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Abstract 
 
Numerical simulations have proven itself as a significant and powerful tool for accurate 

prediction of turbulent premixed flames in practical engineering devices. The work 

presented in this thesis concerns the development of simulation techniques for premixed 

turbulent combustion of three different fuels, namely, CNG, LPG and Hydrogen air 

mixtures. The numerical results are validated against published experimental data from 

the newly built Sydney combustion chamber. 

 

In this work a newly developed Large Eddy Simulation (LES) CFD model is applied to 

the new Sydney combustion chamber of size 50 x 50 x 250 mm (0.625 litre volume). 

Turbulence is generated in the chamber by introducing series of baffle plates and a solid 

square obstacle at various axial locations. These baffles can be added or removed from 

the chamber to adapt various experimental configurations for studies. This is essential 

to understand the flame behaviour and the structure. The LES numerical simulations are 

conducted using the Smagorinsky eddy viscosity model with standard dynamic 

procedures for sub-grid scale turbulence. Combustion is modelled by using a newly 

developed dynamic flame surface density (DFSD) model based on the flamelet 

assumption. 

 

Various numerical tests are carried out to establish the confidence in the LES based 

combustion modelling technique. A detailed analysis has been carried out to determine 

the regimes of combustion at different stages of flame propagation inside the chamber. 

The predictions using the DFSD combustion model are evaluated and validated against 

experimental measurements for various flow configurations. In addition, the in-house 

code capability is extended by implementing the Lewis number effects. The LES 

predictions are identified to be in a very good agreement with the experimental 

measurements for cases with high turbulence levels. However, some disagreement were 

observed with the quasi-laminar case. In addition a data analysis for experimental data, 

regarding the overpressure, flame position and the flame speed is carried out for the 

high and low turbulence cases. Moreover, an image processing procedure is used to 

extract the flame rate of stretch from both the experimental and numerical flame images 

that are used as a further method to validate the numerical results.  
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For the grids under investigation, it is concluded that the employed grid is independent 

of the filter width and grid resolution. The applicability of the DFSD model using grid-

independent results for turbulent premixed propagating flames was examined by 

validating the generated pressure and other flame characteristics, such as flame position 

and speed against experimental data. This study concludes that the predictions using 

DFSD model provide reasonably good results.  

 

It is found that LES predictions were slightly improved in predicting overpressure, 

flame position and speed by incorporating the Lewis number effect in the model. Also, 

the investigation demonstrates the effects of placing multiple obstacles at various 

locations in the path of the turbulent propagating premixed flames. It is concluded that 

the pressure generated in any individual configuration is directly proportional to the 

number of baffles plates. The flame position and speed are clearly dependent on the 

number of obstacles used and their blockage ratio.  

 

The flame stretch extracted from both the experimental and numerical images shows 

that hydrogen has the highest stretch values over CNG and LPG. Finally, the regime of 

combustion identified for the three fuels in the present combustion chamber is found to 

lie within the thin reaction zone. This finding supports the use of the laminar flamelet 

modelling concept that has been in use for the modelling of turbulent premixed flames 

in practical applications.  
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Chapter 1 

Introduction 
 
1.1 Background 
Combustion remains the main source of energy for domestic heating, power generation, 

and transportation. Other energy sources such as solar and wind energy or nuclear 

energy still account for less than 20% of total energy consumption. It is well known that 

combustion not only generates heat, which can be converted into power, but also 

produces pollutants such as oxides of nitrogen, soot, and un-burnt hydrocarbons. In 

addition, unavoidable emissions of CO2 are believed to contribute to global warming. 

These emissions could be reduced by improving the efficiency of the combustion 

process. 

 

To achieve that, the physics of combustion with decades of research is continued, with 

many open questions to be answered such as combustion instabilities, extinction, re-

ignition, flame-flow interactions, and the safety matters related to the use of different 

fuels. Combustion being a complex thermo-chemical process, understanding the 

presence of unsteadiness and turbulence, formulate a multifaceted problem. 

 

In technical processes, combustion nearly always takes place within a turbulent rather 

than a laminar flow field. The reason for this is twofold: first, turbulence increases the 

mixing processes and thereby enhances combustion. Second, combustion releases heat 

and thereby generates flow instability by buoyancy and gas expansion, which then 

enhances the transition to turbulence. Technical processes in gaseous turbulent 

combustion can be subdivided in terms of mixing: premixed, non-premixed, or partially 

premixed turbulent combustion. For example, combustion in homogeneous charge 

spark-ignition engines as shown in Figure 1.1 (Winklhofer (2003)) or in gas turbines as 

shown in Figure 1.2, occurs under premixed conditions. In contrast, combustion in a 

diesel engine as shown in Figure 1.3 (Cronhjort (2005)) or in furnaces essentially takes 

place under non-premixed or partially premixed conditions. 
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The science of combustion involves complex interactions between many constituent 

disciplines, including; thermodynamics, chemical kinetics, fluid mechanics, heat and 

mass transfer, turbulence, and materials structure and behaviour. Hence, the optimal 

design of combustion systems demands rigorous experimental investigations, which 

require expensive experimental setups, where combustor designs are very complex. For 

instance, a typical gas turbine combustion chamber is not realistic for detailed 

experimental investigation due to the harsh internal flow and combustion characteristics. 

These internal conditions raise unclosed questions, which are predominant to 

understand in order to improve the combustor performance, which demands alternative 

methods of investigations. As a result, computational/numerical modelling provides a 

potential alternative to difficult experimental investigations. 

 

 

 
Figure 1.1 Sequence of spark ignited combustion images (Winklhofer (2003)). Each flame 

image captured from consecutive cycle. 
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Figure 1.2 Schematic diagram for a gas turbine. 

 
 
 

 
Figure 1.3 Sequence of images for diesel engine combustion (Cronhjort (2005)). 

 

 

Apart from above-mentioned applications, numerical modelling plays pivotal role in the 

safe design of on- and off-shore chemical/fuel processing/storage plants. For example, 

the explosion occurred at the quake-hit Fukushima (No. 1) nuclear power plant’s 

reactor in 2011, Japan (Figure 1.4), the damage caused by the explosion generated 

overpressure due to flame acceleration and its interactions with the presented 

equipment/solid obstacles was enormous and highly hazardous, prompted the 
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authorities there, to urge residents within a 20-kilometer radius to take shelter inside 

buildings. Investigating such large scale explosion experiments in industrial scale 

vessels are very expensive and risk taking, while yielding limited data.  

 

 

Figure 1.4 Explosions at Fukushima nuclear power plant reactor in 2011 (Courtesy of the 
coming crises website, http://thecomingcrisis.blogspot.co.uk/2011_03_13_archive.html) 

 

  

1.2 Turbulent Premixed Combustion 
Turbulent premixed reacting flows have been very interesting and challenging problems 

for researchers for quite a long time. These flows are of great practical importance, 

being encountered in many engineering devices. Turbulent premixed combustion 

involves very complex thermo-chemical process which is usually coupled with 

combustion instabilities, extinction, re-ignition and flame-flow interactions. Fuel and 

oxidizer are perfectly mixed before entering the combustion zone. This situation is 

favourable in terms of burning efficiency but when the flame starts to propagate in the 

mixture of reactants this is a totally different situation which could leads to safety 

problems. Hence, extensive amount of research is carried out in this area and still there 

is more to investigate on turbulent premixed propagating flames. 
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The turbulent flame, unlike the laminar one, is often accompanied by noise and rapid 

fluctuations of the flame structure. For a laminar flame, it is possible to define a flame 

velocity that, within reasonable limits, is independent of the experimental apparatus 

(Peters (2004)). On the other hand, to define a propagation velocity for turbulent flames 

that would be independent of the experimental apparatus and depend only on the fuel-

air ratio and some transport properties (e.g. viscosity, thermal and mass diffusivity...etc.) 

is not possible, because the transport properties of turbulent flame are function of the 

flow rather than the fluid. For example, at some stoichiometric ratios the effective 

thermal diffusivity can be several times larger than the molecular-thermal diffusivity in 

the laminar case. Thus, the theoretical concepts for turbulent flames are not so well 

described as laminar flames (Warnatz et al. (2006)). 

 

The influence of turbulence in premixed combustion results from the two-way 

interaction of chemistry and turbulence. When the flame interacts with the turbulent 

flow, turbulence is modified by the combustion because of strong flow accelerations 

through the flame front induced by heat release, and large changes in viscosity 

associated with temperature changes. This mechanism may generate turbulence, called 

flame generated turbulence. On the other hand, turbulence alters the flame structure, 

may enhance chemical reaction but also could hinder it completely, leading to flame 

quenching. 

 

Turbulent premixed combustion can be treated as a fluid mechanics problem as it 

involves the influence of turbulence in enhancing the mass consumption rate and 

chemical kinetics of the combustion process. Compressible flow with the premixed 

combustion is governed by the equations of conservation of mass, momentum, energy, 

and a transport equation for reaction progress variable coupled with the thermodynamic 

equation of state. As this type of flow involves large changes in density, high velocities 

and significant dilatation, all terms in the equation must be retained.  

 

1.3 Combustion Modelling 
Computational modelling tools have been proved as an excellent alternative for 

experiments and the methods are adequately developed in the field of aerospace, fluid 

dynamics, metrology and health engineering even for complex non-reacting flow 
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problems. However, in the case of reacting flow problems, where turbulence is involved, 

the progress made is less satisfactory with many outstanding research issues. With 

successful prediction of non-reacting flow applications, industrial usage of 

computational modelling for turbulent combustion is ever growing. Generally, there are 

three computational modelling techniques (Figure 1.5) available for current use, mainly  

- Direct Numerical Simulations (DNS). 

- Large Eddy Simulations (LES). 

- Reynolds Averaged Navier Stokes (RANS). 

 
 
 

 

Figure 1.5 Time evolutions of temperature calculated by DNS, RANS or LES in a turbulent 
flame brush (Poinsot and Veynante (2012)). 

 

 

Among the above-mentioned numerical techniques, DNS offers the ultimate accuracy 

as all the physical scales involved in a flow problem are completely resolved without 

modelling. However, despite significant improvements in computational resources, 

application of DNS is limited to low Reynolds number flows due to the cost and 

computational resources involved. Hence, the application of DNS to real combustion 

systems, where the flows are complex and involve higher Reynolds number is 

impractical in the foreseeable future. For instance, Moin and Kim (1997) estimated that 

it will take several thousands of CPU years of the fastest available supercomputer 

RANS 

 
 

 
 

 

 
 

 

Time 

Temperature 

DNS 

LES 
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during 1997, to compute the flow around an aircraft for one second of flight time, in 

order to understand the turbulence with reasonable details using 1016 grid nodes. This 

estimate limits the use of DNS for practical applications. However, DNS can still be 

efficiently utilised to develop and evaluate simple computational sub-models.  

 

On the other hand, Large Eddy Simulation (LES) is now accepted as a feasible 

computational tool despite added computational cost, as compared with the RANS 

technique. Several recent works by Charlette et al. (2002), Knikker et al. (2004), Fureby 

(2005), Masri et al. (2006), Pitsch (2006), Gubba et al. (2011), and Abdel-Raheem et al. 

(2015) confirmed the high fidelity of LES in predicting key characteristics of turbulent 

combustion. LES has a clear advantage over classical Reynolds averaged based 

methods in the capability of accounting for time-varying nature of the flow and this is 

particularly important in transient processes such as swirling flows or transient 

propagating premixed flames. Also, LES allows for detailed description of 

turbulence/combustion interactions, which is a common failure in RANS, because in 

LES, large structures are explicitly determined, and instantaneous fresh and burnt gases 

zones, where turbulence characteristics are quite different, are clearly identified. The 

ever increasing speed of computers is supporting the high computational requirement of 

LES and shifting the focus towards developing adequate sub-grid-scale (SGS) models 

for combustion. The development of such SGS models is vital in modelling of 

combustion. 

 

1.4 Motivation 
Inspired by the need to develop and validate numerical models to account for different 

combustion scenarios, e.g. internal combustion engines, gas turbines, industrial 

burners…etc. The dynamic flame surface density (DFSD) model is considered in the 

present study to simulate turbulent premixed flames propagating over repeated solid 

obstacles. This model was originally developed by Knikker et al. (2004) and further 

extended by Gubba et al. (2007). In this work this concept is developed further and 

numerically implemented in an existing LES code PUFFIN (Kirkpatrick, 2002). This 

DFSD model is evaluated for three different fuel-air mixture; compressed natural gas 

(CNG), liquefied petroleum gas (LPG), and hydrogen (H2) in a laboratory scale 
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premixed combustion chamber with a specific emphasis to predict the deflagrating 

premixed flame characteristics and their interactions with repeated solid obstacles. 

 

1.5 Objective of the Present Research 
In this study, the LES modelling technique is used to study turbulent deflagrating 

flames in the recently developed, small scale combustion chamber of AlHarbi (2013). 

The specific objectives of this research are to: 
 

 Conduct transient LES simulations for turbulent premixed flames, using three 

different fuels; CNG, LPG and hydrogen air mixture at lean condition. The 

simulations use the dynamic flame surface density (DFSD) model to account for 

the chemical reaction rate. 
 

 Develop the dynamic flame surface density model (DFSD) to account for Lewis 

number effect. The developed model has been incorporated in the in-house LES 

code and validated against the experimental results for different flow 

configurations. 
 

 Establish an analytical method to extract stretch rate values from experimental 

images. These values are used to further validate the numerical results. 
  

 Examine the influence of the number and position of obstacles inside the 

chamber on the generated overpressure, flame position and speed, which will 

help to understand different combustion scenarios. Subsequently the developed 

DFSD model is expected to contribute towards the advancement of the LES 

prediction capabilities of turbulent premixed combustion. 

 

1.6 Thesis Outline 
This chapter describes the motivation and objectives defined in modelling dynamic sub 

grid scales (SGS) for LES simulations of chemical reaction rate and flow in combustion 

systems. The number of numerical approaches and their capabilities for predicting 

turbulent reacting flows are briefly described. The rest of the thesis is defined as follows. 

 

Chapter 2 - Literature Review 

Outlines the latest efforts in modelling premixed combustion and highlights the various 
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combustion models available to account for the reaction rate. The recent research in 

laboratory scale combustion chambers is presented. A brief discussion is provided to 

review the characteristics of combustion through various regimes. Finally, an overview 

for the three fuels (CNG, LPG and Hydrogen) used in the present study is given. 

 

Chapter 3 – Large Eddy Simulation of Reacting Flows 

An overview of the LES approach for modelling turbulent flows, various types of 

filtering techniques and available filters are presented and discussed. The governing 

equations for turbulent premixed combustion and Favre filtering technique are briefly 

explained. The LES methodology has been described with details of the closing 

strategies employed for sub-grid scale stresses and scalar fluxes. 

 

Chapter 4 – The Combustion Model 

This describes the premixed combustion model used in this study. The dynamic flame 

surface density (DFSD) model and its incorporation in the in house LES code are 

presented. The development of the combustion model to account for the Lewis number 

effect is also discussed. Details of the dynamic fractal model employed to calculate the 

fractal dimension are outlined. The ignition model used is also presented. 

 

Chapter 5 – Numerical Methodology 

This chapter explains the Numerical implementation of the filtered governing equations 

outlined in Chapter 3. The implementation of the spatial discretisation and time 

advancement schemes through finite volume methodology are discussed. A detailed 

description of the initial and boundary conditions and the working procedure are also 

presented. 

 

Chapter 6 – Experimental Combustion Chamber  

This chapter describes the test cases used for the purpose of model validation. A 

complete description of the influencing factors in designing this test chamber and the 

novelty of the chamber are detailed. An overview for the experimental ignition system 

and the utilised measurement techniques are introduced. Classification of the various 

test case configurations in terms of the number of obstacles and their position in the 
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chamber are explained. A typical experimental sequence is detailed to outline the 

procedure followed. 

 

Chapter 7 – Quantification of Experimental Data 

This chapter analyse the experimental results to extract the data required for the 

numerical validation. An image processing technique is proposed to extract the stretch 

values is also presented. 
  

Chapter 8 – Results and Discussion 

In this chapter, the LES results obtained using the dynamic flame surface density model 

for reaction rate are presented for the three fuels, CNG, LPG and Hydrogen. Firstly, the 

LES results obtained using dynamic formulation for the model controlling parameters 

are presented. These include the grid dependency test and the effect of the ignition 

source. Secondly, the effect of fuel type on the generated overpressure, flame position 

and flame speed is discussed. Also, the effect of Lewis number is presented for the three 

fuels. Moreover, the effect of various complex flow configurations on the overpressure, 

flame position and speed is discussed. The extracted flame stretch from both the 

experimental data and LES results, is used as a further method for model validation, 

will be also shown. Finally, flame characteristics from LES results are calculated, 

analysed and plotted in two different turbulent premixed combustion regime diagrams.  

 

Chapter 9 – Conclusions and Recommendations for Future Work 

This summarises the conclusions from this research work with its key contributions 

towards improved prediction capabilities. It also suggests directions for further 

improvement. 
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Chapter 2 

Literature Review 

  
In this chapter, review of recent research efforts for investigating turbulent premixed 

flames is presented and discussed. A brief discussion is, also, provided for the 

characterisation of premixed flames through various turbulent combustion regime 

diagrams. In the final section, various RANS and LES models available to account for 

the chemical reaction rate in computational modelling are discussed in details.  

 

2.1 Introduction  
Turbulent premixed flames are often characterised by their ability to propagate towards 

the fresh gases. As the flame is initiated by an ignition source, the reaction advances 

through the gas with relatively thin flame front until all the fuel is consumed (Poinsot 

and Veynante (2012)). In turbulent flames the flame propagation speed is not equal to 

the incoming gas velocity, unlike laminar flames. The turbulent burning velocity has 

been identified to depend on many parameters such as turbulence levels, mixture 

reactivity, surface area of the flame and flame stretch etc. (Bray (1990), Catlin et al. 

(1995) and Bradley et al. (2003)). On the other hand, if the flame propagation is due to 

thermal conduction i.e. transporting energy from hot burnt gases to cold fuel mixture, it 

is known as deflagration (Gubba (2009)). If the flame propagates due to shock wave i.e. 

increasing the temperature as a result of compressing the fuel mixture, it is known as 

detonation (Oran and Boris. (2000)). Ciccarelli and Dorofeev (2008) showed that the 

deflagration may transform into detonation depending on boundary conditions, length 

and width of the chamber and the generated overpressure etc. Alternatively, the 

presence of solid obstructions in combustion environment eventually leads to higher 

flame speed/acceleration with high overpressure, which has severe consequences in 

many engineering applications (Bradley et al. (2008), AlHarbi et al. (2014) and Abdel-

Raheem et al. (2015)). As mentioned previously, modelling of combustion systems 

using numerical techniques would help in designing and developing these systems. 

However, success of any numerical combustion model depends mainly on its capability 

to account for the chemical reaction rate. Hence, improvement of combustion models is 
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very important with the increasing industrial demands for more efficient and effective 

combustion systems. 

 

Investigations of premixed flame/obstacle interactions started in the 1980’s when Moen 

et al. (1980) and Hjertager et al. (1988) performed large scale experiments. These 

studies concluded that obstacle size and premixed fuel/air concentration have an 

influence on pressure and flame speed. Moen et al. (1980) used a cylindrical chamber 

with a radius of 30.5 cm, filled with a stoichiometric methane/air mixture in the 

presence of different obstacle configurations. The study showed that the flame speed 

increased by 24 times in the presence of obstacles and also the need of obstacles to 

maintain continuous turbulence. Later on, Hjertager et al. (1988) were more concerned 

with the pressure inside the chamber. The experimental set-up consisted of a tube with a 

length of 10 m and a diameter of 2.5 m with five equally spaced obstacles with blocking 

ratios of 30% and mixtures of methane/air and propane/air were used. For 

concentrations varying from 5.5% to 15% by volume with increment of 0.5% for 

methane-air mixtures; and from 2% to 9% by volume with increment of 0.25% for the 

propane-air mixtures the study revealed that the maximum pressures occur in fuel rich 

mixtures even for methane/air or propane/air mixtures. Also, the study found that the 

peak pressure in propane/air is twice that of the pressure in methane/air over the entire 

examined concentrations. 

 

Understanding the details and the nature for flame/flow interactions is vital for the 

development of reliable analytical tools able to compute the structure of flames under 

different circumstances. Such a purpose is increasingly being approached due to the 

advancement in modelling capabilities and the detailed results in well-defined 

laboratory flames (Fairweather et al. (1999b), Kent et al. (2005) and Starke and Roth 

(1989)). Earlier experimental studies in flame propagation focused on large scale 

experiments (Moen et al. (1982), Hjertager et al. (1988), Starke and Roth (1989) and 

Masri et al. (2000)) where the application of advanced diagnostics was impractical and 

rather inadequate to measure pressure/time relationship. Later on, laboratory scale 

experiments became the chosen technique of investigation, using simple geometrical 

configurations that are fit for complex diagnostics and validation of numerical models 

(Masri et al. (2000), Patel et al. (2002), AlHarbi et al. (2012) and Kent et al. (2005)). 

http://www.sciencedirect.com.ezproxy1.library.usyd.edu.au/science/article/pii/S0010218008002484
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Since the earlier work of Moen et al. (1980) and Hjertager et al. (1988), researchers 

have become more concerned about the interaction between fuel/air and obstacles. To 

understand flame propagation in enclosed vessels, it is essential to test a variety of 

chamber configurations. Previous researchers experimented by adding obstacles, e.g. 

Starke and Roth (1989 & 1986), cylindrical vessels with turbulence inducing rings like 

Fairweather et al. (1996) and Fairweather et al. (1999b) or circular plate obstructions as 

Phylaktou and Andrews (1991). Other researchers re-designed the vessels, creating 

complex chambers with rectangular cross-sections and a single plate as an internal 

baffle, e.g. Lindstedt and Sakthitharan (1998) or square cross-sections and multiple 

baffles lining the walls as Johansen and Ciccarelli (2009).   

 

Starke and Roth (1986) studied flame propagation inside a closed cylindrical chamber 

without obstacles. The study revealed the general behaviour of the flame after ignition, 

as the flame initially has a hemispherical shape and, after it propagates, the flame front 

develops sections parallel to the wall. The flame continues to propagate, until a tulip 

shaped flame forms as a result of wall quenching. Later on, Starke and Roth (1989) 

included different obstacles in different locations inside the chamber to study the 

influence on pressure and flame velocity. It was found that the location of the obstacle 

has a large effect on the burning rate and that putting the obstacle too close or too far 

from the ignition point increases the burning rate. However, the middle position results 

in the highest burning rate, as placing the obstacle too close to the ignition point 

prevents the flame from becoming turbulent.  

 

The designs of combustion chambers in earlier studies, used the length (L) of the 

chamber in the direction of the propagating flame was greater than its diameter (D) or 

the width of the base (W). In the above-mentioned experiments, the ratios of L/D or 

L/W ranged from 2 in the design of Fairweather et al. (1999a) to 32 in the design of 

Johansen and Ciccarelli (2009).  In contrast, Lohrer et al. (2008) used pipes with L/D 

ratios ranging from 4-143 in their studies of velocity and turbulence with and without 

obstacles at varying initial pressures. However, it should be pointed that detonations 

become more likely at high L/D ratios and that the presence of obstacles further 

increases the chance of transitioning to detonations. As the subject of this thesis is 

deflagration not detonation, this issue will not be further addressed. Park et al. (2007) 
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used methane-air mixture to study deflagration in chambers with L/D ratio of 0.235, 

where they found that obstacle geometry and blockage ratios did not have a significant 

effect on flame displacement speeds. Although this result is inconsistent with 

observations at higher L/D ratios, it can be explained by the lower and less developed 

turbulence levels at lower L/D values.  

 

Ibrahim et al. (2001) designed a small scale combustion chamber made from 6 mm 

thick clear polycarbonate and had a cross section of 150 × 75 mm2 and length of 450 

mm. They have also constructed second chamber section with the length variable from 

0.5 to 1.5 m. A single rectangular obstacle used with cross section of 40 × 12 mm2 

imposing an area blockage ratio of 50% ahead of the flame. The fuel mixtures were 

used of methane in air: lean, Ф = 0.8, rich, Ф = 1.2, and stoichiometric. It was found 

that the highest flame acceleration was with the stoichiometric mixture. The trapped 

unburned mixture behind the obstacles was found to be a large source of turbulence. 

This study showed that, variations in the rate of flame front length and propagation 

speed have a big influence on the generated overpressure. Three stages of flame 

propagation were identified: first, the flame starts to accelerate when it hits the wall; 

next, the flame decelerates when it reaches the wake behind the wall; finally, the flame 

starts to accelerate again due to the turbulent combustion with the wakes. Moreover, 

Patel et al. (2002) used multiple obstructions inside the combustion chamber, and these 

obstacles caused even more turbulence. 

 

Also, Park et al. (2008) studied flame propagation over multiple obstacles with 

blockage ratios of 30% and 43%. A box shaped chamber with top venting was used. 

Five different L/Ds (height of the chamber/diameter of the chamber) were tested. It was 

found that chambers with an L/D ratio of 0.29 or 0.57 showed less sensitivity between 

the flame and the obstacles, while in chambers with an L/D ratio over 0.86 the flame 

was more sensitive to the obstacles. 

 

Furthermore, premixed flames interaction with obstacles has also been studied at the 

University of Sydney for a decade. The earliest study was conducted by Masri et al. 

(2000) using a chamber with a square cross-section and a given volume of 20 L of 

stoichiometric propane/air mixture. Circular, triangular, and square obstacle geometries 
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were used and these obstacles covered blockage ratios from 10% to 78%. Images were 

taken of the flame front propagation and the volume of trapped mixture behind the 

obstacles. It was found that the obstacles with a square cross-section had the fastest 

flame acceleration, meaning that the geometry of the obstacles has a major effect on 

flame propagation. The amount of trapped unburned mixture was high when square 

obstacles were used, which explains why these had the highest peak pressure. The study 

also showed that the flame speed increased with the blockage ratio. Later on, Ibrahim 

and Masri (2001) performed further studies using the same chamber specifications. 

However, a greater number of obstacles were used than in the previous study with 

blockage ratios from 10% to over 75%. They aimed to study the influence of the 

blockage ratio and venting pressure on the peak pressure due to premixed flame 

propagation. It was found that the peak pressure increased by increasing the blockage 

ratio with no change in the venting pressure and that the time needed to reach the peak 

pressure decreased with increasing blockage ratios. 

 

Later on, laser diagnostic techniques were used at the University of Sydney to improve 

the understanding of flame deflagration. Investigations of premixed flame propagation 

over obstacles continued by Masri et al. (2006) in which the group used LIF (Laser 

Induced Florescence) to investigate the burning rate and the structure of the flame front. 

The chamber with a 20 L volume and square cross-section from the previous study was 

used, but with different obstacle shapes and an array of baffle plates. It was shown that 

the burning rate as well as the overpressure increased with increments of the turbulence. 

  

However, a new chamber was designed at the University of Sydney by Kent et al. 

(2005). The volume of the chamber was reduced from 20 L to 0.625 L. This reduction 

gave the advantage of a shorter simulation time and made it easier for researchers to add 

more baffle plates inside the chamber. Kamardin (2005) used new chamber constructed 

from Perspex with a propane/air fuel mixture. It was revealed that the overpressure peak 

presents on rich mixtures. Hall (2006) investigated the velocity inside the chamber 

using (LDV) and found that the peak velocity and peak pressure are related to 

turbulence. Afterward, Hall (2008) used a new rig with the same configuration as his 

previous study rig, but with a quartz window to allow laser sheets with no deformation 

to the chamber wall. Based on previous studies, it was clear that adding more baffle 
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plates inside the chamber would increase the peak pressure, but these studies mentioned 

a limit for this conclusion. Thus, at some stage, adding more baffles will make the 

pressure decrease rather than increase. Optical access in the chamber was later extended 

to the entire width Grant (2008) to enable OH-LIF images along the entire length of the 

chamber. It was revealed that, due to turbulence, the flame front stretch has an effect on 

the explosion overpressure.  

 

In addition to the previous, flame propagation in an enclosure generates acoustic waves 

that, after reflections from walls and obstacles, can interact with the flame front and 

develop flame perturbations through a variety of instability mechanisms (Ciccarelli and 

Dorofeev (2008)). Such instabilities have been observed by Kogarko and Ryzhkov 

(1961) in closed spherical chambers and in closed tubes by Leyer and Manson (1971) 

and by Van Wingerden and Zeeuwen (1983) and Tamanini and Chaffee (1992) in 

vented enclosures. For rich propane–air mixtures, Van Wingerden and Zeeuwen (1983) 

observed that these instabilities could result in a peak pressure enhancement factor of 8. 

While, Kogarko and Ryzhkov (1961) observed enhancement factors of 2-9 for 

stoichiometric methane-air and propane-air mixtures. Detailed investigation for these 

mechanisms can be found at Oran and Gardner (1985), Searby and Rochwerger (1991), 

Jackson et al. (1993),  Joulin (1994), and Al-Shahrany et al. (2006). 

 

Flame acoustic instabilities are usually associated with relatively slow flames in 

enclosures that are free of obstacles (Ciccarelli and Dorofeev (2008)). Turbulence and 

turbulence inducing obstacles have been shown to reduce relative contribution of 

acoustic instabilities on flame propagation and pressure build-up (Kogarko and 

Ryzhkov (1961)). It has also been shown that such instabilities can be successfully 

eliminated by lining the enclosure walls with materials that can absorb acoustic waves. 

Teodorczyk and Lee (1995), used hydrogen-oxygen mixture in tubes with repeated 

obstacles to study flame acceleration with and without an absorbing material on the tube 

wall. Their results showed that the presence of an absorbing material reduced the final 

flame velocity from 1000 m/s to 100 m/s.  

 

Generally, if confinement and/or obstructions are present, several powerful instabilities 

may strongly influence the flame propagation. These are the well-known Kelvin-
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Helmholtz (K–H) and Rayleigh-Taylor (R-T) instabilities. The first one is associated 

with shear, and the second one is initiated when a lighter fluid is accelerated towards a 

heavier fluid. In compressible flows this instability is known as Richtmyer-Meshkov 

(R-M) instability. Both K-H and R-T instabilities are triggered when the flame is 

suddenly accelerated over an obstacle or through a vent. Finally, sufficiently fast flames 

can produce a shock wave that can reflect off a surface and interact with the flame. This 

was shown by Markstein and Somers (1953), this can result in severe flame distortion 

which can induce flame acceleration and, in severe cases, cause transition to detonation 

(Thomas et al. (2001)). While Landau-Darrieus (due to the discontinuity of unburned 

and burned gas density) and thermal-diffusive instabilities (due to unequal diffusivities 

of the reactants and heat) are relatively weak, K-H and R-T instabilities represent 

powerful mechanisms that are mainly responsible for the increase in flame surface and 

generation of turbulence in channels with obstacles. Landau-Darrieus and thermal-

diffusive instabilities may only play a role at the initial stage of flame propagation, or in 

cases of unconfined flames (Ciccarelli and Dorofeev (2008)). Acoustic instabilities may 

be important for relatively slow flames in enclosures that are free of obstacles. 

 

In conclusion, consistent in all of these studies, the combustion interaction between an 

air-fuel mixture and solid obstacles is challenging yet interesting. The challenge arises 

due to the complexity of the flame front’s interaction with the turbulence generated 

ahead of it by the expanding gas. Such interactions impact strongly on the resulting 

overpressure, the rate of pressure rise, the burning rate of the gases, and the geometry of 

the accelerating flame front.  

 

2.2 Regimes of Turbulent Premixed combustion 
Effect of turbulence on combustion may be viewed as an interaction between flame 

fronts and turbulent eddies of various sizes. Eddies in a turbulent flow field may vary in 

size from Kolmogorov scale: the smallest, to the integral scale; the largest. The 

representative flow time scale of an eddy is defined by: 
 

𝜏𝜏𝑡𝑡 =
𝐿𝐿𝐼𝐼
𝑢𝑢′ 

(2.1) 

 

where, 𝐿𝐿𝐼𝐼 is the integral length scale and 𝑢𝑢′ is the RMS velocity. How fast the chemical 

reactions are, compared to the turbulent mixing in a premixed reactive flow field, can be 
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identified by comparing the chemical and the integral turbulent time scales. 

Characteristic flame time or the chemical time scale can be defined using flame 

properties as: 
 

𝜏𝜏𝑐𝑐 =
𝐿𝐿𝐹𝐹
𝑢𝑢𝐿𝐿

 (2.2) 

 

where, 𝐿𝐿𝐹𝐹 is the laminar flame thickness and 𝑢𝑢𝐿𝐿 is the laminar flame speed. The ratio 

between the two time scales above represents the non-dimensional Damköhler number 

Da, which corresponds to the large eddies in combustion, and defined as: 
 

 𝐷𝐷𝐷𝐷 =
𝜏𝜏𝑡𝑡
𝜏𝜏𝑐𝑐

=  
𝐿𝐿𝐼𝐼
𝐿𝐿𝐹𝐹

 
𝑢𝑢𝐿𝐿
𝑢𝑢′  (2.3) 

 

Another non-dimensional number, the Karlovitz number Ka, relates to the smallest 

eddies and is defined as the ratio of the chemical time scale to the Kolmogorov time 

scales 𝜏𝜏𝑘𝑘 as: 
 

𝐾𝐾𝐾𝐾 =
𝜏𝜏𝑐𝑐
𝜏𝜏𝑘𝑘

=  
𝑢𝑢′(𝜂𝜂𝑘𝑘)/ 𝜂𝜂𝑘𝑘
𝑢𝑢𝐿𝐿  / 𝐿𝐿𝐹𝐹

=  �
𝐿𝐿𝐼𝐼
𝛿𝛿𝑙𝑙
�
−12
�
𝑢𝑢′

𝑢𝑢𝐿𝐿
�
3
2

=  �
 𝐿𝐿𝐹𝐹
 𝜂𝜂𝑘𝑘
�
2

 (2.4) 

 

where  𝜂𝜂𝑘𝑘  is the Kolmogorov micro scale. Figure 2.1 shows a classical combustion 

regime diagram of Peters (1988) based on the velocity scale �𝑢𝑢
′

𝑢𝑢𝐿𝐿
� and length scale �𝐿𝐿𝐼𝐼

𝐿𝐿𝐹𝐹
�. 

This diagram outlines four important regimes as shown in Figure 2.1. However, Poinsot 

and Veynante (2012) showed that this classical diagram is not representative in many 

combustion situations due to the assumption of homogeneous and isotropic turbulence 

by neglecting heat release affects. On the other hand, Peters (1999) has adapted this 

classical combustion regime diagram by considering the heat release effects based on 

same velocity and length scales as shown in Figure 2.2. It is worth noting that, the 

criteria and regime limits used to distinguish different zones are based only on the order 

of magnitude estimations and not on precise derivations (Ranasinghe (2013)). 
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Figure 2.1 Classical Turbulent combustion regime diagram from Peters (1988). 
 
