5013 with ”main

carriageway” road type. Based on this information, Figure 3.3(d) shows the final set of

candidate segments on A5103.

The radius of the error circle that was used in this research was set to 100 m based

on empirical observations and the characteristics of the network data. From some initial

manual matching of accidents using the accident database for the year before the study

period (i.e. 2011) it was found that the perpendicular distance of the reported accident

location to the matching segment was usually considerably less than 50 m. As a conse-

quence, and taking also into consideration the segment lengths’ descriptive statistics, an

error circle with 100 m radius was expected to include a reliable number of candidate

segments, eliminating both the probabilities of false alarm and missed detection.

If no segments were found within the 100 m circle then the radius gradually expanded

up to 200 m with a 50 m step. In addition, the filtering rule also changed to allow the

inclusion of segments with either the same road name or the road type as depicted in

the flow chart (see Figure 3.4). However, if still no candidate segments could be iden-

tified, the accident remained unmatched and was flagged in order to be manually matched.
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(a) Reported accident location (b) Error circle formation

(c) Potential candidate segments (d) Final set of candidate segments

Figure 3.3: Candidate segment identification process in four steps

(a) Initial error circle radius (r = 100m) (b) Expanded error circle radius

(100m < r ≤ 200m)

Figure 3.4: The sequence of checks for each road segment of the network for the candidate
segment set formulation.

3.3.3 Segment selection

For the final selection of the matching segment, the goodness of matching of each of the

filtered candidate segments with the accident information was evaluated by applying a
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Mamdani Fuzzy Inference System (FIS) using the Fuzzy Logic Design Application in-

cluded in Matlab 13. In this study it would not be easy, and possibly not successful, to

set some pre-defined thresholds that would indicate which segment among the candidates

is the most likely for the accident to occur. Fuzzy logic is a technique that is used when

reasoning is not determined by exact rules but from different levels of truth (from com-

pletely true to completely false) and for interpretation of linguistic terms (such as short

distance). Additionally, fuzzy logic is suitable for analyses that include data likely to

be imprecise (MathWorks, 1999). The two input variables of the FIS were: the distance

(D) from the accident point to a candidate segment and the angular difference (∆ϑ) of

the intended vehicle direction and the direction of a candidate link. D was defined as

the perpendicular distance from the reported location point to the candidate link, if the

reported location’s projection point was between the two nodes of the link; otherwise it

was the minimum of the distances between the accident location and the link’s nodes.

After selecting the set of input and output variables, the remaining two major compo-

nents of a FIS were: (1) fine-tuned membership functions and (2) fuzzy rules (MathWorks,

1999). Since membership functions can take different shapes and forms, one of the chal-

lenging aspects of designing a FIS is the development of membership functions in terms of

their shapes and fine-tuning. The most commonly used membership functions (e.g. trian-

gular, trapezoidal, sigmoidal and Gaussian) were empirically explored in this study. The

results indicated that the performance of the FIS does not significantly vary by the shape

of membership functions. Triangular and trapezoidal functions however offer slightly bet-

ter accuracy (about 1% higher). Therefore, these two were considered in the FIS.

Membership functions were fine-tuned based on empirical observations and the nature

of the data that are used for calculating distance (D) and the angular difference (∆ϑ)

respectively. The threshold values of each membership function were determined em-

pirically after matching manually 200 accidents obtained from an independent database;

the STATS19 accident reports of 2011. The exploratory manual matching process was

essential for understanding the range of the two input variables and consequently for de-

termining the number of the membership functions for each of the input variables as well

as their thresholds. The angular difference (∆ϑ) included two membership functions (i.e.
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small and large) that represented how acceptable an angular difference was. The mem-

bership function was set considering that the angular difference could only slightly exceed

the measurement error (22.5o). The distance (D) included three membership functions

(i.e. short, medium, long) expressing the level of the relative distance of the candidate

segment to the reported accident location. The fuzzy rules (1-6) are all the possible com-

binations between the membership functions. Figure 3.5 shows the fine-tuned input and

output membership functions. The following six rules were applied to the FIS:

1. If (D is short) and( ∆ϑ is small), then (Matching Score is very good)

2. If (D is medium) and (∆ϑ is small), then (Matching Score is good)

3. If (D is long) and (∆ϑ is small), then (Matching Score is moderate)

4. If (D is short) and (∆ϑ is large), then (Matching Score is moderate)

5. If (D is medium) and (∆ϑ is large), then (Matching Score is bad)

6. If (D is long) and (∆ϑ is large), then (Matching Score is very bad)
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(a)

(b)

(c)

Figure 3.5: FIS input (a and b) and output (c) membership functions

For the defuzzification of the rules the method of centroid was applied and the output

variable was a matching score that ranged from 0 to 100. The candidate segment with

the highest Matching Score was considered to be the most likely to be the segment where

the examined accident should be located (Correct Link). In the case of more than one

segments having equal Matching Scores the segment with the smaller D from the accident

location was selected.
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3.3.4 Accident location

After the identification of the correct segment the exact location of the accident on the

selected segment was determined. The actual location was a point on the correct segment

that is the closest to the reported accident location. If the perpendicular projection of

the reported accident location fell between the two nodes of the correct segment, that

was selected to be the accident location. If the perpendicular projection fell outside the

segment, the closest node to the reported location was selected. Following, the distance

between the reported and the projected location was calculated (henceforth: Distance).

Aiming to ensure the results’ maximum accuracy, the three-step procedure described

above was applied three times separately for: all the accidents, accidents that were re-

ported to occur on roundabouts and accidents that were reported to occur on slip roads.

By separating roundabout and slip road accidents and adding some additional steps where

appropriate, mismatches were avoided to the maximum level. As it is mentioned at section

3.3.2, from the initial manual checks it was observed that Distance was at the majority of

the cases lower than 50 m. That is why is when AMF selected a segment that was placed

50 m or more from the reported location a manual check on the accuracy of this result

was considered to be useful.

• All accidents

Network Database: HAPMS

Additional steps:

1. If Distance ≥ 50 m, the accident location was manually checked and changed

if necessary

2. If Candidate Segments = 0, the accident location was manually determined

• Roundabout/Slip Road accidents

Network Database: HAPMS (Roundabouts/Slip Roads only)

Additional step:

3. If Distance ≥ 50 m or Candidate Segments = 0, the accident location was

substituted with the respective correct segment estimated by All accidents.
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3.3.5 Algorithm evaluation

Finally, AMF was evaluated in terms of its accuracy levels. For this purpose, a sam-

ple of the examined cases were matched manually to road sections, and the results were

compared to the respective sections that are identified by the developed method. For

the manual accident mapping additional variables from the STATS 19 were used such as

speed limit, junction details, 2nd road class and number. The inclusion of the additional

variables to the manual checks and the fact that during a manual accident mapping pro-

cess it was possible to treat each case individually when this is necessary (e.g. accidents

near complex configurations), makes the results of this process highly reliable. Therefore,

manually mapped accidents formed a suitable reference set for the examined algorithm.

The sample was obtained by dividing the entire road network into 70 exhaustive and mu-

tually exclusive clusters of equal areas and selecting accidents randomly with the quota

sampling approach (Figure 3.6). The size of the sample (Ns) was 716 cases and it was

estimated using the equation of sample size for categorical data (see Bartlett et al., 2001)

as follows:

n0 =
Z2p(1− p)

d2
(3.1)

Ns =
no

1 + no

Np

(3.2)

Where:Z: Z value (here:1.96 for 95% confidence level), p: percentage of expected error

(here: 2.5%), d : acceptable margin of error of the estimated proportion (here: 1.1%),

Np: population size (here: 10,520) and Ns: sample size.

The similarity of the proportions of the reported road types (roundabout, slip road and

main carriageway) between the reference and the full dataset (see Table 3.2) suggest that

the reference set is representative and suitable for the algorithm evaluation.

Table 3.2: Comparison of the proportion of accidents included to the reference set split
according to the three main road types

Road Type N Roundabout Slip Road Carriageway

STATS 19 Reports 10520 8.2% 7.9% 83.9%

Reference set 716 7% 8.5% 84.5%
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Figure 3.6: Map of the road network divided by the 70 equal and mutually exclusive
clusters.

To assess the utility of AMF, it is interesting to compare it in terms of accuracy with

existing accident mapping methods that are applicable to the study area. The three

methods that fulfilled this criterion were:

1. Accident Mapping Method 1 (AMM1) based on Levine et al. (1995): Accidents

were allocated to the closest segments of the network;

2. Accident Mapping Method 2 (AMM2) based on Loo (2006): Accidents were al-

located to the closest segments of the network that had the same road names and

types as the reported accident.

3. Accident Mapping Method 3 (AMM3) based on Wang et al. (2009a): Accidents

were allocated to the segment that has the highest Weighting Score (WSi) that was

calculated using the following equation:

WSi =
1

di
+ cos(∆ϑi), d1 6= 0 (3.3)

Where di: distance of the reports accident location from the road segment (i.e. D)
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and ∆ϑi: angular difference between the intended vehicle direction and the link’s

direction (i.e. ∆θ).

3.4 Link-Based Approach

The link-based accident data aggregation approach is the conventional approach for ac-

cident modelling (e.g. Miaou and Lum, 1993; Lord and Mannering, 2010; Barua et al.,

2014) and it has a very straightforward concept that is based on the accident locations.

The sampling frame of a link-based dataset consists of actual spatial entities which are

all the pre-defined road links of the examined network. A link-based dataset enlists the

links of the network and the total number of accidents per link. The accidents of a link

are accidents that occurred at different time points over a fixed time period. Each link

contains information that represent the conditions on the road defined by characteristic

values such as descriptive statistics (e.g. mean, median, maximum etc.). In link-based

models accident counts are modelled against these links’ characteristic variables to reveal

any significant relationships. Figure 3.7 is an illustration of the link-based approach. Sup-

pose that ABCDA is a road network that consists of five junction-to-junction links (AB,

BC, CD, CA, DA). The red x’s represent the locations of the accidents that occurred on

the network during an entire study period (e.g. one year). In the link-based approach

accident counts are aggregated by link and are modelled using the annual average speed

and flow on the link forming a dataset like this that is presented in Table 3.3.

Although this aggregation approach is both convenient and simple and perhaps the only

option for researchers due to limited and not detailed data sources, it suffers from aggre-

gation bias. That is because in a link-based model it is assumed that the triggering factors

for accidents that occurred on the same link are similar, which of course might not be true

for all the cases. For instance, accidents 1 and 2 (Figure 3.7) that are assigned on the same

linked might have occurred at different periods of time and under entirely different traffic

conditions. This essentially means that link-based models show relationships of accidents

with the average conditions, but not with the actual conditions just before the occurrence.
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Figure 3.7: Example of a road network and the total accidents that occurred on it during
a study period.

Table 3.3: Example of the link-based accident dataset for the network of Figure 3.7

3.4.1 Exposure

In order to enable meaningful comparisons in terms of accident risk between the obser-

vations of safety data models it is necessary to take into account one exposure variable.

The use of an offset in a count model indirectly transforms the dependent variable from

a number of events to a rate of events per the exposure measure. Exposure in link-based

approaches attempts to express the total amount of travel on each link. The most appro-

priate measures of exposure for link-based modelling have been broadly discussed in the

literature (e.g. Qin et al., 2004; Lord et al., 2005; Pei et al., 2012) as there is a plurality
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of surrogate measures of exposure. In this analysis the link length was used and it is one

of the most commonly employed measures of exposure.

3.5 Condition-Based Approach

The condition-based is a new accident data aggregation approach that aims to address the

main limitation of the link-based aggregation by enabling the representation of the actual

pre-accident conditions. The sampling frame of a condition-based dataset comprises all

the possible combinations of traffic and geometric conditions on the examined network; a

set of non-physical attributes that co-existed at the time and the location of an accident.

The number of the possible condition combinations (henceforth: scenarios) depends on

the number of examined variables, their specifications and the empirically defined sepa-

ration intervals.

Each scenario is matched with a number of accidents (from zero to, theoretically, all

the accidents of the database) that are found to occur under this particular combination

of traffic and geometry conditions. Condition-based modelling attempts to represent the

actual accident-related traffic and geometry conditions. In contrast to the link-based ap-

proach, the accidents that belong to the same condition scenario do not necessarily have

a spatial or temporal relationship. Instead, they are similar in the sense that when they

occurred the external circumstances on the road were approximately the same. Assuming

that some or all of these circumstances might be related with the accident occurrences,

the concentration (or absence) of accidents in some particular scenarios should provide

useful information about the accident triggering factors.
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Figure 3.8: Example of the traffic conditions on a road network at subsequent time
intervals (t1 − t16) and the total accidents that occurred during a study period.

Table 3.4: Example of the condition-based accident dataset for the network of Figure 3.8

55



Figure 3.8 graphically represents the aggregation of accidents with the condition-based

approach. Suppose that ABCDA is a road network that consists of five links (AB, BC,

CD, CA, DA). The study period is divided in to 16 (t1 − t16) subsequent time intervals

1 and the network is presented separately for each one of them. The colours of the links

illustrate the seven distinct traffic condition scenarios of the study network. Again, the

red x’s represent the accidents on the network. It is clear that accidents that occurred on

the same location at different points in time (accidents 1, 2) occurred under different traf-

fic conditions. Accidents are aggregated based on the traffic conditions that were present

when they happened as it can be seen in Table 3.4. For example, during the study period

there were two accidents that occurred under ”light green” conditions, but zero under

”blue” conditions.

The formation of a condition-based dataset is quite complex comparatively to a link-

based dataset. To specify the conditions prior to each of the accidents, accident location

and time should be combined with the traffic and geometric data. Figure 3.9 displays

a simple flowchart describing the main processes to develop the condition-based dataset

consisting of Nmax accidents. The main steps (traffic and geometric conditions identifi-

cation) are explained in detail at the following sections (see 3.5.1 and 3.5.2).

1The number of the time intervals is very small only to facilitate the presentation. Normally to
represent a one-year study period the number of subsequent time intervals is very high (over 35,000
15-minute time intervals).
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Figure 3.9: Flow chart of the Condition-Based dataset development process.

3.5.1 Traffic conditions identification

The identification of the pre-accident traffic conditions when an accident occurred was

based on the reported spatial and temporal information for this accident. Firstly, each

accident was matched with the unique set of traffic measurements that includes the lo-

cation, date and time of the accident (i.e. speed (Sacc) and volume (Vacc)). The traffic

measurements of this interval are not equally representative for all accidents. For instance,

if an accident occurred at the beginning of a time interval the traffic measurements are

probably affected by the congestion caused after the accident. In this case, the traffic

measurements just before the interval that includes the accident time (i.e. speed (Sbefore)

and volume (Vbefore)), are probably more related to the pre-accident conditions. In order

to form a representative and comparable set of measurements for all accidents, each ac-

cident was matched with traffic data equivalent to one full traffic measurement interval

(T ). Therefore, the final accident speed (Sw) and volume (Vw) were estimated using a

weighted average (see Equations 3.4 and 3.5) of the T -minute interval that included the

time of the accident (second interval) and its precedent (first interval).
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Sw =

(
t

T

)
Sacc +

(
1− t

T

)
Sbefore (3.4)

Vw =

(
t

T

)
Vacc +

(
1− t

T

)
Vbefore (3.5)

Where: Sw and Vw: Weighted average of Speed (mph) and Volume (vehicles), Sacc and

Vacc: Speed (mph) and Volume (vehicles) measurements of the second interval, Sbefore

and Vbefore: Speed (mph) and Volume (vehicles) measurements of the first interval, t:

time difference between the start of the second interval and the reported accident time

(minutes) and T : traffic data measurement interval (minutes).

3.5.2 Geometry conditions identification

The configuration of the roadway just before the accident location can be related with the

accident occurrence. The precise critical length of a road segment upstream an accident

location is not known though. Assuming that the road geometry is particularly impor-

tant from the moment that a driver decides to stop the vehicle until the vehicle eventually

collides, the length of the road that was considered was the stopping distance upstream of

the identified accident location on the link. The stopping distance was estimated based on

the annual average speed of motorways and A-roads separately using equation 3.6 (Elvik

et al., 2004):

SD = RD +BD = trv0 +
V0

2

2fkg
(3.6)

Where SD: Stopping distance (m), RD: Reaction distance (m), BD: Braking distance

(m),tr: reaction time (here: 1.5 sec),v0: average speed (m/s), V0: average speed (km/h),

fk: friction (here: 0.8, average tire on dry pavement), g: gravity acceleration (here: 9.8

m/sec2).

Based on the above equation, the stopping distance was estimated 97 and 75 metres

(0.06 and 0.047 miles) for motorways and A-roads respectively. To correct for errors in

the accident location, the final road segment for each accident included the length of the

stopping distance upstream of the accident location and 20 metres (0.012 miles) down-
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stream (error distance). The length of the error distance was empirically defined. Figure

3.10 illustrates an example of the road segment that is considered for obtaining the geo-

metrical conditions of each accident.

Figure 3.10: Road length upstream and downstream of an accident location for defining
the road geometry that is considered for each accident.

The configuration of each road segment was specified by its corresponding geometric mea-

surements. Each of the final road segments included a number of successive radius and

gradient measurements that were converted to categorical variables so as to keep the

number of scenarios of the final dataset relatively low. Thus, accidents were considered

to occur on straight segments if the majority of the radius measurements of the segment

were equal to the maximum horizontal curve (i.e. 2000 m) (Highways Agency, 2002) and

on curves otherwise. Similarly, accidents that occurred on uphill segments were consid-

ered those that included mainly positive grades, on downhill those that include mainly

negative grades and otherwise on level segments. The road width was represented with

another dummy variable that separated road segments with more than two lanes from

segments with up to two lanes.

3.5.3 Condition-based dataset formation

Apart from the accident data, to generate a condition-based dataset it is necessary to em-

ploy the entire range of data that represent the conditions on the network. The scenarios of
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a condition-based dataset should represent all the conditions that existed on the network

independent of whether these were associated with accidents or not. That is why before

generating a condition-based dataset the range and the distribution of the measurements

of the variables that will be used to represent the network should be known. The process

of the development of the condition-based dataset that is presented here might not be the

only way for constructing a condition-based dataset. However, the presentation, analysis

and comparison of different data combination methods are out of the scope of this thesis.

To facilitate controlling for the exposure, all the scenarios of the condition-based dataset

were chosen to have an equal likelihood of occurrence during the examined study period.

To achieve this, the continuous variables that are included in the dataset (i.e. speed and

volume) were divided into groups of equal frequency defined by percentile ranges with a

pre-specified constant step n (e.g. N th percentile - (N + n)th percentile, (N + n)th per-

centile - (N + 2n)th percentile, (N + 2n)th percentile - (N + 3n)th percentile etc.). Each

group was represented in the dataset by an appropriate representative value (e.g. a central

tendency statistic). In this way, for every continuous variable Ci there was a number of

Ki equally likely distinct groups of observations (where Ki = 100
n

). Every discrete variable

Dj had by default a number of categories Lj. To develop a dataset that includes every

possible combination between all the variables the number of scenarios (S) that should

be generated equals:

S =
I∏
i=1

Ki

J∏
j=1

Lj (3.7)

The number of the scenarios of the dataset is not fixed and can be adjusted to serve the

analysis’ needs by selecting a smaller step n to decrease the number of scenarios and vice

versa. Considering that a condition-based model will be analysed using count modelling

techniques it is good to avoid generating too many scenarios that may result in a dataset

with an excessive number of zeros. A count dataset with too many zeros is likely to lead

to underestimation of the standard errors of the regression parameters (Hilbe, 2011).

After the scenarios of the dataset were specified, the number of accidents per scenario

was estimated. Using the traffic and geometric conditions, each accident was matched

with the most similar scenario, generating a dependent count variable.
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3.5.4 Exposure

The fact that all the scenarios of the condition-based dataset are equally likely to occur,

does not mean that they have equal accident probability. Consequently, the exposure

cannot be considered as uniform among the condition scenarios. To enable comparisons

between the scenarios, an exposure variable was employed.

Accident probability is proportional with the probability of accident prone interactions

between vehicles on the network (Chipman et al., 1992; Navon, 2003). The number of

such vehicle encounters at a particular condition scenario increases as the number of ve-

hicles and the duration of their stay under these conditions rise. In order to control for

this effect, the offset variable for the condition-based dataset was set to be the average

vehicle-hours spent per scenario (i.e. average travel time per mile multiplied by average

volume).

3.6 Modelling Accident Counts

Count variables refer to the number of times that an event occurred during a pre-defined

time period (e.g. annual number of crimes per block or annual number of accidents per

condition scenario) and they consist of nonnegative integer values. Count data often have

relatively low mean values and are heteroscedastic. Typically their distributions are left

skewed and kurtotic. Ordinary Linear Regression (OLS) models are usually not suitable

for modelling count data as they might lead to biased standard errors and tests of sig-

nificance. Moreover, an OLS model might produce negative predicted values, which are

theoretically impossible (Hilbe, 2011; Cameron and Trivedi, 2013). The most suitable

model , in terms of statistical properties, for modelling counts is Poisson regression and

its extensions (Maher and Summersgill, 1996; Lord and Mannering, 2010).

The following sections describe the statistical models that were employed for this anal-

ysis. Despite their different data generation mechanisms, both the link-based and the
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condition-based datasets are cross sectional count datasets and will be modelled using the

same approaches. Most of the models presented in this thesis were derived using multi-

variate regression (i.e. more than one dependent variables) that is employed to analyse

accidents disaggregated by type (e.g. severity, collision type etc.). Sections 3.6.1 and 3.6.2

give an overview of the univariate Poisson and the Poisson lognormal regression modelling.

3.6.1 Poisson regression

In a Poisson regression model the dependent variable (i.e. number of accidents) Yi is

assumed to be Poisson distributed (Yi ∼ Poisson) with a mean λi that is a function of

the M independent variables of the model xim and their parameters βm. The probability

distribution function of Yi is:

P (Yi = yi) =
eλiλyii
yi!

