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Giant Conductance Oscillations in a Normal Mesoscopic Ring
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Abstract

A theoretical explanation of giant conductance oscillations observed in normal

mesoscopic rings with superconducting “mirrors” is proposed. The effect is

due to resonant tuning of Andreev levels to the Fermi level, which enhances

the transparency of the system to the normal current. The mechanism is

demonstrated for a one-dimensional model system.

PACS: 74.50.+r, 74.80.Fp, 73.20.Dx

Typeset using REVTEX

∗Permanent address: B.I. Verkin Institute for Low Temperature Physics and Engineering, 47

Lenin Ave., 310 164 Kharkov, Ukraine

†Email: alexz@fy.chalmers.se

‡Email: shekhter@fy.chalmers.se

§Email: jonson@fy.chalmers.se

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288374155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/cond-mat/9410080v1


Recently, in a series of experiments by Petrashov et al. [1], new unusual properties of

mesoscopic silver rings in contact with superconducting islands (“mirrors”) were observed.

These “mirrors” could be placed across the current leads (L-case) as in Fig. 1a, or as shown

in Fig. 1b at the stubs connected to the ring perpendicular to the normal current flow (T-

case). The three most striking features revealed in experiments are as follows:

(i) the amplitude of hc/2e-periodic Aharonov-Bohm (AB) oscillations was at least 100 times

larger in the L-case than in the ring without “mirrors”; in the T-case the enhancement of

hc/2e-oscillations was about 10 times, and hc/4e-oscillations were observed as well;

(ii) in the T-case the normal resistance of the system grows approximately twice, as the

superconductivity of the “mirrors” is being suppressed by magnetic field (above 500 Gs);

(iii) the effects were totally absent in the case when one branch of the ring was completely

crossed by a superconducting strip.

The confinement idea proposed in the original paper [1], i.e. that the effect is due to

confinement of quasiparticles in the ring by the “mirrors”, qualitatively explains the L-case

behaviour, but meets difficulties both in obtaining a proper magnitude of the effect in the

L-case (the maximum enhancement being of order 10), and in explaning the effect in the

T-case, where the quasiparticles are not confined in a longitudinal direction.

An alternative explanation suggested by de Vegvar and Glazman [2] is based on a suppo-

sition that the “mirrors” induce superconductivity in a significant portion of the ring itself.

These superconducting parts play the role of filters, through which only Cooper pairs can

pass. However, this mechanism neither accounts for the significant difference between L-

and T-configurations, nor for the complete absence of the effect when one branch of the ring

was crossed by a superconductor (as the authors of Ref. [2] point out themselves).

In this paper we present some theoretical arguments which seem to explain the physical

nature of the observed phenomena; they are supported by a model calculation. In our

analysis we assume that the phase breaking length Lφ = (Dτφ)1/2 and the normal metal

coherence length LT = (h̄D/kBT )1/2 are larger than the characteristic sample size L. Here
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τ−1
φ is the inelastic scattering rate, D is the diffusion constant of quasiparticles, kB is the

Boltzmann constant, and T is temperature. We will also assume that the ring is weakly

coupled to the normal reservoirs (source and sink of normal current).

We start from a qualitative discussion. If an electric current is made to pass through

a mesoscopic normal ring, it is well known that its magnitude will oscillate as a function

of the magnetic flux threading the ring. These normal AB oscillations persist if the ring

is brought in contact with two superconducting mirrors. However, now a new group of

quasiparticles starts to contribute to the oscillations: the electrons (or holes) that undergo

Andreev reflections at the NS-boundary (between the ring and one of the mirrors). We will

see below that their contribution may dominate the AB oscillations under certain conditions.

In a ring which is weakly connected to external reservoirs, the quantized energy levels

of quasiparticles are well defined [6]. In our case these levels are formed by reflections both

at NN-interfaces (between the ring and the normal reservoirs) and at NS-boundaries with

the “mirrors”. The energy levels and are therefore sensitive to the magnetic flux threading

the ring, Φ, and to the superconducting phase difference between the mirrors, ∆φ. The

corresponding quasiparticle states carry both the normal- and the Josephson [6,4] current.

Since the normal current in the linear response limit is carried only by the quasiparticles

on the Fermi surface, it is resonantly enhanced each time an energy level — driven by

the magnetic flux and/or the superconducting phase difference — passes the Fermi energy.

Simultaneously, the Josephson current changes sign.

Therefore the relation can be guessed

Iq ∼
dIJ

d∆φ
. (1)

As a matter of fact, using a 1D model (to be described below) we are able to derive the

relation valid in the ballistic case:

lim
ǫ→0

Iq

V ǫ
=

(

eL

4h̄vF

dIJ

d∆φ
+

e2

πh̄

)

. (2)

Here ǫ is the probability for an electron to leave the ring for one of the normal reservoirs

through the NN-interface (see below).
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The second term in (2) is due to the fact that the energy levels in the ring are formed not

only by Andreev reflections at NS-boundaries, but by the normal reflections at NN-interfaces

as well. Therefore their shift in a magnetic field (and thus the conductance [3]) can not be

completely accounted for by an expression like (1), where the magnetic flux, Φ, enters

in a gauge invariant combination with the phase difference between the superconducting

“mirrors”, ∆φ. There must be a contribution to the level shift that depends solely on Φ.