 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 2.2 Modified turbulent combustion diagram from Peters (1999). 
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Three main combustion regimes are identified in Figure 2.2; corrugated/wrinkled 

flamelets, thin reaction zones, and broken reaction zones. The “corrugated/wrinkled 

flamelet” regime is characterised by the chemical time scales are shorter than any 

turbulent time scales i.e. Ka < 1. Also, the flame thickness is smaller than the smallest 

turbulent scale (smaller than Kolmogorov scales). This means that the flame front is not 

affected by turbulent motions. Moreover, the flame front in this regime is very thin and 

wrinkled due to turbulence motions smaller than Kolmogorov length scales, and similar 

to laminar flame structure.  

 

The “thin reaction” zone, is identified where the Kolmogorov length scale becomes 

smaller than the flame thickness, which implies Ka > 1. In this regime, the order of 

Kolmogorov, chemical and turbulence time scales are 𝜏𝜏𝑘𝑘 < 𝜏𝜏𝑐𝑐 < 𝜏𝜏𝑡𝑡 respectively. Also, 

the Kolmogorov scales are smaller than the flame thickness and are able to modify the 

inner flame structure. It should be mentioned here, that most of the engineering 

combustion devices are within the thin reaction zones regime, because mixing is 

dominating at higher Ka numbers, which leads to higher volumetric heat release and 

shorter combustion times (Pitsch (2006)). 

 

The “broken reaction” or “well-stirred reactor” regime is defined when the chemical 

time scale is higher than turbulent time scale, i.e. Da << 1. In this regime, turbulent 

motions becomes sufficiently strong to affect the whole flame structure, which means 

mixing is faster and the overall reaction rate is limited by chemistry. This subsequently 

may lead to a local extinction and can cause noise and instabilities. Excessive increase 

of instabilities may even lead to global extinction in premixed combustion devices 

(Pitsch (2006)).  

 
However, the combustion regime diagrams discussed above are helpful in classifying 

the combustion phenomenon in various combustion systems, based on relevant velocity 

and time scales estimates (Gubba (2009)). However in case of LES, the unique 

parameter which distinguishes other numerical modelling approaches is the filter width 

(∆�), which separates large eddies from small ones in the flow field. This fact has led to 

the recent development of LES regime diagrams for premixed flames by Pitsch and 

Duchamp de Lageneste (2002). They showed that, the Karlovitz number Ka is 
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independent from the filter width and introduced a new regime diagram with respect to 

Karlovitz and Reynolds number. However, sub-grid velocity fluctuations are dependent 

on filter width and a change in the filter width results in a change in the sub-grid 

velocity fluctuations, which eventually may change the regime of combustion, provided 

that the solution is grid independent. This identifies that the effect of the filter width, 

cannot be studied independently as it has significant effect on combustion (Pitsch 

(2006)). 

 

 

Figure 2.3 Regimes diagram of LES for premixed turbulent combustion by Pitsch and Duchamp 
de Lageneste (2002). 

 

 

Figure 2.3 reproduces the LES regime diagram of Pitsch (2006) as a function of length 

scale and Karlovitz numbers. The Karlovitz number describes the physical interactions 

of flow and combustion at the smallest turbulent scales. Where, the Karlovitz and the 

sub-grid Reynolds numbers are defined as:  
 

𝐾𝐾𝐾𝐾Δ� =  ��
𝑢𝑢′∆
𝑢𝑢𝐿𝐿
�
3

. �
𝐿𝐿𝐹𝐹
Δ�
��

1
2

 

𝑅𝑅𝑅𝑅∆� =  
𝑢𝑢′∆ Δ�
𝑢𝑢𝐿𝐿𝐿𝐿𝐹𝐹

 

(2.5) 
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where 𝑢𝑢′∆ is the sub-grid scale velocity fluctuations. In LES, the Karlovitz number is a 

fluctuating quantity, but for a given flow field and chemistry it is fixed. The effect of 

changes in filter size can therefore easily be assessed at constant Ka number. An 

additional benefit of this regime diagram is that it can be used equally well for DNS 

(Pitsch (2006)) if it is associated with the mesh size. 

 

It is worth to mention here that, the combustion regime in both figures 2.2 and 2.3 are 

the same but the latter is represented in terms of LES quantities. Hence, the three 

regimes identified and discussed in the previous section are still valid for LES. However, 

it should be noticed that the effect of changing the LES filter width can have an impact 

on the accuracy of the numerical solutions (Gubba (2009)). For example, by choosing 

an appropriate ratio, by decreasing the filter width, eventually leads to a smaller sub-

filter Reynolds number 𝑅𝑅𝑅𝑅∆�  less than one. Hence, for a filter size smaller than the 

Kolmogorov micro scale, no sub-filter modelling for the turbulence is needed, which 

eventually reaches DNS resolution. However, the entire flame including the reaction 

zone can only be resolved if ∆� < 𝐿𝐿𝐹𝐹. 

  

2.3 Modelling of Turbulent Premixed Combustion 
The utmost challenge for the modelling of the turbulent premixed flames is the 

modelling of the reaction rate due to its non-linear relation with chemical and 

thermodynamic states. This is often characterized by propagating reaction layers thinner 

than the smallest turbulent flow scales. The major difficulty in modelling the reaction 

rate is due to the variation of thermo-chemical variables through the laminar flame 

profile, which is typically very thin (Veynante and Poinsot (1997)). This issue is 

strongly affected by turbulence, which causes flame wrinkling and thereby forming the 

most complex three way thermo-chemical-turbulence interactions. In the numerical 

simulation of practical transient premixed reacting flows, it is computationally 

expensive to resolve the flame front on the computational grid because the reaction zone 

“flame thickness” is very thin, normally a fraction of a millimetre (Matalon (2009) and 

Aung et al. (1997)). Several methods are commonly used to overcome this difficulty. In 

the present survey a brief discussion is presented for these methods: 

 Flamelet Modelling   
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 Turbulent Flame Speed Closure  

 The Eddy-Break-Up Model  

 Artificially Thickened Flame Approach 

 Probability Density Function Model  

 Flame Tracking (G-equation) Approach 

 Marker Field Approach 

 

2.3.1 Flamelet Modelling 
Flamelet modelling of turbulent deflagrating premixed flames provides a mean to 

introduce chemical and turbulence time scales by considering a thin laminar flame in a 

turbulent flow field. The key goal behind laminar flamelet modelling is to incorporate 

various flamelet stretching mechanisms to account for effective turbulence time scales 

by assuming that the heat release will only occur within the thin reaction zone. Much of 

the flamelet modelling literature focuses on deriving effective turbulent burning 

velocity (e.g. Abdel-Gayed et al. (1987)). An alternative modelling strategy has been 

pursued for the flamelet regime since the introduction of the Bray-Moss-Libby (BML) 

model (Bray et al. (1985)). This model has been extended from its preliminary form 

since first introduction in premixed turbulent combustion by Bray and Moss (1977), 

Bray et al. (1981), and Libby and Bray (1981), and subject to many interesting research 

later. The BML models are derived based on a combination of statistical approaches 

using probability density functions (PDF) and physical analysis. This combination has 

led to the development of both complex and simple models using probability functions. 

For instance, Bradley et al. (1992) used a classical presumed PDF model by assuming a 

weak flamelet, which considers reduced chemistry through the parameterisation of 

detailed chemistry. On the other hand, following BML analysis, mean chemical reaction 

rate can be simply modelled by analysing the flamelet and using modelling tools as 

Bray et al. (1985): 
 

ω𝑐𝑐̇ =  ρ𝑢𝑢𝑢𝑢𝐿𝐿
0𝐼𝐼0Σ (2.6) 

 

Where ω𝑐̇𝑐 is the chemical reaction rate, ρ𝑢𝑢  is unburned gas density, 𝐼𝐼0  is the mean 

stretch factor and Σ is the flame surface density (FSD), defined as the flame surface to 

volume ratio. 
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Modelling the chemical reaction rate, using the above approach requires models for the 

FSD and mean stretch factor. Several models and empirical correlations for the 

evaluation of flame stretch 𝐼𝐼0 can be found in the literature. For example, Bray (1990) 

identified flame stretch as a function of Karlovitz number. Bradley et al. (1992) 

identified flame stretch as a function of Karlovitz and Lewis numbers, while Bray and 

Cant (1991) deduced an analytical expression from DNS data as a function of Markstein 

and Karlovitz numbers. 

The flame surface density, Σ in equation (2.6) represents the balance between 

turbulence, which wrinkles the flame and the laminar flame propagation, which 

smoothing out the flame wrinkles (Bray and Peters (1993)). The flame surface density 

can be computed by either solving a transport equation (Pope (1988), Candel and 

Poinsot (1990), and Cant et al. (1991)) or via an algebraic model (Bray (1990) and 

Trouvé and Poinsot (1994)). Various models available to compute FSD have been 

evaluated in the RANS (Reynolds Averaged Navier-Stokes equations) frame work 

(Duclos et al. (1993) and Prasad and Gore (1999)), which is a central problem in 

establishing a good flamelet model. Duclos et al. (1993) showed that solving a transport 

equation for the FSD in its exact form is highly difficult due to the excessive 

computational times involved. While, solving a transport equation for the flame surface 

density has been the subject of many works in RANS and LES (Prasad and Gore (1999), 

Hawkes and Cant (2001), and Patel et al. (2003)). Although solving a transport equation 

for the flame surface density is an attractive option, this will result in several unclosed 

terms which need to be closed by appropriate sub-models and restricted to handle 

extreme cases, where coupling between the flow-field and flame front is intense. On the 

other hand, algebraic models are simple, yet well established and are similar to the 

Bray-Moss-Libby (BML) approach in the context of RANS. 

 

Bray et al. (1985) proposed a simple empirical model to calculate Σ as [𝑐𝑐̅(1 − 𝑐𝑐̅)]/𝐿𝐿𝑦𝑦, 

where 𝑐𝑐̅  is the time averaged reaction progress variable and Ly is a length scale 

associated with wrinkled flame. The length scale, Ly can be modelled by assuming it is 

proportional to the integral length scale (Abu-Orf and Cant (2000)) or by an additional 

transport equation Lindstedt and Váos (1999). Gouldin et al. (1989a) and Weller et al. 

(1998) derived an expression for Σ based on the fractal theory by viewing the turbulent 
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flame as a fractal surface within the lower and outer cut-off scales and found to be in 

good agreement (Veynante and Vervisch (2002)) with experimental data for Σ/[𝑐𝑐̅(1 −

𝑐𝑐̅)] . 

 

Pope (1988), Duclos et al. (1993), and Veynante et al. (1996), modelled the flame 

surface density either by balancing the production, transport and destruction terms or 

developing a correlation from experimental data. On the other hand, Σ can be modelled 

using turbulent flame speed (TFS) closure as a ratio between the turbulent flame surface 

area per unit volume AT to its projection on its average surface per unit volume Ā. The 

ratio of AT/Ā can be modelled by following the notable observation of Damköhler 

(1940). Recently, this approach has been used by Muppala et al. (2005) in RANS and 

by Aluri et al. (2006) in LES to predict various turbulent premixed flames.  

 

Most of these flamelet models have been successfully transformed from the framework 

of RANS to LES and applied to a variety of practical problems such as V-flames Chan 

and Li (2005), SI engines (Richard et al. (2007), gas turbines and Ramjets Menon and 

Jou (1991). Boger et al. (1998) deduced a simple algebraic model suitable for LES of 

turbulent premixed flames. This model has been used by Kirkpatrick et al. (2003) and 

Masri et al. (2006) to predict the turbulent deflagrating flame in an obstructed explosion 

chamber and found to be predicting reasonably well. However, their studies under-

predicted explosion overpressures, flame position and structures. Masri et al. (2006) 

reported that using a complex model for the flame surface density would provide more 

accurate predictions for the flame characteristics.  

 

Recently, Wang et al. (2012) mentioned that Boger et al. (1998) model may be viewed 

as an approximation of F-TACLES (Auzillon et al. (2010)) under the condition that the 

flame front is infinitely thin. Moreover, Colin et al. (2000) showed that it is less 

demanding in terms of mesh requirements than the thickened flame model TFLES. 

 

2.3.1.1 The Dynamic Flame Surface Density 
Gubba et al. (2007) developed the concept of the dynamic flame surface density model, 

which was proposed by Hawkes and Cant (2000), Knikker et al. (2002) and Knikker et 

al. (2004). This model follows the dynamic procedure of Germano et al. (1991) and the 
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similarity concept of Bardina et al. (1980). The dynamic flame surface density model, 

has been linked with flame wrinkling theory in order to dynamically evaluate the model 

coefficient. This procedure is followed to calculate the fractal dimension of the 

turbulent premixed flame, which has been the subject of many interesting research 

works (Mandelbrot (1975), Gouldin (1987), Kerstein (1988), Gouldin et al. (1989a), and 

Gouldin et al. (1989b)). This concept is adopted in the current study and further 

developed to account for the non-unity Lewis number effect and also validated using 

three different fuels.  

  

2.3.2 Turbulent Flame Speed Closure  
Chemical reaction rate can be simply modelled by the overall turbulent flame speed 𝑢𝑢𝑇𝑇 

as a function of the ratio of turbulent flame surface area to laminar flame surface area. 

Damköhler (1940) hypothesised a relation given in equation (2.7) and Abdel-Gayed et 

al. (1987) extended (shown in equation 2.8) this by correlating various experimental 

measurements of turbulent premixed flames. Since the turbulent flame speed (TFS) is 

not a well-defined quantity and known to be dependent on many physical and chemical 

parameters, use of TFS closure is quite questionable. However, (TFS) closure has been 

successfully used in RANS (Zimont et al. (1997), Polifke et al. (2000), and Zimont 

(2000)) for gas turbine combustors and in LES Flohr and Pitsch (2000) for industrial 

burners, with certain limitations. This simple closure has been widely used in flame 

tracking approach (G-equation) with various modifications. Current models calculate 𝑢𝑢𝑇𝑇 

as a function of turbulence intensity alone show significant variations (Bradley (1992)) 

reflecting the possible influence of other parameters, such as the scalar dissipation rates. 

Also, Gubba (2009) claimed that the use of TFS closure is debatable in LES as it is not 

well suited to close Favre averaged transport equations. However, Xu et al. (2015) used 

the TFS closure in the context of LES to model deflagration in a semi-confined 

obstructed chamber, where good results were obtained. 
 

𝑢𝑢𝑇𝑇
𝑢𝑢𝐿𝐿

=  
𝐴𝐴𝑇𝑇
𝐴𝐴𝐿𝐿

 (2.7) 

𝑢𝑢𝑇𝑇
𝑢𝑢𝐿𝐿

= 1 +  α �
𝑢𝑢′

𝑢𝑢𝐿𝐿
�
𝑛𝑛

 (2.8) 
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This closure has been used in conjunction with the flame surface density model to 

predict turbulent premixed flames in RANS (Muppala et al. (2005)) and in  LES (Aluri 

et al. (2006)).  

 
2.3.3 The Eddy-Break-Up Model 
The Eddy-Break-Up (EBU) model, originally developed by Spalding (1971), views the 

reaction zone as a collection of fresh and burnt gas pockets transported by turbulent 

eddies and can be modelled as: 
 

𝜔̇𝜔�𝑐𝑐 = 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝜌̅𝜌
𝜀𝜀
𝑘𝑘
𝑌𝑌�𝑓𝑓𝑓𝑓
𝑌𝑌𝑓𝑓𝑓𝑓°

�1 −  
𝑌𝑌�𝑓𝑓𝑓𝑓
𝑌𝑌𝑓𝑓𝑓𝑓°

� (2.9) 

 

where 𝑌𝑌𝑓𝑓𝑓𝑓°  is the fuel mass fraction in fresh gases, k and ε is are respectively the 

turbulent kinetic energy and its dissipation rate, CEBU is a model constant. EBU models 

have been extensively used in RANS (Fureby and Löfström (1994) and Möller et al. 

(1996)) and in LES (Fureby and Löfström (1994), Möller et al. (1996) and Porumbel 

and Menon (2006)) for industrial applications due to its simplicity, despite over 

estimation of the reaction rate. In this approach, the reaction rate is assumed to be 

proportional to the intermittency between fresh and burnt gases and inversely 

proportional to the turbulence time scale. This model is attractive because the reaction 

rate is simply written as a function of known quantities without any additional transport 

equations, simply by neglecting the chemistry effects. This results in an overestimate 

the reaction rate, especially in highly strained flow regions (Cant and Bray (1989)).  

 

In the context of LES, EBU models have found to predict reasonably well for bluff 

body stabilised flames (Fureby and Möller (1995)), without any additional sub-grid 

scale models. Porumbel and Menon (2006) modelled the bluff body stabilised flame 

using EBU model and Linear Eddy Model (LEM) in LES. They concluded that, results 

using EBU found to under-predict turbulent flame wrinkling, turbulent mixing rate, 

temperature field, and over-predict turbulent flame thickness. Kim et al. (2006) have 

reported results by using EBU model for gas turbine flame holder stabilised flames for 

various equivalence ratios, with an additional transport equation for turbulent kinetic 

energy and an algebraic equation for dissipation rate. Their studies found to predict 

stabilised flame very well except few deviations from experimental data at 
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stoichiometric condition. Hence, it can be concluded that the success of EBU models 

with or without sub-models or additional transport equations is variable. 

 

2.3.4 Artificially Thickened Flame Approach  
As mentioned earlier in this chapter, that the premixed flame is very thin i.e. about 0.1 

to 1 mm (Colin et al. (2000) and cannot be resolved on a LES numerical grid. This 

difficulty in resolving flame on a numerical grid, associated with the stiffness of the 

progress variable has led to the development of an alternative approach of ― thickened 

flame modelling by Butler and O'Rourke (1977) originally for laminar flame 

calculations. This method has been extended to LES by Veynante and Poinsot (1997) 

and Thibaut and Candel (1998) for turbulent premixed flames. 

 
The basic idea of this approach is thickening of the flame brush by a factor F to include 

several computational cells, where the diffusivity is multiplied by a factor F and the 

reaction rate is divided by the same factor, while keeping the laminar flame speed 

constant, so that its structure is resolved by LES. The flame thickening is accomplished 

by a modification of the scalar transport equations, following the simple theories of 

laminar premixed flames (Kuo (2005), such that the flame speed 𝑢𝑢𝐿𝐿 ∝  �𝛼𝛼𝑇𝑇𝜔̇𝜔 , and the 

flame thickness 𝛿𝛿𝐿𝐿 ∝  𝛼𝛼𝑇𝑇/𝑢𝑢𝐿𝐿 . Where 𝜔̇𝜔  is the reaction rate and 𝛼𝛼𝑇𝑇  is the thermal 

diffusivity. This results in a flame of thickness (F𝛿𝛿𝐿𝐿) that propagates at a speed 𝑢𝑢𝐿𝐿. The 

advantages of the approach are that it is simple to implement and, due to the Arrhenius 

law, it can handle some effects associated with ignition and flame-wall interaction 

processes (Colin et al. (2000)). This approach models both the reaction rate and sub-grid 

transport terms simultaneously.  

 

Xiao et al. (2012) showed that a combination of thickening flame approach with the 

seven-step chemistry scheme is quite reliable for predicting the transient premixed 

hydrogen/air combustion in a closed duct. This combination reproduced the four stages 

of the flame dynamics well (i.e. spherical flame, finger-shape flame, flame with the skirt 

touching the side walls and tulip flame) with reasonably predicted pressure dynamics, 

but their model did not account for the wrinkling of the flame front as it remains 

unresolved.  
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The flame thickening approach seems to be very attractive for flows in which the 

turbulence-flame interactions are governed mainly by very large scale flow structures. 

However, there are several drawbacks when applied to many common scenarios. Firstly, 

this approach assumes implicitly that the reaction rate is controlled by chemistry rather 

than diffusive processes and hence the use of detailed chemical kinetics is 

recommended for better accuracy (Poinsot et al. (1991)). This is numerically 

unattractive compared to the laminar flamelet approach where fast chemistry is 

considered and reaction is assumed to be controlled by transport processes. Secondly, 

the thickening of the flame decreases the sensitivity towards turbulent motions. 

Therefore the turbulent and chemical time scales are altered, which need to be 

accounted separately. The turbulent eddies smaller than the size of thickened flame are 

found to have no significant effect in stretching the flame (Poinsot et al. (1991)). This 

effect was observed for the thickened flame model in comparison with DNS results by 

Veynante and Poinsot (1997). Thirdly, the sensitivity of the laminar flame velocity to 

stretch and curvature is increased by the transformation since the Markstein length is 

proportional to the flame thickness. The thickened flame will react to a stretch of k/F, as 

the actual flame would react to a stretch of k. This may influence flame quenching and 

may be prone to quench thickened flame much easily.  

 

To overcome problem of that technique with the flame stretch, an efficiency function E 

relating the actual flame stretch to the stretch felt by the thickened flame has been 

proposed by Meneveau and Poinsot (1991) based on DNS results. Similarly, Charlette 

et al. (2002) developed a dynamic model based on local flame conditions to overcome 

the over-response of the flame stretch in thickened flame modelling.  

 

2.3.5 Probability Density Function (PDF) Model  
Probability density function (PDF) methods have been used in turbulent reacting flows 

for over 60 years (Kollmann and Schmitt (1981)), and are quite established, especially 

in turbulent non-premixed combustion (Cook and Riley (1994)). In PDF methodology, 

the flame front/flow field is described based on statistical properties and probability 

theories. These methods have close tie-ups in deriving sub-models in flame tracking and 

flame surface density approaches. There are several methods to describe flow/flame 

probability functions such as presumed PDF, where a shape is assumed by solving a 
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PDF balance equation, joint PDF, where probability of a set of variables are either 

solved using a transport equation or modelled and finally, conditional PDF, where PDF 

is used based on certain local conditions.  

 

Several studies (Pope (1985), Givi (1989), Gao and O'Brien (1993), Madina and Givi 

(1993), Möller et al. (1996), Cook et al. (1997), and Cook and Riley (1998)) discussed 

the development and application of PDF methods for turbulent reacting flames in 

RANS and LES. The fundamental idea of the PDF method is based on describing the 

statistical property of thermo-chemical variables. The advantage of the PDF approach is 

that the reaction rate term can be closed exactly through the simple relation as: 
 

𝜔̇𝜔𝑐𝑐����  =  �𝜔̇𝜔(ϕ)𝑃𝑃𝑠𝑠𝑠𝑠(ϕ; 𝑥𝑥, 𝑡𝑡)𝑑𝑑ϕ (2.10) 

 

where 𝜔̇𝜔𝑐𝑐 is the reaction rate, 𝑃𝑃𝑠𝑠𝑠𝑠 is the probability density in ϕ - space, x is the position 

and t for time. 

 

Using PDF models have produced good results in comparison with DNS data for non-

premixed combustion (Möller et al. (1996), Reveillon and Vervisch (1997), Colucci et 

al. (1998) and Cook and Riley (1998)) successfully predicted premixed combustion 

using presumed PDF approach, assuming a multidimensional normal distribution for the 

scalar variables. With this success, PDF of turbulent premixed flames has become an 

alternative method to predict flames in various combustion regimes. However, the shape 

of initial PDF may need to be obtained either from experimental data or DNS data. 

 
2.3.6 Flame Tracking Approach (G-equation)  
The flame tracking approach or G-equation, originally introduced by Williams (1985b) 

is based on the flamelet assumption. In this approach the flame is assumed to be a thin 

surface and can be represented or tracked by the level surface of a scalar field G, which 

has a constant value Go at flame surface and can be described as: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑢𝑢.∇𝐺𝐺 = 𝑤𝑤|∇𝐺𝐺| (2.11) 

  

where w is the local relative propagation velocity of the flame. The equation (2.11) can 

be used to represent a surface of chosen variable such as temperature, reaction progress 
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variable or any other variable of interest. Pitsch (2006) argued that this approach is not 

modelling the flame front, rather a numerical method, which can resolve the flame front. 

Several studies reported, successful prediction of turbulent flames using G-equation in 

RANS and LES. Yakhot (1988) was the first to suggest this equation to be used in LES 

combustion. Following Yakhot (1988), several authors (Kim and Menon (2000), Pitsch 

and Duchamp de Lageneste (2002), and Huang (2003)) proposed LES formulation of 

the G-equations and applied to various combustion chambers such as ramjet (Menon 

and Jou (1991)), IC engines (Naitoh et al. (1992)), and Bunsen burner experiment 

(Pitsch and Duchamp de Lageneste (2002)).  

 
Pitsch (2006) argued that the G-equation for the filtered flame front used in the above 

studies, did not consider the special character while filtering the G-equation, which has 

caused inconsistency with generalised scaling symmetry. Pitsch (2006) derived a new 

filtering technique for G-equation and reported that the filtered G-equation (equation 

2.12) is valid in corrugated flamelet and the thin reaction zones. 
 

𝜕𝜕𝐺𝐺�
𝜕𝜕𝜕𝜕 + 𝑢𝑢� .∇𝐺𝐺� =  −(𝑢𝑢𝐿𝐿 + 𝑢𝑢𝑘𝑘).𝐧𝐧.∇𝐺𝐺� (2.12) 

 

where n is the flame front normal vector, and uL and uk describe laminar flame 

propagation and flame advancement by curvature effects respectively, which requires 

sub-models to close. Pitsch (2006) proposed models for uL and uk based on production-

dissipation balance assumption and found to fit well in LES, with certain drawbacks 

near the flame holder, where the flame is not fully established. Also he described that in 

the above equation is not the filtered G-field, but a level set representing the flame front 

position. This is clearing the concerns raised by Hawkes and Cant (2000) regarding this 

approach in tracking the level set of flame front. However, the G-equation employed in 

the above studies appears to still have some drawbacks.  

 

In the study of Makarov et al. (2010) to compare between different combustion models 

used to study lean hydrogen mixture explosions, mainly (eddy dissipation, customized 

RNG model and flame tracking model), showed that the flame tracking model used by 

(Efimenko and Dorofeev (2001) - KI) gives the best results when compared to other 

models as shown in (Figure 2.4). Also the study points-out is that the mesh resolution 

could be a more relevant parameter than the complexity of the model. 
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Modelling the flame structure is a major challenge in G-equation, as the flame surface 

can only be tracked and not resolved in numerical space. This can be achieved by the 

sub-models derived either from experiments or DNS data. Filtered G-equation (2.7) 

does not include any diffusion terms, which may lead to numerical difficulties. Finally, 

there is no theoretical lower limit for the radius of the flame front curvature. As the 

flame front propagates, cusps can form with zero radius of curvature (Pope (1988)), 

which cannot be resolved on the computational mesh. Cusps are not expected for the 

filtered LES field since these would be smeared out by the filtering process. This 

problem is usually overcome by the introduction of artificial diffusion (Piana et al. 

(1997)). 

 
 

 
Figure 2.4 Comparison of experimental and simulated pressure dynamics for the uniform 12.8% 

vol. hydrogen–air mixture in a 10.7 m3 closed vessel (Makarov et al. (2010)). FZK: 
Forschungszentrum Karlsruhe GmbH-Germany, JRC: Joint Research Centre-Institute for 
Energy-The Netherlands, KI: Kurchatov Institute-Russia, UU: University of Ulster-UK. 

 

 

 

2.3.7 Marker Field Approach 
The S+ marker field model in LES is relatively a new derivative of above discussed 

laminar flamelet models, which captures flame propagation by balancing reactive, 
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diffusive fluxes in combustion space. Originally, the concept of the marker field was 

introduced by Bilger (2004) in DNS and extended to RANS by Bilger et al. (2004). 

Recently, this model has been extended in the frame work of LES by Christophe and 

Laszlo (2007) to predict stabilised turbulent premixed flame behind a back-facing step. 

 

2.3.8 Other Modelling Techniques 
As mentioned above, modelling the reaction rate is a critical task in LES of premixed 

turbulent combustion, due to the complex thermo-chemical-turbulence interactions. One 

major difficulty is to predict the random, non-linear behaviour of chemical reaction rate 

as a function of available scalar variables. Also, in LES especially, the laminar flame 

thickness which is typically thinner than the characteristic flow turbulence length scale 

and smaller than a typical LES filter width (∆�). Hence it is a requirement of any SGS 

combustion model in LES, to address the above issue with an accurate, yet 

computationally efficient model. One way of modelling the filtered mean reaction rate 

term is either by solving transport equations of the detailed or reduced chemical kinetic 

mechanism of the fuel. This generally includes tens of species and several hundreds of 

elementary reactions. Solving these transport equations directly in RANS itself are quite 

complex and solving them in LES is almost impossible. However, several alternative 

approaches are available to implement detailed chemistry effects. These include 

techniques such as, the “skeletal mechanism” obtained due to the elimination of 

insignificant species from detailed chemical mechanism, “dimension reduction 

techniques” due to low-dimensional manifold systems such as quasi-steady state 

assumption (Tomlin et al. (1992) and Lu and Law (2008)), Flamelet Generated 

Manifolds (Oijen and Goey (2000), and Vreman et al. (2008)), flame prolongation of 

intrinsic low-dimensional manifold (Gicquel et al. (2000) and Fiorina et al. (2003)), and 

rate-controlled constrained equilibrium (Hamiroune et al. (1998), and Janbozorgi et al. 

(2009)). Where, it should be noticed that all the above techniques require massive 

computational resources.  

 

Finally, from the previous discussions, the flame surface density concept is used in the 

current study, due to the simplicity and less computational time/cost required, yet 

effective in modelling the reaction rate with a very good accuracy. 
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2.4 Fuel Characteristics  
This section gives an overview for the three fuels used in the current work, CNG, LPG, 

and hydrogen with focus on the later as it is considered as the future fuel. The 

possibility of using hydrogen as an energy carrier has increasingly attract the interest of 

both public and government policy makers in recent times due to increasing concerns 

about the  possible impact of greenhouse gases and the finite nature of fossil fuel 

reserves (Middha (2010)). The expected shortage of fossil fuels and the fear of carbon 

induced climate changes make the deployment of hydrogen in combination with 

renewable energy sources and possibly nuclear energy an interesting alternative (Winter 

(2009)). Hydrogen combustion does not produce any greenhouse gases that are 

responsible for local and global environmental concerns compared to CNG and LPG.  

It is worth to mention that, the majority of hydrogen research is motivated by the 

enhancement of its economy, i.e. developing production and storage techniques, the 

issues related to the safety of hydrogen during production and subsequent large-scale 

usage remains a significant concern (e.g. Astbury (2008)) which needs more attention. 

The nuclear industry has also been particularly interested in evaluating hydrogen safety, 

especially due to accidents like Three Mile Island (USA, 1979), Chernobyl (USSR, 

1986), and Fukushima Daiichi (Japan, 2011) and the potential increase in use of nuclear 

power. Compared to offshore oil exploration accidents, where consequences will be 

mainly local, the consequences from nuclear accidents can be more global. 

 

The risks from hydrogen primarily stem from its wide flammability range, extremely 

fast burning rate (order of magnitude larger compared to other fuels), and the 

considerable amount of energy released when it burns or explodes (Astbury (2008)). 

This leads to consequences that are much more severe as compared to hydrocarbons. 

This is clearly shown by experiments carried out by Bjorkhaug (1988) in a wedge 

shaped vessel (Figure 2.5), which showed that the overpressures generated in 

combustion of a fuel-air mixture for various gases. It is obvious from that the 

overpressure generated from hydrogen explosion is about four times that of ethylene 

and almost eight times when compared with the other hydrocarbon fuels. On the other 

hand, hydrogen is also quite different from natural gas in certain other ways, some of 

which actually help to reduce the risk of using the gas. Hydrogen is much lighter than 

air and therefore, has very strong buoyancy that will quickly remove the gas in an 
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unconfined situation. However, any leakage of hydrogen in a confined space, such as 

parking garages and tunnels poses a significant hazard. Further, much lower energies 

are needed to ignite hydrogen and mitigation methods traditionally used for other fuels 

rarely work in case of hydrogen (Middha (2010)). The safety issue is further worsened 

by the wide detonability limits and the tendency of the flames to accelerate rapidly due 

to the very high laminar burning velocity of hydrogen (Masri et al. (2011)). Clearly, 

hydrogen has many characteristics that are significantly different from conventional 

gaseous fuels such as methane, propane, butane…etc. These must be accounted for 

before designing and installing any systems such as fuel cells, engines, etc. that will 

form a part and parcel of any future society that uses hydrogen as an energy carrier. 

These are described in some details below. 

 

 
Figure 2.5 Comparison of explosion pressure for various Stoichiometric fuel-air mixtures in a 

10 m wedge-shaped vessel, reproduced from Bjorkhaug (1988). 
 

 

2.4.1 Physical and Chemical Characteristics  
At atmospheric temperature and pressure, hydrogen is colourless, odourless, non-toxic 

and non-corrosive, which is physiologically not dangerous in principle. One of its most 

important and positive characteristics is its low density (it is the lightest of all elements). 
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It is positively buoyant above a temperature of (-251°C). Hydrogen gas has a very high 

diffusivity and a high buoyant velocity. Therefore, it mixes rapidly with ambient air 

upon release. As mentioned earlier, this is a favourable safety effect in unconfined and 

well-ventilated areas where it helps to reduce the possibility of forming a flammable 

mixture in the vicinity of a release. However, if leaks occur in (partially) confined or 

poorly ventilated spaces, the concentration of hydrogen can reach dangerous levels in 

higher regions, for example, underneath a roof. The risk of explosion can then be 

considerable if ignition sources are present. Hydrogen molecules have a small size, 

small molecular weight, and a low viscosity. As a result, hydrogen can permeate 

through materials and pass through smaller leak paths as compared to other gases. This 

increases the risk of the formation of a flammable gas cloud. Hydrogen gas does not 

have a flash point as it is already a gas at ambient conditions. Therefore, cryogenic 

hydrogen will flash at all temperatures above its boiling point of (-253°C). 

 

2.4.1.1 Ignition 
The auto-ignition temperature for hydrogen, which is the minimum temperature of a hot 

surface that can ignite a flammable mixture, is 520°C (Bjerketvedt et al. (1997)). Over 

the flammable range of hydrogen-air mixtures, the minimum ignition energy varies by 

almost three orders of magnitude and can be as low as 0.02 mJ (Cadwallader and 

Herring (1999)), a value that is an order of magnitude lower than that of hydrocarbon-

air mixtures. The minimum ignition energy for hydrogen-air mixtures occurs around 

stoichiometric composition (i.e. 30 % by volume for hydrogen). At lower flammability 

Limits, the ignition energy for hydrogen is similar to that of methane. In addition, many 

of the weak ignition sources such as electrical equipment sparks, electrostatic sparks or 

sparks from striking objects involve more energy than what is required to ignite a 

hydrogen-air mixture. 

 

Spontaneous ignition is much more commonly observed with hydrogen. There have 

been several explanation advocated to explain this effect. One of these is that hydrogen 

exhibits a positive “Joule-Thomson” effect at temperatures above (-80°C), i.e. the 

inversion temperature. This means that the temperature of hydrogen gas increases upon 

de-pressurisation, which in turn may lead to ignition. This makes hydrogen more 

vulnerable to ignition after sudden release from high pressure containment. Another 
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explanation is “diffusion ignition” whereby a shock wave from expansion of high-

pressure gas into air is postulated to cause local auto-ignition.  