(3.8)

Where:

λi = zie
β0+

∑M
m=1 βmxim ,m = 1, 2, 3, ...M (3.9)

Or

ln(λi) = β0 +
M∑
m=1

βmxim + ln(zi) (3.10)

Where:

Yi: the number of accidents at the ith observation (either link or scenario)

λi: the expected number of accidents at the ith observation

xim: the value of the mth explanatory variable at the ith observation

βm: the coefficient of the mth explanatory variable
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β0: intercept

zi: the exposure/offset variable at the ith observation

The parameters β0 and βm can be estimated either with a frequentist approach using the

Maximum Likelihood Estimation (MLE) or with a Bayesian approach using the Markov

Chains Monte Carlo (MCMC) algorithm.

Poisson regression has been used for explaining accident occurrences in the literature

(e.g. Jovanis and Chang, 1986; Jones et al., 1991; Miaou and Lum, 1993) although its

specification is very restrictive. In Poisson regression it is assumed that the mean is equal

to the variance (E(Yi) = V ar(Yi)); a condition also known as equidispersion. Count

variables are rarely actually equidispersed though. A common way to control for overdis-

persion (i.e. variance is higher than the mean) in the data is to apply Poisson-mixture

models (e.g. Persaud, 1994; Poch and Mannering, 1996; Lord and Miranda-Moreno, 2008;

Lord and Mannering, 2010). In these models the mean is considered to be a random vari-

able drawn from a known distribution such as the gamma distribution (Poisson-gamma

or negative binomial regression) or the lognormal distribution (Poisson-lognormal regres-

sion). The latter model of these models is discussed in the next section.

3.6.2 Univariate Poisson lognormal regression

Overdispersion in count datasets mainly arises from unobserved heterogeneity. To control

for heterogeneity it is possible to add a random effect to the Poisson regression model.

When the random effect is log-normally distributed the regression model transforms to a

Poisson lognormal (PLN). After this addition equation 3.10 becomes:

ln(λi) = β0 +
M∑
m=1

βmxim + ln(zi) + εi (3.11)

The random term εi is normally distributed:

εi ∼ N(0, σ2) or eεi ∼ LN(0, σ2) (3.12)
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Where σ2: variance parameter of the unobserved heterogeneity.

3.6.3 Multivatiate Poisson lognormal regression

The univariate PLN model is developed to model single count variables (i.e. all accidents

on a road network). To examine the relationships of the independent variables with acci-

dents by severity or collision type it is necessary to take into account the heterogeneous

correlations between them. Different accident types cannot be considered independent of

each other and modelled separately as such because they are subsets of the total accidents

on a road network (e.g. Ma and Kockelman, 2006; Park and Lord, 2007). Multivariate

Poisson lognormal (MVPLN) regression has been proposed for modelling simultaneously

two or more accident categories. Having a lognormally distributed random effect, like

in the PLN regression, MVPLN controls both for over-dispersion and the correlations

between accident types (e.g. Park and Lord, 2007; Lord and Miranda-Moreno, 2008; Ma

et al., 2008; El-Basyouny and Sayed, 2009b; Aguero-Valverde and Jovanis, 2009; Barua

et al., 2014). The correlations between accident types can be either positive or negative.

In MVPLN the number of accidents for each type K is Poisson distributed:

Yik ∼ Poisson(λik) for k = 1, 2, 3, ...K (3.13)

Where:

ln(λik) = βk0 +
m∑
m=1

βkmxikm + ln(zi) + εik (3.14)

Where:

Yik: the number of accidents at the ith observation (either link or scenario) for type k

λik: the expected number of accidents at the ith observation for type k

xikm: the value of the mth explanatory variable at the ith observation

βkm: the coefficient of the mth explanatory variable for type k

βk0: intercept for type k
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zi: the exposure/offset variable at the ith observation

εik: random term (unobserved heterogeneity) for type k which is multivariate normally

distributed:

εik ∼MVN(0,Σ2) (3.15)

Σ =


σ11 σ12 . . . σ1K

σ21 σ22 . . . σ2K

. . . . . .
. . . . . .

σK1 σK2 . . . σKK

 (3.16)

Where Σ is the variance-covariance matrix of the unobserved heterogeneity.

The direct computation of the marginal distribution of accident counts is not possible

to be obtained directly, because it requires the computation of a K-variate integral of

the Poisson distribution with respect to the distribution of εik (Ma, 2006). This means

that the coefficients cannot be estimated using a maximum likelihood function (MLE).

Therefore, the parameter estimation was done via Markov chain Monte Carlo (MCMC)

in a Bayesian framework (e.g. Park and Lord, 2007; Ma et al., 2008; Aguero-Valverde and

Jovanis, 2009). The prior distribution for the parameters βkm is:

βkm ∼MVN(βk0, Rβk0) (3.17)

The conjugate prior distribution of the inverse of the variance-covariance matrix (i.e.

precision matrix) is usually Wishart (e.g. Park and Lord, 2007; Ma et al., 2008; Aguero-

Valverde and Jovanis, 2009):

Σ−1 ∼ Wishart(R, d) (3.18)

Where βk0, Rβk0 and R are known non-informative hyperparameters and d is equal to the

degrees of freedom (number of the examined accident types: d = K).
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3.6.4 Spatial correlation

In the models presented above it is assumed that the observations are spatially indepen-

dent. This is theoretically valid for the condition-based dataset as its observations (i.e.

scenarios) are not spatial entities and therefore they have not any defined spatial relation-

ship. However, the observations of the link-based dataset cannot be considered as spatially

independent. Consequently, the unobserved spatial relationships between adjacent road

links can be controlled by adding a random effect using the conditional autoregressive

priors (CAR) model in a hierarchical Bayesian approach (e.g. Wang et al., 2009a; Aguero-

Valverde, 2013; Quddus, 2013; Barua et al., 2014). As the regression model here is mul-

tivariate, the multivariate CAR model will be used (Aguero-Valverde, 2013; Barua et al.,

2014). The spatial effect includes a contiguity-based weighting scheme with first-order

neighbours (e.g. Aguero-Valverde and Jovanis, 2008; Quddus, 2008). Contiguity-based

weights are considered to be more suitable for link-based analyses than distance-based

as the latter tend to provide high weights for opposite direction links which do not nec-

essarily have common traffic conditions (Wang, 2010). The equations below present the

expression that was used to models the link-based datasets only:

ln(λik) = βk0 +
m∑
m=1

βkmxikm + ln(zi) + εik + uik (3.19)

Where:

uik: random effect for the spatial correlation between the ith observation (i.e. link) and

its neighbours for type k and

Yik, λik, xikm, βkm, βk0, zi, εik: as explained above. The random effect uik is multivariate

normally distributed as proposed by Thomas et al. (2004):

uik | ujk ∼MVN

(
Σjkujkwij

Σikwij
,

Ω

Σiwij

)
, i 6= j (3.20)

Where:

wij: Adjacency weight matrix that denotes wij = 1 if the link i and j are first order

neighbours (they share a common boundary) or wij = 0 otherwise.
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Ω =


σ2
11 σ2

12 . . . σ2
1K

σ2
21 σ2

22 . . . σ2
2K

. . . . . .
. . . . . .

σ2
K1 σ2

K2 . . . σ2
KK

 (3.21)

Ω: is the variance-covariance matrix for the spatial correlation.Where:

Ω−1 ∼ Wishart(S, d) (3.22)

Where S is known non-informative hyperparameters and d is equal to the degrees of

freedom (number of the examined accident types: d = K).

3.7 Modelling Strategy

This section describes the main steps that were taken to select the models that will be

presented in this work. This firstly includes the definition of the dependent variable com-

binations that are the most relevant to the study. Following, is the generation of the

candidate specifications of the independent continuous variables of the models and finally

is the development of the final models.

3.7.1 Dependent variable expressions

With multivariate regression it is possible to express and model the dependent variables

in multiple ways. A multivariate model can provide different information through its out-

comes, as a result of the classification of its dependent variable. Having available accident

data by severity and by collision it is possible to explore the accident relationships with

potential contributory factors under different perspectives. Considering the data availabil-

ity and the research questions of the study the statistical models are developed in order to:

• Understand the relationship of traffic and geometric variables with all traffic acci-

dents on the network
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• Understand the relationship of traffic and geometric variables with traffic accidents

on the network by severity level

• Understand the relationship of traffic and geometric variables with traffic accidents

on the network by collision type

• Understand the relationship of traffic and geometric variables with traffic accidents

on the network by collision type and severity levels

• Compare the modelling results of the link-based and the condition-based aggregation

approaches

• Test the significance of an advanced accident mapping technique in accident mod-

elling

Addressing these issues requires the development of multiple different dependent variable

combinations or in other words multiple different models. Table 3.5 presents a list of

the six main dependent variable expressions that were formed along with their reference

names, a description and the Poisson regression type that is required for modelling.
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Table 3.5: Dependent variable combinations

Reference Name Dependent variable(s) Regression

All All the accidents on the network

combined

PLN

K-S-Sl All accidents disaggregated by

severity into three categories:

Killed (K), Serious injuries (S)

and Slight injuries (Sl)

MVPLN

KS-Sl All accidents disaggregated by

severity into two categories:

Killed & Serious injuries (KS)

and Slight injuries (Sl)

MVPLN

SV-MV2 All accidents disaggregated by

collision type into two categories:

single vehicle (SV) and multiple

vehicle (MV)

MVPLN

SV KS-Sl Single vehicle accidents disaggre-

gated by severity into two cate-

gories: Killed & Serious injuries

(KS) and Slight (Sl) injuries

MVPLN

MV KS-Sl Multiple vehicle accidents disag-

gregated by severity into two cat-

egories: Killed & Serious injuries

(KS) and Slight (Sl) injuries

MVPLN

Both models K-S-Sl and KS-Sl are examining the relationship of accidents split by sever-

ity with the dependent variables. Model K-S-Sl provides a more detailed insight on this

relationship and is particularly useful for the impact estimation by severity category. The

reason for developing model KS-Sl in addition to model K-S-Sl was the high number

of zeros in the variable counting fatal accidents. As the number of accidents with fatal

casualties was relatively low (this will be shown at section 4.2.2) the observations with

zeros were many. Excessive number of zeros in count models is a distributional assump-

2Intersection MV accidents defined as accidents where the colliding vehicles had different intended
directions were eliminated from the analysis because: a)intersection accidents are assumed to have have
significantly different generation processes than the main carriageway ones and b) the small number of
observations (4.6% of all accidents) did not permit the formation of an individual category.
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tion violation that is associated with erroneous parameter and standard error estimation

(Hilbe, 2011). To avoid such errors, fatal and serious accidents were aggregated into one

category. This specification was adopted in models SV KS-S and MV KS-Sl for the same

reason.

Some of the specifications of the Table 3.5 were used to model additional datasets so as

to further explore some interesting topics. A way to evaluate the significance of accident

mapping in safety modelling is to examine whether datasets based on accident mapping

algorithms with different accuracies provide different results. To that end, model KS-Sl

was applied on a dataset that was developed using the output of AMF (henceforth: KS-Sl

AMF) and a dataset in which the accident locations assigned to the closest segment of

the reported locations (henceforth: KS-Sl AMM1). One of the aims is to estimate the

impact of a speed limit increase on the motorways of the study network. To isolate the

motorways from the A-road sections of the network and give an accurate estimation on

the expected changes in accidents after a potential speed limit increase models SV KS-Sl

and MV KS-Sl were applied to the full network dataset and a separate dataset for mo-

torways only (henceforth: SV KS-Sl moto and MV KS-Sl moto).

Each of the dependent variable combinations described above was applied separately on

the link-based and the condition-based datasets, resulting in a total of 18 (including the

additional datasets) models.

3.7.2 Independent variable expressions

The functional form of the relationships of the continuous independent variables of the

models (i.e. speed and volume/AADT) with the dependent variable(s) (i.e. accidents) is

not known (Qin et al., 2004). The assumption of linear relationships might be inaccurate

and lead to false conclusions. In addition, there is no clear evidence on whether the inter-

action between these traffic variables is related with the number of accidents. In order to

avoid any rough assumption on the form of the relationships and to control for a possible

interaction between speed and volume, 20 different independent variables specification

combinations were tested. The expressions included combinations of speed and volume in
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linear, squared, logarithmic and quadratic forms with and without an interaction term.

The rest of the independent variables of the models are dummy variables and so they

remained the same for all the expressions. The specification combinations that were ex-

amined are listed in Table 3.6 that shows for each combination the specification of speed

and volume and whether an interaction term was included. The final column presents

the part of the link function that includes speed and volume to indicate the number of

variables per specification combination.

71



Table 3.6: Independent variable specification combinations.

Variable

Specifi-

cation

Number

Speed Specifi-

cation

Volume

/AADT

Specification

Interaction Expression

1 linear linear No β1speed+ β2volume

2 linear squared No β1speed+ β2volume
2

3 linear logarithmic No β1speed+ β2ln(volume)

4 squared linear No β1speed
2 + β2volume

5 squared squared No β1speed
2 + β2volume

2

6 squared logarithmic No β1speed
2 + β2ln(volume)

7 logarithmic linear No β1ln(speed) + β2volume

8 logarithmic squared No β1ln(speed) + β2volume
2

9 logarithmic logarithmic No β1ln(speed) + β2ln(volume)

10 quadratic quadratic No β1speed + β2speed
2 +

β3volume+ β4volume
2

11 linear linear Yes β1speed + β2volume +

β3speed · volume
12 linear squared Yes β1speed + β2volume

2 +

β3(speed · volume)
13 linear logarithmic Yes β1speed + β2ln(volume) +

β3(speed · volume)
14 squared linear Yes β1speed

2 + β2volume +

β3(speed · volume)
15 squared squared Yes β1speed

2 + β2volume
2 +

β3(speed · volume)
16 squared logarithmic Yes β1speed

2 + β2ln(volume) +

β3(speed · volume)
17 logarithmic linear Yes β1ln(speed) + β2volume +

β3(speed · volume)
18 logarithmic squared Yes β1ln(speed) + β2volume

2 +

β3(speed · volume)
19 logarithmic logarithmic Yes β1ln(speed) +

β2ln(volume) + β3(speed ·
volume)

20 quadratic quadratic Yes β1speed + β2speed
2 +

β3volume + β4volume
2 +

β 5(speed · volume)
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The above specification combinations were tested for each of the 18 dependent variable

expressions resulting to a total of 360 models. The functional form with the best goodness-

of-fit statistics is considered as the most accurate representation of each dependent variable

expression and thus for brevity only these 18 models will be presented (either in Chapter

5 or in the Appendix C). Each of the models will be named according to its dependent and

independent variable expressions and the modelling approach that was used as follows:

• The first part of the name will indicate the accident data aggregation approach that

was used (i.e. Link-based or Condition-Based);

• The middle part of the name will show the dependent variable expression and

• The last part of the name will show the best fitting dependent variable specification.

For example if the best fitting specification for the KS-Sl model for the condition-based

dataset is specification 17 the model will be presented with the name Condition-Based

KS-Sl (17).

3.7.3 Deviance information criterion

The Deviance Information Criterion (DIC) is a goodness of fit statistic that is used for

comparisons of models estimated on a full Bayesian inference approach. It is a generali-

sation of the Akaike Information Criterion (AIC) that is used for frequentist approaches

(see Hilbe, 2011). DIC assesses models in terms of goodness-of-fit (deviance) and com-

plexity (deviance of posterior means). The best fitting model is considered to be the most

parsimonious; a model that accomplishes a good level of explanation of the data with the

lowest number of independent variables possible. This model will have the smallest DIC

among all the possible models (Spiegelhalter et al., 2002). The mathematical formulation

of DIC is:

DIC = D(θ̄) + 2pD = D̄ + pD (3.23)

Where:

D(θ̄): deviance of the θ posterior means of the model parameters
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pD : the effective number of parameters in the model

D̄: is the posterior mean of the deviance, D(θ̄).

3.8 Summary

This chapter presented the employed data processing and analytical methods. The cor-

respondence between the objectives of this thesis and the methods were shown in the

research design section.

To correct accident locations which are likely to be inaccurate, an advanced accident

mapping algorithm (termed as AMF) was developed. The algorithm that is based on

a fuzzy inference system and road name filtering will be evaluated and compared with

less advanced accident mapping algorithms to confirm that its results are satisfying for

the study dataset. The chapter provides a detailed description of the link-based accident

data aggregation approach, that is the conventional approach in accident analyses. The

condition-based accident data aggregation approach was also introduced for the first time.

The condition-based approach enables the representation of the pre-accident conditions,

addressing in this way the aggregation bias that is linked with the link-based approaches.

Following, the statisitcal methods that were used in order to model both the link-based

and the condition-based datasets were presented. Generally, accident count datasets are

preferably modelled using Poisson regression or one of its many variations. To control

for the unobserved heterogeneity and to enable modelling of accidents split by accident

type (i.e. severity or collision type) Multivariate Poisson lognormal regression models

will be employed. The link-based models will include an additional multivariate random

effect that will control for spatial correlation. The final part of this chapter included the

modelling strategy that was followed in order to select and develop the final models that

will be presented in the subsequent chapters.
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Chapter 4

Data Description and Pre-Processing

4.1 Introduction

In data-driven studies, like this thesis, data quality and availability play a key-role in

the validity and the clarity of the outcomes. To conduct the analysis, secondary datasets

collected from multiple sources were processed, combined and analysed.

In this chapter, the features and the challenges of the datasets that were employed for

the analysis will be described. Following, the results of the accident mapping algorithm

will be presented and evaluated. Finally, the chapter will introduce the final link-based

and condition-based datasets that were used for the statistical models.

4.2 Data Description

4.2.1 The study road network

The network that was used for this analysis is the Strategic Road Network of England

(SRN). The SRN is the busiest network of the country as it consists of all the motorways

and the major A-roads (see Figure 4.1). Although its total length is 4,272 miles (2.4% of

all roads), the SRN carries 30% of all traffic and more than 65% of road freight annually.

The SRN includes routes that have a strategic role for the country and connects most of

the key locations in the UK. It is considered that at least a part of every national-level

journey that takes place in the country is on the SRN (Department for Transport, 2011b).
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The size, coverage and significance of the SRN make it a representative and therefore

suitable study area for analysing the relationship of accidents with traffic and geometric

characteristics.

Figure 4.1: Map of the Strategic Road Network (SRN) of England. (source:(Highways
Agency, 2015))

In this work, the SRN is represented by two separate digital models: HATRIS (Highways

Agency Traffic Information System) and HAPMS (Highways Agency Pavement Manage-

ment System). Each of the models has been built for different purposes and is associated

with different types of data related to the network; HATRIS with traffic measurements

and HAPMS with the geometric characteristics.

HATRIS is the base network for the Traffic Flow Data System (TRADS) and the Journey

Time Database (JTDB). HATRIS represents the SRN using a system of 2,505 junction-to

junction links (average link length 3.25 miles) and nodes (Highways Agency, 2011). This

representation of the network cannot provide details on the road configuration as it can
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be seen at Figure 4.2. The main features of HATRIS links are:

• Link ID

• Coordinates of starting node of the link

• Coordinates of ending node of the link

• Road Name

• Link length

HAPMS is a computer-based model of the SRN that is used for recording network, con-

struction, definitive inventory, traffic, accident and condition data on a single database.

HAPMS information is used for national, regional and area reports. HAPMS is repre-

sented by a section referencing system that divides the network into 20,734 sections with

consistent road characteristics (road type, name, number of lanes etc.) and specified

starting and ending points (Highways Agency, 2008).

Figure 4.2: Representation of a road section of the A14 according to HATRIS (blue) and
HAPMS (red).

The representation of the actual road configuration is quite realistic in the HAPMS model

(see Figure 4.2) therefore the HAPMS network map is more suitable for accident map-

ping. In order to decrease the length of individual road sections so as to improve the road

direction accuracy and consequently to increase the probability of mapping each accident

to the accurate location, HAPMS sections were divided into smaller segments defined by

their shape-points. Shape-point coordinates by section label were extracted in a GIS envi-

ronment and a new set of nodes and segments was developed using the method proposed

by Quddus (2006). In this way, the network that initially comprised 20,734 road sections

with average length 0.462 miles, was divided into 211,247 piece-wise straight segments
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with average length: 0.045 miles. As an example of this process, Figure 4.3(a) represents

two road sections of the HAPMS network on the A500 main carriageway (3400A500/126

and 3400A500/226). The start and the end nodes of these sections are displayed by the

rhombuses. Figure 4.3(b) represents these two sections divided by their shape points into

18 and 19 smaller road segments respectively. The boundaries of each segment are illus-

trated by the numbered points (0 to 1, 1 to 2, and so forth). The features of HAPMS

segments that are used are:

• Coordinates of starting node of the segment

• Coordinates of ending node of the segment

• Road Name

• Road Type

• Section Label

• Segment ID

• Speed Limit

• Number of lanes

(a)

(b)

Figure 4.3: Road sections on the A500 (a) full and (b) divided into their shapepoints
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4.2.2 Accident data

Information about the accidents that occurred on the study area was obtained from the

national accident database, STATS19. STATS19 data are collected by the Police and

include all accidents that accounted for at least one injured casualty (Department for

Transport, 2011c). The accident database for this study comprises all 10,520 STATS19

reports of accidents that occurred during 2012 on the SRN. The most important variables

of the database that were used for the analysis are:

• Accident Reference Number: A unique seven-digit sequence that is used to distin-

guish road accidents.

• Accident Date (see Table 4.1)

• Accident Time

• Location: A pair of six-digit coordinates (easting and northing) obtained by the

Ordnance Survey Grid map.

• Number of vehicles involved (see Table 4.2)

• Accident Severity: Indicates the most serious outcome of the accident. It can be

Fatal if at least one of the involved casualties was killed in less than 30 days as

a result of the accident and Serious or Slight if at least one of the casualties was

seriously or slightly injured respectively. (see Table 4.4 and 4.3)

• 1st Road Class: The class of the road where the accident occurred. In the SRN

Road Class can be either motorway (M) or main single carriageway (A).

• 1st Road Number: The number that corresponds to the road where the accident

occurred.

• Road Type: Roundabout, one way street, dual carriageway, single carriageway, slip

road or unknown.

• Speed Limit: The posted speed limit on the road where the accident occurred.

• Junction Detail: This variable expresses the proximity of the accident location to

a junction. If the accident took place on a roadway section that is located less
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than 20 metres from a junction, then the junction type should be reported (e.g.

Roundabout, slip road, junction with more than four arms etc.).