The relation (2) shows that if there is a Josephson current in the system, it leads to a

resonant contribution to the normal current for certain values of the magnetic flux. Indeed,

the phase dependence of the Josephson current in an SNS contact has a sawtooth-like form,

which would give rize to δ-function shaped peaks when its derivative is taken with respect

to phase [4]. The question is, how can a stationary supercurrent flow between two finite and

small superconducting “mirrors”?

Let us first consider a standard SNS-junction in an external magnetic field, B, parallel

to the boundary between the normal layer and superconducting half-spaces (Fig. 2a). The

phase difference between the superconductors is [4]

∆φ(y) = φ0 −
2eBLy

h̄c
≡ φ0 − 2π

2Φ(y)

Φ0
, (3)

where y is the coordinate on an axis that lies in the plane of the normal layer and is normal to

the magnetic field, φ0 is an arbitrary phase difference between two isolated superconductors,

and L is the width of the normal layer. The quantity Φ(y0) is evidently the magnetic flux

through the part of the junction between the lines y = 0 and y = y0, and Φ0 = hc/e. The

distribution of Josephson current is schematically shown in Fig.2a; each current line encircles

one half flux quantum (Josephson vertex).

In a real experimental situation the normal stubs connecting the metal ring with the

“mirrors” have a finite width. This creates the situation when equal and opposite Josephson

currents flow along the edges of the stubs (see Fig.2b). In order to establish such a current

distribution, the phase difference between the superconducting “mirrors” tunes to each given

value of the penetrating magnetic flux (via changing the constant φ0 in (3)). Therefore the

4



partial Josephson currents will oscillate, contributing to the AB oscillations in the normal

conductance of the ring, though their sum (net Josephson current between the “mirrors”)

is always zero.

Now we can discuss when this contribution can play a major role. It is known that the

amplitude of the Josephson current density is not sensitive to an increase in the area of

an SNS junction [4]. On the other hand, the amplitude of the conductance oscillations in

a normal metal ring decreases by a factor
√

N⊥ as its cross-section grows [5] [the number

of channels in a ring with the cross-section area A is N⊥ ∼ A/λ2
F ]. The reason is that in

the former case it is the effective momentum of the electron-hole excitations that carry the

Josephson current, which is quantized:

p
(e)
‖ − p

(h)
‖ =

√

2m(EF + E) − p2
⊥ −

√

2m(EF − E) − p2
⊥ ≃ 2mE

√

EF − p2
⊥

, (4)

while in the latter case it is the electronic momentum itself:

p‖ ≃
√

2mEF − p2
⊥ +

mE
√

2mEF − p2
⊥

. (5)

The first term in (5), which is absent in (4), causes fast oscillations when the partial current

is integrated over the transverse momentum p⊥. This is the reason of drastical reduction of

the “normal” AB oscillations’ amplitude in a ring with large cross-section. In this case the

“Josephson” contribution will be dominating.

The above considerations lead us to the conclusion that the ratio of the amplitude of AB

oscillations in a ring with superconducting “mirrors” to the amplitude of AB oscillationsits

in a “normal” ring is of the order of
√

N⊥.

Let us make some numerical estimates. Taking for the cross-section area the value

A ≈ 5 · 10−11cm2, qhich is consistent with the experiment [1], and λF ∼ 10−8cm, we find

that the enhancement of the AB conductance oscillations due to the proposed mechanism

is ≃ 700 times compared to the ring without superconducting “mirrors”. (The actual value

of Ref. [1] was up to 400 times).
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The above qualitative speculations can be corroborated by a model calculation. The

model system is shown in Fig.3. It contains all the physically significant features of the

experimental setup (Fig.1); the normal part of the current from reservoir I to reservoir II

through leads 3, 1, and 4 is controlled by the Josephson current between the “mirrors”

through leads 1 and 2.

All the normal scattering in our model is confined to the nodes A and B. These are

described by identical 6 × 6 S-matrices , which relate the incoming and outgoing wave

amplitudes of the quasiparticles in the 1D wires. We use real matrices parametrized by a

real number 0 ≤ ǫ ≤ 1/2 [6], which in the limit ǫ ≪ 1 (weak coupling to the reservoirs, i.e.

small transition probability from lead 1 to leads 3 and 4) have the form

S =

















−ǫ/2 · 1̂ (1 − ǫ/2) · 1̂ √
ǫ · 1̂

(1 − ǫ/2) · 1̂ −ǫ/2 · 1̂ √
ǫ · 1̂

√
ǫ · 1̂ √

ǫ · 1̂ (−1 + ǫ) · 1̂

















. (6)

Here 1̂ is the unit 2×2-matrix, which reflects the fact that in the presense of an NS-boundary

we have to use the two-component wave function of the quasiparticle even in the normal

leads, in order to account for the electron-hole correlations created by Andreev reflections

[4]. Eq.(6) reflects the fact that the electron- and holelike excitations are not mixed in the

nodes A and B. On the other hand, we assume that at the interfaces of leads 1, 2 and the

superconducting islands only Andreev reflection takes place, and the normal reflection is

absent.