 

2.4.2 Combustion Properties 
Hydrogen burns in a non-luminous, almost invisible pale blue, hot flame to form water 

vapour (and there is no release of CO2 or soot). A hydrogen fire is almost impossible to 

detect with the eye and there is very limited radiation due to the absence of soot. The 

low emissivity of a hydrogen flame reduces the heat transfer by radiation to objects near 

the flame. Thus, a hydrogen fire is potentially less dangerous than a CNG and LPG fire. 

 

The flammability range of hydrogen compared with other fuels as shown in Figure 2.6, 

is between (4 - 75 % volume) in air (Coward and Jones (1952)). In comparison, the 

flammability range of methane (CNG) is between (5.3 - 15 % volume) and propane 

(LPG) is between (2.2 – 9.6% volume). It should be mentioned that the flammability 

range increase with the increase in the initial temperature and pressure (Liu and Zhang 

(2014)). For the maximum flame temperature of a burning (premixed stoichiometric) 

hydrogen-air mixture is 2130 °C (Glassman (1987)).  

 

As will be discussed later in this chapter, the burning velocity of hydrogen in air at 

stoichiometric ambient conditions is around 2.0 m/s reaching a maximum of 

approximately 3 m/s at a concentration of 40.1 %, which would even increase to 11.75 

m/s in pure oxygen. In comparison, the value for natural gas is of the order of 0.4 m/s. 

These values are higher than the ones of hydrocarbon fuel-air mixtures due to the fast 

chemical kinetics and high diffusivity of hydrogen. This leads to consequences (upon 

ignition) that are much more severe compared to CNG and LPG. 

 

The detonability limits of hydrogen lie in the range of 18 % (as low as 11 % in some 

experiments) to 59 % of hydrogen concentration in air by volume. There is also a high 

sensitivity to a transition to detonation (DDT). Detonation can potentially cause a much 

severe damage as compared to an ordinary explosion (deflagration). A measure of the 

sensitivity of a mixture is the detonation cell size, where the severity increases as the 

cell size decrease. The detonation cell size for a stoichiometric hydrogen-air mixture is 

of the order of 10 - 15 mm. In comparison, the value for a methane-air mixture is as 
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large as 330 mm. Thus, from this brief description of hydrogen properties, it is clear that 

the use of hydrogen represents many potential hazards even if it does have some 

favourable properties such as high buoyancy, and hence establishing viable tools to 

carry out the required safety and risk analyses connected with the use of hydrogen 

becomes more and more urgent demand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 Flammability range of hydrogen compared with different fuels reproduced from 

Bjerketvedt et al. (1997). 
 

 

2.4.3 Laminar burning velocity  
The laminar burning velocity 𝑢𝑢𝐿𝐿  plays a vital role in determining the reactivity and 

subsequent overpressure generation for a given mixture. Laminar burning velocities for 
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hydrogen-air mixtures have been determined by several researchers (Iijima and Takeno 

(1986), Aung et al. (1997) and Bradley et al. (2007)). Figure 2.7 presents data taken 

from several measurements (Aung et al. (1997)). It is evident that, as we increase the 

equivalence ratio Φ, the laminar burning velocity increases until we reach a maximum 

value around (Φ = 1.7), then it starts to decrease (Iijima and Takeno (1986)). It can be 

seen that most of the measured values of un-stretched laminar burning velocities that 

have not been corrected for stretch are significantly larger than the stretch-corrected 

results. This behaviour is even more obvious at fuel-rich conditions where discrepancies 

can be as large as a factor of 2. This is due to much higher flame stretch (represented by 

large Markstein numbers) at these conditions.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Corrected and un-corrected measurements of laminar burning velocities as a function 
of equivalence ratio for hydrogen-air mixture at NTP (Aung et al. (1997)). 

 

 

However, in the present study, a lean fuel-air mixture is considered, so the value for the 

corrected and un-corrected (strained and un-strained) are almost the same (Aung et al. 
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(1997)) at normal temperature and pressure. It is worth to mention that, in contrast to 

other fuels (e.g. methane and propane) the laminar flame speed 𝑢𝑢𝑙𝑙  increases with 

pressure (Iijima and Takeno (1986)) and this actually worsen the situation more in case 

of an explosion. Also, the laminar flame speed 𝑢𝑢𝐿𝐿  increases as the unburned gas 

temperature increases as common hydrocarbon fuels (Iijima and Takeno (1986)). 

The laminar burning velocity for hydrogen is calculated using the expression of Iijima 

and Takeno (1986), which accounts for the effects of local pressure and temperature 
 

𝑢𝑢𝐿𝐿 =  𝑢𝑢𝐿𝐿𝑜𝑜 �1 + 𝛽𝛽1 log �
𝑃𝑃
𝑃𝑃𝑜𝑜
�� �

𝑇𝑇
𝑇𝑇𝑜𝑜
�
𝛼𝛼1

 (2.13) 

                                              

where 𝑢𝑢𝐿𝐿o is the is the laminar burning velocity at reference temperature and pressure, To 

and Po are reference temperature and pressure 298.15 K and 1.01 bar respectively, T is 

the un-burnt gas temperature, 𝛼𝛼1 and 𝛽𝛽1 are constants that depends on the equivalence 

ratio Φ and calculated from the following expressions of Iijima and Takeno (1986). 
 

𝛼𝛼1 = 1.54 + 0.026(Φ − 1) (2.14) 

𝛽𝛽1 = 0.43 + 0.003(Φ − 1) (2.15) 

 

Also, Molkov et al. (2006) used a comparable power law correlation to calculate 

laminar flame speed which is also found to be a function of pressure and temperature as 

follows: 
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𝜀𝜀

 (2.16) 

 

where mo is temperature index, no is baric index, ε = mo + no - mo/γu and it is usually in 

the range of 0.49-0.68 (HySafe (2007) and Babkin (2003)). However, it was 

demonstrated that an error of the approximation does not exceed 15%. Also, the 

dependence of burning velocity on hydrogen concentration was accounted for by using 

a linear function f (𝑌𝑌𝐻𝐻2), equal to 1 in the stoichiometric mixture (29.7% by volume of 

hydrogen) and 0 at the lower flammability limit (4% by volume of hydrogen): 𝑢𝑢𝑙𝑙𝑜𝑜 =

 𝑢𝑢𝑙𝑙𝑜𝑜(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ).𝑓𝑓 (𝑌𝑌𝐻𝐻2). 
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Also, Dahoe (2005) used the same power law expression as mentioned above in his 

model in order to determine the laminar flame speed, with the same pressure and 

temperature indices used by Iijima and Takeno (1986) and obtained an expression in the 

form of:   
 

𝑢𝑢𝑙𝑙 =  𝑢𝑢𝑙𝑙𝑜𝑜 �
𝑃𝑃
𝑃𝑃0
�
0.6

 (2.17) 

 

However, Dahoe (2005) showed that laminar burning velocity for rich mixtures fall 

within the scatter of data obtained within the scatter of data obtained by more advanced 

methods that take the influence of flame stretch into consideration. While for lean 

mixtures, the laminar burning velocity is consistently higher, but at the same time close 

enough to the ones obtained by more advanced methods. 

 

On the other hand the commonly used laminar burning velocity expression of 

Metghalchi and Keck (1980) and Metghalchi and Keck (1982) is used in this study for 

CNG and LPG, which accounts for the effects of local pressure and temperature, and is 

given as: 
 

𝑢𝑢𝐿𝐿 = 𝑢𝑢𝐿𝐿𝑜𝑜 �
𝑇𝑇𝑅𝑅
𝑇𝑇𝑜𝑜
�
𝛼𝛼1
�
𝑃𝑃
𝑃𝑃𝑜𝑜
�
𝛽𝛽1

 (2.18) 

                                             

where 𝑢𝑢𝐿𝐿𝑜𝑜  is the reference or un-strained laminar burning velocity, 𝑇𝑇𝑜𝑜  and 𝑃𝑃𝑜𝑜  are the 

reference temperature and pressure of 298.15 K and 1.01 bar respectively, 𝑇𝑇𝑅𝑅  is the 

reactant temperature, and 𝛼𝛼1, 𝛽𝛽1 are constants calculated from the following expressions 

of Metghalchi and Keck (1980) and Metghalchi and Keck (1982), and can be given as: 
 

𝛼𝛼1 = 2.18 − 0.8(𝜙𝜙 − 1.0) (2.19) 

𝛽𝛽1 = −0.16 + 0.22(𝜙𝜙 − 1.0) (2.20) 

                                   

2.4 Summary 
This chapter has described some fundamentals and features of turbulent premixed 

flames. A wide investigation of experimental and numerical studies, which employed 

similar forms of the combustion chamber employed in the present study, has been 

presented. Various regimes of turbulent premixed combustion have been discussed in 
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general and in the LES context. Several reaction rate modelling approaches suitable for 

RANS and LES were presented and discussed. A brief history and evolution of the 

flamelet models, employed in this study for mean chemical reaction rate was presented. 

Finally, a brief overview for the three fuels used in the present study   
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Chapter 3 

Large Eddy Simulation of Reacting Flows 

 
This chapter reviews the modelling of turbulent flows by applying the large eddy 

simulation technique (LES) and discusses the main issues that have to be considered 

before implementation. Some fundamentals such as, spatial filtering technique, 

mathematical description of filters and decomposition of velocity components are 

briefly explained. The governing equations along with the Favre averaging and the 

unclosed terms are discussed. Hence, various models and methodologies available to 

close the sub-grid scale momentum fluxes and the choice of model considered in the 

present simulations are discussed. Finally, simple and widely used gradient transport 

model is used to account for the sub-grid scale turbulent fluxes in filtered energy and 

reaction progress variable equations also discussed.  

 

3.1 Background 
Large eddy simulations (LES) is an extremely powerful and highly reliable modelling 

technique and has been proved to be so for the last couple of decades, following the 

pioneering work of Smagorinsky (1963) and the first successful application to turbulent 

channel flows by Deardorff (1970). Since then, LES has been intensely used to develop 

underlined theories and to understand various flow problems ranging from simple to 

complex flow configurations such as fluid flow over bodies, turbulence-transition 

modelling, forecasting weather conditions, understanding the aerodynamics of vehicles, 

and combustion dynamics…etc. LES is basically a numerical technique, which 

separates large eddies from small eddies by the application of a low-pass filtering 

technique (i.e. it filters out the scales associated with high frequencies). In most 

turbulent flows, large eddies above certain cut-off scale are expected to be responsible 

for most of the transportation of mass, momentum and energy. However, the smaller 

eddies formed due to the interactions of these large eddies are generally expected to be 

isotropic in nature and eventually die out in due course, while dissipating energy 

fluctuations, which slightly affect the mean characteristics of the flow. This unique 

observation yields to resolve the separated large eddies explicitly and to model small 
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eddies/scales that are smaller than a chosen filter width by using a suitable sub-grid 

scale (SGS) model. 

 

Numerical modelling of turbulent flows, usually involves defining the flow properties in 

terms of mean and fluctuations, corresponding to the instantaneous values associated 

with turbulence. The way these quantities are predicted or calculated will in general 

calibrate the accuracy of numerical approaches. LES lies between DNS, in which the 

whole of the turbulence spectrum is resolved, and RANS, where equations are solved in 

combination with a turbulence model to give a solution for the time-averaged flow-field. 

DNS is able to predict instantaneous and statistical flow information by resolving all 

flow scales ranging from the integral to Kolmogorov and provides a high degree of 

accuracy. However, DNS requires high computational resources and is restricted to 

simulate simple, low-Reynolds number flows. The use of the DNS technique is 

currently very limited to model development and will remain challenging in the 

foreseeable future to simulate real complex flow situations.  

 

On the other hand, RANS requires only modest resources, where all flow scales are 

modelled and has been applied to a wide range of flow configurations with varying 

degrees of success. The accuracy of a RANS simulation depends on how well the model 

predicts the flow and generally model parameters must be ‘tuned’ in order to achieve 

acceptable accuracy. Modelling the whole spectrum of flow turbulence scales poses a 

great difficulty, which eventually led to develop the concept of LES. In LES, the large 

scales explicitly resolved are in fact equal to that of DNS large scales and gives both 

instantaneous and statistical information of the flow, while the effect of small scales are 

modelled. Since, only the sub-grid, dissipative scales, which are usually expected to be 

universal and homogeneous are modelled, the accuracy of the LES solution is less 

dependent on the accuracy of the model. Hence, LES demands greater computational 

resources than RANS, as it involves the resolving of large eddies. 

 

Despite the advancements in available computational resources, key challenges 

remained in LES are sub-grid scale turbulence modelling and the scale separation. SGS 

or unresolved turbulence modelling in LES has matured to a greater level and usually 

modelled by the classical eddy viscosity model of Smagorinsky (1963). Smagorinsky 
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model has been widely used in many interesting works in early stages of LES (Lilly 

(1966), Deardorff (1970), Schumann (1975), Moin et al. (1978), and Moin and Kim 

(1982)) and continuing to be used with much remarkable advancements (Kirkpatrick et 

al. (2003) and Malalasekera et al. (2013)). Some other models are also available to 

account for SGS turbulence, like the model proposed by Yakhot and Orszag (1986) and 

Yakhot and Orszag (1987) based on the re-normalisation theory. 

 

The classical Smagorinsky eddy viscosity model though widely used by turbulence 

modellers, however, it is found to fail for various reasons. The Smagorinsky model 

failed to predict the energy backscatter to the resolved scales and found to have 

improper asymptotic behaviour for the Smagorinsky model coefficient. These failures 

have been fixed by the development of the dynamic procedure (Germano et al. (1991)) 

to calculate the Smagorinsky model coefficient using local instantaneous flow 

conditions. The procedure typically involves the application of a test filter to the 

velocity field to extract information from the resolved scales based on scale similarity 

ideas of Bardina et al. (1980), which are then used to calculate the coefficient. Later on, 

Ghosal et al. (1995) and Piomelli and Liu (1995) extended this method using a localized 

dynamic procedure to calculate the model coefficient. Moin et al. (1991) had extended 

the Germano dynamic procedure for compressible flows, which has been found to be 

successful in predicting model coefficient and energy backscatter, and is used in the 

current work.  

 

The second challenge posed by LES, is in separating the large scales from the small 

ones. This can be achieved by separating the scales in the exact solution by defining a 

cut-off length based on (Ferziger (1977) and Rogallo and Moin (1984)) in spectral space 

or applying a spatial filter of Leonard (1979) in physical space. The scales that are of a 

characteristic size greater than the chosen cut-off length are called large or resolved 

scales, and others are called small or sub-grid scales (SGS). But defining the cut-off 

length and the scale-separation mathematical operator are very difficult tasks in LES. 

The difficulty comes from the fact that many parameters contribute to the definition of 

the effective scale-separation operator. Moreover, Debliquy et al. (2004) used a novel 

sampling technique, replacing the traditional filtering in LES by sampling operators, 

which is not yet very popular, but seems to be promising in avoiding numerical errors. 
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However, in the context of LES for reacting flows, the governing equations are 

presented in the next section, so they can be easily dealt with in the later sections.    

 

3.2 Conservation Equations  
Governing equations of fluid flows can be derived by considering an infinitesimal 

control volume fixed in space and applying the conservation laws of physics. The 

derivation of equations can be found in many text books (e.g. Turns (2011) and Kuo 

(2005)) and are not considered here. The governing equations shown in the following 

sections are derived for a Cartesian coordinate system by considering the following 

assumptions. The use of these assumptions tends to reduce the complexity of the 

problem under investigation.  

 Low Mach number  

 Soret and Dufour effects are neglected  

 Newtonian fluid  

 Negligible bulk viscosity from Stokes hypothesis  

 Ideal gases  

 Fully premixed reactants with one-step irreversible chemistry  

 

3.2.1 Conservation of Mass  
Conservation of mass must satisfy the condition that, neither creation, nor destruction of 

the mass within the control volume is possible. Here, the total mass conservation 

equation is unchanged compared to non-reacting flows as combustion does not generate 

mass. Using of this principle with convective transportation of mass across the control 

surface, will leads to the continuity equation: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   +   

𝜕𝜕�𝜌𝜌𝑢𝑢𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

= 0 (3.1) 

 

where 𝜌𝜌  is fluid density and uj is the velocity in xj-direction. Equation (3.1) is for 

unsteady, compressible and three-dimensional mass conservation, which can be 

simplified according to the problem. 
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3.2.2 Conservation of Momentum  
Conservation of momentum is based on Newton‘s second law, which states that the rate 

of change of momentum of a fluid particle equals the sum of the forces on the particle 

and can be expressed by Navier-Stokes equation: 
 

𝜕𝜕𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝜕𝜕 + 

𝜕𝜕�𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

=  −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

+ 
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�2𝜇𝜇 �𝑆𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�� + 𝐵𝐵𝑖𝑖 (3.2) 

 

where P is the static pressure, 𝜇𝜇 is the dynamic viscosity, 𝑆𝑆𝑖𝑖𝑖𝑖 is the strain rate, 𝛿𝛿𝑖𝑖𝑖𝑖 is the 

Kronecker delta and 𝐵𝐵𝑖𝑖 is other body forces such as gravity, centrifugal and Coriolis 

forces acting on the fluid. The strain rate can be express as: 
 

𝑆𝑆𝑖𝑖𝑖𝑖 =  
1
2�

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� (3.3) 

 

It is important to mention that the momentum equation given in (3.2) is balancing 

various forces in the fluid flow. Although this equation does not have explicit reaction 

rate term, the flow is modified by combustion, as the dynamic viscosity 𝜇𝜇  strongly 

changes because temperature varies in a ratio from 1:8 or 1:10 (Poinsot and Veynante 

(2012)). Also, density changes in the same ratio and dilatation through the flame front 

increases all speeds by the same ratio. Subsequently, the local Reynolds number varies 

much more than in non-reacting flow, despite the fact that the momentum equations are 

the same with and without combustion. Hence, the whole treatment of the governing 

equations is different and more details will be discussed later. 

 

3.2.3 Conservation of Energy  
Conservation of energy can be derived from the first law of thermodynamics and 

usually used to evaluate the temperature T and enthalpy h for a chemical reacting flow. 

Many forms of this equation exist, having static temperature, specific enthalpy, 

stagnation enthalpy or internal enthalpy as the principal variable. However, Cant and 

Mastorakos (2008) mentioned that, in turbulent combustion with low Mach number, it 

is easier to use the energy equation in terms of specific enthalpy as follows: 
 

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌𝜌𝑢𝑢𝑗𝑗ℎ�
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 2𝜇𝜇 �𝑆𝑆𝑖𝑖𝑖𝑖 −

1
3 𝛿𝛿ij

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� :
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕ℎ
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝑞̇𝑞𝑐𝑐 (3.4) 

 



Chapter 3: Large Eddy Simulation of Reacting Flows 
 
 

48 
 

where Pr is the mixture Prandtl number and 𝑞̇𝑞𝑐𝑐  is the chemical source term. In the 

previous equation, the first three terms on the right hand side are contributions due to 

pressure work, viscous dissipation and flow dilation. Thermal dissipation is written in 

terms of the fluid viscosity and Prandtl number. The last term in the RHS of equation 

(4.4) is the chemical source term 𝑞̇𝑞𝑐𝑐, which represents the enthalpy added to or removed 

from the fluid as a result of chemical reaction and is given as:  
 

𝑞̇𝑞𝑐𝑐 =  ∆ ℎ𝑓𝑓° 𝜔̇𝜔𝑐𝑐𝑌𝑌𝑓𝑓𝑓𝑓°  (3.5) 

 

where ℎ𝑓𝑓°  is the lower heating value, 𝑌𝑌𝑓𝑓𝑓𝑓°  is the fuel mass fraction in unburned mixture 

and 𝜔̇𝜔𝑐𝑐 is the chemical reaction rate.   

 

3.2.4 The Reaction Progress Variable Equation  
In premixed flames, the chemical status of the mixture can be typically addressed by 

assuming a single step irreversible reaction between reactants and products, and a 

progress variable c, defined such that it is zero where the mixture is unburned and unity 

where it is fully burned. Mathematically reaction progress variable is defined as: 
 

𝑐𝑐 = 1 −  
𝑌𝑌𝑓𝑓𝑓𝑓
𝑌𝑌𝑓𝑓𝑓𝑓°

 (3.6) 

 

where 𝑌𝑌𝑓𝑓𝑓𝑓 is the local fuel mass fraction. The transportation equation for the reaction 

progress variable which balances production and destruction of the chemical reaction 

can be written as: 
 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌𝜌𝑢𝑢𝑗𝑗𝑐𝑐�
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇𝜇
𝑆𝑆𝑆𝑆

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝜔̇𝜔𝑐𝑐 (3.7) 

 

where Sc is the Schmidt number and 𝜔̇𝜔𝑐𝑐 is the mean chemical reaction rate, which is 

required to be modelled. Modelling reaction rate in turbulent premixed flames is highly 

challenging due to its non-linear relation with chemical and thermodynamic states.  

 

3.2.5 The Equation of State  
As a reasonable simplification, many thermodynamic problems assume a chemical and 

thermodynamic equilibrium state to derive the gas properties from the ideal gas state 
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equation. The state equation used to close the system of equations described in previous 

sections and relate pressure, temperature, density as: 
 

𝑃𝑃 = 𝜌𝜌𝜌𝜌𝜌𝜌 (3.8) 
 

where P is the temperature, 𝜌𝜌 is the density, R is the gas constant, defined as Ru/M, Ru 

is universal gas constant and M is the molecular weight of the gas, and T is the 

temperature. 

 
3.2 Spatial Filtering Functions 
Scales are filtered either in physical space or spectral space by applying a scale high-

pass filter, i.e. low-pass in frequency, to the exact solution. The sub-grid scale 

fluctuations below chosen cut-off scale are modelled by assuming isotropic. In LES a 

spatial filtering operations must be defined by means of 𝐺𝐺 (𝑥𝑥, 𝑥𝑥′,∆� ) (Versteeg and 

Malalasekera (2007)). 
 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡) =  � � � 𝐺𝐺(𝑥𝑥,𝑥𝑥′,∆�) 𝜙𝜙 (𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑥𝑥′
∞

−∞

∞

−∞

∞

−∞

𝑑𝑑𝑦𝑦′𝑑𝑑𝑧𝑧′ (3.9) 

 

In the above equation, G is a filter function, which is associated with the cut-off length 

∆�  in space, generally taken in between Kolmogorov and integral length scales. Eddies 

of size larger than ∆�  are classified as large eddies, while those smaller than ∆�  are 

classified as small eddies which need to be modelled. Selection of the correct spatial 

filter in equation (3.9) is very important in LES as it must commute with differentiation, 

once filtered Navier-Stokes equation are developed for the flow field. The most 

commonly used filter functions are the cut-off filter, the Gaussian filter and the box 

filter (Figure 3.1). 

 

Cut-Off filter: is applied on spectral space by using Fourier series to describe the flow 

variables and generally known as ideal low-pass filter, in which flow contributions 

greater than cut-off wave number kc are removed without affecting the contributions of 

small wave numbers. This filter reduces the number of degrees of freedom and also 

known as - projective filter (Carati and Wray (2000)), which is defined as: 
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𝐺𝐺 (𝑥𝑥, 𝑥𝑥′,∆�) =  
sin�𝑘𝑘𝑐𝑐(𝑥𝑥 − 𝑥𝑥′)�
𝑘𝑘𝑐𝑐(𝑥𝑥 − 𝑥𝑥′)  (3.10) 

 

𝐺𝐺 (𝑘𝑘) =   �
1     𝑖𝑖𝑖𝑖 |𝑘𝑘|  ≤  𝑘𝑘𝑐𝑐 =  𝜋𝜋/∆�

 
 

0                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3.11) 

 

Gaussian filter: is generally applied in physical space, and it is widely used for 

homogeneous and inhomogeneous turbulence in the direction of homogeneity, often 

with separate cut-off scales in each direction. This filter simply transforms turbulent 

field ui into a new field 𝑣𝑣𝑖𝑖 and reduces the noise. Hence, called “smooth filter” and is 

defined as: 
 

𝐺𝐺 (𝑥𝑥, 𝑥𝑥′,∆�) =  �
6
𝜋𝜋∆�2

�
3/2

exp�
−6 |𝑥𝑥 − 𝑥𝑥′|2

∆�2
� (3.12) 

 

Box or Top-Hat filter: is the other most commonly used implicit spatial filter applied 

in physical space, with a characteristic cut-off scale of ∆�, generally defined in terms of 

grid spacing. Since this filter wipes out the small scales by filtering operation, this is 

also considered as a smooth filter and typically defined as: 
 

𝐺𝐺 (𝑥𝑥, 𝑥𝑥′,∆�) =  

⎩
⎪
⎨

⎪
⎧ 1
∆�3

     𝑖𝑖𝑖𝑖 |𝑥𝑥 − 𝑥𝑥′|  ≤  
∆�
2 

 
0               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3.13) 

 

The top-hat filter is adopted in the present work, as it naturally fits into the finite 

volume discretization. The filtered governing equations in finite volume format can be 

simply rewritten by the application of equivalent box filter width of: 
 

∆� =  2 (∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧)
1
3 (3.14) 

 

where Δx, Δy and Δz denotes the width of a computational cell in the three co-ordinates.  
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Figure 3.1 Spatial filters used in large eddy simulations. (a) Cut-Off filter (b) Gaussian filter (c) 

Box filter  
 

 

Accuracy of LES simulations depends on many factors and filter width is one of the 

most important. Choice of the filter width is critical to resolve the appropriate amount of 

energy in the computational domain. For instance, Figure 3.2 illustrates the use of two 

different filter widths in obtaining the filtered velocity. It is clear that the use of larger 

filter width has resulted in a smoother curve compared to that of smaller filter width. 

However, using a large filter width may save computational time, but on the same time 

will led to the loss information. In a conceptual study, Pope (2004) hypothesises that the 

solution may reach an intermediate asymptote when the filter width lies within the 

inertial sub-range. However, using a box filter (3.6) simplifies the difficulty of choosing 

appropriate cut-off scales, yet associated with grid resolution employed. 

 
 

(a)                                                                                     (b) 

                             (c) 
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Figure 3.2 The filtered function u~ obtained by applying a box filter. Upper: small filter width, 
Lower: large filter width (Fröhlich and Rodi (2002)). 

 

 

In general, the above filters can be classified into two categories, either implicit or 

explicit filters. Both filtering approaches have their own advantages and disadvantages. 

However, most of the LES simulations reported so far have been carried out using 

implicit filtering technique (e.g. Schumann (1989), Masri et al. (2006), and Gubba et al. 

(2011)…etc.), due to its simplicity and ability to work well into discretization schemes. 

Another advantage is that the definition of discrete unknown amounts to an implicit 

filtering i.e. any scales smaller than the grid are automatically discarded. This facilitates 

the implicit filter to fit naturally in the numerical discretization and the notations looks 

similar to that of RANS technique. 

 

Contrary to the implicit filtering, one can change filter width and grid size 

independently while using explicit filtering. This explicit filtering has recently been 

promoted by several authors such as Moin and Kim (1997), Chow and Moin (2003), 

and Klein (2005), since it considerably reduces numerical discretization errors and there 

is a possibility to achieve a grid independent LES solution. On the other hand, it 

increases the modelling demands, since for the same number of grid points, more scales 

𝑢𝑢 
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of turbulent motion have to be modelled and it is not yet completely clear, which 

approach is more advantageous (Lund and Kaltenbach (1995)). 

 

3.3 Favre Filtering (Averaging) 
In turbulent flows, the flow consists of random fluctuations of the various flow 

properties such as density, temperature, velocities etc. As explained in earlier, in case of 

reacting flows, density is subjected to fluctuations due to heat release (Figure 3.3). In 

order to account for these fluctuations some sort of statistical averaging is required, 

where all quantities are expressed as the sum of mean and fluctuating parts. 

Conventional Reynolds-averaging or time averaging (Figure 3.4) will only consider 

velocity and pressure fluctuations in the fluid flow. This is appropriate for steady 

turbulence i.e. a turbulent flow that, on the average does not vary with time. Using 

Reynolds averaging in an unsteady, reacting problems leads to several complexities, 

which eventually involve the explicit modelling of velocity-density correlation due to 

high fluctuations, which is not recommended (Gubba (2009)). 

 
 

 

 

 

 

 
 

Figure 3.3 Temporal fluctuations and time-average in a statistically non-stationary process 
(Warnatz et al. (2006)). 

 

 
 
 
  
 

 
 
 
 
 

Figure 3.4 Temporal fluctuations and time-average in a statistically stationary process (Warnatz 
et al. (2006)). 
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Alternatively, Favre averaging or mass weighted averaging accounts for density and 

temperature fluctuations in addition to velocity and pressure fluctuations, when the 

medium is a compressible fluid. In Favre averaging, all the instantaneous values of 

velocity and scalars, except for pressure and density are decomposed into steady and 

fluctuating part as: 
 

𝜙𝜙 =  𝜙𝜙� +  𝜙𝜙" (3.15) 
 

where 𝜙𝜙 is generic flow property, 𝜙𝜙� is mass-weighted mean, defined as 𝜙𝜙� =  𝜌𝜌𝜌𝜌����/𝜌̅𝜌 and 

𝜙𝜙" is superimposed fluctuations. Favre mean is denoted by a tilde while the fluctuation 

about the Favre mean is given by double prime. Additionally, 𝜌𝜌𝑢𝑢i"������ = 0, 𝜌𝜌𝜌𝜌"����� = 0 and 

while 𝜙𝜙"��� ≠ 0 and 𝑢𝑢i"���� ≠ 0. Insertion of this decomposition into the governing equations 

with subsequent ensemble averaging, results in Favre averaged equations for the mean 

flow quantities as shown in next section. 

 

3.3.1 Filtered Governing Equations  
As described in the previous section, turbulent reacting flows are associated with large 

density variations, which must be properly considered. Jones (1993) argued that, 

considering these sub-grid density fluctuations in filtered conservation equations seems 

to be possible by the application of Favre-filtering. A Favre or mass-weighted spatial 

filter in LES is shown in equation (3.16) and similar to equation (3.9). Application of 

equation (3.16) to the conservation equations yields Favre-filtered conservation 

equations, as follows: 
 

𝜌̅𝜌𝜙𝜙�(𝑥𝑥, 𝑡𝑡) =  � � � 𝜌𝜌𝜌𝜌(𝑥𝑥,𝑥𝑥′,∆�) 𝜙𝜙 (𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑥𝑥′
∞

−∞

∞

−∞

∞

−∞

 
(3.16) 

 
 

Favre-filtered continuity equation:  
 

𝜕𝜕𝜌̅𝜌
𝜕𝜕𝜕𝜕   +   

𝜕𝜕�𝜌𝜌𝑢𝑢�𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

 = 0 (3.17) 

 

Favre-filtered momentum equation:  
 

𝜕𝜕(𝜌̅𝜌𝑢𝑢�𝑖𝑖)
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝜌̅𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖)
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�2𝜇̅𝜇 �𝑆𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘�� + 𝐵𝐵�𝑖𝑖  −  

𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
 (3.18) 
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where the filtered strain rate tensor (𝑆̃𝑆𝑖𝑖𝑖𝑖) is defined as: 
 

𝑆𝑆𝑖𝑖𝑖𝑖 =  
1
2�

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� (3.19) 

 

The filtered momentum equation yields an unclosed term, 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  due to the 

decomposition of nonlinear convective terms, which must be closed using models 

available from simple linear eddy viscosity based to complex second moment closures, 

where transport equations are solved (Gubba (2009)). In LES, the term 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 is 

generally referred to as residual stress and represents the impact of the unresolved 

velocity components on the resolved ones. Mathematically these terms arises from the 

non-linearity of the convection term which does not commute with the linear filtering 

operation. In the present work, this term is modelled by widely used, classical 

Smagorinsky turbulence model based on linear eddy viscosity. 
 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌̅𝜌𝑢𝑢i"𝑢𝑢j"������� =  𝜌̅𝜌�𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥� −  𝑢𝑢�𝑖𝑖𝑢𝑢� j� (3.20) 
 

• Favre-filtered energy equation:  
 

𝜕𝜕�𝜌̅𝜌ℎ��
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌̅𝜌𝑢𝑢�𝑗𝑗ℎ��
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕�𝜌̅𝜌𝑢𝑢j"ℎ"��������

𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕𝑃𝑃�
𝜕𝜕𝜕𝜕 + 2𝜇̅𝜇 �𝑆𝑆𝑖𝑖𝑖𝑖 −  

1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘� :

𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇̅𝜇
𝑃𝑃𝑃𝑃

𝜕𝜕ℎ�
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝑞̇𝑞�𝑐𝑐 

(3.21) 

 

The above equation needs to be closed for SGS scalar fluxes and filtered energy source 

term. Modelling the scalar fluxes is quite difficult as compared to the momentum fluxes, 

since they are of dissipative nature (Gubba (2009)). Also, the SGS residual stresses 

shown in equation (3.20) are assumed to be isotropic; however, SGS scalar fluxes are 

anisotropic in nature and involve sharp variations due to large density variations. 

 

• Favre-filtered reaction progress variable equation:  
 

𝜕𝜕𝜌̅𝜌𝑐̃𝑐
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜌̅𝜌𝑢𝑢�𝑗𝑗𝑐̃𝑐�
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕�𝜌𝜌𝑢𝑢j"𝑐𝑐"���������

𝜕𝜕𝑥𝑥𝑗𝑗
=

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜇̅𝜇
𝑆𝑆𝑆𝑆

𝜕𝜕𝑐̃𝑐
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝜔̇𝜔�𝑐𝑐 (3.22) 

The above Favre-filtered reaction progress variable equation yields two unclosed terms. 

The last term on the LHS of equation (3.22) is due to the scalar fluxes, similar to that of 

momentum equation, which can be usually decomposed as (𝑢𝑢j"𝑐𝑐"������ =  𝑢𝑢j𝑐𝑐� −  𝑢𝑢�𝑗𝑗𝑐̃𝑐). This 
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term is usually modelled based on the gradient diffusion and turbulent eddy viscosity 

hypothesis. The second term on the RHS of equation (3.22) is the filtered reaction rate 

𝜔̇𝜔�𝑐𝑐, which represents the SGS mean reaction rate. Since the turbulent flame thickness is 

thinner than the LES grid, most of the turbulent combustion is sub-grid phenomenon, 

hence, must be accounted for appropriately.  

 

3.4 Modelling of SGS Residual Stresses 
Modelling of the SGS residual stress 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 has gained great deal of attention by 

turbulence modellers and a large collection of SGS models are available in literature. 

The primary concern of any SGS model is to account for the local and instantaneous 

momentum transportation effects of small scales on large scales and vice versa 

(generally known as energy back-scatter in certain flows). However, it may not be 

always necessary for the SGS models to simulate the detailed interaction between 

resolved and small scales, but necessary to expect the correct representation of energy at 

the correct location (Gubba (2009)). A few important modelling approaches are briefly 

discussed in the following sections. 