• 2nd Road Class: The class of the intersecting road (if any).

• 2nd Road Number: The number that corresponds to the intersecting road.

• Vehicle Movement Compass Point: The intended direction of the vehicle just before

the incident measured with compass and reported using the four cardinal points and

their intermediates (N, NE, E, SE ...etc.)

Table 4.1: Percentage of accidents on the SRN by month.

Month Accident Percentage (%)

January 7.47

February 7.32

March 7.72

April 7.96

May 7.82

June 7.78

July 9.33

August 9.05

September 8.66

October 8.63

November 9.55

December 8.72

Table 4.2: Percentage of accidents by number of vehicles involved.

Number of involved vehicles Accident Percentage (%)

1 22.97

2 54.09

3 15.15

4 or more 7.78
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Table 4.3: Percentage of accidents by severity.

Accident Severity Accident Percentage (%)

Fatal 1.91

Serious 11.65

Slight 86.43

Total 100

Table 4.4: Percentage of accidents by number of casualties.

Number of casualties Accident Percentage (%)

1 64.91

2 22.09

3 7.7

4 3.08

5 or more 2.22

4.2.2.1 Accident data limitations

STATS19 data are collected for organisational reasons rather than scientific and conse-

quently they may include inaccuracies (Loo, 2006). The reason for this is that accident

reports are often completed by police officers who arrive at the accident scene after some

time and are possibly unable to evaluate the actual conditions or to identify precisely

accident location or time. They might also have to complete the form in minimal time

as they need to manage their other duties in parallel (e.g. opening blocked lanes) and

so, the chance of making mistakes is relatively high (e.g. road name or type misreport-

ing). Before proceeding to analyses that rely on STATS19 data, the inherent limitations

should be known and addressed when this is possible. The two most significant limitations

of the accident data that affect this analysis is the accident location and the accident time.

The importance of accident locations for safety statistical analyses has been discussed

extensively in Section 2.5.1. In STATS19 reports, accident locations coordinates were less

accurate than desired; the point that represents an accident rarely falls exactly onto a

HAPMS section and when it does it is not guaranteed that this section is correct. To

81



overcome this limitation the fuzzy logic accident mapping algorithm (AMF) that is out-

lined at Section 3.3 was implemented. The results of the algorithm are presented in the

following Section 4.3.1.

Accident time is relatively difficult to be exactly determined by the police officers and

consequently the accident time in STATS19 tends to be rounded. This is a known prob-

lem of accident databases that has been also reported by Kockelman and Ma (2007). In

STATS19, accident time is reported with an hours-minutes format (i.e. HH:MM). Figure

4.4 presents the distribution of the second part of the reported time (i.e MM from 00 to

59) of the examined accidents. It can be seen that the distribution is clustered around the

5’s which is theoretically invalid. The actual distribution of accidents is expected to be

uniform for all the minutes as it is presented by the horizontal bar in Figure 4.4. It is not

possible to correct accident time, however being aware of this limitation is important for

defining the traffic measurements’ interval that is suitable for identifying the pre-accident

traffic conditions.

Figure 4.4: Accident distribution per minutes of the reported accident time (the horizon-
tal bar shows the expected percentage per minute group (1.67%) if the distribution of
accidents was, as expected, uniform)
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4.2.3 Traffic Data

Traffic data were extracted from the UK Highways Agency Journey Time Database

(JTDB) which is based on the HATRIS network and includes link-level traffic informa-

tion obtained by inductive loop detectors for the entire SRN. The measurement interval

is 15 minutes resulting in a dataset of approximately 88 million observations (Highways

Agency, 2011). The variables used for this analysis are:

• 15-minute average speed (mph)

• 15-minute volume (vehicles)

• 15-minute average travel time (seconds).

Figures 4.5-4.7 show the histograms and the cumulative distributions of speed, total vol-

ume and volume per lane of all links of the SRN and Figures 4.8-4.10 for all the motorway

links of the SRN. Additionally the figures present the best fitting probability distribu-

tion line among 55 probability distributions according to the Kolmogorov-Smirnov test

(Massey, 1951) as it was estimated by the EasyFit software.

(a) (b)

Figure 4.5: (a) Annual distribution and (b) cumulative distribution of speed on the SRN
(∼ Dagum(0.15, 28.65, 113.64))
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(a) (b)

Figure 4.6: (a) Annual distribution and (b) cumulative distribution of volume on the SRN
(∼ Weibull(0.91, 282.61, 0.25))

(a) (b)

Figure 4.7: (a) Annual distribution and (b) cumulative distribution of volume per lane
on the SRN (∼ Kumaraswamy(0.91, 5.97, 0.25, 1141.8))

(a) (b)

Figure 4.8: (a) Annual distribution and (b) cumulative distribution of speed on motorways
(∼ four − parameterDagum(0.40, 803.91, 3639.4,−3527.2))
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(a) (b)

Figure 4.9: (a) Annual distribution and (b) cumulative distribution of volume on motor-
ways (∼ Beta(0.85, 3.78))

(a) (b)

Figure 4.10: (a) Annual distribution and (b) cumulative distribution of volume per lane
on motorways (∼ Kumaraswamy(0.92, 7.07, 0.13, 1653.2))

4.2.3.1 Traffic data limitations

Spatial and temporal aggregation of traffic data enables the reduction of the data volume

but at the same time causes data losses. Within a quarter of an hour traffic conditions on

the roadway can change more than one time and these changes might not be possible to

be represented by a 15-minute average. The resolution of the traffic data is not ideal for

defining precisely the traffic conditions just before accidents that is needed for condition-

based modelling and it can also affect the accuracy of the average traffic measures that

are used for link-based modelling.

Despite that, this aggregation level counterbalances the existing error in accident time

data (see Section 4.2.2.1). Since the exact accident time is not known, to ensure that the
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traffic conditions prior to an accident are captured it is necessary to use traffic data that

cover the span of the accident time error. Thus, even if more disaggregated traffic data

were available (e.g. every 1 minute or 30 seconds), it would be needed to be aggregated

at least to the 5-minute level so as to represent the pre-accident period.

4.2.4 Geometry data

Road configuration was determined based on the UK Highways Agency Traffic Speed

Condition Survey database (TRACS). TRACS contains measurements of the geometric

characteristics (i.e. curvature, gradient and crossfall) of all HAPMS sections with a 10-

metre measurement interval. The measurements are obtained from survey vehicles instru-

mented with lasers, video image collection and inertia measurement apparatus (Highways

Agency, 2008). The variables extracted from this database are:

• Road Curvature expressed by Radius (miles) (Maximum Radius=1.243 miles (2000

metres))

• Gradient expressed by slope percentage.

4.3 Data Refinement and Pre-processing

4.3.1 Accident mapping algorithm results

AMF was implemented to all the 10,520 STATS19 accidents. It has been found that

the time required to process 10,520 accidents is 230 minutes (by using a laptop PC with

4GB RAM and 3.4GHz processing speed). This suggests that the developed method can

process 46 accidents per minute. The accuracy of the four algorithms (AMM1, AMM2,

AMM3, AMF) was then evaluated using the reference 716 accidents discussed in section

3.3.5; the accuracy that was estimated for each algorithm was the percentage of refer-

ence cases that were assigned to the same road segment with the one that was selected

manually. The percentage of accuracy was estimated at the 95% confidence level with

a confidence interval of± 1.1%. All the results can be found at Table 4.5. The total

accuracy levels were found to be 81.6%, 87.7%, 85.0% and 98.9% for the AMM1, AMM2,

AMM3 and AMF algorithms respectively. The percentages of accuracy for the three main
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reported road types (roundabouts, slip roads and main carriageways respectively) were

also estimated in order to identify possible weaknesses of the method in the identifica-

tion of specific categories of road accidents. It was revealed that AMM1 and AMM3

face particular difficulty in identifying the correct location for accidents that occurred on

roundabouts and that AMM2 has the same problem for main carriageway accidents. In

contrast, AMF gives accurate results for roundabout and slip road accidents whereas, for

main carriageway accidents the results are less accurate. The mismatches on main car-

riageways are mainly due to the errors of the reported road name and type of the accident

database. The mean Distance for each of the methods was calculated and found to be:

4.43 m for AMM1, 6.47 m for AMM2, 14.54m for AMM3 and 8.53 m for AMF.

It is clear that the AMF method with error just above 1% gives the most reliable matching

results among the examined methods. An interesting outcome is that the correct segment

is not always the closest to the reported accident location that is in line with other studies

(Loo, 2006; Deka and Quddus, 2014; Imprialou et al., 2015). An additional result to that

was that even the closest segment that has the same road name and road type with the

examined accident can be erroneous. This highlights the importance of the intended ve-

hicle direction as a variable for an accident mapping algorithm. However, from the results

of the AMM3 method that considers the vehicle’s intended direction it is revealed that

the inclusion of this variable in an inflexible formula does not guarantee the accuracy of

the results. This supports the selection of fuzzy inference systems for accident location

identification that provide a flexible framework that adapts to the reported data of each

case individually. For the AMF method, the 99th percentile of the Distance was found to

be 56.8 m and the 98.5th percentile 49.9 m confirming the validity of the selection of the

50 m threshold boundary. In other words, the fact that 98.5% of the cases have Distance

less than 49.9 m justifies the need for a manual check in order to confirm the accuracy of

the segment selection (as it is described at the Additional Steps 1 and 3 in section 3.3.4))

when the Distance from the selected segment is over 50 m.

87



Table 4.5: Estimation of accuracy and average distance for the four examined accident
mapping methods

Total Accuracy Average

Method Roundabouts Slip Roads Carriageways (%) Distance

(%) (%) (%) (95%, 1.1) (m)

AMM1 74.0 80.3 82.3 81.6 4.63

AMM2 98.0 96.7 86.0 87.7 6.47

AMM3 52.0 96.7 88.3 85.0 14.54

AMF 100.0 100.0 98.7 98.9 8.53

From the 10,520 cases that were matched with the AMF method, there were 266 (2.5%)

that needed manual checking according to the additional steps 1 and 2. 14 of them were

accidents that could not be matched with any segment of the database due to simultane-

ous road name and road type mismatch with all the potential candidate segments. From

the 266 cases that were checked manually, 107 (1%) needed manual correction. From the

entire database, there were overall 206 (2%) cases of accidents that were matched to road

segments that had different road names than the reported, and 557 (5.3%) segments that

had different road types than reported. After the 107 manual corrections, there were 36

(0.3%) cases where neither the road name nor type of the selected road segment was the

same with those referred to on the accident report. This situation indicates the existence

of some inconsistency between the network and the accident database that is mostly re-

sponsible for the estimated error of the developed method.

Figures 4.11 and 4.12 represent graphically the accident locations when they are superim-

posed on the digital road network; before accident-mapping (a) and after the implemen-

tation of the AMM1(b), AMM2 (c), AMM3(d) and AMF(e) algorithms respectively. It

can be easily noticed that the majority of the reported accident locations (Figures 4.11(a)

and 4.12(a)) do not fall exactly onto a road segment and some of them are placed between

two or more road sections. The accident locations indicated by the four methods (Figures

4.11(b)-4.11(e) and 4.12(b)-4.12(e)) have both similarities and differences. The locations

of AMM1 and AMM2 (Figures 4.11(b), 4.11(c), 4.12(b) and 4.12(c)) are very similar to

each other, as it was expected, but they are quite different from the AMF (Figures 4.11(e)
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and 4.12(e)) locations as the accidents are not necessarily assigned to the closest road seg-

ment, but the one that has the highest Matching Score. The locations of the AMM3 are

almost identical to those indicated by AMF on the main carriageway accidents (Figure

4.11(d)) however the locations for the roundabout accidents (Figures 4.12(d)) are very

different as AMM3 was found to have only 52.0% of accuracy for roundabouts.

(a) STATS 19 reports (unmatched)

(b) AMM1 (c) AMM2

(d) AMM3 (e) AMF

Figure 4.11: Accident locations at a segment of the M4 motorway
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(a) STATS 19 reports (unmatched)

(b) AMM1 (c) AMM2

(d) AMM3 (e) AMF

Figure 4.12: Accident locations at the M25-A13 junction
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4.3.2 Link-based dataset

The link-based dataset includes individual traffic and geometric characteristics and the

total accidents per link. Traffic conditions are expressed by the annual average of speed

and AADT, while road geometry was represented by categorical variables for curvature,

gradient and number of lanes. A more detailed description of the variables can be found

in Table 4.6. The number of accidents per road link was estimated using the output of

AMF that indicates a HATRIS road link for each accident.

Considering the dynamic nature of the traffic variables (i.e. speed and volume) as well as

the fact that a road link typically covers a considerable road length, it can be understood

that both the traffic conditions and the geometric configuration of each link can only be

partially represented by single measures per link. This can be proved from Figures 4.13

and 4.14. Figure 4.13 shows the frequency and the cumulative distribution of the ratio of

the actual speed at the accident location to the annual average speed on the correspond-

ing road link for all 2012 motorway accidents in England. Figure 4.14 is the same for

traffic volume. It is obvious that the ratios are considerably different from one for a high

proportion of accidents (ratio=1 means the equality of accident speed or volume with the

respective annual average) confirming that representation of time-varying measures by

annual averages is often rather inadequate.

After the exclusion of the links with missing traffic or geometry data the final link-based

dataset included 2,356 observations (i.e. links) that represent overall 9,028 accidents.

Accident counts were divided by severity into accidents with Fatal, Serious and Slight

injuries and by collision type into single vehicle and multiple vehicle accidents. The de-

scriptive statistics of the link-base dataset are shown at Table 4.7.
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Table 4.6: Definition of variables of the link-based dataset

Variable Link-based dataset

Speed Annual average of measured

speeds on each link (averaged

over 35,040 records)

Volume Annual average daily traffic per

link (AADT)

Curvature C1. Links with multiple and/or

sharp curves (Curve)

C2. Links that above 50% of their

radius measurements are equal

with 2000 m (Straight)

Gradient G1. Links with median gradient

above 0.5% (Uphill)

G2. Links with median gradient

below -0.5% (Downhill)

G3. Links with median gradient

between 0.5% (Level)

Lanes L1. Links that above 50% of their

sections include more than two

lanes (Lanes above 2)

L2. Links that above 50% of their

sections include up to than two

lanes (Lanes up to 2)

Length Total link length
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Figure 4.13: Frequency and cumulative distribution of the 15-minute speed at the time
and the location of the accident by the annual average of the speed on this link.

Figure 4.14: Frequency and cumulative distribution of the 15-minute volume at the time
and the location of the accident by the annual average of the speed on this link.
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Table 4.7: Descriptive statistics of the variables of the link-based dataset

Variable Mean SD Min. Max.

Dependent variables

All accidents 3.83 4.34 0 36

Fatal accidents 0.08 0.29 0 2

Serious accidents 0.46 0.85 0 7

Slight accidents 3.29 3.88 0 36

Single vehicle accidents 0.94 1.46 0 13

Fatal single vehicle accidents 0.03 0.16 0 2

Serious single vehicle accidents 0.16 0.46 0 4

Slight single vehicle accidents 0.76 1.24 0 13

Multiple vehicle accidents 3.01 3.76 0 32

Fatal multiple vehicle accidents 0.06 0.25 0 2

Serious multiple vehicle accidents 0.31 0.69 0 6

Slight multiple vehicle accidents 2.64 3.39 0 31

Independent variables

Speed (mph) 58.53 10.3 16.91 79.73

AADT (in thousands) 28.83 17.99 0.03 107.1

Curvature:

Curve 0.46 0.5 0 1

Straight 0.54 0.5 0 1

Gradient:

Uphill 0.11 0.31 0 1

Downhill 0.48 0.5 0 1

Level 0.41 0.49 0 1

Lanes:

Lanes above 2 0.32 0.47 0 1

Lanes below 2 0.68 0.47 0 1

Length (miles) 3.85 3.18 0.02 27.95
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4.3.3 Condition-based dataset

The condition-based dataset includes all the possible condition scenarios on the examined

network and the number of accidents that occurred under these conditions. Following the

traffic and geometry conditions identification (outlined in Sections 3.5.1 and 3.5.2), the

initial 10,520 accidents of the database decreased to 9,310 due to missing or illogical values

in one or more variables. Accidents left in the analysis were classified to a spreadsheet

that included all the condition scenarios.

Tables 4.8 and 4.9 present the characteristics of the traffic and geometric conditions just

before accidents respectively. In Table 4.8 it can be seen that the average speed of single

vehicle accidents tends to be higher than that of multiple vehicle accidents. Also, the

average speed is higher for more severe multiple vehicle accidents. The average volume

per lane is significantly lower for single vehicle accidents compared with the multiple ve-

hicle ones and is lowest for the highest severities. This is an initial indication that specific

accident types are associated with different traffic conditions. Table 4.9 shows that single

vehicle accidents occur more frequently on curved segments while multiple vehicle acci-

dents on straight. The majority of the accidents regardless of the collision type occur on

downgrades and on segments with up to two lanes.
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Table 4.8: Descriptive statistics of the traffic conditions just before an accident split by
accident type.

Accident

Type

Average Speed

(St.Deviation)

(mph)

Average Volume per

Lane (St.Deviation)

(vehicles)

All 54.61 (14.34) 195 (127)

K 56.2 (11.14) 106 (101)

S 55.19 (13.88) 157 (118)

Sl 54.49 (14.47) 203 (127)

SV 59.63 (10.95) 138 (104)

SV K 58.85 (9.86) 104 (100)

SV S 59.1 (12.09) 132 (104)

SV Sl 59.77 (10.73) 140 (104)

MV 54.01 (14.95) 233 (125)

MV K 56.83 (11.39) 130 (117)

MV S 55.5 (13.99) 203 (126)

MV Sl 53.83 (15.07) 237 (124)
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Table 4.9: Percentages of the geometrical features of the segments upstream accidents
split by accident type.

Accident

Type

Curve

(%)

Straight

(%)

Uphill

(%)

Downhill

(%)

Level

(%)

Lanes above 2

(%)

Lanes below 2

(%)

All 46.96 53.04 31.92 64.60 3.48 43.64 56.36

K 49.74 50.26 26.94 69.43 3.63 33.16 66.84

S 49.42 50.58 29.54 67.14 3.31 35.72 64.28

Sl 46.55 53.45 32.38 64.13 3.5 45 55

SV 51.39 48.61 32.12 64.69 3.19 38.45 61.55

SV K 54.84 45.16 30.65 64.52 4.84 33.87 66.13

SV S 51.95 48.05 27.79 68.83 3.38 33.25 66.75

SV Sl 51.15 48.85 33.11 63.8 3.09 39.74 60.26

MV 42.65 57.35 31.67 64.61 3.72 51.78 48.22

MV K 43.84 56.16 31.51 63.01 5.48 45.21 54.79

MV S 42.45 57.55 27.55 69.18 3.27 48.98 51.02

MV Sl 42.65 57.35 32.06 64.21 3.73 52.13 47.87

The scenarios of the condition-based dataset were developed according to the process

that was presented in Section 3.5.3. Traffic characteristics were grouped into categories

of equal frequency. The speed groups were defined by dividing the cumulative speed dis-

tribution of the entire network into 50 (Kspeed = 50) equal parts with a 2-percentile step

(nspeed = 2). Following, the volume, for each speed group separately, was split into to

the quartiles of its cumulative distribution (Kvolume = 4 and nvolume = 25). Speed and

volume per group were represented by their medians. Other measures were also tested

such as the mean and the 85th percentile that did not exhibit any statistical difference

in the modelling results. To keep the number of combinations relatively low, all the geo-

metric variables were represented by categorical variables. As it is shown in Table 4.10,

curvature and lanes have two categories each (Lcurvature = 2 and Llanes = 2) and gradient

has three (Lgradient = 3). The number of scenarios (S) of this dataset can be estimated

using equation 3.7:

S = Kspeed ·Kvolume · Lcurvature · Lgradient · Llanes = 50 · 4 · 2 · 3 · 2 = 2400 (4.1)
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Each of the 2,400 scenarios represented a unique combination of traffic and geometric

attributes (e.g. Speed is between the 40th and the 42nd percentile with the median value of

58 mph, the volume is between the 50th and the 75th percentile for these speed conditions

with median 112veh/lane, on a straight and downhill section with up to two lanes). The

distinct values of each categorical or continuous variable had equal frequency with the

other values of this variable (e.g. 800 scenarios were on uphill segments, 800 scenarios

on downhill and 800 scenarios on the level). Each accident was classified to one of these

scenarios with respect to its traffic and geometric conditions and the severity of its con-

sequences. The final output of this process was a dataset with 2,400 observations that

represent the all accident counts by severity and by the number of vehicles involved for

the pre-accident-condition scenarios. Table 4.11 presents the summary statistics of the

explanatory variables of both the datasets.
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Table 4.10: Definition of variables of the condition-based dataset

Variable Condition-based dataset

Speed S1. Speed up to 2nd percentile

S2. Speed between the 2nd and the 4th percentile

S3. Speed between the 4th and the 6th percentile

...

S50. Speed between the 98th and the 100th percentile

Volume Separately for each of the 50 speed scenarios:

V1. Volume up to the 25th percentile

V2. Volume between the 25th and the 50th percentile

V3. Volume between the 50th and the 75th percentile

V4. Volume over the 75th percentile

Curvature C1. Segments that above 50% of their radius measure-

ments are lower than 2000 m (Curve)

C2. Segments that above 50% of their radius measure-

ments are equal with 2000 m (Straight)

Gradient G1. Segments that have more gradient measurements

above 0.5% than below 0.5% (Uphill)

G2. Segments that have more gradient measurements

below -0.5% than above -0.5% (Downhill)

G3. Segments that have more gradient measurements

between 0.5% than below 0.5% and above -0.5% (Level)

Lanes L1. Sections with more than two lanes (Lanes above 2)

L2. Sections with up to two lanes (Lanes up to 2)

Vehicle-Hours Average vehicle hours travelled per condition scenario
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Table 4.11: Descriptive statistics of the variables of the condition-based dataset.