The calculations to be described are straightforward. We are interested in the linear

response value of the normal conductance. Therefore, the problem is reduced to the cal-

culation of the transition probability of a quasiparticle from, say, reservoir I to reservoir

II. The initial scattering matrices can be replaced by effective matrices of dimensionality

4 × 4, SA and SB. They only relate the quasiparticles in leads 3, 4, and the portion of lead

1 between A and B to each other and include the effects of Andreev reflections (see [7] for

details). We have a standard Landauer configuration with two reservoirs connected by a 1D
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wire with scatterers A and B, but with two-component wave functions of the quasiparticles;

the components are mixed by Andreev reflections at NS interfaces. The conductance is then

obtained as [8]

G =
2e2

h
· 2
∫ ∞

0
dξ (T>

0 + R>
a )

(

−∂nF (ξ)

∂ξ

)

+ η, (7)

where T>
0 (R>

a ) is the normal transition (Andreev reflection) probability for an electron

incident from the left normal reservoir; nF (ξ) is the Fermi distribution, and ξ is energy

measured from the Fermi level. The term η in (7) quickly oscillates as a function of the

electron momentum (as ∼ exp 2pFL, L being the length of lead 1) [7] and is exactly zero in

the case of time reversal symmetry [8].

After averaging over fast spatial oscillations on the scale of λF ≪ L, the coefficients in

(7) take the following values [7]:

T>
0 (ξ) ≈ R>

a (ξ) ≈ ǫ2
(

|a+(ξ)|−2 + |a−(ξ)|−2
)

. (8)

The resonant denominators |a±(ξ)|2 vanish close to the energies ξ±n of the Andreev levels in

lead 1:

|a±(ξ)|−2 ≈
∑

n







(

2L

h̄vF

)2

·




(

ξ − ξ±n
)2

+ ǫ2

(

h̄vF

4L

)2










−1

; (9)

ξ±n =
πh̄vF n

L
+

h̄vF

2L
(π ∓ 2π

2Φ

Φ0

). (10)

Here vF is the Fermi velocity and Φ0 = hc/e is the magnetic flux quantum. In place of the

superconducting phase difference, ∆φ, only the (dimensionless) magnetic flux Φ/Φ0 through

the loop formed by the normal wires 1, 2 and the superconducting mirrors enters expression

(10) for the Andreev energies. This is due to the fact that the Josephson current in lead

1 must be exactly cancelled by the one in lead 2. This condition fixes the phase difference

between the superconducting mirrors.

Provided that the Andreev level separation exceeds the level width ∆E = ǫh̄vF /4L, a

condition which is satisfied for small enough ǫ, we can calculate the integral in (7) using the

Poisson summation formula. At zero temperature one finds the expression
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G = ǫ
e2

h

(

1 + 2
∞
∑

n=1

(−1)ne−2|n|ǫ cos
(

n · 2π2Φ

Φ0

)

)

. (11)

If we compare this result to the well known expression for the Josephson current in a planar

SNS-junction [4],

IJ(∆φ) =
8evF

πL

∞
∑

n=1

(−1)n+1 sin n∆φ

n
, (12)

we see that indeed, in the weak coupling limit (ǫ → 0) we have the relation between the

normal conductance and the Josephson current given by equation (2).

The above calculations are directly generalized to the case of N⊥ > 1 transverse modes

in the normal wire, provided that they are not mixed by scattering. Then the conductance

(11) should be simply multiplied by N⊥. The fact that the amplitude of its oscillations now

can exceed the conductance quantum, 2e2/h, reflects the ballistic character of the system

under consideration.

In conclusion, we have demonstrated that the normal conductivity of a mesoscopic ring

with superconducting “mirrors” is sensitive to the Josephson current between them. The

corresponding contribution to the conductance is resonant and in a many-channel case gives

rize to greatly enhanced Aharonov-Bohm conductivity oscillations in the system. The results

provide an explanation to recent experimental results by Petrashov et al. [1].
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FIGURES

FIG. 1. Sketch of the experimental setup of a mesoscopic ring with superconducting “mirrors”

used in Ref. [1]. I, II are normal reservoirs, S - “mirrors” (small superconducting islands). The

magnetic field is normal to the picture plane. (a) L-configuration. (b) T-configuration.

FIG. 2. (a) Distribution of Josephson current in an SNS-junction in the presence of a magnetic

field; (b) Josephson current in a mesoscopic ring with superconducting “mirrors”

FIG. 3. Model system where 1, 2, 3, and 4 are ideal normal-conducting 1D leads. Nodes A, B

are described by real scattering matrices (see text). The directions of normal (Iq) and Josephson

(IJ) currents are schematically shown. The magnetic field B is normal to the plane of the picture,

and the distance between the “mirrors” equals L.
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