 

3.4.1 Residual Stress Decomposition 
It is clear from equation (3.18) that the sub-grid stress 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 resulted due to the 

commutation of Favre filtering on convective term of momentum equation, which must 

be closed by modelling as a function of known resolved values. Ferziger (1982) 

identified that the models developed following Leonard decomposition of velocity field 

into mean and fluctuating quantities, are effective and efficient in accounting sub-grid 

scale effects. Hence, velocity component in i-direction can be decomposed as: 
 

𝑢𝑢𝑖𝑖  =   𝑢𝑢�𝑖𝑖  +   𝑢𝑢𝑖𝑖′ (3.23) 
 

where 𝑢𝑢𝑖𝑖′is the sub-grid scale component of 𝑢𝑢𝑖𝑖 . Following the above, decomposition of 

the 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 yields: 
 

𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗  +  𝑢𝑢𝑖𝑖′𝑢𝑢�𝑗𝑗  +  𝑢𝑢�𝑖𝑖𝑢𝑢𝑗𝑗′  +  𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′ (3.24) 
 

Rearranging the above equation as: 
 

𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗  +  𝐿𝐿𝑖𝑖𝑖𝑖  +  𝐶𝐶𝑖𝑖𝑖𝑖  +  𝑅𝑅𝑖𝑖𝑖𝑖  (3.25) 
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where: 
 

𝐿𝐿𝑖𝑖𝑖𝑖 =  𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 ,𝐶𝐶𝑖𝑖𝑖𝑖 =  𝑢𝑢𝑖𝑖′𝑢𝑢�𝑗𝑗 +  𝑢𝑢�𝑖𝑖𝑢𝑢𝑗𝑗′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑖𝑖𝑖𝑖 =  𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′ (3.26) 
 

where equation (3.20) can be written as: 
 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌̅𝜌(𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥� −  𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗) =  𝜌̅𝜌 (𝐿𝐿𝑖𝑖𝑖𝑖  +  𝐶𝐶𝑖𝑖𝑖𝑖  +  𝑅𝑅𝑖𝑖𝑖𝑖) (3.27) 

 

In the previous equation, Lij is the Leonard stresses, Cij is the cross-stresses and Rij is 

the sub-grid scale Reynolds stresses. The Leonard stresses Lij are due to the effects at 

resolved scales. The cross-stresses Cij are due to the interactions between the sub-grid 

scale eddies and the resolved scales. Finally, the sub-grid scale Reynolds stresses Rij are 

caused by convective momentum transfer due to interactions of sub-grid scale eddies 

(Versteeg and Malalasekera (2007)). These stresses are modelled with the so-called sub-

grid scale turbulence models.  

 

Several methods have been used to model the above stress terms, based on either 

explicit or implicit filtered resolved values, for instance, Smagorinsky (1963), Lilly 

(1966), Deardorff (1970), Schumann (1975) and Bardina et al. (1980). Among the 

available, representation of these turbulent stresses through the use of simplified linear 

models based on the eddy viscosity approach are well known and widely used. The 

classical model of this category introduced by Smagorinsky (1963), is the most famous 

and subject to many developments later on. Also, the introduction of the dynamic 

modelling concept by Germano et al. (1991) has encouraged the progress in the sub-grid 

scale modelling. In dynamic modelling, model coefficients are determined as the 

calculation progresses, based on the energy contents of the smallest resolved scales 

rather than input a priori as standard Smagorinsky model.  

 

3.4.2 The Smagorinsky Model  
Representation of the turbulent stresses using scalar eddy viscosity is a well-known 

approach since its introduction by Boussinesq (1877). Smagorinsky (1963) was the first 

to propose a similar model to Boussinesq for turbulent stresses in LES, which is still 

widely employed in turbulence modelling. Smagorinsky model assumes that the 

anisotropic part of the residual stress tensor is inline and proportional to the anisotropic 

part of the resolved strain tensor, while the normal stresses are isotropic. This model 
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assumes that the scales in unresolved turbulence are approximately in equilibrium with 

energy cascaded down from the large scales (Gubba (2009)).  

 

Accordingly, the SGS stress tensor 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 can be modelled as: 

 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 −  

1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝜏𝜏𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 = 2 𝜇̅𝜇𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆̃𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘  ) (3.28) 

 

where is the 𝜇̅𝜇𝑆𝑆𝑆𝑆𝑆𝑆  eddy viscosity, which can be expressed as a function of the filter 

width and the strain rate as:  
 

𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 =  𝜌̅𝜌𝐶𝐶∆�2�𝑆𝑆� (3.29) 
 

where �𝑆̃𝑆� = �2𝑆̃𝑆𝑖𝑖𝑖𝑖𝑆̃𝑆𝑖𝑖𝑖𝑖  and C is a dimensionless coefficient and often used to be 

specified in classical models as the Smagorinsky coefficient (𝐶𝐶𝑠𝑠 =  √𝐶𝐶). The isotropic 

part of the SGS stress tensor in equation (3.28), is modelled using the relation of 

Yoshizawa (1986) as: 
 

 

𝜏𝜏𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 =  2𝜌̅𝜌𝐶𝐶𝐼𝐼∆�2�𝑆𝑆�

2 (3.30) 
 

where, 𝐶𝐶𝐼𝐼 is the model coefficient and usually expected to be around (0.01).  

 

The classical Smagorinsky model is quite simple and widely used, despite certain 

disadvantages. One of the major drawbacks is a prior requirement to specify the model 

coefficient, although it is dependent on local flow conditions. For instance, Lilly (1966) 

suggested a value of 𝐶𝐶𝑠𝑠 ≈ 0.23 for homogeneous isotropic turbulence, Deardorff (1970) 

used a value of (0.1) in turbulent channel flow simulations, whereas for the same flows 

Piomelli et al. (1988) found 0.0065 as an optimal value. Rogallo and Moin (1984) and 

Germano et al. (1991) identified that 𝐶𝐶𝑠𝑠 value are in the ranges 0.1 and 0.25 for results 

through different grids and filter functions and there is no clear agreement on how it 

influences or depends on the flow.  

 

Secondly, the model does not predict correct asymptotic behaviour near a wall and 

requires ad-hoc treatment. Simulations of transitional wall boundary flows show that the 

model over-damps the flow, leading to incorrect prediction of growth rates of initial 
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disturbance. Due to the dissipative nature of the model, Piomelli et al. (1990) identified 

that the model over predicts dissipation by 35% in laminar channel flows. Also, 

Piomelli et al. (1990) has identified that it fails to predict the energy transfer from small 

to large scales, which is generally known as energy back-scatter and important in 

certain flows. Finally, the model does not vanish in a fully resolved “laminar” flow 

although 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥� = 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 .  

 

Hence, to overcome these drawbacks, several researchers employed ad-hoc procedures 

(Ferziger (1993), Fureby et al. (1997) and Fureby (1998)) to calculate the appropriate 

model coefficient and found to achieve good confidence in using Smagorinsky model. 

Motivated by its simplicity, Germano et al. (1991) developed a dynamic procedure to 

calculate the model coefficient using local instantaneous flow conditions. This 

procedure was found to be a great success in predicting the correct model coefficient 

and extended to compressible flows by Moin et al. (1991). 

 

3.4.3 The Dynamic SGS Flow Model  
For the limitations in the Smagorinsky model described in the above section, Germano 

et al. (1991) proposed the dynamic procedure to calculate 𝐶𝐶𝑠𝑠  based on local flow 

conditions and similarity ideas of Bardina et al. (1980). Later, Moin et al. (1991) 

extended this procedure for compressible flows, which is used in the present simulations 

to calculate the model coefficient. The basic idea of the dynamic procedure is in using 

information from the smallest resolved scales to model the sub-grid scales effects. In 

order to obtain information from the smallest resolved scales, a test filter, is generally 

represented by ∆��, which is greater than the grid filter ∆� , and is applied to velocity field. 

Application of the test filter to the filtered Navier-Stokes equations results in sub-test-

scale stress tensor analogous to sub-grid-scale stress tensor.  
 

𝑇𝑇𝑖𝑖𝑖𝑖 =  𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�� −  𝑢𝑢�𝚤𝚤�𝑢𝑢�𝚥𝚥�  (3.31) 
 

Applying the test filter to the equation (3.23) and rearranging will result in the resolved 

turbulent stress as: 
 

ℒ𝑖𝑖𝑖𝑖 =  𝑢𝑢�𝚤𝚤𝑢𝑢�𝚥𝚥� −  𝑢𝑢�𝚤𝚤�𝑢𝑢�𝚥𝚥�  (3.32) 
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The resolved turbulent stresses also known as Leonard stresses, which represent the 

influence of the Reynolds stresses by scales whose length is intermediate between the 

test and grid filter width. Identifying the relation between equations (3.27), (3.31) and 

(3.32) and rearranging will result in what is called Germano identity: 
 

ℒ𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑖𝑖𝑖𝑖 −  𝜏̂𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 (3.33) 

 

The Germano identity in the above equation (3.33) can be used to compute, explicitly, 

the sub-grid scale stresses at the test and grid levels, Tij and 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠. 

 

𝑇𝑇𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑇𝑇𝑘𝑘𝑘𝑘 = − 2𝜌̅𝜌𝐶𝐶∆2 �𝑆̂𝑆� �𝑆̂𝑆𝑖𝑖𝑖𝑖 −  

1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆̂𝑆𝑘𝑘𝑘𝑘� =  −𝐶𝐶𝛼𝛼𝑖𝑖𝑖𝑖 (3.34) 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 −  

1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝜏𝜏𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠 = − 2𝜌̅𝜌𝐶𝐶∆�2�𝑆𝑆� �𝑆𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘� =  −𝐶𝐶𝛽𝛽𝑖𝑖𝑖𝑖 (3.35) 

 

where the traceless tensors αij and βij are: 
 

𝛼𝛼𝑖𝑖𝑖𝑖 = − 2𝜌̅𝜌𝐶𝐶∆2 �𝑆̂𝑆� �𝑆̂𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆̂𝑆𝑘𝑘𝑘𝑘� (3.36) 

𝛽𝛽𝑖𝑖𝑖𝑖  = − 2𝜌̅𝜌𝐶𝐶∆�2�𝑆𝑆� �𝑆𝑆𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖𝑆𝑆𝑘𝑘𝑘𝑘� (3.37) 

 

Substituting equations (3.34) & (3.35) in the anisotropic part of equation (3.33) gives: 
 

ℒ𝑖𝑖𝑖𝑖𝑎𝑎 = 𝐶𝐶 �𝛽̂𝛽𝑖𝑖𝑖𝑖 −  𝛼𝛼𝑖𝑖𝑖𝑖� (3.38) 

 

To obtain a scalar equation for the model coefficient 𝐶𝐶, the above equation is contracted 

with 𝑆̃𝑆𝑖𝑖𝑖𝑖 tensor as: 
 

𝐶𝐶 =  
ℒ𝑖𝑖𝑖𝑖𝑎𝑎 𝑆̃𝑆𝑖𝑖𝑖𝑖

�𝛽̂𝛽𝑖𝑖𝑖𝑖 −  𝛼𝛼𝑖𝑖𝑖𝑖�𝑆̃𝑆𝑖𝑖𝑖𝑖
 (3.39) 

 

From the above equation the value of 𝐶𝐶 could be obtained, however, observing the fact 

that the terms within parentheses in equation (3.39), can become zero, which may cause 

an ill-posed problem. To improve this, 𝐶𝐶 was considered to vary in only the y-direction, 

normal to the wall. Since, equation (3.39) is a tensor; it can only be satisfied in some 

average sense, which can be carried in the y-direction where the test filter is not applied. 

This results in an expression for 𝐶𝐶 as: 
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𝐶𝐶(𝑦𝑦, 𝑡𝑡) =  
�ℒ𝑖𝑖𝑖𝑖𝑎𝑎 𝑆̃𝑆𝑖𝑖𝑖𝑖�𝑦𝑦

〈𝛽̂𝛽𝑖𝑖𝑖𝑖𝑆̃𝑆𝑖𝑖𝑖𝑖 −  𝛼𝛼𝑖𝑖𝑖𝑖𝑆̃𝑆𝑖𝑖𝑖𝑖〉𝑦𝑦
 (3.40) 

 

Since, equation (3.38) is a set of five independent equations, a single value of 𝐶𝐶 is not 

often to be obtained simultaneously. To overcome this issue, Lilly (1992) proposed a 

tensor 𝑀𝑀𝑖𝑖𝑖𝑖 instead 𝑆̃𝑆𝑖𝑖𝑖𝑖 in equation (3.38), which locally minimizes the sum of the square 

of residuals as: 
 

ℒ𝑖𝑖𝑖𝑖 −  
1
3 𝛿𝛿𝑖𝑖𝑖𝑖ℒ𝑘𝑘𝑘𝑘 = 2 𝐶𝐶𝑀𝑀𝑖𝑖𝑖𝑖 (3.41) 

 

where (𝑀𝑀𝑖𝑖𝑖𝑖 = (∆� ∆�⁄ )2𝜌̅𝜌�𝑆̃𝑆�𝑆̃𝑆𝑖𝑖𝑖𝑖 − 𝜌̅𝜌�𝑆̃𝑆�𝑆̃𝑆𝑖𝑖𝑖𝑖), which is obtained by explicitly evaluating the 

stresses at test scale and comparing locally by subtracting the test-scale average of 

equation (3.35) from equation (3.34). Re-arranging equation (3.41) for 𝐶𝐶 yields:  
 

𝐶𝐶 =  −  
ℒ𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 −  1

3
ℒ𝑙𝑙𝑙𝑙𝑀𝑀𝑚𝑚𝑚𝑚

2∆�2 (𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 −  1
3
𝑀𝑀𝑙𝑙𝑙𝑙𝑀𝑀𝑚𝑚𝑚𝑚)

 (3.42) 

 

Hence, the Smagorinsky model coefficient can be calculated using the dynamic 

procedure at every spatial grid point and time by considering the localised flow 

conditions, which has the correct behaviour near to solid wall and in laminar flow and 

also allows for energy back-scatter. However, the model coefficient found to fluctuate 

in space and time, and some form of averaging is usually required to avoid stability 

problems. Typically, Lij and Mij are averaged in spatially homogeneous directions in 

space. However, this requires the flow to have at least one homogeneous direction. 

However, if there is no direction to perform averaging, alternative approaches may be 

used such as localised models of Ghosal et al. (1995) and Piomelli and Liu (1995), 

dynamic mixed models of Zang et al. (1993) and relaxation procedure of Breuer and 

Rodi (1994). 

 

3.4.4 Scale Similarity Models  
The principle of scale similarity was first proposed by Bardina et al. (1980) and 

expected to overcome the disadvantages of eddy viscosity models. The basic idea of 

scale similarity is to identify and correlate the smallest resolved scales to the sub-grid 
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scales of the flow. Filtering the decomposed velocity component in equation (3.23) 

yields: 
 

𝑢𝑢𝚤𝚤′�  =   𝑢𝑢�𝑖𝑖 −  𝑢𝑢��𝑖𝑖 (3.43) 
 

This can be reasonably estimated equal to the largest contributions of 𝑢𝑢′� 𝑖𝑖 and the 

smallest contributions of 𝑢𝑢�𝑖𝑖 . Furthermore, this equality will facilitate velocity 

decompositions as:  
 

𝑢𝑢𝚤𝚤́ 𝑢𝑢𝚥́𝚥����� ≈  𝑢́𝑢�𝑖𝑖𝑢́𝑢�𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢́𝑢𝚤𝚤𝑢𝑢�𝚥𝚥�����  ≈  𝑢́𝑢�𝑖𝑖𝑢𝑢��𝑗𝑗 (3.44) 
 

This actually enables to model the residual stresses given in equation (3.27) as: 
 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌𝜌 �𝑢𝑢�𝚤𝚤𝑢𝑢�𝚥𝚥����� −  𝑢𝑢��𝑖𝑖𝑢𝑢��𝑗𝑗�������

𝐿𝐿𝑖𝑖𝑖𝑖

+ 𝐾𝐾𝐶𝐶�(𝑢𝑢�𝑖𝑖 − 𝑢𝑢��𝑖𝑖)𝑢𝑢��𝑗𝑗 + �𝑢𝑢�𝑗𝑗 − 𝑢𝑢��𝑗𝑗�𝑢𝑢��𝑖𝑖����������������������
𝐶𝐶𝑖𝑖𝑖𝑖

+ 𝐾𝐾𝑅𝑅(𝑢𝑢�𝑖𝑖 − 𝑢𝑢��𝑖𝑖)�𝑢𝑢�𝑗𝑗 − 𝑢𝑢��𝑗𝑗����������������
𝑅𝑅𝑖𝑖𝑖𝑖

� 

(3.45) 

 

 

where the model coefficients KC and KR in the above equation should be carefully 

chosen such that, the expression observes Galilean invariance (Zang et al. (1993), 

Salvetti and Banerjee (1995) and Horiuti (1997)). The scale similarity models (SSM) 

allows back-scatter, i.e. transfer of energy from small to large scales and does not 

impose alignment between the SGS stress tensor and the strain rate. Piomelli et al. 

(1996) identified that the scale similarity models in conjunction with dynamic procedure 

perform quite well for low-order finite-difference or finite-volume methods. 

 

3.5 Modelling of SGS Scalar Fluxes  
Modelling sub-grid scalar fluxes in turbulent reacting flames is highly challenging due 

to their non-linear relation with chemical and thermodynamic states. The major 

difficulty in modelling is due to the anisotropic behaviour of scalar fluxes. This is 

strongly affected by the turbulent velocity fields, through the large increase in specific 

volume and viscosity, which causes large temperature rise in reacting flows. Modelling 

could be further complicated due to the large pressure gradients and density variations 

associated with heat release, which may cause non-gradient transport (NGT) or counter 

gradient diffusion.  
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Several models are available to account for SGS scalar fluxes, for example, simple 

gradient transportation assumption (Veynante et al. (1997)), scale similarity model 

(Fureby and Möller (1995)) and linear eddy model (LEM) (Kerstein (1991)). Also, the 

analysis of Boger and Veynante (2000) of DNS database, Boughanem and Trouvé 

(1998), revealed that the gradient or counter gradient diffusion of scalar fluxes are 

observed similar to RANS. However, unresolved scalar fluxes are identified to be less 

in LES, which supports that the use of simple model will have fewer consequences on 

the end solution. This is also proved by Boger and Veynante (2000), when they 

performed LES for turbulent premixed flames on a V-shaped flame holder using simple 

gradient transport assumption and able to recover counter gradient transport at resolved 

scales without any extra effort, which is not the situation in RANS. Hence, in the 

present simulations the simple gradient transport model in equations (3.21) and (3.22) 

for scalar fluxes is implemented. 
 

𝜌̅𝜌𝑢𝑢j"ℎ"������� =  −  
𝜇̅𝜇𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕ℎ�
𝜕𝜕𝑥𝑥𝑗𝑗

 (3.46) 

𝜌̅𝜌𝑢𝑢j"𝑐𝑐"������ =  −  
𝜇̅𝜇𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑡𝑡

𝜕𝜕𝑐̃𝑐
𝜕𝜕𝑥𝑥𝑗𝑗

 (3.47) 

 

where Prt is the turbulent flow Prandtl number, Sct is the turbulent flow Schmidt 

number, taken their values as 0.4 (Ranga Dinesh et al. (2013)) and 𝜇̅𝜇𝑆𝑆𝑆𝑆𝑆𝑆 is the SGS eddy 

viscosity. 

 

3.6 Summary  
This chapter summarises use of LES concept for turbulent premixed flames. A brief 

history of the LES and the pioneering developments since its first use by Deardorff 

(1970) has been detailed. The governing equations used for turbulent premixed 

combustion are presented and discussed. The spatial filtering technique, which 

distinguishes LES from other modelling techniques, has been discussed with a variety 

of spatial filters. Advantages of implicit filtering over explicit filtering was briefly 

discussed and applied to the flow governing equations. Various modelling strategies to 

close the resulted unclosed terms from Favre-filtered governing equations were 

discussed. Suitability of the simple non-gradient transportation (NGT) strategy for SGS 

scalar fluxes in scalar equations has been discussed in LES. 
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Chapter 4 

The Combustion Model 

 
Following the work of Knikker et al. (2004) and Gubba (2009) in developing a dynamic 

formulation for the FSD of premixed turbulent flames, the present work is carried out 

by implementing the dynamic flame surface density (DFSD) model in an existing LES 

code PUFFIN (Kirkpatrick (2002)). The FSD models are well established in the context 

of LES and are the subject of many interesting developments. In this chapter, brief 

introduction of the flamelet and flame surface density concepts are outlined. A 

description of available algebraic models and the exact transport equation of FSD in 

LES are detailed in section 4.1. Details of a simple algebraic FSD model derived based 

on DNS data are explained in section 4.2. Section 4.3 presents the concept and 

development of the dynamic FSD (DFSD) model. Section 4.4 provides brief details of 

the fractal concept and the dynamic fractal model used in the present simulations to 

calculate the fractal dimension of turbulent premixed flames. Lewis no. effect and how 

it is implemented in the model is discussed in section 4.5. Finally, the ignition model 

used in the present work is presented in section 4.6. 

 

4.1 Introduction  
The concept of FSD in RANS is well recognized but relatively new in LES. The FSD 

models proposed in LES are very similar to that of RANS and can be derived from the 

laminar flamelet fundamentals (Poinsot and Veynante (2012)). Based on the laminar 

flamelet assumptions for many turbulent premixed applications, the reaction zone/flame 

front is viewed as a collection of asymptotically thin wrinkled, propagating layers 

between fresh and burnt gases. Within the limit of high Damköhler number, these layers 

can be assumed to propagate at local laminar flame speed. Therefore, these layers can 

be considered as laminar flamelets. The concept of the laminar flamelets in turbulent 

premixed combustion greatly reduces the complexity of the problem by decoupling 

turbulence from chemistry. Following the laminar flamelet concept, the wrinkling of the 

flame front surface by turbulence can be described by the mean flame-surface area per 

unit volume i.e. flame surface density, Σ. As mentioned earlier, the main advantage of 
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this concept is to separate complex chemistry features from turbulent/combustion 

interactions (Poinsot and Veynante (2012)) . 

 

Hence, the filtered mean chemical reaction rate in equation (3.22) can be expressed as a 

function of the FSD, Σ as follows: 
 

𝜔̇𝜔�𝑐𝑐 = 𝑅𝑅Σ� = 〈𝜌𝜌𝑢𝑢𝑢𝑢𝑑𝑑〉𝑠𝑠Σ� (4.1) 
 

In the above equation, 𝑅𝑅 is the expressed as 〈𝜌𝜌𝑢𝑢𝑢𝑢𝑑𝑑〉𝑠𝑠 , which is the surface averaged, 

Favre filtered displacement speed of the propagating flame into the fresh gases. 

Assuming that the individual flamelet is propagating with the laminar flame speed 𝑢𝑢𝐿𝐿 

into the fresh gases having density 𝜌𝜌𝑢𝑢, then R could be modelled as 𝜌𝜌𝑢𝑢𝑢𝑢𝐿𝐿. 

 

The filtered FSD, Σ� is accounted for via either solving a transport equation, known as Σ-

equation or by using an empirical algebraic expression (Gubba (2009)). The Σ-transport 

equation was first expressed by Marble and Broadwell (1977). Later on, Pope (1988) 

developed the transport equation by filtering the basic equation with a filter width 

sufficiently larger than the grid spacing such that the thin turbulent dynamic premixed 

flame is could be resolved on a LES grid. Also, Hawkes and Cant (2001) provided a 

transport equation for FSD, similar to the typical RANS equation, which includes 

resolved contributions neglected by the typical RANS equations. However, Pitsch (2006) 

shows that this equation has resulted in several unclosed terms, leading to excessive 

computational requirements by reaching DNS limit for fully resolved flows during 

computation. The exact, unclosed equation proposed by Hawkes and Cant (2001) is 

presented below: 
 

𝜕𝜕Σ
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢𝚤𝚤�Σ)
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕{((𝑢𝑢𝚤𝚤� )𝑠𝑠 − 𝑢𝑢𝚤𝚤� )Σ}

𝜕𝜕𝑥𝑥𝑖𝑖
= (𝑎𝑎𝑇𝑇)𝑠𝑠�������Σ −

𝜕𝜕�(𝑤𝑤𝑁𝑁𝚤𝚤)��������
𝑠𝑠Σ�

𝜕𝜕𝑥𝑥𝑖𝑖
+ �𝑤𝑤

𝜕𝜕𝑁𝑁𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�
�����������

𝑠𝑠
Σ (4.2) 

 

where the LHS terms in the above equation represent the unsteady and diffusion of 

flame surface density, while the RHS represent the convection and source terms of the 

flame surface density.  

 

On the other hand, flame surface density can be modelled by using an empirical 

algebraic model, by considering the balance between production and destruction of 
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flame surface density in the transport equation. The first to develop a simple algebraic 

model for FSD in LES was Boger et al. (1998), based on extensive DNS database of 

infinitely thin planar flame using a Gaussian filter. This model is given in equation (4.3), 

which is simple and very similar to the Bray-Moss-Libby (BML) model in the context 

of RANS (Bray et al. (1985)). However, several researchers used Boger’s algebraic 

form to model turbulent premixed flames (e.g.  Kirkpatrick et al. (2003), Masri et al. 

(2006), Di Sarli et al. (2009) and Gubba et al. (2009)). 
 

Σ� = 4
𝑐̃𝑐(1 − 𝑐̃𝑐)

𝐿𝐿Σ
 (4.3) 

 

where 𝑐̃𝑐 is the filtered reaction progress variable and 𝐿𝐿Σ  is the flame wrinkling scale 

given as ∆� 𝛽𝛽⁄ . The model coefficient, 𝛽𝛽 in the above equation can be either considered 

as a constant or modelled based on a flame wrinkling factor (Gubba (2009)). 

 

Another model similar to the BML and EBU expressions proposed by Charlette et al. 

(1999), including a term to account for the resolved flame surface density as: 
 

Σ� = |∇𝑐𝑐̅| + 𝑎𝑎Γ𝑘𝑘 �
𝛿𝛿𝐿𝐿
∆�

,
�2𝑘𝑘 3⁄
𝑢𝑢𝐿𝐿

�
√𝑘𝑘
𝑢𝑢𝐿𝐿

𝑐̃𝑐(1 − 𝑐̃𝑐)
𝐿𝐿Σ

 (4.4) 

 

where Γk is the efficiency function of the Intermittent Turbulence Net Flame Stretch 

(ITNFS) model of Meneveau and Poinsot (1991), 𝑘𝑘 is the sub-grid kinetic energy and 𝑎𝑎 

is the model constant. 

 

Also, Angelberger et al. (1998) proposed another model based on sub-grid RMS 

fluctuations which is expressed as: 
 

Σ� = |∇𝑐𝑐̅| + 𝑎𝑎Γ𝑘𝑘|∇𝑐𝑐̅|�
𝛿𝛿𝐿𝐿
∆�

,
𝑢𝑢′

𝑢𝑢𝐿𝐿
�
𝑢𝑢′

𝑢𝑢𝐿𝐿
 (4.5) 

 

Weller et al. (1998) and Tabor and Weller (2004) introduced an additional equation to 

solve for the flame surface wrinkling factor, Ξ as: 
 

Ξ =
Σ�

�∇𝑏𝑏��
 (4.6) 
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where �∇𝑏𝑏�� is the area of the grid scale surface and the flame surface density is derived 

using the conditional filtering method. 

 

4.2 Algebraic Expression for Flame Surface Density (AFSD) 

Model 
As mentioned earlier, Boger et al. (1998) were the first to deduce an algebraic 

expression for FSD for use in LES codes. A 3-D DNS database developed by 

Boughanem and Trouvé (1998) has been used for decaying isotropic, homogeneous 

turbulence, with the assumption of an evolving thin flame front into the fresh gases. The 

key idea behind their expression is in identifying the sub-grid surface density, Σ (i.e. the 

sub-grid flame surface per unit volume) of the flame surface defined by 𝑐𝑐 = 𝑐𝑐∗ and the 

conditionally averaged displacement speed of the propagating flame of the surface c∗ 

into the fresh gases, 〈𝑅𝑅〉����𝑠𝑠 as: 
 

Σ� = � |∇𝑐𝑐̅|𝛿𝛿(𝑐𝑐 − 𝑐𝑐∗)𝐺𝐺(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑥𝑥′
∞

−∞
 (4.7) 

〈𝑅𝑅〉����𝑠𝑠 = 〈𝜌𝜌𝑢𝑢𝑆𝑆𝑑𝑑〉 (4.8) 

 

A generalised sub-grid flame surface density and displacement speed, which do not 

depend on a specific 𝑐𝑐∗ isosurface, are defined as: 
 

Σ𝑔𝑔𝑔𝑔𝑔𝑔 = � Σ�
0

1
𝑑𝑑𝑐𝑐∗ = |∇𝑐𝑐|����� (4.9) 

〈𝑅𝑅〉𝑠𝑠 =
1

Σ𝑔𝑔𝑔𝑔𝑔𝑔
� 〈𝑅𝑅〉����𝑠𝑠
0

1
𝑑𝑑𝑐𝑐∗ =

𝑅𝑅|∇𝑐𝑐|�������

Σ𝑔𝑔𝑔𝑔𝑔𝑔
 (4.10) 

 

Following the laminar flamelet concepts, and assuming the reaction zone to be very thin, 

the sub-grid flame surface density Σ of 𝑐𝑐 = 𝑐𝑐∗ isosurface is no longer dependent on the 

isosurface chosen and becomes equal to the generalised flame surface density Σgen. The 

displacement speed 〈𝑅𝑅〉𝑠𝑠 can be approximated as 𝜌𝜌𝑢𝑢𝑢𝑢𝐿𝐿 by considering that the laminar 

flamelets are steadily propagating. Boger et al. (1998) have validated this approximation 

for turbulent premixed combustion by filtering the DNS data. The laminar flame speed 

in the above equation is calculated using the expression presented in Chapter 2. 
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However, Poinsot et al. (1995) identified that the process of filtering will average the 

effects of variations in the flame strain and the curvature on the flame speed. 

 

To define the flame surface Boger et al. (1998) chose c* = 0.8 and introduced a reduced 

progress variable, 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟  which is 0 if 𝑐𝑐 ≤ 𝑐𝑐∗  otherwise it is 1. Hence, they derived a 

simple expression for Σ� from DNS: 
 

Σ� = 4𝛼𝛼2
𝑐̃𝑐𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑐̃𝑐𝑟𝑟𝑟𝑟𝑟𝑟)

∆�
 (4.11) 

 

where the model coefficient 𝛼𝛼2, analytically derived by assuming an infinitely thin 

flame front (i.e. |∇𝑐𝑐| = 𝛿𝛿(𝑐𝑐 − 𝑐𝑐∗)): 
 

𝛼𝛼2 = �6
𝜋𝜋 Ξ (4.12) 

 

In the above expression, 𝛼𝛼2  becomes 1.4 for a unity sub-grid scale flame wrinkling 

factor Ξ . Alternatively, Boger et al. (1998) proposed another expression similar to 

equation (4.11) by replacing 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟with 𝑐𝑐, which is the instantaneous value of the reaction 

progress variable: 
 

Σ� = 4𝛽𝛽
𝑐̃𝑐(1 − 𝑐̃𝑐)

∆�
 (4.13) 

 

where 𝛽𝛽 is a model coefficient which has a value equal to α2  in equation (4.11) for 

sufficiently large values of ∆� 𝐿𝐿𝑓𝑓� , i.e. infinitely thin flames compared to the grid width. 

The above expression has a similar format to as the Bray-Moss-Libby (BML) 

expression for flame surface density in RANS (Bray et al. (1989)) and only accounts for 

the so called resolved contributions. The ratio ∆� 4𝛽𝛽⁄  represents the wrinkling length 

scale of the sub-grid flame surface.  

 

Generally, the model coefficient 𝛽𝛽 is not universal and is known to be dependent on 

many physical parameters such as grid resolution, turbulence levels and chemistry. A 

range of values for the model coefficient 𝛽𝛽, in RANS and LES ranging from 1.0 to 2.6 

can be found in the literature.  

 



Chapter 4: The Combustion Model 
 
 

69 
 

4.3 The Dynamic Flame Surface Density (DFSD) Model 
The limitation of the AFSD model, as outlined in the above section, is that it can only 

account for the resolved contributions, using a model constant which is not universal. 

To overcome this limitation, Hawkes and Cant (2000) proposed a dynamic model for 

the flame surface density, and Knikker et al. (2002) developed a conceptual similarity 

FSD model, involving a combination of the test filter application and similarity ideas 

(Bardina et al. (1980)) to account for the SGS reaction rate. This approach has been 

coupled with the fractal theory to identify the flame surface as a fractal surface and to 

determine the model constant, 𝐶𝐶𝑠𝑠, which is given in equation (4.26) below. However, 

this model has failed to determine the fractal dimension, 𝐷𝐷. The similarity FSD model 

has been tested against experimental data published by Nottin et al. (2000). The data 

were extracted from OH images obtained from planar laser-induced fluorescence (PLIF) 

measurements of propane/air turbulent premixed flames. The model was successful in 

predicting the specific regions where the sub-grid scale contribution to the flame surface 

density is high. However, this model failed to calculate the fractal dimension 

dynamically, which resembles the failure of the AFSD model in using the constant 

model coefficient. 

 

To overcome this limitation, a DFSD model has been developed by Knikker et al. 

(2004). The main idea is based on modelling the unresolved FSD by applying the 

Germano identity (3.33) to the flame surface density, and modelling the fractal 

dimension dynamically. In this approach, a flame wrinkling factor, Ξ, is introduced as a 

ratio of the flame surface density to its projection in the normal direction of the flame 

propagation as: 
 

Ξ =
∫ |∇𝑐𝑐|𝐺𝐺(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑥𝑥′𝑣𝑣

𝐍𝐍 ∙ ∫ |∇𝑐𝑐| 𝐧𝐧 𝐺𝐺(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑥𝑥′𝑣𝑣

=
|∇𝑐𝑐|�����
|∇𝑐𝑐̅| =

Σ�
|∇𝑐𝑐̅| (4.14) 

  

where 𝐧𝐧  and 𝐍𝐍  are the normal vectors to the instantaneous 𝑐𝑐  and to the filtered 𝑐𝑐̅ 

isosurface pointing towards the unburnt gases. Knikker et al. (2004) identified that the 

gradient of the filtered progress variable |∇𝑐𝑐| becomes zero due to the highly wrinkled 

nature of the flame front. To avoid this problem, they assumed the flame to be locally 

planar and to be an infinitely thin surface. They defined a sharp progress variable 𝑐𝑐𝑙𝑙 

using the Heaviside function and expressed |∇c�| as |∇𝑐𝑐𝑙̅𝑙| = Π(𝑐𝑐𝑙̅𝑙,∆�), which becomes 
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zero only far away from the flame front. This facilitates the redefinition of the flame 

wrinkling factor, Ξ, as: 
 

Ξ =
Σ�

Π(𝑐𝑐̅,∆�)
 (4.15) 

 

Knikker et al. (2004) coupled the above equation with fractal theory to identify the 

flame surface as a fractal surface between the inner and outer cut-off scales. In the 

present analysis, ∆�  and 𝛿𝛿𝑐𝑐  are considered as the outer and inner cut-off scale 

respectively. Hence, the wrinkling factor at the outer cut-off scales can be presented as: 
 

Ξ(∆�) = �
∆�
𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

 (4.16) 

 

In this approach, the term of the mean filtered flame surface density Σ� = |∇c|�����  (in 

equation 4.14), can be split into two terms as resolved and unresolved: 
 

Σ� = |∇𝑐𝑐|����� =  Π(𝑐𝑐̅,∆�)�����
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝑓𝑓�𝑐𝑐̅ ,∆ � ,Π(𝑐𝑐̅,∆�)������������
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

 (4.17) 

 

In the above equation the resolved term is evaluated using the expression given by 

Knikker et al. (2002), and the unresolved term is calculated as: 
 

𝜆𝜆 = Σ� − Π(𝑐𝑐̅,∆�) = |∇𝑐𝑐|����� − Π(𝑐𝑐̅,∆�) (4.18) 
 

Taking γ as ratio of the test filter to the grid filter, i.e. ∆�� ∆�⁄ , such that the test filter ∆��  is 

greater than the grid filter ∆�. Applying the test filter to the flame surface density (4.17) 

leads to: 
 

Σ�� = |∇𝑐𝑐|������ = Π�c��,∆��������
Resolved@testfilter

+ �|∇c|������ − Π�c��,∆���������������
Unresolved@testfilter

 (4.19) 

 

From the previous equation, the unresolved flame surface density contributions at the 

test filter level can be written as: 
 

Λ = �|∇𝑐𝑐|������ − Π�𝑐𝑐̅̂,∆���� (4.20) 

 

Following the similarity ideas (Bardina et al. (1980)), assuming that the sub-grid scale 

contribution of the unresolved flame surface density at the test filter is the same as that 
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at the grid filter, and relating λ and Λ by using the Germano identity (Germano et al. 