Variable Mean SD Min Max

Dependent variables

All accidents 3.88 6.01 0 84

Fatal accidents 0.08 0.3 0 3

Serious accidents 0.47 0.93 0 8

Slight accidents 3.33 5.38 0 78

Single vehicle accidents 0.93 1.4 0 11

Fatal single vehicle accidents 0.03 0.17 0 2

Serious single vehicle accidents 0.16 0.44 0 3

Slight single vehicle accidents 0.74 1.18 0 8

Multiple vehicle accidents 2.95 5.31 0 83

Fatal multiple vehicle accidents 0.05 0.25 0 2

Serious multiple vehicle accidents 0.31 0.73 0 6

Slight multiple vehicle accidents 2.59 4.84 0 78

Independent variables

Speed (mph) 58.53 11.78 21.28 80.49

Volume (vehicles/lane) 114.36 95.53 6.07 304.23

Curvature:

Curve 0.5 0.5 0 1

Straight 0.5 0.5 0 1

Gradient:

Uphill 0.33 0.47 0 1

Downhill 0.33 0.47 0 1

Level 0.33 0.47 0 1

Lanes:

Lanes above 2 0.5 0.5 0 1

Lanes below 2 0.5 0.5 0 1

VehicleHours 5.31 5.5 0.35 43.61

100



4.4 Summary

This chapter presented the datasets that will be employed to conduct the analysis. The

study area comprises the entire Strategic Road Network of England (SRN) that is repre-

sented by two digital maps with different detail level (i.e. HATIRS and HAPMS). The

data that were employed represented the accidents (STATS19), traffic and the geometry

conditions on the SRN during 2012.

The accident mapping algorithm that was outlined to the previous chapter was found

to provide 98.9% (± 1.1 %) accurate locations and that it clearly outperforms other exist-

ing algorithms. The link-based dataset that was developed consists of 2,356 observations

(i.e. links), the number of accidents and variables that represent the average conditions

on each link. The condition-based dataset includes 2,400 equally likely scenarios and the

accident counts that occurred under each of the condition combinations in the study area

and period.
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Chapter 5

Modelling Results and Discussion

5.1 Introduction

Employing the methods and the datasets that have been discussed in Chapters 3 and

4 respectively, a series of accident count models have been developed. Through these

models it is possible to quantify the relationships of speed, volume and road geometry

with accidents and to examine the impact of high quality geo-coded accident data on the

modelling results. This chapter presents and discusses the results of the developed models

and their methodological implications.

The results of the link-based and the condition-based models will be presented in the

second and the third section of this chapter respectively. The models that are included

in these sections are:

• Link-based models

1. All accidents (SRN)

2. Accidents by severity type (SRN)

3. Accidents by collision type (SRN)

4. Single-vehicle accidents by severity type (SRN)

5. Multiple-vehicle accidents by severity type (SRN)

• Condition-based models

1. All accidents (SRN)
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2. Accidents by severity type (SRN)

3. Accidents by collision type (SRN)

4. Single-vehicle accidents by severity type (SRN & motorways)

5. Multiple-vehicle accidents by severity type (SRN & motorways)

Each model is represented with a table that shows the coefficient estimates of the examined

independent variables. Multivariate models also include covariance-correlation matrices

which present the level of correlations between the examined accident types. The use

of several different specifications for the traffic variables and the inclusion of interaction

terms does not permit straightforward comparisons between the models. To facilitate

understanding and comparing the models, the relationships of the traffic characteristics

(i.e. speed and volume) with accidents are represented graphically with three-dimensional

contour plots. These graphs show the traffic conditions that are more likely to be related

with accidents according to the outcomes of each model.

The results clearly show that significant differences exist between models that originate

from different accident data aggregation approaches. In the fourth section of this chapter

these differences will be outlined and discussed in order to identify the most advantageous

aggregation approach for analysing accident data. The fifth section of this chapter will

discuss the effect of accident location accuracy on the modelling outcomes. This will be

done by comparing the results of identical models that employ accident data with different

location accuracies.

5.2 Link-Based Models

The univariate and multivariate models 3.11 and 3.19 were initially fitted to the link-

based datasets using WinBUGS 1.4.3 (Spiegelhalter et al., 2003), an open-source software

that is suitable for full Bayes model estimation using the Markov Chains Monte Carlo

(MCMC) method. The estimations were derived from 50,000 iterations of two chains with

a burn-in sample of 20,000 iterations. Convergence was visually detected by observing

the Markov chain history graphs of the models’ coefficients which are provided by the

WinBUGS software. The first model that it is presented here is the link-based univariate
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Poisson lognormal spatial model that examines the relationship of all accidents with the

traffic and geometric independent variables. Next are the multivariate Poisson lognormal

spatial models that examine accidents disaggregated by injury severity (i.e. fatal, serious

or slight) and by collision type (i.e. single-vehicle, multiple-vehicle). This is followed by

the presentation of the models for single-vehicle and multiple-vehicle accidents disaggre-

gated by severity.

The output of all multivariate models includes variance-covariance matrices of the hetero-

geneity and the spatial effects (from equations 3.13 - 3.18 and 3.19 - 3.22). Correlations

between different accident types are estimated using the following equation (Field, 2009):

Correl(x, y) =
Cov(x, y)

sx · sy
(5.1)

Where: Cov(x, y): the covariance between variables x and y and sx and sy: the standard

deviations of variables x and y respectively.

Correlations between the frequencies of different accident types may be caused by the

omission of variables which are potentially significant for accident occurrence (e.g. Ma

et al., 2008; Aguero-Valverde, 2013; Barua et al., 2014). The correlation coefficients can

be from -1 to 1, with positive values obviously representing positive correlations and vice

versa. Although negative correlations are possible to be estimated, in multivariate acci-

dent models they are rather unlikely because accidents tend to be mainly related with

similar unobserved variables (Ma et al., 2008).

5.2.1 All accidents

The variable estimates of the univariate Poisson lognormal link-based model (Link-based

All (12)) are presented in Table 5.1. As it can be seen by the model’s name the best fitting

functional relation to variables was shown to be specification 12 (see Table 3.6) in which

speed was included to the model without transformation and AADT was squared. In

addition, a speed-AADT interaction term was added to the model. The outcomes for the

traffic variables of the model are attempted to be presented in a more comprehensive way

though a three-dimensional contour plot that presents the simultaneous relationship of the
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accident rate (i.e. accidents/exposure) with average link speed and AADT (Figure 5.1).

To develop this graph and all the similar graphs throughout this chapter, the equation that

was derived from the model was used. To facilitate the estimation this equation refers to

the reference cases of the independent variables (i.e. when Curve=0, Uphill=Downhill=0

and Lanes above 2=0). The purpose of this equation is not to predict specific accident

rates but to visualise the accident trends as a function of the traffic variables (i.e. speed

and AADT) so the selection of the reference variables is the most convenient approach.

Therefore the equation that was used to develop Figure 5.1 was:

All accidents

miles
= exp(−0.0569 · Speed− 0.0002 · AADT 2

+ 0.0006 · Speed · AADT − 2.2393) (5.2)

Table 5.1: Parameter estimates for the link-based univariate Poisson-lognormal model for
all accidents (Link-based All (12))

All accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0569 ** 0.00294 0.00010 -0.0627 -0.0617 -0.0521 -0.0511

AADT squared -0.0002 ** 0.00004 0.00000 -0.0003 -0.0003 -0.0001 -0.0001

Speed * AADT 0.0006 ** 0.00006 0.00000 0.0005 0.0005 0.0007 0.0008

Curve -0.0270 0.03590 0.00080 -0.0975 -0.0862 0.0320 0.0439

Uphill 0.0595 0.06103 0.00122 -0.0609 -0.0409 0.1590 0.1797

Downhill 0.0572 * 0.03429 0.00068 -0.0102 0.0006 0.1134 0.1238

Lanes 0.0140 0.05134 0.00159 -0.0871 -0.0710 0.0985 0.1149

Intercept 2.2393 0.14097 0.00464 1.9636 2.0053 2.4723 2.5154

ln(Length) 1 - - - - - -

D̄ 8630 **statistically significant at the 95% credible interval

pD 540 *statistically significant at the 90% credible interval

DIC 9171
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,

Figure 5.1: Contour plot of the predicted accidents per mile as a function of speed and
AADT (model: Link-based All (12)).

Overall, the results were hard to interpret and counterintuitive to a certain extent. Speed

was found to be inversely proportional with all accidents for links with AADT lower than

95,000 (estimated from the slope of speed in equation 5.2). The finding that high speeds

increase accident rates for links with very high average volume refers only to a small pro-

portion of links with AADT above 95,000 that is only 0.34%. For the rest of the links of

the network the accident-speed relationship is negative. Although some other studies have

suggested that higher speeds are associated with less accidents (e.g. Lave, 1985; Baruya,

1998a), none of the researchers has given a clear explanation of why higher average speeds

could be overall safer. Some of the main arguments to support this idea are the increased

design standards of high speed motorways and the longer available distances between ve-

hicles at high speed conditions. However, the vast majority of studies that examine the

number of accidents before and after speed limit changes (consequently changes in aver-

age speed) suggest that higher speeds are related to more accidents (e.g. Elvik et al., 2004).

Higher AADT was related with more accidents at least for the majority of the links of the

road network. The relationship of AADT with accidents can be described an inverse-U

shaped curve with a peak that is a function of speed 1. Considering that only 5.75%

of the SRN links have average speed below 40 mph, in most of the cases accidents tend

to increase as AADT increases (e.g. for the average speed that is 58.53 mph AADT in-

1Solving the first derivative of AADT (i.e. ∂Allaccidents/miles
∂AADT = 0) of equation 5.2 it can be found that

for speed=40, 55 and 70 mph the curve maximises at 60, 82.5 and 105 thousands vehicles
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creases proportionally with accidents until it reaches 87.80 thousand vehicles). This result

is in-line with most of the existing studies that suggest that higher AADT is associated

with higher accident frequency (e.g. Abdel-Aty and Radwan, 2000; Anastasopoulos and

Mannering, 2009).

All the links’ geometrical features were found to be statistically insignificant except from

negative grades which seem to be related with higher accident frequency. The use of

dummy variables for the geometrical variables could have possibly affected the estimated

coefficients of this and all the following models. However, the signs of the coefficients

of the most important variables (i.e. speed) did not change even when the geometrical

characteristics were represented by continuous variables in models that are not presented

due to brevity. These results may be due to the examination of all accidents into one cat-

egory that did not possibly permit the representation of the variations between different

accident severities and types. However,they might also provide a first indication that the

highly-aggregared time varying variables are likely to lead to inaccurate estimations.

5.2.2 Accidents by severity type

Accidents based on the severity of their outcomes, might have different inherent char-

acteristics (e.g. Park and Lord, 2007; Ma et al., 2008). This was checked by using a

multivariate regression model that examined accidents split into two severity categories:

accidents with killed or seriously injured casualties (KS) and accidents with slight injuries

(Sl) (Link-based KS-Sl AMF (3))(A multivariate model that examines fatal (K), serious

(S) and slight (Sl) accidents separately is presented in Appendix B). Table 5.2 shows the

estimates of the model and Table 5.3 the covariance-correlation matrices. In the best

fitting specification for this model speed is in a linear form and AADT logarithmically

transformed. The correlation between KS and Sl accidents (marked with bold font in

Table 5.3) was found to be high (0.812) and significant. This high correlation highlighted

that there are indeed correlations between different accident types proving the suitability

of multivariate modelling for accident analyses, a fact that has been already reported in a

series of studies (e.g. Park and Lord, 2007; Ma et al., 2008; Aguero-Valverde and Jovanis,

2009). The correlation for spatial effects between accident severities that was statistically
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significant but not very high (0.491). This is partially in line with the findings by Barua

et al. (2014) that reported that both the correlation coefficients were high and significant.

On the other hand, Aguero-Valverde (2013) found similar correlation coefficients for the

random effects but the correlation due to spatial effects could be regarded as equal to

zero; a finding that was explained by the presence of two random effects in the model.

The accident rate by severity for the reference cases of the categorical independent vari-

ables (i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) for the Link-based KS-Sl

AMF (3) is:

KS accidents

miles
= exp(−0.0372 · Speed+ 0.1310 · ln(AADT )− 0.5301) (5.3)

Sl accidents

miles
= exp(−0.0467 · Speed+ 0.6848 · ln(AADT ) + 0.1325) (5.4)
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Table 5.2: Parameter estimates for the link-based multivariate Poisson-lognormal model
for fatal and serious (KS) and slight (Sl) accidents (Link-based KS-Sl AMF (3))

KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0372 ** 0.0042 0.0002 -0.0450 -0.0438 -0.0301 -0.0287

ln(AADT) 0.1310 ** 0.0636 0.0024 0.0046 0.0243 0.2355 0.2547

Curve -0.0740 0.0720 0.0014 -0.2164 -0.1933 0.0439 0.0655

Uphill -0.0763 0.1278 0.0016 -0.3285 -0.2889 0.1316 0.1700

Downhill -0.0094 0.0680 0.0011 -0.1420 -0.1205 0.1028 0.1254

Lanes 0.2005 ** 0.0913 0.0025 0.0226 0.0509 0.3502 0.3799

Intercept -0.5301 ** 0.2548 0.0105 -1.0453 -0.9570 -0.1110 -0.0292

ln(Length) 1 - - - - - -

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0467 ** 0.0024 0.0001 -0.0516 -0.0507 -0.0428 -0.0419

ln(AADT) 0.6848 ** 0.0410 0.0019 0.6058 0.6201 0.7553 0.7699

Curve -0.0271 0.0385 0.0008 -0.1022 -0.0903 0.0362 0.0481

Uphill 0.0728 0.0644 0.0010 -0.0537 -0.0330 0.1785 0.1989

Downhill 0.0814 ** 0.0365 0.0006 0.0100 0.0209 0.1412 0.1528

Lanes 0.1396 ** 0.0518 0.0017 0.0371 0.0538 0.2247 0.2405

Intercept 0.1325 0.1679 0.0081 -0.2034 -0.1478 0.4149 0.4709

ln(Length) 1 - - - - - -

D̄ 12026 **statistically significant at the 95% credible interval

pD 669

DIC 12695

Table 5.3: Combined Covariance-Correlation matrix of the (A) random effect and (B) the
spatial effect of the Link-based KS-Sl AMF (3) model.

A KS accidents Sl accidents

KS accidents 0.276** 0.200**

Sl accidents 0.812** 0.220**

B KS accidents Sl accidents

KS accidents 0.007** 0.004**

Sl accidents 0.491** 0.011**

Correlation is marked with bold font.

**Statistically significant at the 95% credible interval
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(a)

(b)

Figure 5.2: Contour plot of the predicted (a)fatal and serious (KS) and (b) slight (Sl)
accidents per mile as a function of speed and AADT (model: Link-based KS-Sl AMF (3)).

Although accidents of different severity levels were modelled separately the results for

speed are not different from those of the link-based univariate model (Link-based All (12)

model at Section 5.2.1). The relationship of the average link speed with accidents was

found to be negative even for KS accidents which according to the literature are more

related with high speeds and speeding (e.g. Elvik et al., 2004; Pei et al., 2012). As it was

mentioned above this result is counterintuitive and can be attributed to aggregation bias.

Higher AADT was again found to be related with more accidents of all severities, an out-

come that is clearly more explainable and is confirmed by the literature (e.g Abdel-Aty

and Radwan, 2000). Higher number of lanes was related with more KS and Sl accidents,

a finding that also is in line with the findings of existing research (e.g. Milton and Man-
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nering, 1998; Chang, 2005). Sl accidents were also associated with road links that tend

to be downhill. Specifically, using the estimated coefficient (0.0814) it can be estimated

that downhill links are expected to to have 8.48% (i.e. (e0.0814 − e0) · 100% = 8.48%)

more accidents per mile, compared to uphill and level links, which is a quite interpretable

outcome considering that negative grades are associated with longer braking distances

and higher speeds (e.g. Milton and Mannering, 1998).

5.2.3 Accidents by collision type

Table 5.4 presents the modelling outcomes of the multivariate regression model for single-

vehicle (SV) and multiple vehicle (MV) accidents (Link-based SV-MV (3). Similarly to

the Link-based KS-Sl AMF (3) model above, in the best fitting specification speed was

in its linear form and AADT was logarithmically transformed. In the variance-covariance

table for this model (Table 5.5) it can be seen that the correlation of the random effect

is low (0.332) but the correlation of the spatial effect is quite high (0.720) meaning that

particular locations are more related with accidents. The low random effect correlation

coefficient can be explained by the fact that the generation processes of SV and MV ac-

cidents are quite different (e.g. Kim et al., 2006). However this outcome could also be

related with the existence of two random effects in the model as it has been proposed by

Aguero-Valverde (2013).

SV and MV accident rate for the reference cases of the categorical independent vari-

ables (i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) for the Link-based SV-MV

(3) is equal with:

KS accidents

miles
= exp(−0.0134 · Speed+ 0.2218 · ln(AADT )− 1.6989) (5.5)

Sl accidents

miles
= exp(−0.0575 · Speed+ 0.7093 · ln(AADT ) + 0.5705) (5.6)
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Table 5.4: Parameter estimates for the link-based multivariate Poisson-lognormal model
for single-vehicle (SV) and multiple-vehicle (MV) accidents (Link-based SV-MV (3))

SV accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0134 ** 0.0038 0.0002 -0.0208 -0.0196 -0.0074 -0.0062

ln(AADT) 0.2218 ** 0.0581 0.0024 0.1064 0.1253 0.3165 0.3351

Curve 0.0262 0.0582 0.0013 -0.0878 -0.0690 0.1232 0.1405

Uphill -0.0460 0.1002 0.0015 -0.2452 -0.2122 0.1177 0.1483

Downhill 0.0910 * 0.0540 0.0008 -0.0152 0.0019 0.1795 0.1975

Lanes 0.0579 0.0747 0.0023 -0.0884 -0.0644 0.1805 0.2032

Intercept -1.6989 ** 0.2471 0.0112 -2.1620 -2.0918 -1.2863 -1.1938

ln(Length) 1 - - - - - -

MV accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0575 ** 0.0023 0.0001 -0.0620 -0.0613 -0.0536 -0.0529

ln(AADT) 0.7093 ** 0.0430 0.0020 0.6227 0.6386 0.7815 0.7938

Curve -0.0532 0.0401 0.0009 -0.1317 -0.1188 0.0121 0.0249

Uphill 0.0056 0.0668 0.0010 -0.1241 -0.1039 0.1160 0.1376

Downhill 0.0790 ** 0.0380 0.0006 0.0043 0.0163 0.1416 0.1531

Lanes 0.2102 ** 0.0521 0.0017 0.1086 0.1237 0.2953 0.3124

Intercept 0.5705 ** 0.1570 0.0073 0.2718 0.3207 0.8287 0.8763

ln(Length) 1 - - - - - -

D̄ 12678 **statistically significant at the 95% credible interval

pD 838 *statistically significant at the 90% credible interval

DIC 13516

Table 5.5: Combined Covariance-Correlation matrix of the (A)random effect and (B) the
spatial effect of the Link-based SV-MV (3) model.

A SV accidents MV accidents

SV accidents 0.196** 0.071**

MV accidents 0.332** 0.232**

B SV accidents MV accidents

SV accidents 0.015** 0.008**

MV accidents 0.720** 0.009**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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(a)

(b)

Figure 5.3: Contour plot of the predicted (a)fatal and serious (KS) and (b) slight (Sl)
accidents per vehicle hours travelled per mile as a function of speed and AADT (model:
Link-based SV-MV (3)).

Although SV and MV accidents are considered to have different generation processes

according to the results of the Link-based SV-MV (3) model the traffic conditions that

are associated with these collision types were identical. Exactly like in the previous

two link-based models speed was negatively associated with accidents and AADT was

positively related with them. This result, especially for SV accidents, is counterintuitive

and in opposition with most of the literature that suggests that single vehicle accidents

occur mainly at low density conditions so when speed is high and the traffic volume low

(e.g. Xie et al., 2012; Kim et al., 2013). The outcome for MV accidents interpretable to

a certain extent, as multiple-vehicle collisions are more likely to occur when the traffic

is heavier (e.g. Ivan et al., 1999; Ivan, 2004). The only geometrical feature of the links
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that was found to be statistically significant for both collision types was negative grades.

Moreover, links with more than two lanes were only found to be related with more MV

accidents.

5.2.4 Single-vehicle accidents by severity

The modelling results for SV accidents by severity (i.e. Link-based SV KS-Sl (9)) can be

found in Tables 5.6 and 5.7 and Figure 5.4. Speed and AADT were logarithmically trans-

formed in the best fitting specification of the model. Table 5.7 presents the covariance-

correlation matrices of this model. Both the correlation coefficients of the random and

the spatial effects were found to be high (i.e. 0.900 and 0.693 respectively) showing the

similarity of SV accidents independent of their severity.

The accident rate for SV KS and SV Sl accidents for the reference cases of the cate-

gorical independent variables (i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) for

the Link-based SV KS-Sl (9) equals:

SV KS accidents

miles
= exp(−1.1271 · ln(Speed) + 0.5015) (5.7)

SV Sl accidents

miles
= exp(−0.6032 · ln(Speed) + 0.2732 · ln(AADT )− 0.4820) (5.8)
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Table 5.6: Parameter estimates for the link-based multivariate Poisson-lognormal model
for Fatal and serious (SV KS) and slight single-vehicle (SV Sl) accidents (Link-based
SV KS-Sl (9))

SV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) -1.1271 ** 0.2788 0.0230 -1.6290 -1.5793 -0.6568 -0.5951

ln(AADT) 0.1028 0.1039 0.0073 -0.0997 -0.0788 0.2619 0.2836

Curve 0.0039 0.1134 0.0042 -0.2191 -0.1827 0.1886 0.2254

Uphill 0.1359 0.1941 0.0049 -0.2592 -0.1829 0.4500 0.5049

Downhill -0.0202 0.1078 0.0031 -0.2317 -0.1983 0.1546 0.1868

Lanes 0.1034 0.1482 0.0079 -0.1732 -0.1296 0.3533 0.4021

Intercept 0.5015 1.0556 0.0870 -1.4893 -1.2710 2.2201 2.5223

ln(Length) 1 - - - - - -

SV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) -0.6032 ** 0.1162 0.0095 -0.8053 -0.7752 -0.3581 -0.3289

ln(AADT) 0.2732 ** 0.0586 0.0043 0.1619 0.1796 0.3677 0.3848

Curve 0.0286 0.0629 0.0022 -0.0956 -0.0749 0.1310 0.1529

Uphill -0.1078 0.1118 0.0030 -0.3289 -0.2957 0.0742 0.1094

Downhill 0.1045 * 0.0604 0.0021 -0.0137 0.0048 0.2018 0.2208

Lanes 0.0344 0.0790 0.0041 -0.1195 -0.0954 0.1636 0.1890

Intercept -0.4820 0.4538 0.0370 -1.6276 -1.4997 0.1595 0.2303

ln(Length) 1 - - - - - -

D̄ 6417 **statistically significant at the 95% credible interval

pD 291 *statistically significant at the 90% credible interval

DIC 6708
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Table 5.7: Combined Covariance-Correlation matrix of the (A)random effect and (B) the
spatial effect of the Link-based SV KS-Sl (9) model.

A SV accidents MV accidents

SV accidents 0.273** 0.213**

MV accidents 0.900** 0.204**

B SV accidents MV accidents

SV accidents 0.012** 0.01**

MV accidents 0.693** 0.017**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

(a)

(b)

Figure 5.4: Contour plot of the predicted single-vehicle (a)fatal and serious (SV KS)
and (b) slight (SV Sl) accidents per per mile as a function of speed and AADT (model:
Link-based SV KS-Sl ()).
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The estimated coefficients were not particularly different in terms of signs from those of

the Link-based SV-MV (3) model (see Section 5.2.3). Irrespective of their severity, SV

accidents were found to decrease as speed increases. As it has been outlined in Section

5.2.3 this outcome is not expected and it cannot be interpreted. In fact, this finding

confirms that aggregation bias that is associated with link-based approaches may indeed

affect significantly the estimated coefficients. The rest of the examined variables (includ-

ing AADT) for SV KS accidents were not statistically significant. This might be the effect

of the very low number of observations different than zero in this category (see Table 4.7).

On the other hand, the estimated coefficients for AADT and downhill links were found

to be significant and positively related with high SV Sl accident frequency.

5.2.5 Multiple-vehicle accidents by severity

Tables 5.8 and 5.9 and Figure 5.5 present the results of the Link-based MV KS-Sl (3)

model. In the best fitting model speed was in linear form and AADT was logarithmi-

cally transformed. The random effect correlation was high (0.837) and the spatial effect

correlation relatively lower (0.509). The accident rate for the reference cases of the cate-

gorical independent variables (i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) for

the Link-based SV KS-Sl (9) that were estimated for fatal and serious and slight accidents

are:

MV KS accidents

miles
= exp(−0.0338 · Speed+ 0.5391 · ln(AADT )− 3.1386) (5.9)

MV KS accidents

miles
= exp(−0.0518 · Speed+ 1.0500 · ln(AADT )− 1.2641) (5.10)
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Table 5.8: Parameter estimates for the link-based multivariate Poisson-lognormal model
for fatal or serious (MV KS) and slight (MV Sl) multiple-vehicle accidents (Link-based
MV KS-Sl (3))

MV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0338 ** 0.0064 0.0003 -0.0457 -0.0439 -0.0229 -0.0207

ln(AADT) 0.5391 ** 0.0967 0.0037 0.3504 0.3805 0.6978 0.7255

Curve -0.1542 0.1020 0.0020 -0.3554 -0.3227 0.0121 0.0440

Uphill -0.6738 ** 0.2254 0.0026 -1.1316 -1.0547 -0.3117 -0.2472

Downhill 0.0225 0.0912 0.0011 -0.1543 -0.1268 0.1739 0.2028

Lanes 0.1298 0.1250 0.0035 -0.1131 -0.0752 0.3356 0.3753

Intercept -3.1386 ** 0.4095 0.0172 -3.9532 -3.8235 -2.4802 -2.3413

ln(Length) 1 - - - - - -

MV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0518 ** 0.0029 0.0001 -0.0573 -0.0565 -0.0471 -0.0459

ln(AADT) 1.0500 ** 0.0472 0.0022 0.9607 0.9745 1.1265 1.1427

Curve -0.0471 0.0434 0.0009 -0.1317 -0.1186 0.0242 0.0383

Uphill 0.0621 0.0735 0.0011 -0.0812 -0.0596 0.1827 0.2061

Downhill 0.0833 ** 0.0416 0.0007 0.0019 0.0150 0.1519 0.1651

Lanes 0.1156 ** 0.0562 0.0018 0.0049 0.0218 0.2070 0.2233

Intercept -1.2641 ** 0.1932 0.0092 -1.6456 -1.5850 -0.9371 -0.8794

ln(Length) 1 - - - - - -

D̄ 9307.51 **statistically significant at the 95% credible interval

pD 551.633

DIC 9859.14
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Table 5.9: Combined Covariance-Correlation matrix of the (A)random effect and (B) the
spatial effect of the Link-based MV KS-Sl (3) model.

A MV KS accidents MV Sl accidents

MV KS accidents 0.154** 0.157**

MV Sl accidents 0.837** 0.227**

B MV KS accidents MV Sl accidents

MV KS accidents 0.007** 0.004**

MV Sl accidents 0.509** 0.008**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

(a)

(b)

Figure 5.5: Contour plot of the predicted multiple-vehicle (a)fatal and serious (MV KS)
and (b) slight (MV Sl) accidents per per mile as a function of speed and AADT (model:
Link-based MV KS-Sl (3)).
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The results of this model are also very similar to those of the Link-based SV-MV (3) model

(see Section 5.2.3). Speed was found to have a negative relationship with MV accidents of

all severities, with the effect of lower speeds being higher for MV Sl accidents (based on

the estimated coefficients). AADT was linked with more MV accidents independent of the

severity of their outcomes, but its impact is higher for MV Sl accidents. The outcomes for

MV Sl accidents were more explainable as this type of accidents is linked with congested

traffic and high density conditions, when speeds are lower (e.g. Ivan, 2004). However,

it is not clear whether the estimations for MV KS accidents are equally interpretable.

This is because although MV accidents are related with intense traffic, on the other hand

accidents with serious consequences are linked with higher speed conditions (e.g. Aarts

and Van Schagen, 2006).

MV KS accidents were the only accident type that has been associated with the pres-

ence of positive grades in link-based models. Specifically, uphill links were approximately

49% less likely ((e−0.6738 − e0) · 100% = −49%) to have MV KS accidents. As uphill sec-

tions have been associated with lower speeds and braking (Milton and Mannering, 1998),

this finding is not in line with this for speed. MV Sl accidents though, increased at links

with negative grades and more than two lanes. The latter indicates that multiple lane

changes which can eventually lead in more vehicle interactions (Persaud, 1992; Milton

and Mannering, 1998).

5.3 Condition-Based Models

The univariate and the multivariate models denoted by equations 3.11 and 3.14 were fitted

to the condition-based datasets using WinBUGS 1.4.3 (Spiegelhalter et al., 2003). The

posterior distributions were obtained from 50,000 iterations of two Markov chains. The

first 20,000 iterations were discarded from the final estimations as the burn-in sample.

Convergence was visually detected from Markov chain history graphs of the models’ co-

efficients. The results are structured in a similar manner with the previous section. First

is the univariate model for all the accidents presented, then the multivariate models for

accidents split by severity group (i.e. fatal, serious or slight) and by collision type (i.e.

single-vehicle and multiple-vehicle). Following, are the estimations of the multivariate
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models for single-vehicle accidents by severity and multiple-vehicle accidents by severity.

5.3.1 All accidents

The modelling outcomes of the univariate condition-based model (Condition-based All

(10) can be seen in Table 5.10. The best fitting traffic variable specification was specifi-

cation 10 which means that both speed and volume per lane were expressed in quadratic

forms and without an interaction term. The accident rate for the reference cases of cate-

gorical independent variables (i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) that

was the equation used to plot Figure 5.6 is equal with:

All accidents

V ehHr per mile
= exp(0.05756 · Speed− 0.00056 · Speed2

− 0.01147 · V olume+ 0.00003 · V olume2 − 2.977) (5.11)

Table 5.10: Parameter estimates for the condition-based univariate Poisson-lognormal
model for all accidents (Condition-based All (10))

All accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.05756** 0.011070 0.0007824 0.04036 0.04208 0.05796 0.07217

Speed squared -0.00056** 0.000106 0.0000075 -0.00075 -0.00072 -0.00056 -0.00043

Volume -0.01147** 0.000777 0.0000504 -0.01298 -0.01275 -0.01149 -0.01049

Volume squared 0.00003** 0.000002 0.0000002 0.00002 0.00002 0.00003 0.00003

Curve 0.11350** 0.037130 0.0008276 0.04073 0.05201 0.11340 0.16110

Uphill 2.25000** 0.069270 0.0032730 2.11800 2.13900 2.24800 2.33900

Downhill 2.93200** 0.069010 0.0033860 2.80400 2.82400 2.93000 3.02400

Lanes -0.37400** 0.036910 0.0007741 -0.44580 -0.43460 -0.37390 -0.32660

Intercept -2.97700** 0.294900 0.0205500 -3.51700 -3.45500 -2.97000 -2.61600

ln(VehHr/mile) 1 - - - - - -

D̄ 7624 **statistically significant at the 95% credible interval

pD 936

DIC 8560
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Figure 5.6: Contour plot of all the predicted accidents per vehicle hours travelled per mile
as a function of speed and volume per lane (model: Condition-based All (10)).

Speed was found to have mainly a positive relationship with accidents. More specifically

the accident-speed relationship according to this model can be described by an inverted

U curve that reaches its peak at approximately 51.4 mph (estimated equating the first

derivative of speed in equation 5.11 with zero). The shape of this curve reflects that

the number of all accidents increases proportionally with speed until a certain point and

then either it stabilises or decreases. The accident decrease at very high speeds could

be potentially explained by the smaller number of accident prone reactions at very high

speed conditions (Navon, 2003). However, another possible explanation is that the shape

of this curve is due to the merger of accidents with dissimilar characteristics into a single

dependent variable (all accidents). The results that are presented in the following sections

confirm this statement.

Accident rate as a function of the volume per lane formed a U-shaped curve. As Fig-

ure 5.6 shows accident rate was highest at very high volume conditions and particularly

when this was combined with relatively high speeds (approximately from 40 to 70 mph).

Additionally, accident rate was higher for low volumes compared to the moderate ones.

This result is in line with the findings of Gwynn (1967) and Ceder and Livneh (1982)

who have also found a U-shaped relationship between accidents and volume. Similarly to

speed though, this result might be the outcome of the examination of all the accidents

combined. The left part of the U-curve might be mainly related with multiple-vehicle

accidents that typically occur under heavier traffic while the right part might represent
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single-vehicle accidents that occur under less congested conditions.

The existence of curvature just before the accident location was found to increase the

accident rate and specifically curved segment has a 12% (i.e. (e0.1135 − e0) · 100% = 12%)

higher accident rate compared to straight segments. This finding is in line with the ma-

jority of the literature (e.g. Milton and Mannering, 1998; Abdel-Aty and Radwan, 2000;

Anastasopoulos and Mannering, 2009). Vertical alignment of the road section just before

an accident was also associated with more accidents. The existence of both positive and

negative slope seems to triggers accident occurrence although, based on the coefficient

values, the latter has higher impact. This outcome is consistent with the findings of sev-

eral studies (e.g. Shankar et al., 1995; Milton and Mannering, 1998). Finally, roads with

more than two lanes were found related with lower accident counts. This is similar to the

findings of Ma and Kockelman (2006) who reported that the number of lanes decreases

accident counts for non-fatal accidents and the results by Park et al. (2010) who found

that 6-lane freeways are less accident prone than 4 or 8-lanes but opposite to the majority

of current literature (e.g. Chang, 2005; Milton and Mannering, 1998). A possible expla-

nation for that could be that wider roads allow more manoeuvres for accident avoidance

during a accident-prone encounter. Moreover, this result can also be explained by the

inclusion of accidents that occurred on undivided (single) carriageways. Over half of the

examined accidents occurred on A-roads that include some single carriageways which are

related with hazardous vehicle interactions that may lead to accidents with severe conse-

quences (e.g. head-on collisions). As it will be shown in sections 5.3.4 and 5.3.5 below,

the results for the number of lanes are different in models that use accidents that occurred

exclusively on motorways.

5.3.2 Accidents by severity type

Literature suggests that not all accident types can be attributed to the same precursors

and thus a univariate model can be only partially informative about the relationships of

accidents with their potential contributory factors (e.g. Ma and Kockelman, 2006; Park

and Lord, 2007). In order to identify the differences between the contributory factors of

accidents for each severity level a multivariate models has been applied. In the model
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fatal and serious accidents (KS) are merged into one category and are modelled along with

slight injury accidents (Sl) (Condition-based KS-Sl AMF (20)). A model where accidents

are divided into three severity categories (i.e. accidents with killed casualties (K), serious

injuries (S) and slight injuries (Sl)) has also been applied but did not provide statistical

significant results for speed probably due to excess zeroes. This model is presented in

Appendix B.

Table 5.11 shows the estimates of the Condition-based KS-Sl AMF (20) model. The

best fitting specification was quadratic for both speed and volume per lane and included

an interaction term. The covariance-correlation matrix of the multivariate model is pre-

sented at Table 5.12. The values presented with bold font are the correlations between

accidents with different severities. The correlation between KS and Sl accidents was

very high (0.96). The high correlations between accidents with different severity confirm

the necessity of the application of multivariate models. Similar correlations have been

reported by previous research on multivariate models; for example Aguero-Valverde and

Jovanis (2009) found 0.97 correlation between accidents with major and moderate injuries.

The accident rate by severity for the reference cases of categorical independent variables

(i.e. Curve=0, Uphill=Downhill=0, Lanes above 2=0) for the Condition-based KS-Sl

AMF (20) model is:

KS accidents

V ehHr per mile
= exp(0.03884 · Speed− 0.00037 · Speed2 − 0.02037 · V olume

+ 0.000035 · V olume2 + 0.00004 · Speed · V olume− 3.714) (5.12)

Sl accidents

V ehHr per mile
= exp(0.05868 · Speed− 0.00051 · Speed2 − 0.00759 · V olume

+ 0.00002 · V olume2 − 0.00005 · Speed · V olume− 3.483) (5.13)
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Table 5.11: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (KS) and slight (Sl) accidents (Condition-based KS-Sl AMF
(20))

KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.03884 ** 0.014430 0.0007483 0.01158 0.016782 0.06508 0.06888

Speed squared -0.00037 ** 0.000139 0.0000070 -0.00066 -0.000615 -0.00016 -0.00011

Volume -0.02037 ** 0.002008 0.0000889 -0.02417 -0.023630 -0.01695 -0.01621

Volume Squared 0.000035 ** 0.000005 0.0000002 0.00003 0.000030 0.00005 0.00005

Speed*Volume 0.00004 * 0.000027 0.0000012 -0.00001 0.000006 0.00008 0.00009

Curve 0.08056 0.065340 0.0009904 -0.04698 -0.026650 0.18860 0.20870

Uphill 2.12500 ** 0.158900 0.0044130 1.82500 1.870000 2.39400 2.45100

Downhill 2.95200 ** 0.154600 0.0045080 2.65900 2.704000 3.21400 3.27000

Lanes -0.64770 ** 0.069540 0.0009894 -0.78550 -0.761900 -0.53300 -0.51090

Intercept -3.71400 ** 0.431000 0.0213500 -4.62600 -4.491000 -3.06100 -2.95400

ln(VehHr/mile) 1 - - - - - -

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.05868 ** 0.009759 0.0005183 0.03715 0.04005 0.07424 0.07678

Speed squared -0.00051 ** 0.000090 0.0000047 -0.00069 -0.00066 -0.00036 -0.00033

Volume -0.00759 ** 0.001200 0.0000603 -0.00986 -0.00959 -0.00552 -0.00518

Volume Squared 0.00002 ** 0.000003 0.0000001 0.00002 0.00002 0.00003 0.00003

Speed*Volume -0.00005 ** 0.000016 0.0000008 -0.00008 -0.00008 -0.00002 -0.00002

Curve 0.11740 ** 0.037730 0.0007983 0.04327 0.05534 0.17930 0.19080

Uphill 2.25700 ** 0.071980 0.0022170 2.11600 2.13800 2.37500 2.39700

Downhill 2.91100 ** 0.070250 0.0022510 2.77100 2.79300 3.02500 3.04600

Lanes -0.32670 ** 0.037900 0.0007605 -0.40100 -0.38910 -0.26460 -0.25260

Intercept -3.48300 ** 0.280600 0.0145800 -4.00800 -3.91400 -2.96000 -2.83700

ln(VehHr/mile) 1 - - - - - -

D̄ 10683 **statistically significant at the 95% credible interval

pD 985 *statistically significant at the 90% credible interval

DIC 11668
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Table 5.12: Combined Covariance-Correlation matrix of the random effect of the
Condition-based KS-Sl AMF (20) model.

KS accidents Sl accidents

KS accidents 0.375** 0.323**

Sl accidents 0.960** 0.302**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

(a)

(b)

Figure 5.7: Contour plot of the predicted (a)fatal and serious (KS) and (b) slight (Sl)
accidents per vehicle hours travelled per mile as a function of speed and volume per lane
(model: Condition-based KS-Sl AMF (20)).

Observing Tables 5.11 and 5.12 and Figure 5.7 makes clear that accidents with different

severity levels are associated with different traffic conditions. KS accidents (see Figure

5.7(a)) were found to have a generally proportional relationship with speed that for lower
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volume conditions after a certain maximum point either stabilises or decreases. Due to

the presence of the interaction term in the model the peak of the accident-speed curve

increased proportionally with volume per lane (e.g. the peak is 57.9 mph for 100 vehi-

cles/lane and 74.1 mph for 400 vehicles/lane). This may suggest that at lower volume

conditions there is more space available for manoeuvring so some accidents can be avoided,

while when traffic is dense this is not possible. The frequency of Sl accidents (see Figure

5.7(b)) with speed was also found to increase until speed reaches 50 mph and after that

point had a downward trend. Opposite to the KS accidents, the peak of the curve gradu-

ally decreased while volume increased (e.g. the peak is 52.6 mph for 100 vehicles/lane and

37.9 mph for 400 vehicles/lane). This outcome should not be interpreted as an indication

that higher speeds are safer than the lower ones. The low frequency of Sl accidents at

high speeds mainly shows that at higher speed conditions accidents tend to have usually

more serious outcomes, a finding that is well-supported by the literature (e.g. Kloeden

et al., 1997; Pei et al., 2012). The overall outcome from these results was that speed is a

triggering factor for accident frequency and severity.

An interesting finding of this model was that the frequency of accidents is higher at

low volume conditions than that of at high volume conditions, ceteris paribus. More

specifically, the relationship between accident rate and volume was described as an ap-

proximate U-shaped curve with the minimum accident rates were found to be at 256 and

263 vehicles per lane for KS and Sl accidents respectively at average speed conditions.

This outcome is consistent with the results for speed, because high volume is usually asso-

ciated with congested, low speed conditions when accidents are less likely to be severe and

reported (Lord, 2002). Another explanation for this finding could be that low volumes

are related with higher speed variations (when traffic builds up) that may increase the

probability of accidents (Lave, 1985; Baruya and Finch, 1994; Garber and Ehrhart, 2000;

Aarts and Van Schagen, 2006). This is because when the volume decreases drivers have

more freedom to choose their own speed and so speed patterns on the roadway tend to be

less uniform leading to more encounters between vehicles (Elvik et al., 2004). Addition-

ally, low volumes occur more often during off-peak periods, such as night time, that is

related to insufficient light conditions and extreme driving behaviours (e.g. drinking and

driving) that are also factors proved to trigger severe accident occurrence (Jonah, 1986;
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Chang and Wang, 2006; Clarke et al., 2010).

Curvature was not shown to have a statistically significant relationship with KS acci-

dents although it was related with increased Sl accident rates. A possible explanation for

this may be that speeding that is a contributory factor for KS accidents is more unlikely

to occur on curved sections where drivers tend to drive more carefully (e.g. Chang, 2005).

Presence of uphill or downhill vertical grades and roads with two lanes or less were shown

to increase the accident rates of all severity levels similarly to what was found in the

univariate model presented in section 5.3.1.

5.3.3 Accidents by collision type

Table 5.13 and Figure 5.8 show the results for the Condition-based SV-MV (10) model.

The best fitting specification for this model was again quadratic for both speed and volume

per lane without an interaction term. The correlation between single-vehicle (SV) and

multiple-vehicle (MV) accidents was 0.876 (see Table 5.14). The SV and MV accident

rate for the reference values of the categorical independent variables is:

SV accidents

V ehHr per mile
= exp(0.08065 · Speed− 0.00046 · Speed2

− 0.01764 · V olume+ 0.00003 · V olume2 − 5.2) (5.14)

MV accidents

V ehHr per mile
= exp(0.03056 · Speed− 0.00035 · Speed2

− 0.00517 · V olume+ 0.00002 · V olume2 − 3.487) (5.15)
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Table 5.13: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for single-vehicle (SV) and multiple-vehicle (MV) accidents (Condition-based SV-
MV (10))

SV accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.08065 ** 0.011952 0.000694 0.060742 0.062596 0.101970 0.106481

Speed squared -0.00046 ** 0.000111 0.000006 -0.000701 -0.000659 -0.000296 -0.000275

Volume -0.01764 ** 0.001159 0.000053 -0.019787 -0.019480 -0.015620 -0.015253

Volume squared 0.00003 ** 0.000004 0.001704 0.242022 0.254270 0.380300 0.390643

Curve -0.04855 0.051957 0.000644 -0.151294 -0.134407 0.000004 0.000005

Uphill 2.27117 ** 0.124568 0.004381 2.037040 2.071680 2.481940 2.525070

Downhill 2.97919 ** 0.122469 0.004476 2.749740 2.783110 3.186530 3.230890

Lanes -0.54559 ** 0.054326 0.000669 -0.652050 -0.634800 -0.455914 -0.439609

Intercept -5.20008 ** 0.354946 0.019799 -5.972930 -5.827420 -4.660250 -4.587040

ln(VehHr/mile) 1 - - - - - -

MV accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.03056 ** 0.009444 0.0005522 0.01214 0.01478 0.04528 0.04905

Speed squared -0.00035 ** 0.000092 0.0000053 -0.00052 -0.00049 -0.00019 -0.00016

Volume -0.00517 ** 0.000956 0.0000517 -0.00694 -0.00666 -0.00356 -0.00320

Volume squared 0.00002 ** 0.000003 0.0000002 0.00001 0.00001 0.00002 0.00002

Curve 0.25508 ** 0.039271 0.0006518 0.17823 0.19091 0.31938 0.33234

Uphill 2.17001 ** 0.077392 0.0024701 2.01937 2.04510 2.29740 2.32051

Downhill 2.84673 ** 0.075486 0.0025174 2.69704 2.72194 2.97000 2.99523

Lanes -0.04794 0.039475 0.0006163 -0.12558 -0.11329 0.01668 0.02877

Intercept -3.48742 ** 0.249639 0.0141333 -3.98386 -3.91887 -3.08287 -3.02694

ln(VehHr/mile) 1 - - - - - -

D̄ 10823 **statistically significant at the 95% credible interval

pD 11690

DIC 867
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Table 5.14: Combined Covariance-Correlation matrix of the random effect of the
Condition-based SV-MV (10) model.