(1991)) leads to: 
 

Λ − 𝜆̂𝜆 = �|∇𝑐𝑐|������ − Π�𝑐𝑐̅̂,∆���� − �|∇𝑐𝑐|������ − Π(𝑐𝑐̅,∆�)� � (6.21) 

Λ − 𝜆̂𝜆 = �Π(𝑐𝑐̅,∆�)� −Π�𝑐𝑐̅̂,∆���� (6.22) 

 

The sub-grid scale flame surface density contributions from the above equation can be 

added to the resolved flame surface density (4.17) with a model coefficient 𝐶𝐶𝑠𝑠 in order 

to obtain the total flame surface density. Hence the flame surface density can be 

expressed as: 
 

Σ� = Π(𝑐𝑐̅,∆�) + 𝐶𝐶𝑠𝑠 �Π(𝑐𝑐̅,∆�)� −Π�𝑐𝑐̅̂,∆���� (4.23) 
 

Using equations (4.14) & (4.15), the two terms in the unresolved equation (4.22) may 

be expressed as: 
 

Π(𝑐𝑐̅,∆�)� = Σ�� �
∆�
𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

 (4.24) 

Π�𝑐𝑐̅̂,∆��� = Σ�� �
∆��

𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

 (4.25) 

 

The above terms can be combined with the similarity concept in order to derive the 

model coefficient 𝐶𝐶𝐶𝐶: 
 

𝐶𝐶𝐶𝐶 =
Π(𝑐𝑐̅,∆�)� −Π�𝑐𝑐̅̂,∆���

Π �𝑐𝑐̅̂,∆��������������
−Π�𝑐𝑐̅̂̅̂,∆���

�
� − Π(𝑐𝑐̅,∆�)���������� + Π�𝑐𝑐̅̅,∆����

 (4.26) 

 

The above equation can be simplified by using equations (4.24) and (4.25) by 

identifying the sub-grid scale flame surface as a fractal surface (Knikker et al. (2004)) 

as: 
 

𝐶𝐶𝐶𝐶 =
1

1 − 𝛾𝛾2−𝐷𝐷 ��
∆�
𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

− 1� (4.27) 
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In the above equation, 𝛿𝛿𝑐𝑐 is the lower cut-off scale, taken to be equal to three times of 

the laminar flame thickness (Knikker et al. (2004) and Gubba (2009)). The fractal 

dimension, 𝐷𝐷 , can be calculated using either the empirical relation (North and 

Santavicca (1990) and Fureby (2005)) or calculated dynamically by similarity to 

Germano identity with the fractal theory for wrinkled flames.  

 

The above model for 𝐶𝐶𝐶𝐶 with the fractal model based on SGS velocity fluctuations, 

laminar flame speed, laminar and turbulent fractal limit, has been tested by Knikker et 

al. (2004) for experimentally extracted data of PLIF-OH images of Nottin et al. (2000). 

Where, good predictions were obtained for the global mean flame surface density 

together with realistic values for the fractal dimension. However, in the present study 

the dynamic flame surface density model is tested for the three fuels CNG, LPG, and 

hydrogen at lean condition and the numerical predictions are validated against some of 

the experimental data from a laboratory scale premixed combustion chamber of AlHarbi 

et al. (2013). 

 

4.4 Modelling of the Fractal Dimension 
In this section, a model based on the classical fractal theory, is presented and discussed 

to evaluate the fractal nature of turbulent premixed flames. Since the successful 

introduction of the fractal theory by Mandelbrot (1975) in homogeneous, isotropic 

turbulence, fractal concepts have been widely used for various diverse applications. The 

application of the fractal concept to turbulent premixed flames has been a subject of 

interest, while understanding the flame structure has been examined by many 

researchers such as Gouldin (1987) and Kerstein (1988). Gouldin (1987) characterized 

the turbulent flame surface as a passive scalar surface dominated by the fractal nature of 

turbulent flow field. Kerstein (1988) represented the turbulent flame structure as a 

fractal surface based on the dynamic similarity of the flame front. However, both 

studies have concluded with a value of 2.37 for the fractal dimension, 𝐷𝐷 for turbulent 

premixed flames. Later, North and Santavicca (1990) carried out an extensive 

experimental study of a freely propagating turbulent premixed flame over a wide range 

of turbulent Reynolds and Damköhler numbers. From their experimental observations, 

they derived an empirical relation as a function of turbulence intensity and laminar 

flame speed. 
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The basic principle of fractal theory is to identify and characterize the flame front 

structure as a fractal surface, which cannot be described by conventional methods. Since 

turbulent flames come under the category of naturally occurring fractals as shown in 

Figure 4.1, there exists a wide range of self-similar shapes and forms of different scales 

between outer and inner cut-off scales as shown in Figure 4.2. The similarity between 

the different size scales implies that the dynamic processes operating at each scale of 

similar size is the same, and facilitates the calculation of the fractal dimension of the 

fractal surface. As mentioned earlier, Mandelbrot (1975) was the first to suggest a value 

of 2.5 to 2.67 for 𝐷𝐷 in the case of isotropic, homogeneous turbulence, but subsequent 

experiments (Lovejoy (1982), Sreenivasan and Meneveau (1986)) and mathematical 

analysis (Hentschel and Procaccia (1984)) suggested a value of 2.35 to 2.41. However, 

Gouldin (1987) considered an intermediate value of 2.37 based on experimental studies 

of clouds and jet boundaries in free shear flows in his turbulent premixed modelling 

studies. Kerstein (1988) also suggested the same value for 𝐷𝐷, while deriving it using the 

dynamic similarity approach. Hence, it is evident that there exist various values for 

fractal dimension based on either experimental analysis or mathematical derivation in 

the literature. 

 

Numerical modelling of turbulent premixed flames, based on fractal theory, generally 

requires a value for the fractal dimension of the fractal surface, which can be either 

modelled, based on local flow conditions or a prior value can be taken as an input. 

Nevertheless, most of the current research studies are found to follow the later approach 

due to either a loss of information in numerical simulations or to avoid the complexity 

of the whole problem. However, in the present work, the fractal dimension of the 

turbulent premixed flame front is modelled using the dynamic fractal model (DFM) of 

Knikker et al. (2004). The DFM is based on the outcome of the recent mathematical 

derivation of the dynamic evaluation and Germano identity of the resolved filtered 

flame surface density at the test and grid filter.  
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Figure 4.1 Instantaneous Schlieren images of a typical lean premixed flame at different 
pressures showing the fractal nature of the flame (Kobayashi et al., 1996). 

 

 
 

 
 Figure 4.2 Fractal nature of the flame front showing various length scales (Gouldin et al. 

(1989b)). 
 

 

4.4.1 Dynamic Fractal Model (DFM) 
The dynamic fractal model (DFM) can be considered as a continuation of the DFSD 

model described in section 4.3, which identified the fractal dimension of the turbulent 
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premixed flame. Considering the flame kernel as a fractal surface, the fractal dimension, 

𝐷𝐷, is extracted by coupling the wrinkling flame factor (equation 4.15) with the Germano 

identity (Germano et al. (1991)), while conserving the averaged filtered flame surface at 

the test and grid filter as follows: 
 

Ξ(∆�)Π(𝑐𝑐̅,∆�)� = Ξ �∆���Π�𝑐𝑐̅̂,∆��� (4.28) 
  

Using equations (4.15), (4.24) and (4.25) the above expression can be rewritten as: 
 

�
∆�
𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

Σ� �
∆�
𝛿𝛿𝑐𝑐
�
2−𝐷𝐷�

= �
∆��

𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

Σ�� �
∆��

𝛿𝛿𝑐𝑐
�
2−𝐷𝐷

 (4.29) 

 

The above expression can be solved for the fractal dimension, 𝐷𝐷, for each time step at 

every grid point in the computational domain. However, some form of averaging is 

usually required to avoid numerical stability issues, similar to that used to dynamically 

evaluate the Smagorinsky constant. Hence, the volume average of equation (4.29) is 

carried out for every time step as follow: 
  

��
∆�
𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

Σ� �
∆�
𝛿𝛿𝑐𝑐
�
2−𝐷𝐷

�
�

= ��
∆��

𝛿𝛿𝑐𝑐
�
𝐷𝐷−2

Σ�� �
∆��

𝛿𝛿𝑐𝑐
�
2−𝐷𝐷

� 

 

(4.30) 

Rearranging the above equation results in: 
 

�
∆��

∆�
�
𝐷𝐷−2

=
�Π(𝑐𝑐̅,∆�)� �

�Π�𝑐𝑐̅̂,∆����
 (4.31) 

 

Applying the logarithm on both sides of the above equation and rearranging will lead to: 
 

𝐷𝐷 = 2.0 +
log ��Π(𝑐𝑐̅,∆�)� � �Π�𝑐𝑐̅̂,∆����� �

log �∆�� ∆�⁄ �
 (4.32) 

 

The above equation can be solved at each grid point in the computational domain at 

every time step. To overcome the problems caused by strong local variations or to avoid 

irrelevant values, the maximum value of the fractal dimension is set to 2.5 in 

simulations (Gubba (2009)).  
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4.5 Lewis Number Effect 
The Lewis number is defined as the ratio between thermal diffusivity 𝛼𝛼𝑇𝑇  to mass 

diffusivity DL. The Lewis number effect (also named thermo-diffusive instabilities) 

arises from the fact that these two diffusivities became unbalanced. This is illustrated in 

Figure 4.3, where diffusive fluxes of limiting component are shown with dashed lines 

(DL), and diffusive fluxes of heat shown with solid lines (𝛼𝛼𝑇𝑇). In cases where Le < 1, 

the local combustion temperature, Tb, is increased behind the convex part of the front, 

e.g., upper left part of Figure 4.3, due to the increased mass diffusion of limiting 

component and decreased heat loss. This results in the local increase of the burning 

velocity. On the other hand, the local combustion temperature is decreased behind the 

concave part of the front, e.g., lower left part of Figure 4.3, resulting in the local 

reduction of the burning velocity. All together this leads to further increase of the flame 

wrinkling. The opposite is true for cases where Le > 1, which are characterized by a 

tendency of smoothing out flame wrinkles, which leads to stable flames. It should be 

mentioned here that, the thermal-diffusion effects reveal themselves as stabilizing of 

destabilizing factors of the underlying hydrodynamic instability (Ciccarelli and 

Dorofeev (2008)). Moreover, the interaction between a laminar premixed flame and 

stretch depends strongly on the Lewis number of the reactant mixture. 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 4.3 Schematic of thermal-diffusive instability. Flame shapes at two moments of time t1 

and t2 are shown. Flame propagates from left to right (Ciccarelli and Dorofeev (2008)). 

𝛼𝛼𝑇𝑇 𝛼𝛼𝑇𝑇 
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However, several methods have been used to account for the thermo-diffusive 

instabilities in combustion modelling. Richardson and Chen (2012) proposed a 

modification for two existing mixing models, i.e. interaction by exchange with the mean 

(IEM) and Euclidean minimum spanning tree (EMST) by adding correction terms 

which account for differential diffusion effects in a premixed combustion context. 

Recently, tabulated chemistry methods have developed lot of interest due to their 

simplicity and computational efficiency. Swart et al. (2010) used FGM with flamelet 

dimensions based on atomic mass fractions. This approach is very promising since it 

can account for both curvature and differential diffusion effects which is essential to 

capture thermo-diffusive instabilities. A more efficient two equation model combined 

with tabulated chemistry was proposed by Regele et al. (2013) to account for non-unity 

Lewis number effect in laminar premixed hydrogen flames. They used a mixture 

fraction definition avoiding unity Lewis number assumption to tabulate the premixed 

flame solutions as a function of this mixture fraction and progress variable.  

 

On the other hand, Verbecke (2009) used the leading point concept based on Zimont 

and Lipatnikov (1995), where he expressed the thermos-diffusive instabilities as a 

function of the fuel-air mixture in terms of wrinkling factor. He applied successfully the 

previous concept in freely propagating large scale hydrogen explosion. However, the 

drawback of this method that it does not account dynamically for the flame condition 

until it reached the maximum value for the wrinkling factor. 

 

However, in this study a simple method is proposed to account for the effect of non-

unity Lewis number. As the combustion model is based on solving for reaction progress 

variable not species and originally it was original developed by Boger et al. (1998) and 

later by Knikker et al. (2004), for unity Lewis number by assuming equal values for 

both Schmidt and Prandtl numbers in the governing equations.  
 

𝐿𝐿𝐿𝐿 =  
𝛼𝛼𝑇𝑇
𝐷𝐷𝐿𝐿

 =  
𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃 (4.33) 

𝑆𝑆𝑆𝑆 =  
𝜈𝜈
𝐷𝐷𝐿𝐿

   and  𝑃𝑃𝑃𝑃 = 
𝜈𝜈
𝛼𝛼𝑇𝑇

 (4.34) 
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So, to achieve that, the values of both Schmidt and Prandtl numbers in the reaction 

progress variable and energy equations discussed in Chapter 3 are set to account for the 

actual Lewis number value for each fuel-air mixture. Table 4.1 presents the actual 

values used in the current numerical results calculated from GASEQ program.  

 

 
Table 4.1 Fuel properties used to account for non-unity Lewis number effect from GASEQ. 

 

 CNG LPG Hydrogen 

Equivalence Ratio (Ф) 0.8 0.8 0.8 

Kinematic Viscosity (ν) 
(m2/s) 1.58*10-5 1.49*10-5 2.03*10-5 

Thermal Diffusivity 
(𝜶𝜶𝑻𝑻) (m2/s) 1.98*10-5 1.84*10-5 3.82*10-5 

Mass Diffusivity (𝑫𝑫𝑳𝑳) 
(m2/s) 2.13*10-5 1.18*10-5 4.60*10-5 

Sc 0.742 1.260 0.353 

Pr 0.798 0.810 0.531 

Lewis No. 0.93 1.55 0.67 

 

 

4.6 Ignition Model 
In setting up the numerical case under study, it is important to approximate, as closely 

as possible the experimental parameters and this, in some instances, may not be possible.  

The ignition source is one of the parameters that need to be reproduced numerically due 

to the fact that, experimentally, this performed with a focused laser beam. Moreover, 

sensitivity to the ignition energy and the location of the source has not been performed 

experimentally. Numerically, ignition is modelled by setting the reaction progress 

variable to 0.5 (Kirkpatrick (2002) and Gubba (2009)) within a certain number of cells 

located near the center of the base plate. It is relatively straight forward to vary the 

shape, size and location of the ignition source and monitor their effects on the peak 

overpressure, the flame structure and its propagation rates. It should be noticed that, 

neither, the breakdown nor complex physics in the early flame propagation is 
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considered in this approach, where the reaction rate is predicted using the main 

combustion model itself. 

 

4.7 Summary 
This chapter focuses on modelling of the reaction rate and the current challenges in 

accounting for it in turbulent premixed flames using the flame surface density model. 

One of the main challenges in LES for turbulent premixed combustion was accounting 

for the unresolved flame surface density, which can either be obtained by solving the 

exact FSD equation or by modelling using the dynamic technique. It was identified that 

solving the exact equation in RANS is complex, and hence solving it in LES will lead to 

many unclosed terms.  

 

This study shows that algebraic FSD can be further improved by calculating the 

unresolved flame surface density by additional formulation. Consequently, the DFSD 

model (Gubba (2009)) based on the simple FSD, the Germano identity and the 

similarity concept has been the best available option, and a detailed derivation was 

provided. A dynamic model is used to calculate the fractal dimension based on 

experimental studies and dynamic similarity ideas. 

 

The Lewis number and its effect on combustion modelling were discussed. Also, how it 

is implemented through the in-house code and parameters to be considered were 

presented. Finally, the ignition model and how it works was briefly presented. 
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Chapter 5 

Numerical Methodology 

 
The dynamic flame surface density model and other sub models used in this work are 

numerically implemented in an available in-house LES code PUFFIN, originally 

developed by Kirkpatrick (2002) and thereafter extended for compressible flows 

(Kirkpatrick et al. (2003)). The code was developed using sophisticated, state of the art 

programming techniques in FORTRAN 90, which is capable of handling 2-D and 3-D, 

non-reacting and reacting (specifically premixed) using LES numerical simulations of 

various industrial flow problems. Recently, the code has been extended to compute, 

non-premixed (Ranga-Dinesh (2007)) and partially premixed (Ranga-Dinesh (2007)) 

industrial problems as well. However, this chapter briefly describes various numerical 

features and solution techniques used in the LES code.  

 

In any numerical simulation tool, the primary concern is to outline the partial 

differential equations, governing the fluid flow, as described in Chapter 3. The 

governing equations are then carefully discretized, to achieve error free/most accurate 

numerical results. Finally, spatially discretized equations are solved in computational 

space and time, which is very important to achieve results of desired and decent 

accuracy, within the available computational resources.  

 

PUFFIN uses finite volume spatial discretization methodology, on a forward staggered, 

non-uniform, Cartesian grid, which is detailed in section 5.1. Spatial discretization of 

individual terms in a generic governing equation, using finite volume methodology is 

discussed in section 5.2. Section 5.3 describes various aspects of the code such as, time 

advancement scheme, pressure correction scheme, solver and typical solution iteration 

procedure. Section 5.4 presents the details of boundary conditions employed in the 

present investigation. 

 

5.1 Finite Volume Method  
In the finite volume method, the computational domain is divided into finite number of 

control volumes. Conservation equations described in Chapter 3 for turbulent premixed 
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flames are numerically integrated in each of these control volumes, that will led to a set 

of simultaneous algebraic equations, whose solution is an approximation to the solution 

of the continuous equations at a set of discrete points or nodes. Centroid of the 

individual control volume is generally considered as a node and the solution at this node 

represents the solution within the control volume. One main advantage of the finite 

volume methodology is that it can accommodate any type of grid, which is quite 

suitable for complex geometries. Also, as discussed in Chapter 3, application of box 

filter in LES, naturally fits into the finite volume formulation.  

 

Hence, the work presented here uses finite volume methodology, based on a forward, 

staggered cartesian grid and defines the boundaries of the rectangular finite volumes as 

shown in Figure 5.1. Scalars such as pressure and reaction progress variable are 

calculated at the scalar nodes as shown in Figure 5.1. However, the velocity 

components are calculated at the velocity nodes i.e. centroid of scalar cell faces, 

forming a staggered grid, which means that the velocity cells are staggered with respect 

to the scalar cells. As staggering of the velocity avoids physically non-realistic 

predictions for oscillating pressure fields. Also, since the velocities are generated at 

scalar cell faces, it has the added advantage of avoiding interpolation of velocities for 

scalar transport computations. Extension of the grid shown in Figure 5.1 in 3-D uses the 

same structure in the z direction, with an addition of velocity component in z-direction 

i.e. w. 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 Two dimensional forward staggered grid (Gubba (2009)). Circles are scalar nodes, 
horizontal arrows are nodes of the u velocity component and vertical arrows the nodes of the v 

velocity component. Examples of a u, v and scalar cells are highlighted.   
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5.2 Discretization of the Conservation Equations  
The conservation equations of mass, momentum, energy and reaction progress variable 

detailed in Chapter 3 are in similar format and therefore, can be expressed using a 

generic variable 𝜙𝜙 as:  
 

𝜕𝜕 (𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 + 

𝜕𝜕 �𝜌𝜌𝑢𝑢𝑗𝑗𝜙𝜙�
𝜕𝜕𝑥𝑥𝑗𝑗

=  
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝑆𝑆𝜙𝜙 (5.1) 

 

For example, in the previous equation, equals to one represents continuity, u represents 

momentum in x-direction, h represents specific enthalpy (energy) and c represents 

reaction progress variable equation. Equation (5.1) can be rearranged as: 
 

𝜕𝜕 (𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 =  −  

𝜕𝜕 �𝜌𝜌𝑢𝑢𝑗𝑗𝜙𝜙�
𝜕𝜕𝑥𝑥𝑗𝑗

+ 
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝑆𝑆𝜙𝜙 (5.2) 

 

In the above equation, Γ is the diffusion coefficient and 𝑆𝑆𝜙𝜙  is the source term. The 

equation (5.2) is integrated over a control volume V bounded by an arbitrary shape as:  
 

�
𝜕𝜕 (𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

v

𝑑𝑑𝑑𝑑 =  −  �
𝜕𝜕 �𝜌𝜌𝑢𝑢𝑗𝑗𝜙𝜙�
𝜕𝜕𝑥𝑥𝑗𝑗

 𝑑𝑑𝑑𝑑 + �
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� 𝑑𝑑𝑑𝑑 + � 𝑆𝑆𝜙𝜙
v

𝑑𝑑𝑑𝑑
vv

 (5.3) 

  

The convection and diffusion terms in the above equation can be transformed into 

surface integrals by using Gauss divergence theorem, which yields the integral form of 

the equation as: 
 

𝜕𝜕
𝜕𝜕𝜕𝜕�

(𝜌𝜌𝜌𝜌)𝑑𝑑𝑑𝑑 =  −� 𝜌𝜌𝑢𝑢𝑗𝑗
𝑠𝑠v

𝜙𝜙𝑑𝑑𝑑𝑑𝑗𝑗 + � Γ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑠𝑠

𝑑𝑑𝑑𝑑𝑗𝑗 + � 𝑆𝑆𝜙𝜙 𝑑𝑑𝑑𝑑 (5.4) 

 

The differential surface area vector dS has a magnitude equal to the area of the segment 

of surface and direction corresponding to the direction of the outward normal to the 

segment. The terms in the equation (5.4) represents, unsteady term on LHS and 

advection, diffusion and the source terms on RHS respectively. Spatial discretization of 

the equation (5.4) involves approximating the volume and surface integrals within the 

finite volume to obtain a set of simultaneous linear algebraic equations in 𝜙𝜙.  
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A schematic representation of 2-D forward staggered grid shown in Figure 5.1 shows 

the details of a scalar cell P for which the integrals are to be calculated and surrounded 

by its northern (N), eastern (E), southern (S), western (W) neighbours and one level 

away from it as north of northern (NN), east of eastern (EE), south of southern (SS), 

west of western (WW). Figure 5.2 extends this structure in 3-D for the same scalar and 

shown neighbouring cells in z-direction as up (U) and down (D), which can be extended 

thereafter as upper of up (UU) and down of down (DD). The surfaces separating two 

cells are denoted as An, Ae, As, Aw, Au and Ad, the associated fluxes are Fn, Fe, Fs, Fw, 

Fu and Fd. Where, the subscripts (n, e...etc.) refer to the points at the centroid of the 

respective cell faces. In the following section, nb is used as a generic subscript for 

neighbour cell and f is a generic subscript for a quantity evaluated at a cell face. To 

reduce the complexity of the notation, the fluxes are given for a particular face such as 

the east or north face. All results can be applied in a similar manner to other faces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2 3-D view of a finite volume cell and its neighbours. 

 
 

5.2.1 The Unsteady Term  
The unsteady term on the left hand side of the conservation equation (5.4) can be 

discretized by considering the value of at the central node, which is considered to be 
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representing the value throughout the control volume. Using the central difference 

approximation for the time derivative at n+1/2 it can be derived as:  
 

�
𝜕𝜕 (𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

v

𝑑𝑑𝑑𝑑 ≈  
(𝜌𝜌𝜌𝜌)𝑛𝑛+1 −  (𝜌𝜌𝜌𝜌)𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉 (5.5) 

 

where n is the time level. The value n indicates that the values are taken at the start of 

the current time step, while n + 1 indicates the end of the time step. 

 

5.2.2 The Convection Term  
The convective fluxes are very important in any turbulent reacting flows and hence, 

their description is essential in numerical simulations. In order to achieve appropriate 

numerical stability and accuracy, a special treatment for the convective fluxes is 

required. Numerical discretization employed for convective fluxes is explained as 

follows. 

 

Considering a control volume and representing convective fluxes as: 
 

� 𝜌𝜌𝑢𝑢𝑗𝑗𝜙𝜙𝑑𝑑𝑑𝑑𝑗𝑗
𝑠𝑠

=  �𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛,𝑒𝑒…

 (5.6) 

 

The convection flux across a cell face is given by: 
 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝜌𝜌𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∆𝐴𝐴𝐴𝐴)𝑓𝑓 (5.7) 
 

where 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the velocity component normal to the surface A and ΔA is the area of 

the face. The convection for the east face can be written as: 
 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑒𝑒𝜙𝜙𝑒𝑒 (5.8) 
 

The application of weighted, linear interpolation of the neighbouring cells at the centre 

of the face leads to: 
 

𝜙𝜙𝑒𝑒 =  (1 −  𝜃𝜃)𝜙𝜙𝑃𝑃 +  𝜃𝜃𝜙𝜙𝐸𝐸 (5.9) 
 

Here the weighting factor for the interpolation is: 
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𝜃𝜃 =  
∆𝑥𝑥𝑒𝑒
∆𝑥𝑥𝐸𝐸

 (5.10) 

 

Δxe and ΔxE are the distances from the node (P) to the face of the centroid (e) and the 

east neighbour node (E), as shown in Figure 5.3.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 A finite volume cell in the xy-plane. 
 

 

In the staggered grid it is required to find the convective velocity ue at the face and the 

density ρe at the face depending on whether the variable is a scalar or velocity 

component. When 𝜙𝜙 is a scalar, the convective velocity is available, as u is established 

at the cell face. However, density must be interpolated using an equation similar to (5.9) 

such as:  
 

𝜌𝜌𝑒𝑒 =  (1 −  𝜃𝜃)𝜌𝜌𝑃𝑃 + 𝜃𝜃𝜌𝜌𝐸𝐸 (5.11) 
 

Contrary to that, when 𝜙𝜙 is a velocity component, linear interpolation is required to find 

the convective velocity, however, 𝜌𝜌  is directly available. Finally the resulting 

formulation for the convection fluxes can be described using a second order central 

difference scheme as: 
 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑒𝑒[(1−  𝜃𝜃)𝜙𝜙𝑃𝑃 +  𝜃𝜃𝜙𝜙𝐸𝐸] (5.12) 
 



Chapter 5: Numerical Methodology 
 
 

86 
 

This linear interpolation based numerical scheme used to calculate the variables at cell 

faces of the finite volumes is equivalent to a second order central difference scheme in 

finite difference method. This scheme is second order accurate, computationally 

efficient and simple to implement. This accuracy is desirable for LES since numerical 

damping acts as an extra un-quantified contribution to the eddy viscosity and 

contaminates the effects of the sub-grid scale model. However this scheme tends to give 

solutions containing non-physical oscillations or wiggles in areas of the field containing 

high gradients. The convection terms in the scalar equations are particularly problematic 

due to the large gradients which often occur in the scalar fields. Because scalars are 

often coupled with the velocity field through density, wiggles which result from use of 

the central difference for the scalar convection terms cause problems with the numerical 

stability of the overall solution. Hence this scheme is hardly suited for scalar transport, 

especially when they have to remain bounded. For example, reaction progress variable 

is limited to a range from 0 to 1. From this scheme, wiggles may lead to unphysical 

results such as predictions of reaction progress variable outside the range 0 and 1, which 

do not yield any sensible meaning. For this reason, the convection term for the scalar 

equation is discretized using non-centred schemes such as QUICK or SHARP for 

Leonard (1979). 

 

QUICK is a third order upwind scheme and can reduce numerical oscillations by 

introducing fourth order dissipation. Quadratic interpolation is used to find the value 𝜙𝜙 

at the centre of the cell faces. The formula for the east face can be written as: 
 

𝜙𝜙𝑒𝑒 =  [(1−  𝜃𝜃)𝜙𝜙𝑃𝑃 +  𝜃𝜃𝜙𝜙𝐸𝐸]−  
1
8  𝐶𝐶𝐶𝐶𝐶𝐶 ×  ∆𝑥𝑥𝐸𝐸2 (5.13) 

 

Here the upwind biased curvature term define as: 
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝜙𝜙𝑃𝑃 −  2𝜙𝜙𝐸𝐸 + 𝜙𝜙𝐸𝐸𝐸𝐸

∆𝑥𝑥𝐸𝐸2
 ,         𝑢𝑢 < 0 (5.14) 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝜙𝜙𝐸𝐸 −  2𝜙𝜙𝑃𝑃 + 𝜙𝜙𝑤𝑤

∆𝑥𝑥𝐸𝐸2
 ,         𝑢𝑢 > 0 (5.15) 

 

The double subscript such as EE refers to the cell east of the eastern neighbour as 

described in section 5.2. The weighting factor 𝜃𝜃 can be calculated from equation (5.10). 
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The first term in equation (5.13) is the value of 𝜙𝜙 at the cell face calculated using linear 

interpolation. The second term is an upwind biased curvature term which makes the 

overall interpolation quadratic. 

 

The linear interpolation term accounts for the non-uniform grid through the weighting 

factor 𝜃𝜃, while the curvature terms have no grid weighting included. Castro and Jones 

(1987) have shown that the uniform grid formula for QUICK gives negligible errors for 

grid expansion ratios (rx = Δxi+1/Δxi) between 0.8 and 1.25. Substituting equation (5.13) 

into equation (5.5) gives the convective flux of 𝜙𝜙 across the east face as: 
 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  (𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑒𝑒��(1 −  𝜃𝜃)𝜙𝜙𝑃𝑃 +  𝜃𝜃𝜙𝜙𝐸𝐸�+ 𝑆𝑆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄� (5.16) 
 

where SQUICK = −1/8 CRV × Δ𝑥𝑥𝐸𝐸2. The source term SQUICK indicates the curvature of the 

field. In PUFFIN, the term SQUICK is included as part of the source term Sφ. 

 

However, QUICK scheme can reduce the wiggles but does not remove them completely. 

In this case another scheme called SHARP (Leonard (1979)), which is a modification to 

QUICK is used. SHARP introduces second order diffusion where local conditions are 

such that oscillations will not occur, thereby ensuring that the solution remains 

monotonic. An outline of this scheme can be found in (Leonard (1979)). Finally, 

summation of the convective fluxes across all faces can be added and described as: 
 

� 𝜌𝜌𝑢𝑢𝑗𝑗𝜙𝜙𝑑𝑑𝑑𝑑𝑗𝑗
𝑆𝑆

≈  �(𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑓𝑓 ��1 −  𝜃𝜃𝑓𝑓�𝜙𝜙𝑃𝑃 + 𝜃𝜃𝑓𝑓𝜙𝜙𝑛𝑛𝑛𝑛 + �𝑆𝑆𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄� (5.17) 

 

 

5.2.3 The Diffusion Term  
The diffusive flux is proportional to the gradient of across a cell face f and is given as:  
 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �Γ∆𝐴𝐴 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕��𝑓𝑓

 (5.18) 

 

where n is the direction normal to the face, Γ is the kinematic diffusion coefficient and 

ΔA the area of the face. The flux at the centre of the east cell face is then computed from 



Chapter 5: Numerical Methodology 
 
 

88 
 

the values at the two neighbouring points and their distance from central difference 

approximation as: 
 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  (Γ∆𝐴𝐴)𝑒𝑒
𝜙𝜙𝐸𝐸 −  𝜙𝜙𝑃𝑃
∆𝑥𝑥𝐸𝐸

 (5.19) 

 

The diffusion coefficient at the centre of the face Γe is calculated by linear 

interpolations same as density calculation in the preceding section of the convection 

term. Summation of the diffusive fluxes across all faces can be described as a discrete 

diffusion operator as: 
 

� Γ
𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑆𝑆𝑗𝑗  ≈  �
(Γ∆𝐴𝐴)𝑒𝑒
∆𝑥𝑥𝐸𝐸

(𝜙𝜙𝑛𝑛𝑛𝑛 −  𝜙𝜙𝑃𝑃) (5.20) 

 

It is worth noting at this stage, that the discrete diffusion operator does not suffer from 

numerical instability as observed in the case of convective fluxes. Therefore, no special 

treatment is needed for the diffusion terms in conservation equation. 

 

5.2.4 The Source Term 
Source terms are different for each variable in individual conservation equations and 

dependent of the variable being transported. For instance, in case of momentum 

equation, source term represents the effect of the pressure gradient and the gravitational 

force. However, in case of energy equation, source term includes contributions due to 

pressure work, viscous dissipation and flow dilatation as well as a chemical source term. 

Chemical source term is also presented in the reaction progress variable equation. 

 

Spatial discretization of the source term in all the transport equations is in the same 

manner. They are calculated by evaluating the function representing the source term 𝑆𝑆𝜙𝜙 

at the node and multiplying by the volume of the cell as: 
 

� 𝑆𝑆𝜙𝜙𝑑𝑑𝑑𝑑
𝑉𝑉

 ≈  𝑆𝑆𝜙𝜙𝜙𝜙∆𝑉𝑉 (5.21) 

 

Gradients are evaluated using second order central differences, while interpolations 

utilize a linear profile similar to that used in evaluating convection and diffusion terms. 
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In general, source terms can be expressed as a combination of implicit and explicit 

components as: 
 

𝑆𝑆𝜙𝜙𝜙𝜙∆𝑉𝑉 =  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙𝑃𝑃 + 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 (5.22) 

 

The implicit component of the above equation is integrated using implicit time 

advancement scheme, whereas the explicit component is integrated using explicit time 

advancement scheme. The time advancement schemes employed in the present work are 

described in section 5.3. 