SV accidents MV accidents

SV accidents 0.33** 0.246**

MV accidents 0.876** 0.239**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

(a)

(b)

Figure 5.8: Contour plot of the predicted (a) single-vehicle (SV) and (b) multiple-vehicle
(MV) accidents per vehicle hours travelled per mile as a function of speed and volume
per lane (model: Condition-based SV-MV (10)).

Comparing the coefficient values of the SV with those of the MV it became clear that the

two accident types tend to occur under entirely different traffic conditions. SV collisions

increased at high speed and low volume conditions; in other words, they tend to occur
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more frequently when traffic density is low. On the other hand, MV collisions seemed to be

related with lower speeds and higher volumes and consequently with more intense traffic.

In principle, this outcome, that is in line with the existing literature (e.g. Ivan, 2004; Ivan

et al., 2000, 1999), re-confirmed that modelling accidents by type is advantageous as it can

be more informative about the circumstances that particular accidentaccidentsaccident

types occur. However, interpreting these results without looking at different severity

levels by accident type might be misleading, especially for MV accidents.

5.3.4 Single-vehicle accidents by severity

This section presents the coefficient estimates of the multivariate models that examined

single-vehicle accidents by severity. Table 5.15 and Figure 5.9 present the results for the

Condition-based SV KS-Sl (9) model that considers all the SV accidents on the SRN.

The specification combination that fitted the data best was when speed and volume

were logarithmically transformed. Table 5.17 and Figure 5.10 show the outcomes of the

Condition-based SV KS-SL moto (3) model that includes SV accidents that occurred on

motorways only. In the best fitting specification for this model speed was squared and

volume was logarithmically transformed. In Tables 5.16 and 5.18 it can be seen that

the correlations between SV KS and SV Sl accidents were found very high (0.903 for the

Condition-based SV KS-Sl (9) and 0.812 for the Condition-based SV KS-SL moto (3)).

The equations expressing the SV KS and SV Sl accident rate that was derived from the

Condition-based SV KS-Sl (9) model for the reference geometric variables are:

SV KS accidents

V ehHr per mile
= exp(1.085 · ln(Speed) − 0.8943 · ln(V olume) − 5.3093) (5.16)

SV Sl accidents

V ehHr per mile
= exp(1.505 · ln(Speed) − 0.7843 · ln(V olume) − 6.4418) (5.17)

The corresponding equations for the Condition-based SV KS-SL moto (3) model are:

SV KS moto accidents

V ehHr per mile
= exp(0.00031 · Speed2 − 0.8037 · ln(V olume)− 4.375) (5.18)
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SV Sl moto accidents

V ehHr per mile
= exp(0.00019 · Speed2 − 0.7578 · ln(V olume) − 2.734) (5.19)

Table 5.15: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (SV KS) and slight (SV Sl) single-vehicle accidents (Condition-
based SV KS-Sl (9))

SV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) 1.0850 ** 0.1777 0.0097 0.7493 0.7984 1.3618 1.4062

ln(Volume) -0.8943 ** 0.0450 0.0012 -0.9811 -0.9673 -0.8191 -0.8044

Curve -0.0830 0.0995 0.0010 -0.2765 -0.2451 0.0817 0.1136

Uphill 1.9192 ** 0.2443 0.0075 1.4550 1.5240 2.3261 2.3995

Downhill 2.8110 ** 0.2355 0.0074 2.3666 2.4327 3.2051 3.2772

Lanes -0.7147 ** 0.1053 0.0009 -0.9218 -0.8887 -0.5415 -0.5075

Intercept -5.3093 ** 0.7406 0.0404 -6.6894 -6.4587 -4.1203 -3.9292

ln(VehHr/mile) 1 - - - - - -

SV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) 1.5050 ** 0.1200 0.0068 1.2831 1.3133 1.7068 1.7407

ln(Volume) -0.7843 ** 0.0251 0.0008 -0.8317 -0.8242 -0.7421 -0.7338

Curve -0.0502 0.0562 0.0007 -0.1600 -0.1431 0.0420 0.0600

Uphill 2.3155 ** 0.1428 0.0050 2.0414 2.0817 2.5532 2.6035

Downhill 2.9689 ** 0.1394 0.0050 2.7007 2.7423 3.2031 3.2502

Lanes -0.4619 ** 0.0574 0.0006 -0.5743 -0.5557 -0.3674 -0.3489

Intercept -6.4418 ** 0.5185 0.0294 -7.4520 -7.3281 -5.6116 -5.4784

ln(VehHr/mile) 1 - - - - - -

D̄ 6345 **statistically significant at the 95% credible interval

pD 6779

DIC 434
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Table 5.16: Combined Covariance-Correlation matrix of the random effect of the
Condition-based SV KS-Sl (9) model.

SV KS accidents SV Sl accidents

SV KS accidents 0.295** 0.262**

SV Sl accidents 0.903** 0.285**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

(a)

(b)

Figure 5.9: Contour plot of the predicted (a) fatal or serious (KS) and (b) slight (Sl)
single-vehicle (SV) accidents per vehicle hours travelled per mile as a function of speed
and volume per lane (model: Condition-based SV KS-Sl (9)).
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Table 5.17: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (SV KS) and slight (SV Sl) motorway single-vehicle accidents
(Condition-based SV KS-SL moto (3))

SV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed squared 0.00031 ** 0.00008 0.000002 0.00016 0.00018 0.00043 0.00046

ln(Volume) -0.80370 ** 0.07473 0.002060 -0.95020 -0.92640 -0.68200 -0.65740

Curve 0.26960 * 0.15170 0.001377 -0.02645 0.02165 0.52200 0.56940

Uphill 1.77200 ** 0.34860 0.007825 1.12900 1.22600 2.36800 2.49500

Downhill 2.60000 ** 0.33390 0.007781 1.99000 2.08100 3.18000 3.30400

Lanes 0.82470 ** 0.16360 0.001689 0.50910 0.55800 1.09800 1.15000

Intercept -4.37500 ** 0.60270 0.020980 -5.56300 -5.38000 -3.39200 -3.22300

ln(VehHr/mile) 1 - - - - - -

SV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed squared 0.00019 ** 0.00003 0.000001 0.00013 0.00014 0.00025 0.00026

ln(Volume) -0.75780 ** 0.03620 0.001016 -0.82770 -0.81700 -0.69790 -0.68650

Curve 0.27369 ** 0.11432 0.001108 0.04912 0.08487 0.46082 0.49686

Uphill 2.10300 ** 0.18000 0.004502 1.76300 1.81200 2.40800 2.46900

Downhill 2.82500 ** 0.17500 0.004513 2.49300 2.54300 3.12100 3.17900

Lanes 0.89620 ** 0.07684 0.000822 0.74730 0.77050 1.02400 1.04900

Intercept -2.73400 ** 0.29220 0.010120 -3.30300 -3.21700 -2.25400 -2.16200

ln(VehHr/mile) 1 - - - - - -

D̄ 4204 **statistically significant at the 95% credible interval

pD 132 *statistically significant at the 90% credible interval

DIC 4335

Table 5.18: Combined Covariance-Correlation matrix of the random effect of the
Condition-based SV KS-SL moto (3) model.

MV KS accidents MV Sl accidents

MV KS accidents 0.212** 0.126**

MV Sl accidents 0.812** 0.113**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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(a)

(b)

Figure 5.10: Contour plot of the predicted (a) fatal or serious (KS) and (b) slight (Sl)
motorway single-vehicle (SV) accidents per vehicle hours travelled per mile as a function
of speed and volume per lane (model: Condition-based SV KS-SL moto (3)).

Regardless of the severity of their outcomes, SV accident frequency increases propor-

tionally with speed (see Figures 5.9 and 5.10). The coefficients of speed for motorway

SV KS and SV Sl accidents showed that, as expected, higher speed is also related with

more serious injuries (see Table 5.17). However, the coefficient of speed was lower for

SRN SV KS than for SV Sl (see Table 5.15). A possible explanation for this counterin-

tuitive result might be that the proportion of the SRN SV KS accidents that occurred

on A-roads (58.8%) is higher than the proportion of the SV Sl that occurred on A-roads

(50.7%). Because of this, SRN SV KS accidents might be more representative of A-road

accidents that by definition are likely to have occurred under lower speed conditions. The

SV accident-volume relationship was found entirely different than the one with speed.
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More specifically, higher SV accident frequency and severity was found to be linked with

lower traffic volume.

The results of these models are explainable and confirm what is intuitively believed:

that SV accidents are probably the most speed-related accident type. SV accidents are

associated with circumstances that are linked with speeding such as loss of control, alcohol

or drug misuse, risk-taking actions, fatigue and sleepiness (Lang et al., 1996; Xie et al.,

2012; Kim et al., 2013). They usually occur during off-peak times and especially at night

time when density is at low levels and vehicle encounters are less likely (Ivan et al., 1999).

Road gradient was found to have negative impact on SV accidents. The presence of

curves was shown to increase only motorway SV accidents though. This might be due

to the higher average speeds on the motorways that in combination with speed could in-

crease accident probability. Roads with more than two lanes are found to be more related

with motorway accident occurrences. It is not clear whether this finding justifies that

the number of lanes generally influences accidents due to the restrictive specification of

the variable. The difference in the results between the two models however indicates a

difference between the relationship of number of lanes for A-roads and motorways.

5.3.5 Multiple-vehicle accidents by severity

Tables 5.19, 5.20, 5.21 and 5.22 as well as Figures 5.11 and 5.12 present the results of the

models for the SRN and motorway MV accidents by severity respectively (i.e Condition-

based SV KS-Sl (18) and Condition-based MV KS-SL moto (12) models). The best fitting

variable specification for the former model included the logarithm of speed and squared

volume while in the latter model speed was linear and volume squared. Both the models

included interaction terms. The correlation coefficient was very high for the Condition-

based SV KS-Sl (18) model (0.897) and slightly lower for the Condition-based MV KS-SL

moto (12) model (0.649) (see Figures 5.20 and 5.22). The SRN MV KS and MV Sl
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accident rates for the reference cases can be expressed by the following equations:

MV KS accidents

V ehHr per mile
= exp(0.82095 · ln(Speed) + 0.00001 · V olume2

− 0.0001 · Speed · V olume2 − 8.03) (5.20)

MV Sl accidents

V ehHr per mile
= exp(0.44509 · ln(Speed) + 0.00002 · V olume2

− 0.00008 · Speed · V olume2 − 4.89) (5.21)

The motorway MV KS and MV Sl accident rates are equal:

MV KS moto accidents

V ehHr per mile
= exp(0.03057 · Speed+ 0.00001 · V olume2

− 0.00011 · Speed · V olume2 − 7.65) (5.22)

MV Sl moto accidents

V ehHr per mile
= exp(−0.011316 · Speed+ 0.00004 · V olume2

− 0.000027 · Speed · V olume2 − 4.23) (5.23)
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Table 5.19: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (MV KS) and slight (MV Sl) multiple-vehicle accidents
(Condition-based MV KS-Sl (18))

MV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) 0.82095 ** 0.230523 0.0131319 0.3677650 0.421568 1.19561 1.28473

Volume Squared 0.00001 * 0.000004 0.0000002 -0.0000003 0.000001 0.00002 0.00002

Speed*Volume -0.00010 ** 0.000024 0.0000012 -0.0001470 -0.000140 -0.00006 -0.00005

Curve 0.27544 ** 0.092098 0.0009709 0.0938857 0.124243 0.42679 0.45483

Uphill 1.93934 ** 0.223761 0.0068636 1.5159800 1.581600 2.32307 2.40337

Downhill 2.80867 ** 0.215267 0.0068404 2.4057700 2.466790 3.17936 3.25401

Lanes -0.12876 0.092723 0.0011095 -0.3094220 -0.280351 0.02378 0.05316

Intercept -8.03037 ** 0.850118 0.0480741 -9.6859500 -9.383410 -6.58344 -6.33447

ln(VehHr/mile) 1 - - - - - -

MV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) 0.44509 ** 0.100003 0.0057987 0.2154290 0.252006 0.58510 0.60427

Volume Squared 0.00002 ** 0.000002 0.0000001 0.0000111 0.000012 0.00002 0.00002

Speed*Volume -0.00008 ** 0.000012 0.0000006 -0.0001045 -0.000100 -0.00006 -0.00006

Curve 0.25126 ** 0.040977 0.0006403 0.1706950 0.183615 0.31849 0.33210

Uphill 2.17826 ** 0.082759 0.0026507 2.0201900 2.043090 2.31542 2.34303

Downhill 2.83694 ** 0.081125 0.0027282 2.6810600 2.704490 2.97031 2.99630

Lanes -0.02870 0.041998 0.0006899 -0.1110720 -0.098437 0.04009 0.05347

Intercept -4.89359 ** 0.377902 0.0218648 -5.49489 -5.421130 -4.19463 -4.00560

ln(VehHr/mile) 1 - - - - - -

D̄ 7919 **statistically significant at the 95% credible interval

pD 617 *statistically significant at the 90% credible interval

DIC 8537

Table 5.20: Combined Covariance-Correlation matrix of the random effect of the
Condition-based MV KS-Sl (18) model.

MV KS accidents MV Sl accidents

MV KS accidents 0.31** 0.244**

MV Sl accidents 0.897** 0.239**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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(a)

(b)

Figure 5.11: Contour plot of the predicted (a) fatal or serious (KS) and (b) slight (Sl)
multiple-vehicle (MV) accidents per vehicle hours travelled per mile as a function of speed
and volume per lane (model: Condition-based MV KS-Sl (18)).

139



Table 5.21: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (MV KS) and slight (MV Sl) motorway multiple-vehicle acci-
dents (Condition-based MV KS-SL moto (12))

MV KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.03057 ** 0.00671 0.000277 0.01718 0.01961 0.04166 0.04401

Volume squared 0.00001 ** 0.02502 0.000901 0.03514 0.04301 0.12550 0.13260

Speed*Volume -0.00011 ** 0.00002 0.000001 -0.00015 -0.00014 -0.00009 -0.00008

Curve 0.43220 ** 0.09468 0.000995 0.24760 0.27780 0.58890 0.61980

Uphill 1.96400 ** 0.24250 0.006220 1.50500 1.57500 2.37000 2.45900

Downhill 2.85200 ** 0.23370 0.006246 2.41300 2.47800 3.24800 3.33000

Lanes 1.25300 ** 0.11030 0.001199 1.03900 1.07200 1.43500 1.47300

Intercept -7.65800 ** 0.44410 0.018440 -8.54900 -8.39200 -6.94300 -6.80400

ln(VehHr/mile) 1 - - - - - -

MV Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.011316 ** 0.00374 0.000173 -0.01839 -0.01726 -0.00542 -0.00413

Volume squared 0.000004 ** 0.01363 0.000584 0.01531 0.01908 0.06357 0.06831

Speed*Volume -0.000027 ** 0.00001 0.000000 -0.00005 -0.00004 -0.00001 -0.00001

Curve 0.482100 ** 0.04645 0.000624 0.39050 0.40520 0.55820 0.57290

Uphill 2.149000 ** 0.10250 0.002764 1.95500 1.98500 2.32000 2.35600

Downhill 2.853000 ** 0.09973 0.002750 2.66400 2.69300 3.02100 3.05600

Lanes 1.216000 ** 0.05064 0.000778 1.11700 1.13300 1.30000 1.31600

Intercept -4.238000 ** 0.23220 0.010480 -4.67200 -4.60300 -3.85000 -3.76700

ln(VehHr/mile) 1 - - - - - -

D̄ 6588 **statistically significant at the 95% credible interval

pD 267

DIC 6855

Table 5.22: Combined Covariance-Correlation matrix of the random effect of the
Condition-based MV KS-SL moto (12) model.

MV KS accidents MV Sl accidents

MV KS accidents 0.056** 0.053**

MV Sl accidents 0.649** 0.122**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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(a)

(b)

Figure 5.12: Contour plot of the predicted (a) fatal or serious (KS) and (b) slight (Sl) mo-
torway multiple-vehicle (MV) accidents per vehicle hours travelled per mile as a function
of speed and volume per lane (model: Condition-based MV KS-SL moto (12)).

Figures 5.11 and 5.12 show that the traffic conditions that were linked with MV KS were

not exactly the same with those of MV Sl accidents. MV KS accidents were found to gen-

erally increase for higher speeds when the volume is relatively low and the opposite for

high volume conditions (see Figures 5.11(a) and 5.12(a)). This outcome can be explained

considering the characteristics of the two main collision types of MV same direction acci-

dents: side and rear-end collisions. Side impacts are more likely to occur during overtaking

manoeuvres that are more frequent under high speed and lower density conditions. On

the contrary, rear-end collisions are linked with more dense traffic and might not be par-

ticularly related with speeding. This result might also be the effect of the merger of fatal

and serious accidents into one category. If accidents with killed casualties were modelled
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separately speed would probably be positive for all volumes however that was not possible

due to the low number of cases in the datasets.

MV Sl accidents on the other hand had a negative relationship with speed but a pos-

itive relationship with volume. The maximum MV Sl accident rate can be observed (see

Figures 5.11(b) and 5.12(b)) at heavily congested conditions when traffic is very high and

mobility is limited. This is consistent with past findings that suggest that high traffic in-

tensity and peak hours are related with more MV accidents (Ivan et al., 1999; Ivan, 2004).

Road vertical alignment and curves were found to have negative impact on MV acci-

dents of all severities. Motorway MV accident frequency was found to be higher for roads

with more than two lanes, while the opposite happened for SRN MV accidents that were

more likely to occur on sections with up to two lanes. As it was previously mentioned at

Section 5.3.4, this result might be more related with the restrictive specification of the

dummy variable for lanes.

5.4 Comparison of the Link-Based and the condition-

based Approaches

The results of the link-based and the condition-based models that have been presented

in Sections 5.2 and 5.3 have shown that there are significant differences between the two

aggregation approaches. Tables 5.23 and 5.24 summarise the relationships of accidents

by type with the examined traffic and geometric variables respectively. Upward pointing

arrows represent positive relationships and downward pointing arrows negative relation-

ships. Relationships that can be described by U-shaped or inverse-U-shaped curves are

denoted by U and inverse-U respectively. When the curves tend to have a dominant

tendency (positive or negative) this is shown in brackets. The statistical insignificant

relationships between variables and accidents are represented with a dash.

142



Table 5.23: Qualitative relationships of the traffic variables (speed and volume) with
accidents according to the outcomes of the link-based and the condition-based aggregation
approaches.

Accident Speed Volume

Type Link-Based Condition-Based Link-Based Condition-Based

All ↓ inverse-U (↑) inverse-U (↑) U

KS ↓ ↑ ↑ U

Sl ↓ inverse-U ↑ U

SV ↓ ↑ ↑ ↓

SV KS ↓ ↑ − ↓

SV Sl ↓ ↑ ↑ ↓

MV ↓ inverse-U (↓) ↑ ↑

MV KS ↓ U (↑) ↑ U

MV Sl ↓ ↓ ↑ ↑

Table 5.24: Qualitative relationships of the geometric variables (curvature, gradient and
lanes) with accidents according to the outcomes of the link-based and the condition-based
aggregation approaches.

Curve Uphill Downhill Lanes

Accident Link Condition Link Condition Link Condition Link Condition

Type Based Based Based Based Based Based Based Based

All − ↑ − ↑ ↑ ↑ − ↓

KS − − − ↑ − ↑ ↑ ↓

Sl − ↑ − ↑ ↑ ↑ ↑ ↓

SV − − − ↑ ↑ ↑ − ↓

SV KS − − − ↑ − ↑ − ↓

SV Sl − − − ↑ ↑ ↑ − ↓

MV − ↑ − ↑ ↑ ↑ ↑ −

MV KS − ↑ ↓ ↑ − ↑ − ↓

MV Sl − ↑ − ↑ ↑ ↑ ↑ ↓

Observing Table 5.23 it is clear that at most of the cases the impact of speed and volume

varies between the two examined aggregation approaches and sometimes it is exactly the

143



opposite. For instance, SV accidents according to the link-based approach are negatively

related with speed and positively related with traffic volume (represented by AADT in

the model) but according to the condition-based, these accidents are related with higher

speeds and lower volumes. Exceptions to this are the findings for MV and MV Sl acci-

dents that are shown to be negatively related to speed and positively related with volume.

Geometrical variables are found to have some different (e.g. lanes) but also some similar

results (e.g. downhill) between the two accident aggregation approaches. Considering the

fact that the models originate from exactly the same data and were analysed with the

same models the differences in the results are almost definitely related with the selected

aggregation approach especially for time varying traffic variables. The differences of the

geometric variables can be also due to the specification of the variables; as these variables

are less sensitive to aggregation bias. Accident aggregation has been disregarded by most

researchers, who mainly focused their research on developing more advanced statistical

models; however it seems that the way accident data are grouped before the statistical

analysis is also crucial.

Link-based and condition-based models cannot be directly compared to each other nei-

ther using goodness of fit statistics nor based solely on their outcomes. At this point it

is important to highlight that link-based and condition-based models examine accident

occurrence from entirely different perspectives, which leads to different interpretations of

their outcomes. Link-based models examine the relationships of the average character-

istics of pre-defined network areas (i.e. links) with accidents. Condition-based models

examine the relationships of preceding traffic conditions with accidents. Considering this

and the outcomes in Section 5.2 it can be said that link-based models practically show

that the expected number of accidents (including SV and accidents with serious and fatal

injuries) on faster links is lower than those with lower average speed. This result is prob-

ably valid but it might be due to other traffic or geometrical characteristics of these links

rather than speed. Assuming that this outcome reflects the relationship of individual

accidents with speed is an ecological fallacy. Link-based models cannot clearly define the

accident-speed relationships and therefore are possibly not suitable for the estimation on

of the impact of a speed limit increase.
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On the other hand, condition-based approaches focus on the location of the accident

and can provide more information on the actual circumstances which are related with

accidents. Based on that, it can be argued that they give a significantly more accurate

representation of accidents at an individual-level. That leads to more interpretable out-

comes that are mostly in line with existing literature which is also an indication for higher

reliability. Considering this, condition-based models are more appropriate for the defi-

nition of the accident-speed relationships and following the impact of a potential speed

limit raise.

5.5 The Impact of Accident Location Accuracy in

Accident Modelling

Both the examined accident aggregation approaches employ accident locations for group-

ing accidents. In the link-based approach accident location determines the link where

each accident is assigned and in the condition-based approach accident location is the

key element for specifying the pre-accident traffic and geometric conditions. The impact

of the accuracy of accident location on accident models independent of their aggregation

method is an interesting methodological issue which can provide useful insight about the

usefulness of accident data refinement methods.

Assuming that higher accident location accuracy should enhance the accuracy of the

modelling outcomes, the models that have been presented so far in this thesis employed

the refined accident locations that were produced by the AMF method presented in Sec-

tions 3.3 and 4.3.1. Comparing the outcomes of identical models that are based on less

precise location it is possible to examine whether this assumption is correct. This com-

parison will be done using accident locations that were provided from the output of the

simplest accident mapping algorithm that has been presented in the literature, AMM1

(i.e. accidents are assigned to the closest section). As it was shown in Section 4.3.1 the

accuracy of AMM1 reaches 81.6%, which is significantly lower than the 98.9% accuracy

of AMF. Using these new locations of AMM1 the multivariate models for KS and Sl ac-

cidents were refitted using the same variable specifications of the previous KS-Sl models
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(see Tables 5.2 and 5.11).

Tables 5.25, 5.26, 5.27 and 5.28 present the outcomes of the link-based and the condition-

based models for KS and Sl accidents (i.e. Link-based KS-Sl AMM1 (3) and Condition-

based KS-Sl AMM1 (20)). The estimated coefficients of the models will not be discussed

in terms of the validity and interpretability of the relationships they imply, but will only

be compared to the corresponding outcomes of the models which are based on the AMF

accident mapping algorithm (i.e. Link-based KS-Sl AMF (3) and Condition-based KS-Sl

AMF (20)).

Table 5.25: Parameter estimates for the link-based multivariate Poisson-lognormal model
for fatal and serious (KS) and slight (Sl) accidents- accident locations identified with the
AMM1 (closest section) method (Link-based KS-Sl AMM1 (3))

KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0379 ** 0.0043 0.0002 -0.0463 -0.0450 -0.0307 -0.0293

ln(AADT) 0.1112 * 0.0646 0.0025 -0.0105 0.0092 0.2218 0.2434

Curve -0.0662 0.0706 0.0013 -0.2049 -0.1826 0.0502 0.0724

Uphill -0.0958 0.1276 0.0018 -0.3492 -0.3077 0.1115 0.1504

Downhill -0.0117 0.0672 0.0009 -0.1442 -0.1229 0.0986 0.1187

Lanes 0.1821 ** 0.0924 0.0026 0.0016 0.0299 0.3335 0.3620

Intercept -0.4648 * 0.2764 0.0118 -1.0025 -0.9225 -0.0224 0.0669

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed -0.0481 ** 0.0026 0.0001 -0.0532 -0.0524 -0.0436 -0.0428

ln(AADT) 0.6672 ** 0.0437 0.0020 0.5785 0.5924 0.7355 0.7501

Curve -0.0072 0.0401 0.0009 -0.0855 -0.0730 0.0588 0.0717

Uphill 0.0529 0.0661 0.0011 -0.0770 -0.0553 0.1613 0.1831

Downhill 0.0743 ** 0.0376 0.0007 0.0007 0.0127 0.1364 0.1480

Lanes 0.1508 ** 0.0534 0.0018 0.0467 0.0637 0.2388 0.2562

Intercept 0.2723 0.1765 0.0085 -0.0624 -0.0110 0.5805 0.6314

D̄ 12004 **statistically significant at the 95% credible interval

pD 721 *statistically significant at the 90% credible interval

DIC 12724
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Table 5.26: Combined Covariance-Correlation matrix of the random effect of the Link-
based KS-Sl AMM1 (3) model.

A KS accidents Sl accidents

KS accidents 0.266** 0.231**

Sl accidents 0.903** 0.246**

B KS accidents Sl accidents

KS accidents 0.007** 0.006**

Sl accidents 0.576** 0.013**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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Table 5.27: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal and serious (KS) and slight (Sl) accidents- accident locations identified
with the AMM1 (closest section) method (Condition-based KS-Sl AMM1 (20))

KS accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.02895 ** 0.012453 0.0007123 0.00517 0.01047 0.04987 0.05296

Speed squared -0.00027 ** 0.000116 0.0000065 -0.00050 -0.00046 -0.00009 -0.00005

Volume -0.01489 ** 0.002050 0.0001058 -0.01891 -0.01824 -0.01160 -0.01067

Volume Squared 0.00003 ** 0.000005 0.0000002 0.00002 0.00002 0.00004 0.00004

Speed*Volume -0.00001 0.000024 0.0000012 -0.00006 -0.00006 0.00003 0.00003

Curve -0.18081 ** 0.063393 0.0008655 -0.30496 -0.28430 -0.07561 -0.05695

Uphill 2.04399 ** 0.148110 0.0046915 1.75968 1.80401 2.29526 2.34377

Downhill 2.82774 ** 0.144266 0.0047476 2.55310 2.59668 3.07094 3.12077

Lanes -0.77462 ** 0.068163 0.0009148 -0.90989 -0.88833 -0.66307 -0.64231

Intercept -3.34391 ** 0.389280 0.0213640 -4.12813 -4.01218 -2.71451 -2.57703

ln(VehHr/mile) 1 - - - - - -

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.04691 ** 0.009536 0.0005605 0.02821 0.03003 0.06177 0.06455

Speed squared -0.00036 ** 0.000083 0.0000048 -0.00052 -0.00050 -0.00023 -0.00021

Volume -0.00348 ** 0.001241 0.0000700 -0.00568 -0.00542 -0.00132 -0.00068

Volume Squared 0.00002 ** 0.000003 0.0000001 0.00002 0.00002 0.00002 0.00003

Speed*Volume -0.00010 ** 0.000016 0.0000009 -0.00013 -0.00012 -0.00007 -0.00007

Curve -0.19247 ** 0.035716 0.0006198 -0.26185 -0.25087 -0.13373 -0.12225

Uphill 2.18968 ** 0.070093 0.0024162 2.05664 2.07764 2.30832 2.33164

Downhill 2.83214 ** 0.068432 0.0024936 2.70231 2.72208 2.94713 2.97010

Lanes -0.46072 ** 0.036458 0.0005357 -0.53258 -0.52085 -0.40094 -0.38979

Intercept -3.11601 ** 0.305059 0.0177031 -3.72361 -3.62815 -2.59004 -2.51469

ln(VehHr/mile) 1 - - - - - -

D̄ 10643 **statistically significant at the 95% credible interval

pD 839

DIC 11482
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Table 5.28: Combined Covariance-Correlation matrix of the random effect of the
Condition-based KS-Sl AMM1 (20) model.

KS accidents Sl accidents

KS accidents 0.309** 0.26**

Sl accidents 0.955** 0.24**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval

Comparing the significance and the signs of the coefficients of the two models (Link-based

KS-Sl AMM1 (3) and Link-based KS-Sl AMF (3)) presented at Tables 5.25 and 5.2 it can

be seen that the results of the two link-based models do not have significant differences.

This means that the lower accuracy of accident locations did not lead in any substan-

tial changes in the model. This result of the link-based model can be explained by the

lower probability of erroneous allocation of accidents on links. Junction to junction links

are typically quite long (average HATRIS link length: 3.25 miles) and thus they include

multiple different road sections (average HAPMS section length: 0.46 miles) (see Figure

4.2). This fact makes unlikely the allocation of an accident to a false link even if the road

section that has been selected by the AMM1 algorithm was not the correct one. Because

of this attribute of the data in link-based analyses that use relatively long road links,

accident location refinement techniques might not be necessary.

The coefficients of the Condition-based KS-Sl AMM1 (20) and Condition-based KS-Sl

AMF (20) models (Tables 5.27 and 5.11 respectively) are generally similar but they

have differences in significance tests for the dummy variable for curved road sections.

More specifically, curved configuration according to the results of the Condition-based

KS-Sl AMM1 (20) model seems to decrease KS accidents while from the results of the

Condition-based KS-Sl AMF (20) model the impact of the curvature is not significant.

This inconsistency in the results originates from the quality differences of the accident

locations that were used in the two models. The geometrical pre-accident conditions are

determined by the characteristics of the road section where an accident was allocated.

The road sections that each accident was matched with which varies significantly be-

tween the AMM1 and AMF algorithms. These differences lead to the identification of

different geometric pre-accident geometric conditions that were reflected in the estimated
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coefficients of the models. If the traffic measures were available to a section-level rather

than a link-level probably these differences would be reflected in the coefficients of the

traffic variables too. The direct comparison of the models’ fit using DIC is not appli-

cable, though, because the dependent variables have the same number of observations

but different distributions. What is possible to comment about the two models is that

accident location accuracy is possible to shift the outcomes of condition-based accident

models. Also, taking into consideration that horizontal curves are mainly considered to

be a road feature that triggers accidents (e.g. Milton and Mannering, 1998) and that the

less accurate accident dataset gives the opposite result, the precision of the accident loca-

tions that are used as an input seems also to affect the validity of the modelling results.

This is a clear indication that accident location accuracy is important for condition-based

approaches and justifies the application of accident location refining techniques in safety

analyses.

5.6 Summary

This chapter has presented the results of the models that have been developed to examine

the relationships of traffic variables (i.e. speed and volume) and geometric variables

(i.e. curvature, gradient, number of lanes) with accidents. Accidents were modelled all

together and disaggregated by severity and collision type. All the models have been

applied separately to link-based and the condition-based datasets.

The main findings of the link-based models are:

• Higher speed is related with decreased accident frequency for all accident types;

• Higher AADT is related with increased accident frequency for all accident types;

• Road links with downgrades are more likely to have higher accident frequency.

The main findings of the condition-based models are:

• Higher speed is related with increased frequency of accidents with killed or seriously

injured casualties and single-vehicle accidents of all severities;

• Lower speed is related with increased frequency of multiple vehicle accident with

slight injuries;
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• Lower volume is related with increased frequency of single vehicle accidents;

• Higher volume is related with increased frequency of multiple vehicle accidents;

• Slight and multiple vehicle accident frequency increases on locations with curvature;

• Accident frequency increases on locations with vertical grade (especially down-

grades).

The differences in the results of the link-based and the condition-based models show that

accident data aggregation approaches play a significant role in the outcomes of safety

models. The outcomes of the link-based models for speed are mainly counterintuitive,

which proves that aggregation bias may affect drastically the reliability of these models.

By contrast, condition-based models which express in more detail pre-accident conditions,

provide more interpretable and thus more reliable results that are more suitable for the

quantification of the impact of a potential speed limit increase.

The significance of accident location accuracy on accident modelling has been discussed

in the last section of this chapter. The results show that accident models are sensitive

to erroneous accident locations especially when they rely on network data that refer to

relatively small road sections.
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Chapter 6

Impact Estimation and Policy

Implications

6.1 Introduction

The models that have been presented in Chapter 5 define the accident-speed relationships

on the study network. Knowing how accidents are related with speed it is possible to

estimate the impact of an average speed increase that could be caused by a potential

speed limit increase on the UK motorway. The second section of this chapter will present

the estimation of the impact of this traffic measure. The estimation is based on the speed

elasticity of motorway accidents disaggregated by type and severity. The third section of

this chapter will outline recommendations for accident prevention policies that are based

on the outcomes of the models that have been developed in this thesis.

6.2 The Impact of a Speed Limit Increase

One of the objectives of this thesis is to evaluate the impact of a potential speed limit

increase, from 70 to 80 mph, on accidents. Apart from explaining the relationship of

accidents with traffic and geometry related variables, the developed models can be em-

ployed for impact estimation. Using the elasticity of accidents with respect to speed it

is possible to estimate the expected changes in the number of accidents as a result of

a motorway speed limit increase. For this purpose it is meaningful to employ the most

detailed models for the accident-speed relationships which are the models that examine
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accident occurrence by collision type and severity (i.e. SV KS-Sl and MV KS-Sl models).

As it has been explained in Section 5.4 the models that will be considered for the impact

estimation are the condition-based models only.

Speed limit increases typically lead to proportional average speed changes that are be-

lieved to be related with more traffic accidents. It has been reported in the literature

that this effect is often observed beyond the boundaries of the road network which had

its speed limits changed. The term spillover effect expresses the tendency of the average

speed of road networks with unchanged speed limits to be affected by the increase of av-

erage speeds on adjacent road networks which experienced speed limit raises (e.g. Rock,

1995; Richter et al., 2004). This effect can be attributed to drivers’ attitude changes and

speed acceptance that is transferred to other networks (Dutta and Noyce, 2005). This

mechanism is illustrated in Figure 6.1. As a consequence, a speed limit increase on the

motorway could lead to an increase in the number of accidents on the entire SRN and even

beyond. However, as the extent of speed spillovers is not known, the potentially additional

accidents on adjacent sections of the motorway cannot be quantified. Consequently, the

estimated impact that will be presented here refers only to the accident increases on the

motorway network, that is the minimum expected impact.

,

Figure 6.1: Graphical representation of the speed spillover mechanism on the SRN.

According to existing literature the average speed on a road is expected to be raised by

25% to 50% of the amount of the speed limit increase (e.g. Finch et al., 1994; Rock,
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1995; Vadeby and Forsman, 2010). This means that if the speed limit of UK motorways

increases from 70mph to 80mph (i.e. 10mph) the average motorway speed would be

expected to increase by 2.5mph to 5mph. It is not clear how this change would affect

the speed distribution of the networks. A speed limit change could cause a uniform shift

to the speed distribution, or it could cause a more significant increase at higher speed

conditions than at the lower ones. Considering that low speeds are normally caused by

traffic congestion, the second case is more likely to be representative. Since it is not

possible to predict the form of the new speed distribution though, the elasticity values

that are presented here are estimated based on the expected changes on the average speed.

The equation of the mean elasticity of the mth variable of the kth accident category is:

Elasticity =
∂E(y | xmk)

∂xmk
· xmk
y

(6.1)

Table 6.1 shows the mean elasticity of accident with reference to speed and the estimated

minimum and maximum percentage of increase for SV and MV motorway accidents based

on the outcomes of the Condition-based SV KS-Sl (9) and the Condition-based MV KS-Sl

(18) models respectively. As discussed, a 10 mph increase in the speed limit would result

in 3.86% in average speed raise (i.e. the average 64.7mph speed would at least increase

by 2.5 mph so the increase is 2.5
64.7

). Given that the mean elasticity of accidents with

respect to speed is 2.595 for SV KS accidents (see Table 6.1), the corresponding increase

in SV KS accidents would be at least 10.0% (i.e. 3.86 · 2.595). In a similar manner SV Sl

and MV KS accidents would have a minimum increase of 6.14% (i.e. 3.86 · 1.591) and

3.57% (i.e. 3.86 · 0.925) respectively. The speed elasticity for the MV Sl accidents was

chosen not to be presented here. As the relationship of speed with this accident type is

negative, the elasticity of speed is a negative, too. Having no evidence to support that a

speed limit increase can be associated with decrease in particular types of accidents and

to keep the results conservative it is considered that the number of MV accidents that

lead to slight injuries will not change.

Assuming that all other variables remain the same, SV KS are expected to increase by

10.0%-20.1% on motorways after one year of implementation of the speed limit increase.

For SV Sl this number will fluctuate from 6.1% to 12.3%. This means that after a speed

limit increase there will be 73-146 more SV occurrences on the UK motorway per year. The
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increase of MV KS motorway accidents will be from 3.6%-7.1% equivalent to 11-21 more

MV KS accidents. The overall predicted increase due to the anticipated average speed

raise for all motorway KS and Sl accidents will reach 6.2%-12.1% (30-59 accidents) and

1.5% -2.9% (11-22 accidents) respectively. Considering the spillover effects this increase

can be possibly even higher. The use of average elasticity may lead to underestimation

of the impact because it does not take into account the unknown new speed distribution.

However, these results provide clear evidence that a change on the 70mph current speed

limit is expected to have a considerable and impact on road safety.

Table 6.1: Elasticity of speed and the minimum (mean speed increases by 2.5 mph) and
maximum (mean speed increases by 5 mph) expected increase of motorway accidents by
type.

Accident Expected Accident Increase (%) Additional Accidents

Type Elasticity Min. Max. Min. Max.

SV KS 2.595 10.027 20.054 19 37

SV Sl 1.591 6.141 12.283 54 108

MV KS* 0.925 3.571 7.141 11 22

*Estimation based on the average volume conditions (i.e. 148 vehicles per lane)

6.3 Recommendations for Accident Prevention Poli-

cies

The findings of this project offer some new insight on the relationship of speed with acci-

dents on highway environments that can contribute to the development of new and more

efficient accident prevention policies. One of the main outcomes of the models that have

been developed is that certain traffic conditions are associated with particular accident

types. More specifically, accidents with fatal and serious injuries are mainly related with

conditions that are characterised by higher speeds and lower volumes. Slight accidents

depending on their collision type are associated with different traffic conditions. Single

vehicle accidents with slight injuries tend to increase under high speed and low volume

conditions, but multiple vehicle collisions with slight injuries occur at congested road

sections. As a consequence, to achieve efficient accident prevention it is important to
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reduce the development of extreme traffic conditions on the roadway (i.e. either very high

or very low average speed conditions). Appropriate use of the technological advances in

traffic management can enable full control of the traffic conditions and thus it will be the

key-element for future accident prevention measures.

Based on the fact that the most serious accidents are found to have a clearly propor-

tional relationship with speed, reduction of speeding should be prioritised. Considering

that a potential change of the national motorway speed limit from 70 to 80mph would

encourage speeding and could lead in up to 167 more accidents per year on motorways,

increasing the speed limit is probably not a rational decision. Instead, a reduction of

the current number of speed limit violations would be beneficial as it could decrease the

number and the severity of accidents. To achieve this, motorway speed limits should not

only remain unchanged but they also need to be enforced more efficiently. Smart mo-

torways (or Active Traffic Management systems) can play a significant role to that. The

smart motorway is an approach for dynamic control and management of the traffic based

on the available network capacity, using real-time data and predictive models (Kurzhan-

skiy and Varaiya, 2010). One of the main techniques of smart motorways is the use of

variable speed limits which are enforced through the installation of digital cameras. In

this way, speed limits can be adjusted appropriately according to the external conditions

(i.e. adverse weather, road works etc.) and at the same time speed violations can be

minimised. In 2005, smart motorway systems have been introduced in parts of the UK

motorway and ever since the smart network of the country is fast expanding (Highways

Agency, 2010; Highways England, 2014). Considering the benefits, the adoption of ATM

systems in the entire SRN would certainly lead in significant decreases of serious accidents.

Congested traffic has been found to be related with multiple vehicle slight accidents.

Although their severity is not high, these accidents are approximately the two thirds of

all accidents on the SRN. Apart from the property damages, the disruption that is related

with multiple vehicle accidents under congested conditions is very significant (e.g. queues,

delays, secondary accidents). Consequently, it is particularly meaningful to develop the

right policies to decrease accidents related with congestion and their impact. The smart

motorway is currently one of the most efficient methods for congestion reduction. For

156



example hard shoulder use as a normal running lane during peak times is one useful

measure for immediate increase of the capacity of existing road networks. The use of

variable warning signs that can provide useful information about the existence of queues

or accidents downstream and variable speed limits can improve the levels of mobility on

the road networks. Other ways for congestion reduction include car sharing schemes,

improvement of the efficiency, attractiveness and coverage of public transport and promo-

tion of alternative modes of freight (e.g. rail freight). Last but not least are the emerging

technologies on vehicular communication (VC) that enable vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communication. VC is one of the most promising tech-

nologies in transport and is expected to improve simultaneously road safety and mobility

(Papadimitratos et al., 2009).

Based on the outcomes for the road geometric features that are most related with traffic

accidents, some additional countermeasures can be developed. Curvature is one geomet-

ric characteristic that has been related with more slight and multiple vehicle accidents.

Moreover, roads with negative grades have been found by most of the models that have

been presented here (including the link-based models) to be related with higher accident

frequency. These findings should be considered for improving the design characteristics

of future road networks. Also, to improve the safety levels of the existing roads it is

suggested to use appropriate warning signs upstream of locations with sharp curves and

that will remind the drivers to avoid overtaking or other actions that can be affected by

decreased visibility. Warning signs should be also used before steep downgrades. The lo-

cation of these signs in relation to the hazard-prone road sections is critical; there should

be sufficient distance so as the drivers to have enough time to adjust their speed and

movements as appropriate. In addition to this, variable speed limits should be coordi-

nated in accordance with the geometric characteristics on the network. For instance,

variable speed limits should be lower on sections that have regular and steep negative

grades where breaking distances are longer.
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6.4 Summary

This chapter presented the impact of the results of the models that have been developed

in this thesis. The impact of a potential speed limit increase on the UK motorway as it

was estimated by the average speed elasticity of accidents is anything but negligible. After

one year of implementation of the measure, there will be up to 167 more accidents on

the UK motorway (59 of which will be fatal or serious) and considering potential speed

spillover on the SRN, this number may be higher. These findings show clearly that a

speed limit increase would have a negative impact on road safety.