 

5.2.5 The Complete Discretized Conservation Equation  
It is evident from the above sections, that the complete discretized conservation 

equation for a generic variable can simply written by summing the individual 

discretized terms as:  
 

(𝜌𝜌𝜙𝜙)𝑛𝑛+1 −  (𝜌𝜌𝜌𝜌)𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉

=  ��(𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑓𝑓 ��1 −  𝜃𝜃𝑓𝑓�𝜙𝜙𝑃𝑃 + 𝜃𝜃𝑓𝑓𝜙𝜙𝑛𝑛𝑛𝑛��
(𝑛𝑛−2,𝑛𝑛−1,𝑛𝑛,𝑛𝑛+1)

+ ��
(Γ∆𝐴𝐴)𝑒𝑒
∆𝑥𝑥𝐸𝐸

(𝜙𝜙𝑛𝑛𝑛𝑛 −  𝜙𝜙𝑃𝑃)�
(𝑛𝑛−1,𝑛𝑛,𝑛𝑛+1)

+ �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙𝑃𝑃�
(𝑛𝑛−1,𝑛𝑛,𝑛𝑛+1)

+ �𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒�
(𝑛𝑛−2,𝑛𝑛−1,𝑛𝑛,𝑛𝑛+1)

 

(5.23) 

 

Here the curly brackets ‘{}’ with superscripts n−2, n−1, n, n+1 represent a weighted 

average of the term evaluated at the listed time intervals, which gives an estimate of the 

term at the (n+1/2) time level, which will be discussed in next section. Collecting the 

coefficients and rearranging the above equation results in the final form equation as: 
 

𝐴𝐴𝑃𝑃𝑛𝑛+1𝜙𝜙𝑃𝑃𝑛𝑛+1 =  �(𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛+1𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛+1) + 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙𝑃𝑃𝑛𝑛+1 + 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛+1

𝑛𝑛𝑛𝑛

  

                             + ��(𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛 )−  𝐴𝐴𝑃𝑃𝑛𝑛𝜙𝜙𝑃𝑃𝑛𝑛 + 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙𝑃𝑃𝑛𝑛 + 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

𝑛𝑛𝑛𝑛

� 
(5.24) 

                               + ��(𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛−1𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛−1)−  𝐴𝐴𝑃𝑃𝑛𝑛−1𝜙𝜙𝑃𝑃𝑛𝑛−1 +  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙𝑃𝑃𝑛𝑛−1 + 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛−1

𝑛𝑛𝑛𝑛

� 

       + ��(𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛−2𝜙𝜙𝑛𝑛𝑛𝑛𝑛𝑛−2)−  𝐴𝐴𝑃𝑃𝑛𝑛−2𝜙𝜙𝑃𝑃𝑛𝑛−2 +  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛−2

𝑛𝑛𝑛𝑛

�  
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where the coefficients corresponding to the node AP and its neighbours Anb are formed 

due to the contributions from convection and diffusion terms. More details of spatial 

discretization methods can be found in Kirkpatrick (2002) and Kirkpatrick et al. (2003) 

 

5.3 Time Advancement Scheme  
The discretized transport equation described in the above section must be solved in 

space and time in order to simulate reacting flows. To obtain time-accurate and 

unsteady simulations, time integration schemes are developed using second and third 

order numerical accuracy. The time integration schemes for scalar equation uses the 

Crank- Nicolson scheme and the momentum equations are advanced using either Crank-

Nicolson or the second- and third- order hybrid Adams-Bashforth scheme.  

 

5.3.1 Time Integration of Scalar Equation  
In the present work, Crank-Nicolson scheme is employed to achieve time integration of 

the scalar equation. The time dependent conservation equation, integrated in time using 

Crank-Nicolson scheme can be written as: 
 

(𝜌𝜌𝜌𝜌)𝑛𝑛+1 −  (𝜌𝜌𝜌𝜌)𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉 =  −  
1
2

[𝐻𝐻𝑛𝑛+1(𝜙𝜙𝑃𝑃𝑛𝑛+1) + 𝐻𝐻𝑛𝑛(𝜙𝜙𝑃𝑃𝑛𝑛)]      

                                        + 
1
2

[𝐿𝐿𝑛𝑛+1(𝜙𝜙𝑃𝑃𝑛𝑛+1) + 𝐿𝐿𝑛𝑛(𝜙𝜙𝑃𝑃𝑛𝑛)] 

                                     + 
1
2 �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛+1𝜙𝜙𝑛𝑛+1 +  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 𝜙𝜙𝑛𝑛 � 

                                + 
1
2 �𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛 𝜙𝜙𝑛𝑛 +  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝜙𝜙𝑛𝑛 � 

(5.25) 

 

where H is the discrete convection term, expressed as: 
 

𝐻𝐻(𝜙𝜙) =  �(𝜌𝜌𝜌𝜌∆𝐴𝐴)𝑓𝑓 ��1 −  𝜃𝜃𝑓𝑓�𝜙𝜙𝑃𝑃 + 𝜃𝜃𝑓𝑓𝜙𝜙𝑛𝑛𝑛𝑛� (5.26) 

 

and L is the discrete diffusion term, expressed as: 
 

𝐿𝐿(𝜙𝜙) =  �
(Γ∆𝐴𝐴)𝑒𝑒
∆𝑥𝑥𝐸𝐸

(𝜙𝜙𝑛𝑛𝑛𝑛 −  𝜙𝜙𝑃𝑃) (5.27) 

 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝜙𝜙 and 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 are discrete implicit and explicit source terms respectively. It is to be 

noted that 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is a coefficient of 𝜙𝜙 rather a function of 𝜙𝜙. 
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In equation (5.25), each term is evaluated at the n and n+1 time levels, and employs 

linear interpolation to estimate their value at n+1/2. Therefore, this scheme is second 

order accurate. At least two iterations of scalar equation per time step are required due 

to the contributions of terms containing 𝜙𝜙𝑛𝑛+1 to the explicit source term which result 

from the use of the QUICK and SHARP spatial discretization schemes. It should be 

noticed at this stage that in turbulent premixed combustion, density and diffusivity vary 

significantly in time. Hence to maintain the stability of the solution, a number of outer 

iterations of the entire time advancement scheme per time step are required to ensure 

that the values of 𝜌𝜌𝑛𝑛+1 and Γ𝑛𝑛+1  are second order accurate. This non-oscillatory 

criterion for Crank-Nicolson scheme can be achieved by enforcing a condition on time 

as: 
 

∆𝑡𝑡 ≤  
(∆𝑥𝑥)2

Γ  (5.28) 

 

While the above criterion poses a rather stringent limitation on the improvement that 

could be achieved on spatial accuracy, it results from an error term in the Taylor series 

expansion which contains the second derivative in space (𝜕𝜕2𝜙𝜙 𝜕𝜕2𝑥𝑥𝑖𝑖2⁄ ). However, this 

term is relatively small in most flow problems and the scheme remains stable for 

considerably large time steps. 

 

5.3.2 Time Integration of Momentum Equations  
Time integration of the momentum equations uses either Crank-Nicolson or the second 

and third order hybrid Adams schemes. In the hybrid schemes, Adams-Bashforth 

methods are used for the advection terms and Adams-Moulton methods for the diffusive 

terms. The momentum equations are integrated by using Crank-Nicolson scheme can be 

expressed as: 
 

𝜌𝜌𝑛𝑛+1𝑢𝑢∗ −  𝜌𝜌𝑛𝑛𝑢𝑢𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉

=  −  
1
2

[𝐻𝐻𝑛𝑛+1(𝑢𝑢∗) +  𝐻𝐻𝑛𝑛(𝑢𝑢𝑛𝑛)] + 
1
2

[𝐿𝐿𝑛𝑛+1(𝑢𝑢∗) +  𝐿𝐿𝑛𝑛(𝑢𝑢𝑛𝑛)]

+ 
1
2 �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛+1𝑢𝑢∗ +  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 𝑢𝑢𝑛𝑛� + 

1
2 �𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛+1𝑢𝑢∗ + 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑢𝑢𝑛𝑛� −  𝐺𝐺𝐺𝐺𝑛𝑛−
1
2 

(5.29) 

 

It is evident from the above equation, that it has similar form of the scalar equation 

employing Crank-Nicolson scheme (equation 5.25). However, an additional term can be 
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noticed, added as a pressure gradient term Gp
n-1/2, which considers n-1/2 time level 

concerning the pressure correction scheme, which will be discussed in next section. 

Here the approximate velocity obtained before pressure correction step at n+1 time level 

is specified with superscript u*.  

 

The advection terms in the momentum equations are integrated using explicit time 

advancement scheme, as Crank-Nicolson requires several iterations to retain second 

order accuracy. In PUFFIN, second and third order hybrid schemes are used such that 

advection terms are treated explicitly using an Adam-Bashforth scheme while diffusion 

term is treated implicitly using Adams-Moulton. The additional terms such as 

gravitational terms are treated explicitly using Adams-Bashforth.  

 

The second order Adams-Bashforth/Adams-Moulton scheme for the momentum 

equations can be written as: 
 

𝜌𝜌𝑛𝑛+1𝑢𝑢∗ −  𝜌𝜌𝑛𝑛𝑢𝑢𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉

=  −  
1
2

[3𝐻𝐻𝑛𝑛(𝑢𝑢𝑛𝑛)−  𝐻𝐻𝑛𝑛−1(𝑢𝑢𝑛𝑛−1)] + 
1
2

[𝐿𝐿𝑛𝑛+1(𝑢𝑢∗) + 𝐿𝐿𝑛𝑛(𝑢𝑢𝑛𝑛)]

+ 
1
2 �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛+1𝑢𝑢∗ + 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 𝑢𝑢𝑛𝑛�+  

1
2 �3𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛 𝑢𝑢𝑛𝑛 −  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛−1𝑢𝑢𝑛𝑛−1� −  𝐺𝐺𝐺𝐺𝑛𝑛−
1
2 

(5.30) 

 

While the third order Adams-Bashforth/Adams-Moulton scheme can be written as: 
 

𝜌𝜌𝑛𝑛+1𝑢𝑢∗ −  𝜌𝜌𝑛𝑛𝑢𝑢𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉

=  −
1

12
[23𝐻𝐻𝑛𝑛(𝑢𝑢𝑛𝑛)− 16𝐻𝐻𝑛𝑛−1(𝑢𝑢𝑛𝑛−1) + 5𝐻𝐻𝑛𝑛−2(𝑢𝑢𝑛𝑛−2)]

+ 
1

12
[5𝐿𝐿𝑛𝑛+1(𝑢𝑢∗) +  8𝐿𝐿𝑛𝑛(𝑢𝑢𝑛𝑛)−  𝐿𝐿𝑛𝑛(𝑢𝑢𝑛𝑛) − 𝐿𝐿𝑛𝑛−1(𝑢𝑢𝑛𝑛−1)]

+ 
1

12 �5𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛+1𝑢𝑢∗ +  8𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛 𝑢𝑢𝑛𝑛 −  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛−1𝑢𝑢𝑛𝑛−1�

+ 
1

12 �23𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑢𝑢𝑛𝑛 −  16𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛−1𝑢𝑢𝑛𝑛−1 +  5 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛−2𝑢𝑢𝑛𝑛−2� −  𝐺𝐺𝐺𝐺𝑛𝑛− 12 

(5.31) 

 

The non-linear advection terms and explicit source terms in this case are calculated at 

previous time steps where all necessary information is known. Hence these schemes do 

not require any iteration procedure, as in Crank-Nicolson scheme to maintain the 

accuracy. However, when the density and viscosity vary significantly, as in turbulent 



Chapter 5: Numerical Methodology 
 
 

93 
 

premixed combustion, iteration of the overall solution procedure is required to include 

the correct value of density in the unsteady term and viscosity in the diffusion term at 

the n+1 time step. The advection term within one time step has to be limited to at least 

satisfy the Courant number, CFL = uiΔt/Δxi < 1.0. Simply, this criterion requires that, 

within a time step, information may only travel to the neighbouring cell but no further. 

For advection terms, the maximum time step is proportional to the characteristic 

convection time Δxi/ui, which is usually described in terms of the Courant number. For 

diffusion term the maximum usable time step is proportional to the characteristic 

diffusion time Δxi
2/ν. However, Adams methods require some treatment for the initial 

steps where no information about previous time step is available. Therefore, the Crank-

Nicolson is used for the initial time steps to enable the calculation of the n-1 and n-2 

source terms for the Adams schemes. 

 

5.3.3 The Pressure Correction Equation  
In the present study, pressure correction of unsteady compressible flow simulations 

have been carried out using the fractional step method based, incompressible flow 

pressure correction of Kan (1986) and Bell et al. (1989), which has been recently 

extended by Kirkpatrick (2002) for compressible flows. It is well known that in case of 

compressible reacting flows, pressure and density remain coupled through the state 

equation and large density variations exist. Hence, it is essential to correct velocity, 

density and pressure simultaneously by enforcing the mass conservation of the fluid 

flow. Since density depends on both pressure and temperature, an iterative method is 

required to correct it. Accordingly, considering the mth iteration of the time step from t = 

n to t = n+1, the transport equations of energy and reaction progress variable are solved 

for temperature field Tm. An approximate density field 𝜌𝜌∗ for the mth iteration is then 

found using the equation of the state with the temperature Tm and the pressure from the 

previous iteration Pm-1 as: 
 

𝜌𝜌∗ =  
𝑅𝑅𝑇𝑇𝑚𝑚

𝑃𝑃𝑚𝑚−1 (5.32) 

 

The momentum equations for three velocity components are then integrated using 𝜌𝜌∗ 

and Pm-1 to find an approximate solution for the velocity field 𝑢𝑢𝑖𝑖∗ as:  
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(𝜌𝜌∗𝑢𝑢𝑖𝑖∗)𝑛𝑛+1 −  (𝜌𝜌𝑢𝑢𝑖𝑖)𝑛𝑛

∆𝑡𝑡 =  Υ(𝑢𝑢𝑖𝑖∗,𝑢𝑢𝑖𝑖𝑛𝑛) −  
1
2 �
𝛿𝛿𝑃𝑃𝑛𝑛

𝛿𝛿𝑥𝑥𝑖𝑖
+ 
𝛿𝛿𝑃𝑃𝑚𝑚−1

𝛿𝛿𝑥𝑥𝑖𝑖
� (5.33) 

 

Where Υ is an operator representing the remaining terms in the momentum equation. In 

order to correct 𝑢𝑢𝑖𝑖*, Pm-1 and 𝜌𝜌∗ mass conservation is thus enforced through the obtained 

velocity field as: 
 

(𝜌𝜌𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚)𝑛𝑛+1 −  (𝜌𝜌𝑢𝑢𝑖𝑖)𝑛𝑛

∆𝑡𝑡 =  𝛾𝛾(𝑢𝑢𝑖𝑖∗,𝑢𝑢𝑖𝑖𝑛𝑛) −  
1
2 �
𝛿𝛿𝑃𝑃𝑛𝑛

𝛿𝛿𝑥𝑥𝑖𝑖
+  
𝛿𝛿𝑃𝑃𝑚𝑚

𝛿𝛿𝑥𝑥𝑖𝑖
� (5.34) 

 

which eventually satisfies conservation of mass as: 
 

𝜌𝜌𝑚𝑚 −  𝜌𝜌𝑛𝑛

∆𝑡𝑡 + 
𝛿𝛿(𝜌𝜌𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚)𝑃𝑃𝑛𝑛

𝛿𝛿𝑥𝑥𝑖𝑖
= 0 (5.35) 

 

Subtracting equation (5.33) from (5.34) gives: 
 

𝜌𝜌𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚 −  𝜌𝜌∗𝑢𝑢𝑖𝑖∗ =  −  
∆𝑡𝑡
2
𝛿𝛿𝑃𝑃′

𝛿𝛿𝑥𝑥𝑖𝑖
 (5.36) 

 

where the pressure correction is defined as 𝑃𝑃′ = 𝑃𝑃𝑚𝑚 −  𝑃𝑃𝑚𝑚−1. Taking the divergence of 

equation (7.36) yields: 
 

𝛿𝛿(𝜌𝜌𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚)
𝛿𝛿𝑥𝑥𝑖𝑖

−  
𝛿𝛿(𝜌𝜌∗𝑢𝑢𝑖𝑖∗)
𝛿𝛿𝑥𝑥𝑖𝑖

= −  
∆𝑡𝑡
2

𝛿𝛿2𝑃𝑃′

(𝛿𝛿𝑥𝑥𝑖𝑖)2
 (5.37) 

 

Substituting equation (5.35) in the above results in: 
 

𝜌𝜌𝑚𝑚 −  𝜌𝜌∗

∆𝑡𝑡 +  
𝜌𝜌∗ −  𝜌𝜌𝑛𝑛

∆𝑡𝑡 + 
𝛿𝛿(𝜌𝜌∗𝑢𝑢𝑖𝑖∗)
𝛿𝛿𝑥𝑥𝑖𝑖

−  
∆𝑡𝑡
2

𝛿𝛿2𝑃𝑃′

(𝛿𝛿𝑥𝑥𝑖𝑖)2
= 0 (5.38) 

 

Finally, writing the density correction in terms of the pressure correction using the state 

equation as: 
 

𝜌𝜌𝑚𝑚 −  𝜌𝜌∗ =  
𝑃𝑃′

𝑅𝑅𝑇𝑇𝑚𝑚 (5.39) 

 

Substituting equation (5.39) in (5.38) results in pressure correction equation as: 
 

𝑃𝑃′

∆𝑡𝑡𝑡𝑡𝑇𝑇𝑚𝑚 −  
∆𝑡𝑡
2

𝛿𝛿2𝑃𝑃′

(𝛿𝛿𝑥𝑥𝑖𝑖)2
=  −  �

𝜌𝜌∗ −  𝜌𝜌𝑛𝑛

∆𝑡𝑡 + 
𝛿𝛿(𝜌𝜌∗𝑢𝑢𝑖𝑖∗)
𝛿𝛿𝑥𝑥𝑖𝑖

� (5.40) 
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Once the pressure correction is evaluated, it is used to correct pressure, velocity and 

density as: 
 

𝑃𝑃𝑚𝑚 =  𝑃𝑃𝑚𝑚−1 + 𝑃𝑃′ (5.41) 

𝜌𝜌𝑚𝑚 =  𝜌𝜌∗ +
𝑃𝑃′

𝑅𝑅𝑇𝑇𝑚𝑚 (5.42) 

𝑢𝑢𝑖𝑖∗ =  
1
𝜌𝜌∗ �𝜌𝜌

𝑚𝑚𝑢𝑢𝑖𝑖𝑚𝑚 + 
∆𝑡𝑡
2
𝛿𝛿𝑃𝑃′

𝛿𝛿𝑥𝑥𝑖𝑖
� (5.43) 

 

Hence, the pressure correction equation is spatially discretized in the similar manner to 

the discretization of the generic transport equation described in the earlier sections. 

Integrating the equation (5.40) over a control volume and applying the Divergence 

theorem gives: 
 

𝑃𝑃′

∆𝑡𝑡𝑡𝑡𝑇𝑇𝑚𝑚 ∆𝑉𝑉 −  
∆𝑡𝑡
2 ��∆𝐴𝐴

𝛿𝛿𝑃𝑃′

𝛿𝛿𝑥𝑥𝑖𝑖
�
𝑓𝑓

=  −  �
𝜌𝜌∗ −  𝜌𝜌𝑛𝑛

∆𝑡𝑡 ∆𝑉𝑉 + �(𝜌𝜌∗𝑢𝑢𝑖𝑖∗∆𝐴𝐴)𝑓𝑓� (5.44) 

 

where summation is performed over each of the faces of area ΔA, and ΔV is the volume 

of the cell. Second order central differences are used to calculate the gradients 𝛿𝛿𝑃𝑃
′

𝛿𝛿𝑥𝑥𝑖𝑖
. It is 

important to use same discretization for the pressure gradient in momentum equation 

and the pressure correction in pressure correction equation (5.40). This minimizes the 

projection error and ensures convergence if an iterative scheme is used.  

 

The boundary condition for pressure correction equation at solid boundaries uses zero-

normal gradient condition, since the mass flux across these boundaries is constant. 

However, for outflow boundaries, a special treatment is required to reduce the pressure 

reflections as discussed in later sections of this chapter. 

 

5.3.4 Solution of the Algebraic Equations  
The system of algebraic equations, obtained through numerical discretization, is 

generally solved using linear equation solvers. The flow simulation code, PUFFIN has 

two solvers, Alternating-Direction-Implicit (ADI) solver and Bi-Conjugate Gradient 

Stabilized (BiCGStab) solver with a Modified Strongly Implicit (MSI) pre-conditioner. 

Current work has been carried out using BiCGStab to solve the momentum, scalar and 



Chapter 5: Numerical Methodology 
 
 

96 
 

pressure correction equations, which is more efficient and requires ten times less 

number of iterations to achieve same level of convergence by ADI (Kirkpatrick (2002)).  

 

Convergence of the solvers is measured using the L2 norm of the residual, where L2 

norm is a vector norm that is commonly encountered in vector algebra and vector 

operations such as dot product). The residual was set to be less than 10-10 for the 

solution of the momentum and scalar equations, which typically required one or two 

sweeps of the solver to obtain convergence. At each time step, a number of iterations of 

the pressure/velocity correction steps are generally required to ensure adequate mass 

conservation.  

 

Pressure correction equation is solved for all iterations with a condition, either to reduce 

the residual to 10% of its original value or the BiCGStab solver has performed 7 sweeps. 

Each sweep of the solver includes 2 sweeps of the pre-conditioner. The solution is then 

used to correct the pressure and velocity field and the divergence of the corrected 

velocity field is calculated. The process is repeated until the (L2) norm of the divergence 

error is less than pre-set value. Typically, 6 to 8 projections are required to attain the 

minimum divergence error. 

 

5.3.5 Iteration Procedure  
In case of unsteady, compressible reacting flows, where density and pressure variations 

are predominant, it must be ensured that the pressure, density and velocity are corrected 

simultaneously by enforcing mass conservation. The overall solution procedure for each 

time step follows similar to that of Kirkpatrick (2002) for compressible flows and the 

combustion modelling capabilities in LES has been enhanced using dynamic modelling 

of flame surface density (DFSD). A typical iteration procedure requires information at 

current and previous time steps represented by superscripts (n) and (n-1) respectively. In 

the following, superscript (k) refers to the iteration cycle within the time step and the 

superscript (0) indicates the initial guess for the first iteration with a time step i.e. (k = 

0). 

  
Step 1: Predict or choose appropriate initial values for the variables at time = 0. In the 

present work, a straightforward choice is adopted by choosing the solution values at the 

current time level as: 
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𝑢𝑢𝑘𝑘0 = 𝑢𝑢𝑘𝑘𝑛𝑛 ,𝜙𝜙𝑘𝑘0 = 𝜙𝜙𝑘𝑘𝑛𝑛  , 𝑒𝑒𝑒𝑒𝑒𝑒. 
 

Step 2: Solve scalar transport equations to obtain provisional values, which will 

facilitates better estimate of the density early in the iteration process. 

 

Step 3: Calculate the fluid properties such as temperature, density, molecular viscosity 

according to the combustion model implemented.  

 

Step 4: Update the scalar field information, based on the new density available from 

preceding step and solve for momentum equation.  

 

Step 6: Solve the pressure correction equation.  

Step 7: Correct pressure, velocity and density fields.  

 

Step 8: Check mass conservation error and repeat steps 6 and 7 as required.  

 

Step 9: Calculate eddy viscosity.  

 

Step 10: Calculate dp/dt, Skk, etc.  

 

Typically 8-10 outer iterations of this procedure are required to obtain satisfactory 

convergence at each time step. The time step is limited to ensure that the Courant 

number (CFL number), 𝐶𝐶𝐶𝐶𝐶𝐶  remains less than 0.5 by enforcing a limit on time 

advancement, δt as: 
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝛿𝛿𝑡𝑡𝑡𝑡𝑖𝑖
𝛿𝛿𝑥𝑥𝑖𝑖

 (5.45) 

 

However, to avoid un-realistic times an extra condition has been imposed such that the 

upper limit for δt is 0.3 ms. The solution for each time step requires around 8 iterations 

to converge, with residuals for the momentum equations less than 2.5e-5 and scalar 

equations less than 2.0e-3. The mass conservation error is less than 5.0e-8. 

  



Chapter 5: Numerical Methodology 
 
 

98 
 

5.4 Boundary Conditions  
Additional to the mathematical model and the numerical scheme, suitable boundary 

conditions are important for successful LES predictions. Mathematically, the imposition 

of exact boundary and initial values are prerequisite for unique solution of the set of 

partial differential equations to be solved.  

 

In the present study, the problem considered is a propagation of turbulent premixed 

flame, evolved from stagnant condition in a rectangular chamber having multiple solid 

obstacles. Solving premixed flames requires the boundary conditions for all the 

dependent variables such as density, velocity, pressure, temperature and reaction 

progress variable. Since density is dependent on the pressure and temperature, the 

boundary condition for density can be specified from pressure and temperature. 

Continuity requires that mass conservation be satisfied over the complete domain at all 

times, and the boundary conditions for the velocity field must therefore ensure that: 
 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑 + � 𝜌𝜌𝑢𝑢𝑖𝑖𝑛𝑛𝑖𝑖𝑆𝑆 = 0

𝑆𝑆Ω

 (5.46) 

 

For the combustion configuration under investigation, outflow boundary conditions at 

outlet (top) of the chamber and solid wall boundary conditions at rest of the walls (four 

vertical and one bottom) and solid obstacles are used. The details of these boundary 

conditions are described in the following sections.  

 

5.4.1 Initial Conditions  
At the beginning of a new simulation, the energy and reaction progress variable are set 

to zero everywhere in the computational domain. The initial velocity field is quiescent, 

with random perturbation field to allow for development of turbulence. As explained in 

the previous chapter, to achieve the initial quasi-laminar flame phase corresponding to 

experiments, ignition is modelled by setting the reaction progress variable to a specific 

value within a certain radius (Bradley and Lung (1987)) at the bottom centre of the 

chamber. 
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5.4.2 Outflow Boundary Conditions  
The outflow boundary conditions generally use either a zero normal gradient (ZNG) 

condition or a convective outlet boundary condition. The zero gradient condition at an 

outflow boundary is generally given by: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 (5.47) 

 

where ∂/∂n denotes the gradient taken normal to the outflow boundary. Alternatively, 

the convective boundary condition is expressed as: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑈𝑈𝑏𝑏

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 (5.48) 

 

where 𝑈𝑈𝑏𝑏  is the bulk velocity across the boundary. It is very important in case of 

compressible flow that the pressure wave generated within the chamber must be 

allowed to leave smoothly without reflection. Since the pressure field is dependent on 

the velocity field, the boundary conditions applied for velocity will determine the 

pressure wave behaviour. The outflow boundary conditions described in equations (5.47) 

and (5.48) work well when the dominant force on the fluid flow is due to advection and 

diffusion. However, in the present work, due to the compressible nature of the 

propagating flame, the dominant force is the pressure gradient resulting from pressure 

waves generated from the chamber. Consequently, both the above boundary conditions 

would result in significant pressure reflections. Hence, to overcome this problem, 

Kirkpatrick (2002) developed a new non-reflecting boundary condition for velocity, 

similar to the commonly used convective boundary condition in incompressible LES as: 
 

𝑢𝑢𝑖𝑖 =  �𝑢𝑢𝑖𝑖−1 −  
∆𝑥𝑥𝑖𝑖
𝑐𝑐𝑠𝑠𝑠𝑠

𝜕𝜕𝑢𝑢𝑖𝑖−1
𝜕𝜕𝜕𝜕 �

𝑅𝑅𝑖𝑖−13

𝑅𝑅𝑖𝑖3
 (5.49) 

 

where ui is the velocity on the boundary, ui-1 is the velocity in the adjacent cell within 

the domain, is the distance between the two nodes, 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑖𝑖−1 are the distance from the 

two nodes to the centre of the open end of the chamber and 𝑐𝑐𝑠𝑠𝑠𝑠 is the speed of sound, 

which is convective velocity. To ensure that this boundary condition is accurate, the 

numerical domain has to be extended with far-field boundary conditions from the 

chamber outlet.  
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5.4.3 Solid Boundary Conditions  
For solid wall boundaries, it is common to set the normal and tangential velocity 

components to zero at the wall. These conditions correspond to the impermeable and the 

no-slip conditions. At the domain boundaries overlapping with a stationary 

impermeable wall, the no-slip condition can be applied as: 
 

𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡) = 0 (5.50) 
 

In turbulent reacting flows, it is important that the near wall treatment should be 

accurate enough to account for the boundary layer effects. In general, the flow near wall 

behaves differently than away from it due to shear forces within the vicinity of wall. 

The main structures capable to determine the flow properties within this region are of 

the order of boundary layer thickness. Consequently, in high Reynolds flows, it is very 

important to employ fine grid in the domain near wall, which eventually reaches DNS 

limit in order to resolve energy carrying scales. Refining grid near wall in LES is not 

possible due to the computational limitations and alternative methods, such as wall 

functions are required to mimic the overall dynamics of the near wall effects. Hence, in 

the present study, the 1/7th power-law wall function of Werner and Wengle (1991) is 

used to calculate wall shear as: 
 

𝜏𝜏𝑤𝑤 = 𝑊𝑊 (𝑢𝑢� ,𝑦𝑦) (5.51) 
 

where 𝜏𝜏𝑤𝑤 is the wall shear stress, W is a functional dependence, 𝑦𝑦 is the distance of the 

grid point form the wall and 𝑢𝑢�  is the tangential velocity at 𝑦𝑦. Solid boundary conditions 

with this wall function are applied at the bottom, vertical walls, and for solid obstacles 

in the chamber. 

 

5.4.4 Numerical Domain 
In order to simulate the turbulent premixed flame of the stoichiometric propane/air 

flame, in the combustion chamber shown in Figure 5.4, a computational domain with 

the applied boundary conditions is required. As described in before, in the case of 

compressible flows, the domain must extend in the direction normal to the outflow 

boundary to avoid pressure reflections. However, to avoid certain numerical instabilities, 

in general, the domain is extended in the other two directions as well. A typical 

computational domain, superimposed with the numerical combustion chamber and 
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obstacles is shown for clarity in Figure 5.4. The combustion chamber has dimensions of 

50 x 50 x 250 mm where the flame propagates over the baffles and solid obstacle 

surrounded by solid wall boundary conditions. To ensure that the pressure wave leaves 

the chamber smoothly, without reflections, the open end of the domain is extended to 

250 mm in the z-direction with far-field boundary conditions. Similarly, the domain is 

extended to 325 mm in the 𝑥𝑥 and 𝑦𝑦 directions with large expansion ratios approximately 

equal to 1.25 outside the combustion chamber. 

 

The simulations are carried out for the 3-D, non-uniform, Cartesian co-ordinate system 

for a compressible flow, having low Mach number. In order to examine the solution 

dependence on the grid resolution, simulations are performed with four different grid 

resolutions as detailed later on in Table 8.1. 

 

Finally, the work done and the procedure of the current thesis is explained in the chart 

below (Figure 5.5). Where the DFSD model is examined for the three fuels, then the 

Lewis number is then implemented and further validated using the extracted stretch rate 

and different flow configurations. 
 

 
Figure 5.4 Illustration of the computational domain with the combustion chamber and obstacles 

superimposed over the grid. 
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Figure 5.5 Description for the current work. 
 

 

5.5 Summary  
This chapter described numerical features of the in-house code PUFFIN in LES. It uses 

finite volume methodology, which generally allows complex geometries to form grids 

and solve successfully. Spatial discretization and numerical implementation of a generic 

transport equation of variable has been detailed. Several challenges were discussed 

while dealing the individual terms of the generic equation. Since the fluid flow 

numerically marches into time, time advancement of the spatially discretized equations 

are very important for accurate predictions. Mainly, Crank-Nicholson time advancement 

scheme was discussed as it was used for momentum and other scalar equations. 

Pressure correction is critical as the fluid flow involved mainly is unsteady, 

compressible, which generally involved in large density variations and directly coupled 

with pressure via state equation. Hence, the methodology developed by Kirkpatrick 

(2002) is used to correct the pressure, velocity and density fields simultaneously by 

enforcing the mass conservation.   
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Various linear solvers available in the present numerical in house code “PUFFIN” were 

briefly outlined and the choice of BiCGStab to solve system of linear equations has 

been explained. Typical iteration procedure used by PUFFIN was outlined with possible 

modifications carried out while accounting the chemical reaction rate of the propagating 

flame. Various boundary conditions such as solid and outflow used in the present study 

were also presented and discussed. 
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Chapter 6 

The Experimental Combustion Chamber  

 
This chapter describes the experimental combustion chamber used for model validation 

in the present investigation. Section 6.1 discusses the importance of the experimental 

turbulent flames and the design consideration for any experimental combustion 

configuration. Section 6.2 describes the combustion chamber established at The 

University of Sydney, which is a revised version and fourth inline to test turbulent 

premixed propagating flames. Accordingly, a brief introduction and some technical 

details of the various measuring techniques and laser ignition system are provided. 

Finally, the experimental procedure and sequence of operations are detailed in section 

6.3. 

 

6.1 Design Consideration for the Combustion Chamber  
Turbulence being an unsolved problem for several decades with available analytical and 

experimental techniques, turbulence-flame interactions is one of the very interesting and 

most challenging areas of research. In this series, with the advancement of the 

numerical prediction tools and computational power, numerical techniques became an 

alternative method of solving turbulent fluid flow and combustion problems. In order to 

capture the correct physics and chemical properties of fluid flow problems, it is 

essential to validate the numerical model, method and the technique implemented 

against a valid experimental test case. Since the introduction of laser technology for the 

flow measurements into combustion studies, such as Laser Induced Florescence (LIF), 

Laser Doppler Velocimeter (LDV), and Particle Image Velocimetry (PIV), extracting 

the more accurate information regarding turbulence intensity and various other flow 

parameters made possible. However, the major challenge is to quantify these 

measurements of turbulence and its interactions with flame in a transient process.  

 

The work presented here, mainly aims to simulate a real explosion situation, where 

multiple solid obstacles are presented in the path of a propagating flame, which is 

expected to facilitate understanding some of the remaining key challenges such as 
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complex feedback system formed due to flame-flow interactions and flame dynamics 

with respect to position and number of obstacles etc.  

 

Since, one main objective of the current work is experimental validation of the DFSD 

model, it is ideal to choose a combustion chamber, which could provide sufficient 

optical access for measurements, affordable for computational modelling, and also to 

have a simplistic geometries than those encountered in practice so a generalised 

predictive tool could be developed. It is worth mentioning here, that the original 

experimental chamber used by combustion groups at both Loughborough and the 

University of Sydney (Masri et al. (2000),  Ibrahim and Masri (2001) and Masri et al. 

(2006)) was a big chamber of 20 litres in volume and found to be impractical for LES 

modelling studies due to the long computational times. Hence, an alternative design 

(Kent et al. (2005)), that preserved the same physics and optical access, yet with a 

reduced volume of 0.625 litre (smaller by 32 times) is adopted in this study.  

 

Essentially the present experimental combustion chamber is designed to represent many 

of the most realistic situations of the propagating turbulent premixed flames in a 

confined chamber, such as SI engines, accidental explosion situation, bluff body 

combustion…etc. Hence, understanding the turbulence generation, flame propagation 

speed, and the flame interactions will help to design a better combustion device. This 

allows analysis of the relationship between turbulence levels and flame surface density, 

and the associated influence/dependence of flame front structure on turbulent burning 

rates to be related to other real world applications, such as prevention of loss and 

damage in case of accidental explosions in industrial areas. One important factor 

influencing the design of any experimental chamber is applicability for model 

validations and numerical simulations. This requires well defined initial and boundary 

conditions and also the physical size must be affordable for numerical simulations in 

order to resolve the length scales (Masri et al. (2006)). Additionally, good optical access 

is required to allow the imaging experiments to be easily performed. Considering the 

factors stated above, the experimental chamber designed in this investigation has a 

simple rectangular chamber with the ability to hold a maximum of three baffle plates 

and a solid obstacle in the path of propagating flame. 
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6.2 Experimental Setup  
As described in the previous section, the experimental setup adopted in this 

investigation is originally developed by Kent et al. (2005) at The University of Sydney. 

This vessel is the latest and fourth iteration of the combustion chambers used in similar 

experimental investigations. The main modification in the new version is the viewing 

window, which is rectangular (Figure 6.1). This gives the advantage for extending the 

optical access area to all the baffles and obstacle positions, thus making it possible for 

the laser sheet to cover the main area of interest. By doing so, OH-LIF imaging can 

include the propagation of the flame over all of the obstructions 

 

Figures 6.2 and 6.3 illustrate the schematic representation of the vessel used in this 

study. The combustion chamber is constructed from a Perspex square prism, with 

internal dimensions of 50 x 50 mm, and an overall length of 250 mm giving an 

experimental volume of 0.625L. The external prism is constructed from 20 mm thick 

Perspex walls, is used to enclose the thinner 5 mm Perspex combustion chamber. 

External prism holds the inner chamber rigidly and adds additional strength to withstand 

the shock waves encountered during the explosion. The external and internal prisms are 

placed in between a Perspex base plate and an open vented aluminium top plate and the 

entire rig is then held firmly together using draw bolts.  

 

 

         

Figure 6.1: Old (left) and new (right) combustion chamber showing the quarts viewing windows. 
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Horizontal grooves (stations) are cut into the sidewalls at locations of 20 mm (S1), 50 

mm (S2) and 80 mm (S3) downstream of the ignition point in which turbulence 

inducing baffle plates can be placed. For this investigation, baffle plates are situated at 

various combinations of these locations in order to change the turbulence generating 

characteristics of the flame and the flow properties. The baffles are constructed from 3 

mm thick aluminium sheet placed perpendicular to the propagating flame front, and 

consist of five, 4 mm wide strips evenly separated by six 5 mm wide spaces, rendering a 

blockage ratio of 40% as shown in Figure 6.2. A solid square obstacle of 12 mm in 

cross section with a blockage ratio of 24% is centrally located at 96 mm from the 

ignition point running throughout the chamber, causing significant disruption to the 

flow. The influence of the individual obstacle in generating turbulence and flame 

propagation is detailed in the following section. This chamber has reconfigurable 

capability, which facilitates to generate different configurations and several analysis 

were done by Kent et al. (2005), Hall (2006 & 2008), Masri et al. (2011), and AlHarbi 

(2013) based on the number and position of baffle plates as shown in Figure 6.4. 

However, for the purpose of comparison between the three fuels, AlHarbi (2013) used 

only 4 configurations, mainly 000S, B00S, BB0S and BBBS.  

 

All experiments conducted by AlHarbi (2013) used hydrogen, liquefied petroleum gas 

(LPG: 95 % C3H8, 4 % C4H10, and 1 % C5+ hydrocarbons by volume), and compressed 

natural gas (CNG: 88.8% CH4, 7.8 % C2H4, 1.9 % CO2, and 1.2 % N2 with the 

remaining 0.3 % being a mixture of propane, propene, butane, and pentane) which 

enters through a non-return valve in the base plate at a flow rate of 26.21 litre/min. This 

provided seven times the volume of the chamber to purge any gases left over from the 

previous cycle. The flow was then stopped and the gases within the chamber were 

allowed to settle to ensure the mixture homogeneity before the stagnant mixture is 

ignited. A hinged flap closes the top of the vessel during filling. This flap was opened 

just before ignition to allow the exhaust gases to escape, and remains open until the 

completion of the combustion process. The entire experimental sequence from initial 

filling of the vessel to opening of the flap, ignition of the mixture and operation of the 

LIF components was automated using a computer. 
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Figure 6.2 The combustion chamber (left) and the removable baffles (right). B1, B2, and B3 are 
the baffles. Dimensions in mm. 

 
 
 
 

 

 

 

 
 

 

 

 
 

 

 
 

 

Figure 6.3 Internal and external structure for the combustion chamber. 
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6.2.1 Baffles and Solid Obstacle Arrangement 
The presence of baffle plates and obstacles into the flow inside the combustion chamber 

serve to increase the turbulence level and flame propagation speed. The position and 

number of the baffle plates employed with respect to the square obstacle significantly 

alters the generated peak pressure, flame speed and structure (Kent et al. (2005), Masri 

et al. (2006), Masri et al. (2011) and AlHarbi (2013)). From these experimental 

investigations, it is found that the addition of baffle plates increases the overpressure, 

speeds up the flame and causes significant level of stretching in the flame front as it jets 

through the baffles. Higher turbulence levels increase the burning rates and hence the 

overpressures at an even faster rate than the flame speed. Hence, large increase in 

overpressure can be achieved through only a small increase in flame speed. The 

influence of individual baffle plates and square obstacle on the flow will be discussed in 

the next part. However, to simplify identification for the different configurations, 

baffles will be given (B), the square obstacle (S) and for no baffle in place (0).     

 

 
Figure 6.4 Combustion chamber configurations used by AlHarbi (2013). 

 

 

Baffle Plate One (B1): This plate is located at 20 mm from the base (Figure 6.2). Due 

to the closeness to the ignition point the flame speed is still relatively low, thus this 
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obstacle only has a small effect on turbulence generation. Thus, re-laminarisation of the 

flame front shortly after this obstruction can be observed. The main purpose of this 

baffle plate is to increase the initial propagation speed of the flame front, hence leading 

to a faster time to peak pressure.  

 

Baffle Plate Two (B2): This plate is located at 50 mm from the base (Figure 6.2). This 

serves both to increase the pressure and increase the propagation speed of the flame. In 

particular it affects the positioning of the flame front at peak overpressure.  

 

Baffle Plate Three (B3): This plate is located at 80 mm from the base (Figure 6.2). It 

has the most influence on increasing the amount of turbulence generated within the 

combustion chamber. Flame accelerates at its greatest after hitting this baffle, thus 

increasing the amount of turbulence and flame propagation speed.  

 

Square Obstacle: The solid square obstacle is located at 96 mm downstream from the 

ignition close end (Figure 6.2). This is not a turbulence-inducing device but work to 

increase the blockage ratio and hence alter the development of the flame front. Rapid 

propagation for the flame is recorded past this obstruction followed by the wrapping of 

the flame in the recirculation region, which enhances the mixing and distortion at the 

flame front. 

 

6.2.2 Ignition System  
The air/fuel mixture within the combustion chamber was ignited using a Neodymium-

doped Yttrium Aluminium Garnet (Nd:YAG) laser. This is done by focusing laser pulse 

in order to ionize atoms in the chamber to create a spark. The use of a laser has several 

advantages over a normal spark plug, including that it is non-intrusive and has a higher 

timing accuracy. A focused laser beam with a wavelength of 1064 nm provided the 

spark and, for alignment purposes, a green laser beam with a wavelength of 532 nm was 

generated by KDP crystal, as the infrared spectrum is not visible to the naked eye. The 

laser has output energy of 500-600 mJ at 1064 nm (AlHarbi (2013)). A height-

adjustable platform was used to move the chamber up or down and enabled images to 

be easily taken at different heights within the chamber. Also, the chamber could move 

in three directions through rails mounted on the platform (Figure 6.5). The LIF 
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equipment is fixed to the optical table in front of the combustion chamber. When the 

YAG laser sent the ignition laser beam, the beam is reflected by a fixed prism to a 

mirror implanted in the movable system with a focal length of 25 mm. The ignition 

laser is directed to the chamber and focused at a height of 2 mm above the base of the 

chamber. An external control unit is used to adjust the intensity and the frequency of the 

laser pulse. In addition, laser timing is controlled by the Q-switch of the Nd:YAG and 

this marks the start of the experiment, or time zero. 

 

 

 
 

Figure 6.5 Arrangement of the Laser assisted ignition system (AlHarbi (2013)). 
 

 

6.2.3 Pressure Transducers  
The pressure is recorded at 25 kHz measured using piezo-electric pressure transducers 

with a range of 0-1 bar and a total error < 0.5%. These devices utilize quartz crystals 

that develop a charge relative to the pressure applied. The piezo-electric sensor is 

particularly sensitive to rapid changes in pressure and hence makes it an ideal choice for 

this experiment. Two pressure transducers are employed to measure the pressure, one is 
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positioned at the ignition end of the vessel and other one is positioned after the square 

obstruction from ignition point. The pressure signals measured from both the 

transducers confirms to follow the same trend with slight variations. However, 

overpressure results from the base transducer are used in this work to validate LES 

simulations.  

 

6.2.4 High Speed Imaging System  
A High speed camera (LaVision - HSS6) with a lens-coupled two-stage intensifier is 

used to obtain images of the propagating flame. The camera was run at a repetition rate 

of 5 kHz with an array of 1024 x 1024 pixels. Due to the quick nature of the explosion, 

the camera was operated at 5000 fps, i.e. 0.2 ms between each captured image. The 

repetition rate was high enough to capture flame front propagation from shot-to-shot. 

 

6.2.4.1 Imaging Tiers 
The imaged area measured 50 mm × 75 mm, which covered the height of the laser sheet 

but not the whole chamber. The possible height of examination with the experimental 

setup was about 77 mm (AlHarbi (2013)). To overcome this problem, it was necessary 

to select two slightly overlapping imaging windows. For each case, the imaging process 

was repeated two times to cover each of the imaging windows, T1 and T2. As there was 

some difficulty during the experiment. Figure 6.6 shows the two imaging tiers used to 

capture the maximum viewable height. 

 

  

 

 

 

 

 

 
 
 
 

 
Figure 6.6: The two imaging tiers used to capture the maximum viewable height. Left used for 

configuration BBBS and right for the rest of configurations. 
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6.2.5 Laser Induced Fluorescence of Hydroxyl Radical (LIF-OH) 
Laser Induced Fluorescence from the hydroxyl radical, OH (LIF-OH) is performed 

using a typical arrangement with a Pulsed YAG laser (Spectra-Physics DCR-2A) used 

to pump a Pulsed Dye Laser (Spectra-Physics PDL-2). The beam is then passed through 

cylindrical optics to form a thin sheet of approximately 200 μm thick which illuminates 

the viewing region. The laser is positioned 110 mm downstream pointing through a 1-

inch diameter quartz-viewing window with the camera placed at a right angle with the 

lens pointing through a second quartz-viewing window.  

 

The LIF-OH is being collected on the camera. The timing is such that the LIF 

measurement is made just when the flame front is crossing defined imaging tiers (Figure 

6.6). Since the OH is formed in the reaction zone of the flame and is rapidly quenched 

by cold un-reacted gases, it is a good indicator of the flame front position in flames 

where the reaction zone is thin. It should be noticed here that the flame front is 

measured from the flame leading edge position in the LIF images to the base of the 

chamber.  

 

6.3 Experimental Procedure  
The entire experimental sequence is controlled by a computer, operating all equipment 

and solenoid valves in a predetermined sequence. The fuel/air mixture is directed to the 

combustion chamber either directly or bypassing via the seeding vessel and finally 

straight out to the exhaust. Whereas the required equivalence ratio is obtained by 

fuel/air controller through percentage scale. The technical issue involved in directing 

the fuel/air mixture through the various way points as the experiment progresses, arises 

due to the seeding of the fuel before it enters the chamber. This may corrupt the 

outcome of the experiment. Though, to avoid the risk of corruption of the results, two 

sets of two-way valve are used in series as shown in Figure 6.7, which are also operated 

by the computer. The ignition laser is controlled by a computer to enable a base 

timeframe for the collection of the data. However, the experimental test rig with all the 

attached parts can be seen in Figure 6.8. 
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Figure 6.7 Fuel/Air direction system. 

 
 

 

 

 

 

 

 

 
 

 
 
 

Figure 6.8 The experimental rig of the turbulent premixed combustion chamber. 
 

 

6.3.1 The Experimental Sequence  
As a typical experimental procedure is involved in co-ordinating several systems, such 

as fuel-air mixture filling into the chamber, high speed imaging system, pressure 

transducers and laser system for ignition, hence the entire sequence is controlled and the 

data is collected by a computer. 
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Step 1 - Fill time: With the flap closed, the fuel-air mixture is injected into the chamber. 

A digital flow controller controls the quantity of the fuel/air mixture entering the 

combustion chamber. 

 

Step 2 - Settling time: All the mixtures required to settle for 15 (CNG), 10 (LPG), or 5 

(H₂) seconds in the chamber, to keep the mixture inside the chamber homogenous and 

also when ignition occurs, the mixture is assumed to be quiescent. The flap remains 

closed. 

 

Step 3 - Ignition: The flap is now open and the laser is trigged for ignition. This sets 

time zero. The laser imaging system is now trigged to start collecting image 

 

6.4 Summary  
This chapter summarizes influencing factors in designing an experimental combustion 

chamber and the challenges faced in the past due to large scales experimental test rigs. 

A novel chamber that has recently been developed by The University of Sydney 

Combustion group that can retain the combustion physics with good optical access has 

been discussed. Details of the individual obstacles used and their influence in generating 

turbulence and overpressure of the propagating premixed flame were discussed. Brief 

details of various measurement devices such as LIF-OH and techniques such as ignition 

control, image capturing were presented and discussed. Finally, the experimental 

sequence has been presented. 
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Chapter 7 

Quantifications of Experimental Data 
 

In this chapter the main objective is to obtain a set of data from AlHarbi (2013) 

experiments in-order to validate the model results as will be discussed in the next 

chapter. The analysis includes the overpressure, flame position, speed and flame stretch. 

This will be investigated for three different fuels; CNG, LPG and hydrogen with 

equivalence ratio 0.8 for configurations BBBS and 000S. The reason for choosing these 

two cases specifically, because they are considered as the high and low turbulence cases. 

For the flame stretch, the methodology and how the stretch is extracted are explained in 

this chapter.  

 

7.1 The Overpressure Time Traces  
The experimental pressure measurements of AlHarbi (2013) were done for different 

configurations, fuels and equivalence ratio. However, depending on the case, several 

readings were provided. On the other hand, for each of these cases, only one curve is 

required in-order to compare the numerical results with the experimental one.  

 

For the purpose of comparison, the equivalence ratio of 0.8 will be considered for the 

three different fuels CNG, LPG and hydrogen. As mentioned previously, for each of the 

fuels, several tests were done to ensure that the repeatability of the measurements is 

quite good. Table 7.1 presents the number of experiments done for each fuel and with 

different chamber configurations. While Table 7.2 shows the averaged peak 

overpressure for the three fuels and the corresponding time. Where, it is clear that 

hydrogen has the highest value followed by LPG and CNG respectively.  

 

However, as time shift is observed from the raw data of AlHarbi (2013), the peaks have 

to be aligned in-order for a proper average to be done. So, one curve could be used for 

comparison later on. So, a post-processing program (see Appendix A) is developed to 

fix the shift in all the curves and then calculate average value for all the curves. The 

basic idea is to find the average value for the pressure and time, then adjust all the 

curves according to these values. This procedure is done for all the configurations under 
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study as shown in Figures 7.1 – 7.6. The smoother curves for hydrogen over CNG and 

LPG are due to the less number of recorded data points captured by the pressure 

transducer due to the high reactivity, hence a faster combustion for hydrogen. 

   

Moreover, the baffle locations are plotted on these figures, to investigate their effect on 

the generated overpressure. From these results, the following points are observed. First, 

the repeatability of the measurements is quite good showing that the peak is similar for 

all traces and confirming that the all conditions are well optimized. Second, the pressure 

oscillations after the first peak are consistent. These oscillations are thought to be for the 

reflected pressure waves since they occur even for 000S. Also, the subsequent burning 

of the gases trapped upstream and downstream the solid obstacles may contribute to 

such pressure fluctuations. Finally, the maximum pressure for the three fuels and 

configurations is noticed after the square obstacle. This is due to the trapped fuel behind 

this obstacle which tends to raise the pressure massively.   

 
 

Table 7.1 Number of experimental overpressure tests for each fuel/configuration. 
 

Fuel CNG LPG Hydrogen 

Configuration No. of Readings for each Fuel/Configuration 

000S 20 20 20 

BBBS 10 20 20 
 
 

Table 7.2 Summary of mean values for the first peak pressure and time of incidence measured at 
the base of the chamber for configurations (000S and BBBS) and three fuels LPG, CNG and 

hydrogen with equivalence ratio Ф = 0.8. 
 

Fuel CNG LPG Hydrogen 

Configuration Pb,max 
(mbar) 

Tp,b 
(ms) 

Pb,max 
(mbar) 

Tp,b 
(ms) 

Pb,max 
(mbar) 

Tp,b 
(ms) 

000S 4.6 28.03 6.0 23.5 218.5 4.78 

BBBS 26.4 21.99 26.9 19.74 997.1 3.33 
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Figure 7.1 Averaged value (black colour) imposed over the raw data for overpressure-time 
history for CNG-air mixture (Φ = 0.8) and 000S configuration after fixing the time shift. 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 7.2 Averaged value (black colour) imposed over the raw data for overpressure-time 
history for CNG-air mixture (Φ = 0.8) and BBBS configuration after fixing the time shift. 
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Figure 7.3 Averaged value (black colour) imposed over the raw data for overpressure-time 
history for LPG-air mixture (Φ = 0.8) and 000S configuration after fixing the time shift. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 7.4 Averaged value (black colour) imposed over the raw data for overpressure-time 
history for LPG-air mixture (Φ = 0.8) and BBBS configuration after fixing the time shift. 
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Figure 7.5 Averaged value (black colour) imposed over the raw data for overpressure-time 
history for hydrogen-air mixture (Φ = 0.8) and 000S configuration after fixing the time shift. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 Averaged value (black colour) imposed over the raw data for overpressure-time 

history for hydrogen-air mixture (Φ = 0.8) and BBBS configuration after fixing the time shift. 
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7.2 Flame Position and Speed  
The flame speed was calculated by using the displacement of the leading edge flame 

position in the LIF images from the base of the chamber and a change in time of 0.2 ms 

(AlHarbi (2013)) and according to the tier system described in Chapter 6. Table 7.3 

presents the available number of images for the three fuels and for both configurations. 

As can be seen the number of images for CNG and LPG are greater than that for 

hydrogen, as the former fuels are slower in propagation and the used camera could 

capture more images for them over hydrogen. 

 
 

Table 7.3 Number of images for each fuel/configuration. 

Fuel CNG LPG Hydrogen 

Configuration No. of Images for each Fuel/Configuration 

000S 124 110 18 

BBBS 69 61 9 
 

 
 
Figures 7.7 and 7.8 show the flame position extracted from the images for 

configurations 000S and BBBS (see Appendix B). The curves are smooth for all three 

gases until there is a sudden change in direction as a result of hitting an obstacle/baffle 

at distances where the obstacle/baffle placed. Also, it is clear for both configurations 

that hydrogen flame propagates faster than CNG and LPG. However, for configuration 

000S, LPG is faster than CNG. While for configuration BBBS almost both of them 

reach the square obstacle in the same time. Figures 7.9 and 7.10 show the flame speed 

for the three gases with the same mentioned fuel mixtures. Both figures confirm the 

previous note that hydrogen is faster in reacting with the obstacles more than CNG and 

LPG. 

 

Figures 7.11 and 7.12 compare the flame speed against the flame positon for both 

configurations. From Figure 7.11, the flame tends to slow down before hitting the 

square obstacle and this is because of the pressure accumulated/built-up ahead of the 

flame, just before the obstacle. However, the flame re-starts to speeds-up again while 

passing the obstacle. This could be observed for the three fuels. This is also confirmed 

in Figure 7.10, for CNG and LPG but for hydrogen this is not observed. This could be 
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happened either because the flame becomes less sensitive to/overcome the pressure 

ahead, due to the very fast propagation or the amount of turbulence generated that tends 

to keep the increase at the flame speed. These conclusions confirm with the extracted 

scales in the next chapter. 

        

Figures 7.13 and 7.14 compare the flame position and speed for both configurations and 

the three fuels. It is obvious that the introducing of baffles enhances the flame-flow 

interaction and hence faster flame is observed in configuration BBBS over 

configuration 000S. Also, for hydrogen in both configurations the flame position curve 

is almost overlapped for both configurations until reaching 60 mm and after that flame 

travels faster in case of BBBS. Again, this confirms the role of baffles to enhance the 

flame propagation. Finally, for the CNG and LPG flame speed plots show fluctuations, 

the hydrogen velocity plot appears more stable. This is due to the higher number of 

flame speed data points were collected for CNG and LPG than for hydrogen due to 

hydrogen’s higher flame front speed which requires an advanced camera to capture. 

 

 

     

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 

 
Figure 7.7 Flame position-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configuration 000S. 
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Figure 7.8 Flame position-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configuration BBBS. 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 7.9 Flame speed-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configuration 000S. 
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Figure 7.10 Flame speed-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configuration BBBS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.11 Flame Speed vs Flame Position for configuration 000S using the experimental 

measurements for CNG, LPG and hydrogen air-mixture (Φ = 0.8).  

Time (ms)

Fl
am

e
Sp

ee
d

(m
/s

)

0 5 10 15 20 25 300

20

40

60

80

100

120

140

160

180

200

220
CNG
LPG
Hydrogen

Flame Position (m)

Fl
am

e
Sp

ee
d

(m
/s

)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

20

40

60

80

100
CNG
LPG
Hydrogen

Sq.
Obstacle



    Chapter 7: Quantification of Experimental Data 
 
 

125 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.12 Flame Speed vs Flame Position for configuration BBBS using the experimental 
measurements for CNG, LPG and hydrogen air-mixture (Φ = 0.8). 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 

 
Figure 7.13 Flame position-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configurations 000S and BBBS. 
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Figure 7.14 Flame speed-time traces of experimental measurements using CNG, LPG and 

hydrogen air-mixture (Φ = 0.8) for configurations 000S and BBBS. 
 

 

7.3 Flame Stretch 
An important parameter in the study of premixed flames is the flame stretch. As, the 

stretch rate k is of great interest in understanding of flame/flow interactions. For a flame 

front propagating in a fresh gas mixture, it is subjected to strain and curvature effects 

which lead to changes in flame area (Williams (1985a)). These changes are measured 

by flame stretch. It is defined as the rate of change of a flame surface element as 

described by Matalon and Matkowsky (1982) and Candel and Poinsot (1990) as: 
 

𝑘𝑘 =  
1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  (7.1) 

 

Candel and Poinsot (1990) proposed for a thin flame sheet a general expression for 

stretch as: 
 

𝑘𝑘 =  −𝑛𝑛�⃗ 𝑛𝑛�⃗ ∶  ∇𝑤𝑤��⃗ + ∇.𝑤𝑤��⃗  (7.2) 
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Where 𝑛𝑛�⃗  is the unit vector normal to the flame surface pointing towards the fresh gases, 

𝑤𝑤��⃗  is the flame front velocity and expressed in terms of the unburned gas velocity 𝑢𝑢�⃗  and 

the displacement speed 𝑢𝑢𝑑𝑑 while 𝑛𝑛�⃗ 𝑛𝑛�⃗ ∶  ∇𝑤𝑤��⃗  is the gradient operator normal to the flame 

surface. The flame front velocity 𝑤𝑤��⃗ could be written in terms of the unburned gas 

velocity 𝑢𝑢�⃗   and the displacement speed 𝑢𝑢𝑑𝑑 (Poinsot and Veynante (2012)) as: 
 

𝑤𝑤��⃗ =  𝑢𝑢�⃗ + 𝑢𝑢𝑑𝑑𝑛𝑛�⃗  (7.3) 
 

.According to Poinsot and Veynante (2012) the difference between the flame front 

velocity 𝑤𝑤��⃗  and the flow velocity 𝑢𝑢�⃗  is the displacement speed 𝑢𝑢𝑑𝑑𝑛𝑛�⃗  which takes into 

consideration the effect of flow on the flame structure. However, substituting equation 

(7.3) in equation (7.2) leads to: 
 

𝑘𝑘 =  −𝑛𝑛�⃗ 𝑛𝑛�⃗ ∶  ∇𝑢𝑢�⃗ +  ∇.𝑢𝑢�⃗ + 𝑢𝑢𝑑𝑑(∇.𝑛𝑛�⃗ ) (7.4) 
 

where ∇.𝑛𝑛�⃗  is the curvature for the flame front and in spherical expanding flames, it is 

expressed as: 
 

∇.𝑛𝑛�⃗ =  
−2
𝑅𝑅  (7.5) 

 

where R represents the curvature of the flame surface. The effect of 𝑢𝑢𝑑𝑑(∇.𝑛𝑛�⃗ ) to the 

stretch in equation (7.4) is negative, i.e. the flame propagation works on decreasing 

stretch and the flame surface (Poinsot and Veynante (2012)). 

 

However, following the analysis of Chung and Law (1984) for the flow strain, equation 

(9.2) could be arranged for spherical flames as: 
 

𝑘𝑘 = ∇𝑡𝑡 .𝑢𝑢�⃗ − 𝑢𝑢𝑑𝑑 �
2
𝑅𝑅� =  ∇𝑡𝑡 .𝑢𝑢�⃗ + 𝑢𝑢𝑑𝑑∇𝑡𝑡 .𝑛𝑛�⃗   (7.6) 

 

where ∇𝑡𝑡.𝑢𝑢�⃗  is the strain due to flow non-uniformity and 𝑢𝑢𝑑𝑑∇𝑡𝑡.𝑛𝑛�⃗  represents the curvature of 

the flame front. 

 

Generally, in turbulent flames zones of positive and negative stretch are available and 

the final length of a flame depends on the competition between these zones. Finally, for 

expanding flame, it is obviously growing since its size increases with time so that its 

stretch must be positive. 
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7.3.1 Methodology for Extracting Flame Stretch 
Available methods for calculation of flame stretch rely on the flame surface area. In 

simplified configurations, such as spherically expanding flame, this is easily obtainable 

and traceable. However, when flame propagation through a set of obstacles is 

considered, the calculation of the flame surface area becomes very difficult. Instead, in 

the current work we consider the area of the flame symmetry cross-section plane. Figure 

9.15 shows a typical experimentally obtained LIF-OH image. It is clear that the picture 

is slightly non-symmetrical, but this is attributed to the difference in luminance as the 

light source was directed from one side, and for the purpose of flame analysis we 

consider the brighter half of the image assuming that the other half is identical. 

The procedure for extracting the stretch values from experimental images consisted 

from the following steps: 

1. Calibrate the image dimensions based on the visible width of baffle (T1) or 

obstacle (T2) 

2. Split the image in half (left part is always used for measurements) 

3. For each time step follow the flame front to measure the area of the flame front 

cross-section 

4. Calculate flame stretch using the equation 7.1 

 

 

Figure 7.15 Image processing methodology for LIF-OH images 
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The experimental images are captured using the defined image tiers described in 

Chapter 6. The calculation of stretch for the flame moving into the tier two was based 

on the extrapolation of area increase in tier 1 plus the visible flame cross-section area in 

tier two. 

 

However, from Figures 7.16-7.19, it is clear that hydrogen has the highest values of 

stretch compared with CNG and LPG with almost 3.5 times greater than the other fuels. 

This is associated with its explosion nature which enhances the flame flow interactions 

and hence increase the flame wrinkling. The oscillations occur for CNG and LPG but 

not in hydrogen due to the high number of images presented for the two fuels compared 

with hydrogen. Also, from Figure 7.19 a comparable behaviour could be observed 

between CNG and LPG, which emphasis on their close performance, similar as that for 

pressure, flame position and speed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.16 Extracted flame stretch from experimental images for CNG-air mixture with Φ = 
0.8 
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Figure 7.17 Extracted flame stretch from experimental images for LPG-air mixture with Φ = 0.8. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Extracted flame stretch from experimental images for hydrogen-air mixture with Φ 
= 0.8. 
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Figure 7.19 Comparison between the extracted flame stretch from experimental images for the 
three fuels, CNG, LPG and hydrogen-air mixture with Φ = 0.8. 

 

 

 
7.4 Sources of Errors  
While repeatability of the measurements is critical in these experiments, there are many 

factors that could affect the results such as: 

 The temperature of the ignition mixture  

 The position of the laser ignition source  

 Variability in the mixture composition  

 Errors in the pressure transducer measurements  

 Geometric factor associated with the chamber’s baffles, obstacles and flap 

 The power of the ignition laser is the main source affecting the repeatability of 

the experiments (AlHarbi (2013)) 

 The vibrations produced due to fuel explosions, which would affect both the 

chamber and surrounding equipment 
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On the other hand, regarding the extraction of the data from LIF-OH images, the 

sources of error could a result of: 

 The measuring program inaccuracy  

 Human measuring error 

 Visible variance seen in the LIF-OF images, which varied for the three different 

fuels, producing images of diverse contrast as shown in Figure 7.20. As shown, 

the LPG image is clearer than either of the other two fuels.   

 

 

             
                         (a)                                                     (b)                                                      (c) 

 

Figure 7.20 The varied contrasts of the images of each fuel. (a) CNG (b) LPG (c) Hydrogen. 
 

 

 

7.6 Summary 
This chapter explains the procedure in analysing the experimental data. LPG, CNG and 

hydrogen were used in preparing the discussion for this chapter. A comparison between 

the three fuels and were evaluated in terms of the overpressure, flame position and 

speed for low turbulence (000S) and high turbulence (BBBS) cases. Also, the LIF-OH 

images were presented in a way that facilitates the comparison between the three fuels. 

Moreover, the flame stretch and a proposed methodology to extract that from the 

images also discussed for high turbulence case (BBBS) and the three fuels. Finally, the 

main reasons of errors in the measured data were discussed. 
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Chapter 8 

Results and Discussion 
 
This chapter presents results from LES simulations of turbulent premixed combustion 

carried-out for three different fuels CNG, LPG and hydrogen air mixtures. As discussed 

in Chapter 6, model validation is made against experimental data of AlHarbi (2013), 

where, typical configurations are chosen to compare the numerical predications with the 

experimental data. In the first part, grid independency tests are carried out using the 

DFSD model for configuration BBBS. Moreover, other numerical aspects such as 

ignition radius, shape and location are studied and discussed. It should be noticed that, 

in sections 8.1 and 8.2, hydrogen-air mixture with equivalence ratio 0.7 is used for the 

setting-up of the model. However, in the following sections and for the purpose of 

comparison between the three fuels, equivalence ratio of 0.8 is used. In the section 8.3, 

the effect of fuel type is examined using configuration BBBS. Lewis number effect is 

discussed in section 8.4. More validation will be done in section 8.5 by extracting the 

flame stretch from the numerical results and compare that with experimental data. In 

section 8.6, the effect of various flow configurations on will be tested for the three fuels. 

Finally, various velocity and length scales are extracted from the LES simulations in 

order to identify the regimes of combustion in the current combustion chamber. 

 

8.1 Grid Dependency Test  
In numerical simulations, the grid independency is a much debatable and contentious 

topic as mentioned by Klein (2005), where it depends on many numerical and physical 

aspects, especially in LES. However, in numerical modelling, it is desirable to achieve 

substantial uniqueness of results, independent of the grid resolution employed. Hence, 

in the present investigation, LES simulations of turbulent propagating premixed flames 

have been carried out by refining the grid employed for configuration BBBS, as detailed 

in Table 8.1. Case A consists of 0.25 million, case B has 0.55 million, case C has 2.7 

million, and case D has 3.6 million grid points in the computational domain shown in 

Figure 8.1. The pressure-time histories of the overpressure near the closed ignition end 

of the chamber are considered here as bench mark to assess the grid dependence of the 
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LES results (Gubba (2009)). Pressure-time histories for cases A, B, C and D are 

presented together with the experimental data of AlHarbi (2013) in Figure 8.1. 

 

 
Table 8.1 Details of the numerical parameters 

Parameters A B C D 

Dimension 40 x 40 x 156 54 x 54 x 190 90 x 90x 336 90 x 90 x 448 

Grid Size (millions) 0.25 0.55 2.70 3.62 

Consumed Time (days) 1 2 10 25 

∆x (mm) 2.0 1.47 0.75 0.75 

∆y (mm) 2.0 1.47 0.75 0.75 

∆z (mm) 1.0 – 2.0 1.0 – 1.75 0.75 - 1.0 0.48 – 0.75 

∆� (mm) 3.17 – 4.0 2.59 – 3.12 1.5 – 1.65 1.29 – 1.5 

LF (mm) 0.35 0.35 0.35 0.35 

h/∆� 0.32 – 0.5 0.39 – 0.56 0.5 – 0.6 0.37 – 0.5 

∆� /LF 10.8 - 11.4 7.4 – 8.9 4.3 – 4.7 3.69 – 4.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 8.1 LES predictions of overpressure-time histories using different grid resolutions 
detailed in Table 8.1. 
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From Figure 8.1, it is obvious that grids A and B show an initial increase in 

overpressure at 1.2 ms and 1.5 ms after ignition, respectively, while this instant 

corresponds to 3.2 ms for grids C and D, which is in reasonable agreement with 

experimental measurements. This initial increase in overpressure in cases of grid C and 

D corresponds to the time where the flame is due to interact with the second baffle plate. 

Evidently, these calculations are confirming the peak overpressures of 721 and 725 

mbar, occurring at 4.75 ms for grids C and 4.8 ms for D, respectively. Based on the 

peak overpressure, LES results can be considered grid independent, beyond the grid 

resolution C. However, LES calculations with grids C and D found to under-predict the 

experimental peak pressure of 778 mbar occurring at 4.35 ms after ignition.  

 

8.2 Sensitivity to Ignition Source 
In setting up the boundary and initial conditions, it is important to make them 

approximate, as closely as possible to the experimental configurations and this, in some 

instances, may not be possible.  The ignition source is one of the parameters that need to 

be reproduced numerically due to the fact that, experimentally, this performed with a 

focused laser beam. Moreover, sensitivity to the ignition energy and the location of the 

source has not been performed experimentally. Numerically, ignition is modelled by 

setting the reaction progress variable to 0.5 within a certain number of cells located near 

the center of the base plate. It is relatively straightforward to vary the shape, size and 

location of the ignition source and monitor their effects on the peak overpressure, the 

flame structure and its propagation rates. The results are presented here, albeit for a 

limited number of cases but extremely useful not only in optimizing ignition, but also in 

determining whether the ignition source is primary parameter in setting up the boundary 

conditions.  

 

Calculations are repeated for configuration BBBS (3 baffles and square obstacle) but 

with a range of ignition sources (labeled IG-1 to IG-6) as shown in Table 8.2. The shape 

of the ignition kernel is varied from hemispherical to spherical, and its location is 

shifted from being flush with the base plate to 5 mm downstream (Cases IG-5, IG-6). 

Also, the ignition energy is varied by increasing the size from a radius of 2 mm to 5mm 

(Cases IG-1 to IG-4) respectively. Figure 8.3 shows the overpressure and flame position 

calculated for case BBBS. It is evident from these plots that the predicted peak 
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overpressure is independent of the ignition radius. It can be seen from Figure 8.2 that 

the only effect found is in the timing of the occurrence of the maximum pressure. Also, 

from Figure 8.2 the ignition radius which is found to be most appropriate to represent 

the early phase of flame propagation is 3 mm. on the other hand, from Figure 8.3, for 

the same ignition area (IG-2 and IG-5), the shape either hemispherical or spherical has 

almost no effect on either the overpressure or the timing of occurrence as long as the 

center is very close to base. However, as the location of the ignition source is set far 

from the base as in case (IG-6), a decrease on the peak overpressure can be noticed. 