To eliminate the number of accidents effectively it is necessary to recognise and prevent

the traffic conditions that are mostly related with accidents. Condition-based modelling

provides new insight on the traffic conditions that should be avoided. New technologies

that enable traffic control and coordination should be the key feature of future accident

prevention policies. Smart motorways are currently the most advanced and immediately

applicable approach that can offer significant improvements on both mobility levels and

road safety.
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Chapter 7

Conclusions

7.1 Summary

Traffic accidents are one of the most serious problems in road transport as they cause seri-

ous traffic delays, congestion and property damage but more importantly they are linked

with road traffic injuries. Driving with excessive speed is believed to be a dominant acci-

dent contributory factor, especially for high-speed road environments such as motorways.

Speed limit increases are related with higher average speeds that can potentially lead to

more accidents on the network. To quantify the impact of a potential speed limit increase

first, it is necessary to define the current relationship of speed with accidents on a road

network.

Current literature includes a number of inconsistent views on the accident-speed rela-

tionships. This could be due to methodological limitations that may affect the results

of statistical models. Existing accident analyses usually examine the role of accident

contributory factors employing advanced statistical techniques on accident datasets that

are aggregated according to the link-based approach. This means that accident occur-

rences per road link (i.e. junction to junction section) are modelled against independent

variables that represent the dominant conditions on the link over the study period. Link-

based approaches have the benefit of simplicity but they are connected with aggregation

bias issues that are likely to affect the accuracy of safety models’ outcomes.

This research attempts to define accident speed-relationships on the UK motorway in-
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troducing a new accident aggregation method: the condition-based approach. In the

condition-based approach accidents are not grouped according to spatial criteria, but in-

stead based on the similarities of the traffic and geometric conditions on the roadway just

before the accidents occurred. This approach allows for a more accurate representation of

the pre-accident conditions and overcomes aggregation bias issues which are related with

the link-based approaches. The implementation of the condition-based method, though,

demands the identification of detailed pre-accident traffic and geometric conditions for

each accident individually which increases the complexity of the data pre-processing.

The accidents in the analysis were all the accidents that occurred during 2012 on the

SRN of England which comprises of all the motorways and some of the most important

A-roads of the country. The traffic conditions on the network were represented using

15-minute traffic measurements and the characteristics of the road configuration were

available in 10-metre intervals. To correctly allocate accidents on road links (for the link-

based approach) and to identify the exact pre-accident traffic and geometric conditions

(for the condition-based approach) the reported accident locations were refined using an

accident mapping algorithm. This algorithm, that was based on a transformed map-

matching technique and Fuzzy Logic, was developed exclusively for the study network

and provided approximately 98.8% accurate accident locations.

The relationships of accidents with speed and other traffic and geometric variables were

developed applying full Bayesian multivariate models which enable simultaneous mod-

elling of accidents disaggregated by severity (i.e. fatal, serious or slight) and/or type of

the collision (i.e. single-vehicle and multiple-vehicle). Parameter estimation was done

with the MCMC method. To examine the impact of accident aggregation approaches on

safety analyses, all the models were applied separately on link-based and condition-based

datasets that were developed using identical accident, traffic and geometrical data.

The results of the link-based models showed that speed has a negative relationship with

all accidents in contrast to AADT that has a positive relationship. The results especially

for speed are counterintuitive and at most cases very different from the corresponding

results of the condition-based models. More specifically, in condition-based models speed
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was found to have a positive relationship with fatal, serious and single-vehicle accidents.

The latter accident type was also found to be related with very low volumes indicating

that these accidents occur more frequently at low-density traffic conditions. On the con-

trary, slight, multiple-vehicle accidents were found to be more at lower speed conditions

and under congested traffic. The outcomes of the condition-based models for all accident

types are interpretable and some are also in line with existing literature. These results

confirmed that particular traffic conditions are indeed associated with different accident

types.

The significant differences between the results of the link-based and the condition-based

models are probably due to the aggregation bias that is by default associated with the

first approach. This finding revealed that the accident aggregation method is a critical

element of accident analyses that, although it has been overlooked by previous studies,

plays an important role on the outcomes. Considering that the condition-based models

offer a more detailed representation of the accident-related circumstances and that their

outcomes are more explainable, these approaches can be considered as more reliable. In

addition, another methodological implication of this study was that the precision of the

accident locations that are employed in accident analyses is related with the validity of

their outcomes, especially for condition-based models.

The coefficients of the models provided some new insight on the relationships of some

accident contributory factors with accidents which can lead to the development of im-

proved accident prevention policies in the future. Estimating the mean speed elasticity

of accidents from the condition-based models it was found that a speed limit increase on

the UK motorway from 70 to 80 mph could compromise the safety levels on the network.

During the first year of implementation of this measure up to 12.1% more fatal or serious

and 2.9% more slight motorway accidents can be expected. To enhance mobility without

increasing the already high number of accidents, instead of increasing the speed limits, it

is suggested to promote the optimal use of existing and forthcoming technologies in road

transport that will enable improved traffic control and management.
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7.2 Contribution to Knowledge

This work has produced new qualitative and methodological outcomes that are useful to

be considered for future analyses. The main contributions to knowledge of this research

are:

1. Speed-accident relationships for the British motorway network

This research has examined extensively the role of speed in traffic accidents in the UK and

the findings add to the debate of the current literature on this issue. The outcomes of this

analysis increase the understanding about the impact of speed on different accident types

and severities which is a relatively unexplored topic in the literature. Specifically, higher

speeds were found to have a positive relationship with all fatal and serious accidents.

Thanks to the interaction term that was used in some of the models it was also found

that it is not speed per se, but the combination of high speeds with extremely high or low

volumes that is related with more fatal or serious accidents. The findings for single-vehicle

accidents were slightly different: single vehicle accidents independent of the severity of

their outcomes are more frequent at higher speed and lower volume conditions. In other

words, single vehicle are the most speed-related collisions as they tend to occur at low

density conditions when speeds are by definition high. Multiple vehicle accidents with

slight injuries though, were found to be mainly related with low speeds and high volumes.

This means that these accidents can be mainly attributed to congestion rather than speed.

These findings show that the question whether high speeds are responsible for more acci-

dents does not have a binary answer. Instead, it has been confirmed that different traffic

patterns are associated with particular types of accidents. Some of them are related with

high speeds and some are not. This is a balanced and explainable outcome that helps in

understanding accident mechanisms in more depth and can lead to the development of

better and targeted preventive measures in the future.

2. Significance of accident data aggregation in safety analyses

The most significant methodological implication of this study is related with accident

data aggregation.It has been shown that the accident data aggregation approach that is
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applied can change dramatically the results of safety models. Until now, the majority of

researchers focused their efforts in developing more sophisticated models from a statistical

perspective. This trend has definitely upgraded accident analyses and has lead in new and

interesting findings. However, it is a fact that regardless how advanced a statistical model

is, the quality of its input data is also important. This work stressed that the conven-

tional, link-based data aggregation approaches are likely to fail in representing the traffic

conditions that are actually related with accidents. As an alternative to this method the

condition-based aggregation approach has been developed. The condition-based approach

provides a new non-spatial accident aggregation framework that overcomes aggregation

bias problems and succeeds in representing pre-accident conditions more accurately.

The link-based approach that is related with aggregation bias produced many counterintu-

itive results, while the condition-based approach that represents pre-accident conditions

provided more interpretable results. The differences between the outcomes of the two

methods showed clearly that the accident aggregation approach in safety analyses mat-

ters as it can entirely change their results. Accident data aggregation approaches, that

were so far been overlooked by researchers, might in the future become a key element for

more comprehensive accident analyses.

3. The role of accident location accuracy in safety analyses

Another methodological aspect of accident analyses that has been highlighted in this

work is the role of accident locations in safety modelling. Locations are crucial for acci-

dent analyses as they are the attribute that determines how accidents will be matched

with specific observations of the explanatory variables. Nevertheless, the effect of accident

location accuracy on the modelling outcomes is rather understudied. This research has

shown that raw accident locations are very likely to include errors. To that end, a new

and transferable method for correcting accident locations has been developed.

From modelling accident datasets with different location data (i.e. data from the de-

veloped method and from simpler methods that demand minimal pre-processing) it was

found that accident locations’ accuracy is possible to change the coefficient estimations.

This is mainly true for analyses that use network data that consist of relatively small

segments, where the probability of erroneous accident allocation is higher. Consequently,
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it has been shown that analysing accident data with inaccurate accident locations is likely

to compromise the validity of the modelling outcomes.

7.3 Study Limitations

This study includes several data and methodological limitations. The most important of

these limitations are outlined below:

• Accident time inaccuracies: The exact time when an accident happened it is

not known and so the reported accident time was used for identifying the traffic

conditions prior of accidents. However, the reported accident time is likely to be

significantly different from the actual accident time which means that the traffic

measurements that were used for some of the examined accidents might represent

the traffic conditions after the occurrence which are typically characterised by lower

speeds.

• Accidents’ underreporting: The accidents that were analysed are all the re-

ported accidents that had at least one injured casualty. Property damage and

slight-injury accidents that have not been reported were excluded from the analysis.

The number of these accidents it is very high and consequently their omission might

have affected significantly the outputs of this analysis.

• Traffic data aggregation: Traffic data were provided in 15-minute averages for

all the lanes of relatively long road sections. These data are not detailed enough to

provide information about the exact conditions prior of accidents.

• Geometric conditions: The road section that was considered for determining

the road configuration just before an accident was set to be equal with the aver-

age stopping distance (estimated using the average speed). This is assumption is

apparently not always correct. Also, geometric variables in both the Link-based

and the Condition-based models were represented roughly with the use of dummy

variables. This representation is not complete and this is possibly reflected in the

models’ estimations.
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• Combination of motorways with A-roads: Although all the roads of the SRN

include routes with major commercial and social significance for the country, they

are roads that have different speed limits, traffic characteristics, geometry, capacity

and construction quality. Due to these variations, accident generation mechanisms

on these roads might be different too. Analysing all SRN accidents together could

have affected the results of the models.

• Omitted variables: The models that have been developed did not control for a

number of potentially important accident contributory factors such as speed vari-

ance, weather and light conditions, time of the day, pavement condition/wetness,

left/right curve and many others. The exclusion of these unobserved variables have

possibly lead to erroneous estimations for the variables that were included (i.e.

omitted-variable bias).

• Grouping continuous traffic data into discrete scenarios: To form the condition-

based scenarios a range of (similar) traffic measurements were grouped together and

represented in the model by one value that was the median of the range. This data

aggregation was necessary to develop the regression model but it might compromise

the accurate representation of the traffic conditions (especially for volume that had

only four distinct categories per speed scenario).

• Spatial independence of condition-based models: The accidents of every

scenario of the condition-based approach were assumed not to have any spatial

relationship, which might not be true.

• Mean elasticity: The use of mean elasticity of accidents can provide only a crude

estimation of the impact of a potential speed limit increase. As the new speed

distribution is unknown this method could either overestimate or underestimate the

new number of accidents. Additionally, the estimations assume that all other factors

remain the same which is probably a strong assumption as a speed limit increase

might be followed by other changes (e.g. stricter enforcement, higher volumes etc.).
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7.4 Extensions and Suggestions for Future Research

The condition-based approach that has been presented in this thesis is a new and promis-

ing accident data aggregation approach that can contribute to the development of more

accurate accident models. The method is flexible and transferable to other study areas

and network environments. The use of condition-based approaches can increase the in-

sight about accident triggering factors by indicating hazard-prone traffic conditions that

should be avoided. Considering the aforementioned limitations of this study, there are

several improvements that can be done in the future towards this direction.

Condition-based models rely on the quality of their input data. Improved data mean

more accurate representation of the pre-accident conditions and thus more valid results.

In the future, condition-based analyses should employ traffic measurements with higher

spatial and temporal resolution that can be provided from fixed and mobile sensors or

loop detectors. To ensure that the traffic and geometric conditions just before an acci-

dent are truly accurate, more disaggregated traffic data should be combined with more

reliable accident reports. Accident reports in the future should provide precise accident

time and the location. Moreover, additional information that will describe in detail the

circumstances under which a collision occurred such as traffic conditions upstream and

downstream, road configuration, weather and other would be extremely useful as it would

facilitate the application of condition-based models. Future research should be focused

on how new technologies can contribute to the development of integrated accident data

collection methods.

In the future, condition-based models should also incorporate more variables that are

likely to be linked with accident occurrences on the network so as to fully understand the

unwanted conditions for road safety. Using the outcomes of these models in combination

with traffic forecasting models it would be possible to explore alternative approaches for

optimal coordination of the smart motorway variable speed limits.

Further research should also investigate the optimal number of pre-accident scenarios

that should be developed with respect to the number of accidents that will be analysed.

Moreover, the potential of using condition-based approaches without the use of discrete
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condition scenarios, but continuous observations so as to avoid data coarsening, should

be also explored.

Finally, the assessment of link-based and condition-based approaches should continue

beyond this study. Instead of employing condition-based as a substitute of link-based

methods, it would be interesting to understand in more depth the strengths and weak-

nesses of these two approaches. Through this, it would be possible to answer whether and

how these approaches could work complementary of each other towards the quantification

of accident risk from different perspectives.
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Appendix A

Distribution of speeds just before accidents

As it has been explained in Section 3.5 every accident was matched with a speed observa-

tion that reflects the speed just before the accident time and location. Figures A.1-A.11

show the distributions of these speeds for all accidents together and then by accident

severity and collision type.

Figure A.1: Speed distribution of all accidents.

Figure A.2: Speed distribution of fatal accidents.
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Figure A.3: Speed distribution of serious accidents.

Figure A.4: Speed distribution of slight accidents.

Figure A.5: Speed distribution of fatal single vehicle accidents.
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Figure A.6: Speed distribution of serious single vehicle accidents.

Figure A.7: Speed distribution of slight single vehicle accidents.

Figure A.8: Speed distribution of fatal multiple vehicle accidents.
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Figure A.9: Speed distribution of serious multiple vehicle accidents.

Figure A.10: Speed distribution of slight multiple vehicle accidents.
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Distribution of volume per lane just before accidents

Similarly to the above section, Figures A.11-A.20 present the distribution of the volumes

for all accidents and by accident severity and collision type.

Figure A.11: Volume per lane distribution of all accidents.

Figure A.12: Volume per lane distribution of fatal accidents.
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Figure A.13: Volume per lane distribution of serious accidents.

Figure A.14: Volume per lane distribution of slight accidents.

Figure A.15: Volume per lane distribution of fatal single vehicle accidents.
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Figure A.16: Volume per lane distribution of serious single vehicle accidents.

Figure A.17: Volume per lane distribution of slight single vehicle accidents.

Figure A.18: Volume per lane distribution of fatal multiple vehicle accidents.
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Figure A.19: Volume per lane distribution of serious multiple vehicle accidents.

Figure A.20: Volume per lane distribution of slight multiple vehicle accidents.
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Appendix B

Accidents by injury severity (K-S-Sl)

Both the Link-based and the Condition-based multivariate models for K, S and Sl ac-

cidents did not provide statistically significant coefficients for either speed or volume in

none of the 20 variable specifications that were tested. That is why these models were not

suitable for calculation of the impact of a speed limit increase as it was initially intended.

A possible explanation for this is the very high number of zeroes in the K and S variables.

The coefficient estimations of the best fitting specification of the K-S-Sl models for both

the aggregation approaches are presented in Tables B.1 and B.3.
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Table B.1: Parameter estimates for the link-based multivariate Poisson-lognormal model
for fatal (K), serious (S) and slight (Sl) accidents (Link-based K-S-Sl (7))

K accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) -1.2875 ** 0.3512 0.0241 -1.9121 -1.8167 -0.6744 -0.4833

AADT -0.0028 0.0058 0.0002 -0.0143 -0.0124 0.0067 0.0085

Curve 0.1825 0.1663 0.0037 -0.1459 -0.0945 0.4545 0.5061

Uphill -0.1927 0.3251 0.0061 -0.8548 -0.7384 0.3303 0.4164

Downhill 0.1689 0.1594 0.0031 -0.1426 -0.0937 0.4324 0.4845

Lanes 0.1525 0.2257 0.0063 -0.2951 -0.2170 0.5224 0.5912

Intercept 0.4039 1.3785 0.0945 -2.7687 -2.0177 2.5082 2.8374

S accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) -1.6653 ** 0.2168 0.0151 -2.1752 -2.0671 -1.3173 -1.2598

AADT 0.0089 ** 0.0026 0.0001 0.0038 0.0046 0.0131 0.0138

Curve -0.0657 0.0775 0.0023 -0.2172 -0.1917 0.0619 0.0883

Uphill -0.0576 0.1371 0.0029 -0.3437 -0.2876 0.1629 0.2030

Downhill -0.0416 0.0727 0.0017 -0.1858 -0.1610 0.0773 0.1005

Lanes 0.0827 0.1078 0.0043 -0.1319 -0.0949 0.2585 0.2920

Intercept 4.0538 * 0.8765 0.0610 2.4176 2.6467 5.7181 6.1395

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

ln(Speed) -1.9287 ** 0.1132 0.0080 -2.1773 -2.1456 -1.7587 -1.7352

AADT 0.0240 ** 0.0013 0.0001 0.0214 0.0217 0.0262 0.0266

Curve 0.0043 0.0380 0.0012 -0.0699 -0.0579 0.0668 0.0786

Uphill 0.0765 0.0641 0.0016 -0.0513 -0.0306 0.1813 0.2026

Downhill 0.0718 ** 0.0362 0.0010 0.0004 0.0127 0.1317 0.1428

Lanes 0.0439 0.0546 0.0024 -0.0629 -0.0472 0.1346 0.1519

Intercept 6.7303 ** 0.4503 0.0316 5.9681 6.0534 7.5999 7.7345

D̄ 12790 **statistically significant at the 95% credible interval

pD 742

DIC 13532
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Table B.2: Combined Covariance-Correlation matrix of the random effect of the Link-
based K-S-Sl (7) model.

A K accidents S accidents Sl accidents

K accidents 0.348** 0.28** 0.211**

S accidents 0.908** 0.273** 0.178**

Sl accidents 0.757** 0.724** 0.223**

B K accidents S accidents Sl accidents

K accidents 0.006** 0.002** 0.003**

S accidents 0.344** 0.008** 0.005**

Sl accidents 0.402** 0.534** 0.01**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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Table B.3: Parameter estimates for the condition-based multivariate Poisson-lognormal
model for fatal (K), serious (S) and slight (Sl) accidents (Condition-based K-S-Sl (10))

K accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.02811 0.01728 0.0005317 -0.00531 -0.00004 0.05680 0.06197

Speed squared -0.00018 0.00016 0.0000048 -0.00050 -0.00045 0.00009 0.00014

Volume -0.02470 ** 0.00324 0.0000630 -0.03101 -0.03004 -0.01938 -0.01836

Volume squared 0.00004 ** 0.00001 0.0000002 0.00002 0.00003 0.00006 0.00007

Curve 0.08182 0.14976 0.0008583 -0.21238 -0.16494 0.32741 0.37564

Uphill 1.69598 ** 0.34149 0.0047644 1.05371 1.15406 2.27498 2.39824

Downhill 2.64576 ** 0.32377 0.0047632 2.04827 2.13583 3.20088 3.31813

Lanes -0.66454 ** 0.16106 0.0006778 -0.98257 -0.93142 -0.40115 -0.35258

Intercept -4.74510 ** 0.59221 0.0159974 -5.91887 -5.73395 -3.78561 -3.59610

ln(VehHr/mile) 1 - - - - - -

S accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.01706 0.011792 0.0004217 -0.00565 -0.00023 0.03706 0.04079

Speed squared -0.00011 0.000116 0.0000041 -0.00035 -0.00031 0.00008 0.00011

Volume -0.01658 ** 0.001561 0.0000402 -0.01965 -0.01915 -0.01402 -0.01352

Volume squared 0.00003 ** 0.000005 0.0000001 0.00002 0.00003 0.00004 0.00004

Curve 0.06776 0.069765 0.0004221 -0.06852 -0.04703 0.18290 0.20503

Uphill 2.14829 ** 0.173792 0.0029489 1.81762 1.86881 2.44068 2.49627

Downhill 2.95681 ** 0.168723 0.0029483 2.63720 2.68532 3.24092 3.29557

Lanes -0.66081 ** 0.073928 0.0004915 -0.80652 -0.78295 -0.53954 -0.51748

Intercept -3.65365 ** 0.344858 0.0111135 -4.33652 -4.22520 -3.09491 -2.98007

ln(VehHr/mile) 1 - - - - - -

Sl accidents Mean SD MC error 2.5% 5% 95% 97.5%

Speed 0.03648 ** 0.008672 0.0003355 0.01873 0.02142 0.05014 0.05159

Speed squared -0.00037 ** 0.000084 0.0000032 -0.00052 -0.00050 -0.00022 -0.00020

Volume -0.01014 ** 0.000843 0.0000276 -0.01177 -0.01150 -0.00873 -0.00847

Volume squared 0.00002 ** 0.000003 0.0000001 0.00002 0.00002 0.00003 0.00003

Curve 0.11894 ** 0.037877 0.0003241 0.04461 0.05666 0.18114 0.19291

Uphill 2.25357 ** 0.072534 0.0012971 2.11281 2.13579 2.37376 2.39738

Downhill 2.90723 ** 0.071425 0.0013364 2.76866 2.79079 3.02584 3.04835

Lanes -0.32547 ** 0.037881 0.0002995 -0.40007 -0.38794 -0.26324 -0.25127

Intercept -2.72188 ** 0.234734 0.0086965 -3.15577 -3.10112 -2.33506 -2.26015

ln(VehHr/mile) 1 - - - - - -

D̄ 11492.8 **statistically significant at the 95% credible interval

pD 965.937

DIC 12458.8
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Table B.4: Combined Covariance-Correlation matrix of the random effect of the
Condition-based K-S-Sl (10) model.

K accidents S accidents Sl accidents

K accidents 0.41** 0.367** 0.326**

S accidents 0.911** 0.397** 0.325**

Sl accidents 0.924** 0.938** 0.303**

Correlation is marked with bold font.

**statistically significant at the 95% credible interval
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