This might be referred to the fact that the flame doesn’t have enough time to 

expand/accelerate before hitting the first baffle. The same conclusion was observed by 

Xiao et al. (2014). However, calculations presented in the remainder of this study use 

the hemispherical ignition source (IG-2) with a diameter of 3 mm and located on the 

base plate. It should be noticed here that the ignition radius for CNG and LPG would be 

doubled as the energy required to ignite them is almost twice of that required for 

hydrogen as mentioned earlier in chapter 2.  

 

 
 

Table 8.2 Details of ignition sources, shapes and location 

Case Shape Radius (mm) Distance of centre from base 
plate (mm) 

IG-1 Hemispherical 2 0 

IG-2 Hemispherical 3 0 

IG-3 Hemispherical 4 0 

IG-4 Hemispherical 5 0 

IG-5 Spherical 2.12 2.12 

IG-6 Spherical 2.12 5 
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Figure 8.2 - Effect of various ignition radii (a) overpressure (b) flame position for BBBS 

configuration. 
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Figure 8.3 - Effect of ignition shape (Hemispherical and spherical) and location on 

overpressure-time traces for BBBS configuration using the same ignition area. 
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8.3 Effect of Fuel Type 
It is clear from Figures 8.4-8.12 that hydrogen has the biggest value for overpressure, 

flame position and speed compared to CNG and LPG. The value of overpressure of 

hydrogen is almost about 38 times higher than that of CNG and LPG. Also, the flame 

speed is much faster for hydrogen than that for CNG and LPG. LPG is slightly higher 

than CNG and the flame speed is almost the same as CNG. This is due to the higher 

laminar flame speed and diffusivity hydrogen has over the CNG and LPG. This points-

out the importance of considering safe design when using hydrogen in facilities and 

commercial applications.  

 
Also, from Figures 8.4-8.6, LES simulations for CNG and hydrogen are slightly under-

predicted while it is over-predicted for LPG. One of the factors for this discrepancy is 

the value of laminar flame speed used, as range of values for each fuel is available in 

the literature. This is in-addition to the model accuracy, grid…etc. The same 

observation for the over/under-predictions is confirmed in both the flame position and 

speed figures.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8.4 Overpressure-time histories for CNG-air mixture (Φ = 0.8) for configuration BBBS. 
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Figure 8.5 Overpressure-time histories for LPG-air mixture (Φ = 0.8) for configuration BBBS. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 8.6 Overpressure-time histories for hydrogen-air mixture (Φ = 0.8) for configuration 
BBBS. 
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Figure 8.7 Flame position-time traces of LES simulation for CNG-air mixture (Φ = 0.8) for 

configuration BBBS. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.8 Flame position-time traces of LES simulation for LPG-air mixture (Φ = 0.8) for 

configuration BBBS. 
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Figure 8.9 Flame position-time traces of LES simulation for hydrogen-air mixture (Φ = 0.8) for 

configuration BBBS. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.10 Flame speed-time traces of LES simulation for CNG-air mixture (Φ = 0.8) for 

configuration BBBS. 
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Figure 8.11 Flame speed-time traces of LES simulation for LPG-air mixture (Φ = 0.8) for 

configuration BBBS. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 8.12 Flame speed-time traces of LES simulation for hydrogen-air mixture (Φ = 0.8) for 
configuration BBBS. 
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8.4 Effect of Lewis number 
In this section the effect of non-unity Lewis number is considered with the model as 

described earlier in Chapter 4. However, as it could be noticed from Table 4.1 that 

Lewis numbers vary in value for both LPG and Hydrogen and are away from unity, 

while for CNG its value is very close to unity. From Figure 8.13, it is clear that there is 

almost no change in the overpressure for CNG when using unity or non-unity Lewis 

number and for both cases a reasonable agreement is obtained. While from Figure 8.14 

for LPG, using unity Lewis number assumption tends to over-predict the overpressure 

when compared with experiments. However, for the non-unity Lewis case, good 

agreement was achieved. For Hydrogen as shown in Figure 8.15, the unity Lewis 

number assumption under-predicts the pressure, while for the non-unity Lewis number 

better agreement was obtained with the experimental results. This is very crucial in 

accidental explosions as the over/under-prediction of the overpressure may lead to 

critical problems in designing the industrial, commercial or domestic facilities. The 

flame position and flame speed figures confirm also with this observation for the three 

fuels.  

 

The reason for over/under-predictions is mainly due to diffusivity. In the hydrogen case, 

higher diffusivity exists in the non-unity Lewis number case rather than the unity one. 

This is led have a faster flame. An inverse effect happened for the LPG where non-unity 

Lewis number led to a slower flame. For CNG, a negligible effect is observed. This 

points-out the importance of considering non-unity Lewis number on modelling of 

fuel/air mixtures as they could lead to disastrous results, especially on designing 

hydrogen systems. Hence, in the following sections this effect is considered in the 

results.  
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Figure 8.13 Comparison between unity and non-unity Lewis number on overpressure-time 

histories for CNG-air mixture (Φ = 0.8). 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.14 Comparison between unity and non-unity Lewis number on overpressure-time 

histories for LPG-air mixture (Φ = 0.8). 
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Figure 8.15 Comparison between unity and non-unity Lewis number on overpressure-time 

histories for hydrogen-air mixture (Φ = 0.8). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.16 Comparison between unity and non-unity Lewis number on flame positon-time 

histories for CNG-air mixture (Φ = 0.8). 
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Figure 8.17 Comparison between unity and non-unity Lewis number on flame positon-time 
histories for LPG-air mixture (Φ = 0.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.18 Comparison between unity and non-unity Lewis number on flame positon-time 
histories for hydrogen-air mixture (Φ = 0.8). 
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Figure 8.19 Comparison between unity and non-unity Lewis number on flame speed-time 

histories for CNG-air mixture (Φ = 0.8). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.20 Comparison between unity and non-unity Lewis number on flame speed-time 

histories for LPG-air mixture (Φ = 0.8). 
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Figure 8.21 Comparison between unity and non-unity Lewis number on flame speed-time 

histories for hydrogen-air mixture (Φ = 0.8). 
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8.5 Model Validation Using Flame Stretch 
Figures 8.22 - 8.24 compares the extracted stretch values for the three fuels and for both 

unity and non-unity cases with the experimental data. The same procedure explained in 

the previous chapter to extract the flame stretch values is used to extract the values from 

the generated numerical images. However, discrepancies between the experimental and 

numerical values are due to many factors. For example, the resolution for the images is 

different which could lead to a magnification in value of error. Also, the human error is 

possible especially that the process is done manually. However, from qualitative point 

of view both results matches and the effect of the square obstacle can be seen in all the 

results in increasing the flame stretch, similarly with the pressure increase after the 

obstacle. Also, the effect of baffles on how the flame stretch oscillates can be seen in all 

the figures and came with the observation of Poinsot and Veynante (2012) as the flame 

stretch tends to increase and decrease but still with positive values for propagating 

flames. The value of stretch for hydrogen is about three times that of CNG and LPG and 

this confirms with the previous that the amount of turbulence generated and flame 

wrinkling for hydrogen are much higher than CNG and LPG. Also, using the non-unity 

Lewis number cases tends to have better results rather than the unity cases. 

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 8.22 Comparison between extracted flame stretch from experimental/numerical images, 
and unity/non-unity Lewis number for CNG-air mixture with Φ = 0.8 in configuration BBBS. 
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Figure 8.23 Comparison between extracted flame stretch from experimental/numerical images, 
and unity/non-unity Lewis number for LPG-air mixture with Φ = 0.8 in configuration BBBS. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.24 Comparison between extracted flame stretch from experimental/numerical images, 

and unity/non-unity Lewis number for hydrogen-air mixture with Φ = 0.8 in configuration 
BBBS. 
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8.6 Effect of Flow Configuration 
The baffles in these configurations are progressively increasing from no baffle to three 

from ignition source as shown in Figure 8.25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.25 Combustion chamber configurations used in the present work. 

 

The overpressure and flame speed shows an increase as the number of baffles used 

increases. This observation could be seen for the three fuels. The effect of baffles came 

from the fact that turbulence tends to increase as the blockage ratio increases. However, 

some over-prediction is observed especially in the cases of less number of baffles and 

this is originally due the model is basically for turbulent cases. As, the laminar phase is 

not modelled properly which affects later on the turbulent phase (Wang et al. (2012)). 

Again, hydrogen has the highest overpressure, flame position and speed for all the cases 

while CNG and LPG are close to each other with slightly higher values for LPG. The 

time shift observed is due to the ignition model as the model in the present study is 

artificially tuned to capture the right incident time for the overpressure, where a proper 

dynamic model would fix this issue (Vianna and Cant (2013)).  

 

For the 000S configuration, the same trend for the overpressure curves is observed for 

the three fuels with a better agreement with hydrogen, LPG and CNG respectively.   

 (000S)  (B00S) 
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Figure 8.26 Overpressure-time histories for CNG-air mixture (Φ = 0.8) and configuration 000S. 
 

 

 

 

 

 

 

 

 

 

 
Figure 8.27 Overpressure-time histories for LPG-air mixture (Φ = 0.8) and configuration 000S. 
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Figure 8.28 Overpressure-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
000S. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.29 Flame position-time histories for CNG-air mixture (Φ = 0.8) and configuration 

000S. 
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Figure 8.30 Flame position-time histories for LPG-air mixture (Φ = 0.8) and configuration 000S. 
 

 

 

 

 

 

 

 

 

 

 
Figure 8.31 Flame position-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

000S. 
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Figure 8.32 Flame speed-time histories for CNG-air mixture (Φ = 0.8) and configuration 000S. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.33 Flame speed-time histories for LPG-air mixture (Φ = 0.8) and configuration 000S. 
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Figure 8.34 Flame speed-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

000S. 
 
 
 

It should be noticed from the above figures that the over-prediction associated with 

CNG and LPG is more than for hydrogen in case of 000S. In addition to the previously 

mentioned reason, this could be also for the sensitivity of model to the values of laminar 

burning velocity. As, this case tends to be the most quasi-laminar one. So any small 

error in the value of the laminar burning velocity would cause this mismatch between 

the measured and predicted results. 
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Figure 8.35 Overpressure-time histories for CNG-air mixture (Φ = 0.8) and configuration B00S. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.36 Overpressure-time histories for LPG-air mixture (Φ = 0.8) and configuration B00S. 
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Figure 8.37 Overpressure-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

B00S. 
 

 

 

 

 

 

 

 

 

 

 
Figure 8.38 Flame position-time histories for CNG-air mixture (Φ = 0.8) and configuration 

B00S. 
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Figure 8.39 Flame position-time histories for LPG-air mixture (Φ = 0.8) and configuration 

B00S. 
 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 8.40 Flame position-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
B00S. 
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Figure 8.41 Flame speed-time histories for CNG-air mixture (Φ = 0.8) and configuration B00S. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.42 Flame speed-time histories for LPG-air mixture (Φ = 0.8) and configuration B00S. 

Time (ms)

Fl
am

e
Sp

ee
d

(m
/s

)

0 5 10 15 20 25 300

2

4

6

8

10

12

14

16

18

20
Exp
LES

Time (ms)

Fl
am

e
Sp

ee
d

(m
/s

)

0 5 10 15 20 25 300

5

10

15

20

25

30
Exp
LES



Chapter 8: Results and Discussion 
 
 

162 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.43 Flame speed-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

B00S. 

  

 
In configuration B00S; a better agreement is obtained for LPG, hydrogen then CNG 

respectively. This could be observed in the overpressure, flame position and speed. The 

effect of adding one baffle on these parameters, is not clear over 000S configuration but 

only very small increase in gradient after hitting that baffle. The re-laminarisation of the 

flow/flame could be observed from the flame positon curves, as the increase in gradient 

tends to be very small.   
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Figure 8.44 Overpressure-time histories for CNG-air mixture (Φ = 0.8) and configuration BB0S. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.45 Overpressure-time histories for LPG-air mixture (Φ = 0.8) and configuration BB0S. 
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Figure 8.46 Overpressure-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
BB0S. 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 8.47 Flame position-time histories for CNG-air mixture (Φ = 0.8) and configuration 

BB0S. 
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Figure 8.48 Flame position-time histories for LPG-air mixture (Φ = 0.8) and configuration 

BB0S. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.49 Flame position-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
BB0S. 
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Figure 8.50 Flame speed-time histories for CNG-air mixture (Φ = 0.8) and configuration BB0S. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.51 Flame speed-time histories for LPG-air mixture (Φ = 0.8) and configuration BB0S. 
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Figure 8.52 Flame speed-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

BB0S. 
 

 

In this configuration BB0S; the effect of adding one more baffle starts to appear in all 

the figures and for all the three fuels. This is due to the extensive flame-flow 

interactions which tend to increase the flame speed and generated overpressure. The 

overpressure, flame position and speed are greater in this case over the previous two 

cases (000S and BBBS). This shows the effect associated with the addition of baffles. 
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Figure 8.53 Overpressure-time histories for CNG-air mixture (Φ = 0.8) and configuration BBBS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.54 Overpressure-time histories for LPG-air mixture (Φ = 0.8) and configuration BBBS. 
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Figure 8.55 Overpressure-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
BBBS. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 8.56 Flame position-time histories for CNG-air mixture (Φ = 0.8) and configuration 
BBBS. 
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Figure 8.57 Flame position-time histories for LPG-air mixture (Φ = 0.8) and configuration 

BBBS. 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.58 Flame position-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 
BBBS. 
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Figure 8.59 Flame speed-time histories for CNG-air mixture (Φ = 0.8) and configuration BBBS. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.60 Flame speed-time histories for LPG-air mixture (Φ = 0.8) and configuration BBBS. 
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Figure 8.61 Flame speed-time histories for hydrogen-air mixture (Φ = 0.8) and configuration 

BBBS. 
 

 

Finally for case BBBS; the experimental and predicted results are higher than all the 

previous cases due to the addition of one more baffle. Also, a better agreement is 

observed for the three fuels when compare with the experimental data over all the 

previous configurations. Generally, the less number of oscillations can be seen in 

hydrogen when compare to CNG and LPG. This is because of fewer amounts of data 

extracted for hydrogen, where in reality intense oscillations could be observed due to 

the explosive nature of hydrogen.  
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8.7 Regimes of Combustion  
Data from LES simulations for the three fuels are used to identify the regimes of 

combustion in the current chamber. The baffles and the obstacle are used to define the 

regions as shown in Figure 8.62 and described later. Tables 8.3-8.5 present summary of 

the extracted data from LES calculations. All controlling parameters in this analysis are 

evaluated at the leading edge of the flame front. It is worth mentioning here that this 

regime diagrams are not valid within the vicinity of wall (Gubba et al. (2009)). This is 

due to the heat loss to the wall which tends to local quenching. 

 

 

 

 

 

 

 

 
 

 
 

 

Figure 8.62 Regions used to identify regimes of combustion for the BBBS configurations 
 

 

Region1 (R1): This region is extended to 20 mm from the ignition end of the chamber. 

In this region, the flame is quasi laminar and propagates at almost the laminar burning 

velocity until it starts to approach the first baffle plate. This is confirmed from the 

numerical image shown in Figure 8.63.  

 

Region 2 (R2): This region extends from 20 to 50 mm (i.e. 1st to 2nd baffles) as shown 

in Figure 8.62, downstream of the ignition point. Within this region the flame just 
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emerged from the first baffle plate until hitting the second baffle and traps a small 

amount of unburnt fuel/air mixture as it evolves from the baffle plates. The flame is 

then stretched further as it moves from one baffle plate to the other. The entrapment of 

the flame around the baffles and its evolution through jetting can be noticed from 

numerical images shown in Figure 8.63.  

 

Region 3 (R3): This region extends from 50 mm to 80 mm downstream from the 

ignition source (i.e. 2nd to 3rd baffles). As shown in numerical images in Figure 8.63, the 

flame continues to propagate from the second baffle until reaches the third baffle. The 

same conclusion from region 2 could be applied in this region but with increase in 

magnitude as the turbulence level increases as the flame propagates. 

 

Region 4 (R4): This region extends from the third baffle until hitting the square 

obstacle (80 mm to 96 mm). As shown in numerical images in Figure 8.63, the turbulent 

flame departed from the third baffle and encounters square obstruction. This has led to 

have a highly distorted flame as it starts to interact with the solid square obstacle. A 

rapid rise of overpressure with a steep pressure gradient and a sharp increase in flame 

propagation speed is observed in this region and observed in the three fuels. This 

confirms the observations mentioned earlier.   

 

Region 5 (R5): This region may be viewed as start of the blow-down region, where 

flame starts exiting from the chamber. Due to the presence of square obstacle in this 

region, a significant amount of unburnt fuel/air mixture is trapped around the obstacle 

as shown in Figure 8.63. The flame is stretched further and reconnected within the 

recirculation zone. The reconnected flame has an increase in the surface area, which 

eventually consumes more unburnt mixture. As a result, the pressure and flame speed 

are found to increase significantly.  

 

This region covers the remainder of the chamber, where the blow-down phase continues 

and the flame propagates further to outside of the chamber. In this region flame gets 

reconnected completely as shown in Figure 8.63. The overpressure is found to increase 

and achieves its maximum for the three fuels further in this region due to the burning of 

the remaining fuel/air mixture trapped inside the chamber. Experimentally it is observed 
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that the maximum overpressure is reached to 26.4, 26.9 and 997.1 mbar for CNG, LPG 

and hydrogen respectively, by consuming the trapped mixture around the solid obstacles. 

The generated pressure oscillates while the remaining trapped mixture is burning in the 

chamber.  

 

Relevant estimates from LES predictions at various instants of flame propagation within 

the above regions are calculated and presented in Tables 8.3-8.5 for the three fuel-air 

mixtures, CNG, LPG and hydrogen at equivalence ratio 0.8. Various regimes of 

combustion are calculated based on non-dimensional groups described below and then 

plotted on two standard combustion regime diagrams. 

 

The Karlovitz number (Ka) represents the relation between chemical time scale to the 

time scale of straining (Cant and Mastorakos (2008)). However, significant importance 

is given while the flame is hitting and evolving from the obstacles. The Karlovitz 

number (Ka) here is calculated based on the filter width as stated by Pitsch and 

Duchamp de Lageneste (2002) as follows: 
 

𝐾𝐾𝐾𝐾Δ� =  ��
𝑢𝑢′∆
𝑢𝑢𝐿𝐿
�
3

. �
𝐿𝐿𝐹𝐹
Δ�
��

1
2

 (8.1) 

where Δ� is the filter width, 𝑢𝑢𝐿𝐿 is the laminar flame velocity, and 𝐿𝐿𝐹𝐹 is flame thickness. 

Also, to verify the Reynolds numbers based on the integral length scale LI, it is 

calculated as: 
 

𝑅𝑅𝑅𝑅𝐿𝐿𝐼𝐼 =  
𝑢𝑢′∆ 𝐿𝐿𝐼𝐼
𝜈𝜈  (8.2) 

 

The RMS of turbulent velocity, 𝑢𝑢′∆  is obtained Poinsot and Veynante (2012) at the 

leading edge of the flame front and is calculated from 
 

𝑢𝑢′∆ ≈  Δ� �𝑆𝑆� =  Δ� ��2 𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖��   (8.3) 
 

The integral length scale 𝐿𝐿𝐼𝐼 is estimated to be 10% of the chamber width (Quillatre et al. 

(2013) and Masri et al. (2006)), i.e. 𝐿𝐿𝐼𝐼 is taken to be 5 mm. The different scales and 

dimensionless numbers estimated at various time steps of the flame propagation are 

summarized in Tables 8.3-8.5. Results from the LES simulation are fitted in the two 

regimes of combustion diagrams to get adequate confirmation of the combustion model   
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Figure 8.63 Flame structure derived from the LES calculations for the reaction rate contours of 
the three fuels, showing the flame propagation at different times after ignition with in the five 

regions. (a) CNG, (b) LPG and (c) Hydrogen. The time mentioned at the bottom of each 
chamber is in millisecond (ms). 

  0.95              1.43             1.87             2.45             2.91            3.08              3.27 
  (c) 

  3.30              7.40            10.75           15.05            18.0           18.97             20.12 
(b) 

  3.70              7.85            11.40           15.5              18.5           19.52          20.75 
(a) 
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used in the present calculations as shown in Figures 8.64 and 8.65. Both regime 

diagrams confirm that the leading edge of the flame is always within the thin reaction 

zone regardless its position and interactions with the solid obstacles. 

 

A rapid increase in the Karlovitz and Reynolds numbers is observed as the flame starts 

approaching the first solid baffle plate. The same trend of Karlovitz and Reynolds 

numbers can be observed until the flame starts evolving from the first baffle plate. This 

feature continues as the flame propagates through the chamber. Also, it is very clear that 

the effect of first baffle is not that much on turbulence level and this is due to the nearby 

location to the ignition source and this agrees with the earlier observation. Moreover, a 

slowdown in the flame can be observed just before hitting the baffles as can be seen 

before hitting the second baffle and this confirms with AlHarbi et al. (2013) and Abdel-

Raheem et al. (2015) observation.  

 

From these tables it is clear that hydrogen generates the highest level of turbulence 

because of the high laminar burning velocity and mass diffusivity. Also, there is close 

similarity between CNG and LPG with priority for LPG in terms of Ka number and 

turbulence velocity. 

 

The calculated results for the three fuels are plotted in the classical regime diagram for 

turbulent premixed flames of Peters (2004) as shown in Figure 8.64. Also, the LES 

regime diagram for turbulent premixed flames developed by Pitsch and Duchamp de 

Lageneste (2002) in terms of Karlovitz number (Ka) and the ratio of 𝐿𝐿𝐹𝐹/Δ�  is used to 

plot the results as shown in Figure 8.65. The current analysis has successfully classified 

the regimes of the flame at different stages of its propagation while interacting with the 

solid obstacles. 
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Table 8.3 Different scale estimates from LES predictions for CNG with equivalence ratio  
Φ = 0.8, case BBBS. These estimates are plotted in combustion regime diagrams in Figures 8.64 

and 8.65. 
 

 
Time 
(ms) 

Z 
(mm) 

∆� 
(mm) 

uL 
(m/s) 

u' 
(m/s) 

LF 
(mm) 

ReLI u'/uL Ka LI/LF ∆�/LF 

R1 
3.70 10.29 1.51 0.28 0.58 0.47 145.8 2.08 1.68 10.64 3.21 

7.85 16.39 1.52 0.28 1.35 0.47 519.2 4.82 5.89 10.64 3.23 

R2 
11.40 27.13 1.51 0.28 1.63 0.47 1164.3 5.82 7.87 10.64 3.21 

15.5 42.88 1.51 0.28 1.50 0.47 1071.4 5.17 6.50 10.64 3.21 

R3 18.5 72.13 1.51 0.28 3.05 0.47 2541.7 10.89 20.12 10.64 3.21 

R4 19.52 92.66 1.51 0.28 2.88 0.47 2087.0 10.28 18.45 10.64 3.21 

R5 20.75 127.3 1.51 0.28 4.64 0.47 3093.3 16.55 37.68 10.64 3.21 

 
 
 
 
 
 
 

Table 8.4 Different scale estimates from LES predictions for LPG with equivalence ratio 
Φ = 0.8, case BBBS. These estimates are plotted in combustion regime diagrams in Figures 8.64 

and 8.65. 
 

 
Time 
(ms) 

Z 
(mm) 

∆� 
(mm) 

uL 
(m/s) 

u' 
(m/s) 

LF 
(mm) 

ReLI u'/uL Ka LI/LF ∆�/LF 

R1 
3.30 10.29 1.51 0.30 0.65 0.44 161.3 2.15 1.70 11.36 3.43 

7.40 16.39 1.52 0.30 1.49 0.44 573.1 4.97 5.95 11.36 3.45 

R2 
10.75 27.13 1.51 0.30 1.79 0.44 1278.6 5.97 7.89 11.36 3.43 

15.05 42.88 1.51 0.30 1.67 0.44 1192.9 5.39 6.68 11.36 3.43 

R3 18.0 72.13 1.51 0.30 3.85 0.44 2961.5 12.83 24.90 11.36 3.43 

R4 18.97 92.66 1.51 0.30 3.34 0.44 2385.7 11.13 20.06 11.36 3.43 

R5 20.12 127.3 1.51 0.30 5.28 0.44 3520.0 17.58 39.83 11.36 3.43 
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Table 8.5 Different scale estimates from LES predictions for hydrogen with equivalence ratio  
Φ = 0.8, case BBBS. These estimates are plotted in combustion regime diagrams in Figures 8.64 

and 8.65. 
 

 
Time 
(ms) 

Z 
(mm) 

∆� 
(mm) 

uL 
(m/s) 

u' 
(m/s) 

LF 
(mm) 

ReLI u'/uL Ka LI/LF ∆�/LF 

R1 
0.95 10.29 1.51 1.65 4.37 0.299 750.09 2.63 1.90 16.72 5.05 

1.43 16.39 1.52 1.68 9.91 0.297 1011.2 5.90 6.31 16.83 5.12 

R2 
1.87 27.13 1.51 1.69 14.0 0.292 2333.3 8.27 10.47 17.12 5.17 

2.45 42.88 1.51 1.75 12.10 0.282 2086.2 6.90 7.84 17.73 5.35 

R3 2.91 72.13 1.51 1.80 29.20 0.275 5959.2 16.22 27.92 18.18 5.49 

R4 3.08 92.66 1.51 1.87 27.1 0.269 5037.2 14.49 23.17 18.59 5.61 

R5 3.27 127.3 1.51 1.93 44.94 0.249 8642.3 23.28 45.75 20.08 6.06 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.64 Estimates from the three fuels in Tables 8.3-8.5 are fitted into the regimes of 

turbulent premixed combustion diagram reported by Peters (2004). CNG (�), LPG (O) and 
Hydrogen (∆). 
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Figure 8.65 Estimates for the three fuels presented in Tables 8.3-8.5 are fitted into the regimes 
of LES turbulent premixed combustion diagram reported by Pitsch and Duchamp de Lageneste 

(2002). CNG (�), LPG (O) and Hydrogen (∆). 
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Chapter 9 

Conclusions and Recommendations for Future Work 

 
The flame surface density (FSD) models, based on the well-known laminar flamelet 

concept are well accepted choice in predicting turbulent premixed flames. Although, the 

application of FSD models in LES is recent and much similar to RANS models. These 

models are gaining the acceptance in industry to model a variety of turbulent premixed 

combustion scenarios in complex combustion chambers. However, many issues are 

exist such as their ability in calculating accurate flame surface density and applicability 

to a range of combustion regimes need to be clarified. Inspired by the demand for eco-

friendly combustion systems and fuel scarcity, advancements in the predictive 

capability of turbulent premixed combustion are considered to be essential, which 

enhances the fundamental understanding of the entire combustion process, are the main 

motivation for the current research.  

 

9.1 The work presented in this thesis has achieved the 

following objectives: 
 Gain confidence in using LES technique for turbulent premixed propagating flames 

in laboratory scale combustion chamber with solid obstacles using the DFSD model. 

LES simulations have been carried out employing various grid resolutions to achieve 

grid-independent solution. The laboratory scale combustion chamber has been 

divided into five regions of interest and a detailed analysis was carried out to verify 

the combustion regimes of the turbulent flame inside the chamber.  

 

 A method proposed to account for the effect of no-unity Lewis number by using the 

actual values for the Schmidt and Prandtl numbers. The LES simulations carried out 

using above model were identified to improve predictions. For LPG and hydrogen a 

change in the predicted overpressure is observed compared with the unity Lewis 

number case. While, for the CNG almost no change in the results due to the small 

difference in the value of actual Lewis number and the unity Lewis number 

assumption.   
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 LES simulations using the developed DFSD model have been performed for a series 

of simple to complex flow configurations having different number and position of 

baffles in a laboratory combustion chamber. LES simulations were validated against 

experimental data to establish the DFSD model for turbulent premixed flames. For 

these configurations, generated overpressure, flame position and speed were 

generated and compared to available experimental data. LES predictions using DFSD 

model showed excellent agreement with experimental measurements for various 

configurations. However, present research has identified slight under-

prediction/over-prediction of peak overpressure, which can be enhanced by 

accounting for proper modelling of laminar phase. 

 

 This investigation demonstrates the comparison of LES predictions with 

experimental measurements and the effects of placing multiple obstacles at various 

locations in the path of the turbulent propagating premixed flames.  

 

9.2 Conclusions  
 The grid-independence tests conducted using four different grid resolutions have 

concluded that the employed grid is independent of the filter width and grid 

resolution.  

 

 The applicability of the DFSD model using grid-independent results for turbulent 

premixed propagating flames was examined by validating the generated pressure and 

other flame characteristics, such as flame position and speed against experimental 

data. This study concludes that the predictions using DFSD model provide 

reasonably good results.  

 

 The effect of Lewis number was implemented with the DFSD model. It was found 

that LES predictions were slightly improved in predicting overpressure, flame 

position and speed. 

  

 The agreement obtained confirms the applicability of the DFSD model to predict the 

dynamics of turbulent premixed flames or explosions in any flow configurations in 

as engineering applications or chemical/fuel process/storage industries.  
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 It is identified that the overpressure generated in any individual configuration, is 

directly proportional to the number of baffles plates used in this study. The flame 

position and speed are clearly dependent on the number of obstacle used and their 

blockage ratio. Also, higher pressure gradient develops along the length of the 

chamber with more number of baffles or obstacles.  

 

 Flame-flow interactions occur as the flame propagates past the baffle plate and the 

solid obstructions leading to the formation of disconnected flame islands with higher 

burning rates. The flame progressively accelerates as it travels through the various 

stages of the chamber. However there are no evidences to prove the presence of 

flame quenching due to elongation and stretching in the present study. This may be 

due to the small volume of the chamber used in this study.  

 

 Large separation between the solid baffle plates allows sufficient residence time for 

turbulence decay causing flow re-laminarisation and hence lowering overpressures.  

 

 It is observed that the trapped unburnt mixtures up and down stream of obstacles are 

consumed once the main flame leaves the chamber leading to subsequent oscillations 

in pressure.  

 

 The flame stretch extracted from both the experimental and numerical images shows 

that hydrogen has the highest stretch values over CNG and LPG. This is expected 

due to the high generated turbulence levels associated with hydrogen flame 

deflagration and also the thermo-physical properties of hydrogen. 

 

 The regime of combustion identified for the three fuels in the present combustion 

chamber at various times after ignition at the leading edge of the flame is found to lie 

within the thin reaction zone, regardless of the classified regions and their 

interactions with obstacles. This finding supports the use of the laminar flamelet 

modelling concept that has been in use for the modelling of turbulent premixed 

flames in practical applications.  
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9.3 Present Contributions  
 A good level of confidence has been established in using large eddy simulation 

technique for transient turbulent premixed propagating flames in various flow 

configurations by parameterising various numerical factors.  

 

 Enhancement in the sophistication of sub-grid scale combustion modelling capability 

has been achieved in the in-house LES code through incorporation of Lewis number 

effect within the model.  

 

 Influence of ignition radius on LES predictions has been studied using various 

ignition radii, shape and location. The use of ignition modelling in the present LES 

code has been substantiated by this analysis in order to achieve the quasi-laminar 

phase of the early stage of flame propagation.  

 

 A systematic study has been conducted to identify the influence of the number of 

baffles and their respective positions from ignition bottom. 

 
 The extracted flame stretch for the three fuels has shown that hydrogen has the 

highest stretch values due to the highest generated turbulence levels. LPG and CNG 

have close values due to the close properties of both fuels. 

 

 The combustion regime for the three fuels has been calculated and identified that 

hydrogen has the highest turbulence levels generation among the three fuels. LPG 

and CNG have close values with priority to LPG. 

 

9.4 Recommendations for Future Work  
 The DSD model shows good overall predictions. However, it could be further 

improved by identifying or developing more rigorous model for the flame stretch. 

 

 The over-prediction/under-prediction of overpressure with DFSD model could 

possibly further improved by employing a proper ignition model to predict correctly  

the quasi-laminar phase. 
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 The current in-house LES code can be further improved by the implementation of 

simplified chemistry mechanisms or detailed chemistry through look-up table 

method. As these concepts could enhance the ability of the current model to predict 

the effect of Lewis number on the results but with a considerable amount of 

complexity.  

 

 Parallelisation of the LES in-house code is highly recommended, which can utilise 

the available computational resources more efficiently and could easily be 

extendable to predict more complex combustion scenarios.  
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Appendix A 
 

MATLAB Program to Correct the Time Shift in 
Experimental Data  

 
 
 
% Locating Maximum Pressure for each curve 
Clear AllNewData AveragePeakTime AveragePosition Axis L Max NewData 
NewTime PeakTime Positions Time W i j 
[L,W]=size(data); 
Time=data(:,1); 
Pressure=data(:,2:W); 
[Max,Positions]=max(Pressure); 
  
% Finding the average 
for i=1:length(Positions) 
PeakTime(i)=Time(Positions(i)); 
end 
AveragePeakTime=mean(PeakTime); 
AveragePosition=round(mean(Positions))+1; 
Axis=AveragePosition; 
 
% Fixing the shift for the pressure 
[L,W]=size(Pressure); 
for j=1:length(Positions) 
    if Positions(j)>=Axis 
        for i=1:L-(Positions(j)-Axis) 
        NewData(i,j)=Pressure(i+(Positions(j)-Axis),j); 
        end 
    end 
    if Positions(j)<Axis 
        for i=1:L 
        NewData(i+(Axis-Positions(j)),j)=Pressure(i,j); 
        end 
    end   
end 
 
% Adjusting the time to the equivalent pressure 
NewTime=zeros(length(NewData),1); 
NewTime(Axis)=AveragePeakTime; 
for i=1:Axis-1 
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    NewTime(i)=NewTime(Axis)-(Axis-i)*(Time(2)-Time(1)); 
end 
for i=Axis+1:length(NewData) 
      NewTime(i)=NewTime(Axis)-(Axis-i)*(Time(2)-Time(1)); 
end 
 
% Writing the data in the new file  
AllNewData=[NewTime,NewData]; 
dlmwrite('NewData.txt',AllNewData,'newline','PC','precision','%8d'); 
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Appendix B 
 

High Speed Imaging of OH-LIF 

 

 

The OH-LIF imaging system was used to record the flame front images (AlHarbi (2013)) 

for the configurations listed in Table 7.3. The two image tiers mentioned in chapter 6 

were used to cover the viewable length of the chamber. The time step used throughout 

the experiment was 0.2 ms. The images for CNG, LPG, and hydrogen using 

configurations 000S and BBBS are presented below. The images on Figure B.1 are 

arranged in such a way that a comparison between the three fuels is clear. The colour 

scale used here is arbitrary where red corresponds to peak OH and dark blue to zero.  
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Figure B.1 Time sequences for the three fuels (CNG, LPG and Hydrogen) with time step t = 0.2 ms 
through configurations 000S and BBBS at equivalence ratio Φ = 0.8 (AlHarbi (2013)).   
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