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Abstract: To assess the systemic value and impacts of multiple photovoltaic (PV) systems in urban areas, detailed analysis
of on-site electricity consumption and of solar PV yield at relatively high temporal resolution is required, together with an
understanding of the impacts of stochastic variations in consumption and PV generation. In this study, measured and
simulated time-series data for consumption and PV generation at 5 and 1 min resolution for a large number of
domestic PV systems are analysed, and a statistical evaluation of self-consumption (SC) carried out. The results show a
significant variability of annual PV SC across the sample population, with typical median annual SC of 31% and inter-
quartile range of 22–44%. About 10% of the dwellings exceed an SC of 60% with 10% achieving 14% or less. The
results have been used to construct a Bayesian network model capable of probabilistically analysing SC given
consumption and PV generation. This model provides a basis for rapid detailed analysis of the techno-economic
characteristics and socio-economic impacts of PV in a range of built environment contexts, from single building to
district scales.
1 Introduction

Over the course of the past decade, photovoltaic (PV) technology has
become a mainstream form of electricity generation in many regions
as PV energy costs have converged toward grid parity, whilst
adoption has been further incentivised by subsidy schemes. This
rapid increase in PV penetration has given rise to a need for a
deeper understanding of PV’s impacts and benefits, both on
incumbent technical infrastructure and on non-technical aspects
such as net household fuel costs or green house gas (GHG)
emissions [1]. Analysis of such aspects requires a deeper insight
than has been attained to date into the performance of PV in the
context of building energy consumption, especially given the
diversity of settings within which PV is found in the built
environment. Therefore, in order to provide a valid basis for
subsequent analysis of such factors as network impacts, potential
energy storage requirements and return on investment, this paper
aims to deliver a detailed statistical evaluation of PV
self-consumption (SC), using the domestic sector in the UK as a
case study. The quantification of SC (defined as the fraction of PV
energy which is used to do meaningful on-site work, rather than
exported [2]) is important for several key reasons:

(i) It can influence the economic viability of consumer co-located PV.
(ii) It has a direct impact on the low- and medium-voltage
electricity grid.
(iii) It supports decision makers in the appropriate design of
PV-related regulatory and fiscal policy mechanisms.

In building contexts, techno-economic outcomes are largely
influenced by the price differential between the value of exported
electricity and the cost of imported electricity. If the latter is
higher, SC is generally favourable to the bill payer, since the
excess cost of imported electricity is avoided [3]. Accurate,
case-specific techno-economic analysis of SC is thus particularly
relevant where export payments are less than electricity tariffs.
This applies to a number of feed-in tariff regimes, which, despite
their name, make payments for gross generation, rather than purely
for exported generation [4]. This is the situation in this UK study
where a generation tariff of £0.13 is augmented by an export tariff
of £0.04 per kilowatt hour (kWh). Recently for some instruments
such as the German Feed-in Tariff (EEG), SC is incentivised by
premium payments when it exceeds 30% [5]; in contrast,
maximising SC offers no economic advantage under full
net-metering arrangements, as exist in some US states, since export
and import have the same value [6]. Thus, accurate quantification
of SC is required in order to assess the return for investors (since
avoided electricity import costs can comprise a significant
proportion of net revenue) and costs related to use-of-system
charges for exported energy or network reinforcement overheads
[7]. Furthermore, the detailed understanding of SC has a bearing
on future energy system outcomes facilitated by smart meters and
smart-grids such as the potential for ‘intelligent’ demand shifting,
and time-of-use tariffs [8].

In general terms (and in the absence of co-located storage), the
lower the aggregated SC, the higher is the aggregated electricity
exported to the grid. This can have adverse impacts on grid
infrastructure and on the quality of the supply such as
over-voltage, phase unbalance and harmonic distortions [9].
However, studies frequently use normative models for both
generation and SC based on a standard system configuration and
consumption. A comprehensive and robust assessment of grid
impacts and commensurate mitigation strategies requires the
quantification of SC, and its variability, for assemblies of real
dwellings. Storage helps increase SC, but the quantification of
instantaneous SC is required for the effective modelling of the
efficacy of storage, particularly in quantifying round trip losses [10].

In terms of socio-economic impacts, SC is pertinent across a
number of domestic, commercial, or industrial contexts; for
example, in tenanted properties, the financial benefit of SC often
accrues solely due to the avoided electricity import costs. Thus,
the nature of SC is pertinent within analyses of fuel affordability
in the domestic context [11], and the overall economic evaluation
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Fig. 1 Sample simulated domestic electricity demand and PV generation
profiles at

a 1 min Resolution
b Same data aggregated to 1 h resolution
of PV [12]. For non-domestic contexts with significant load profile
(and thus SC) diversity, such uncertainty can increase investment
risk and affect the efficacy of policy or regulatory instruments.

Past studies have shown that SC varies with both generation and
demand [13]. In a study of small PV systems, between 1 and 2
kWp, typical observed SC was 600 kWh/year (corresponding to
44 ± 16% of total yield), whilst for a larger, 4.5 kWp PV system,
770 kWh/year (19% of total yield) was observed in a simulation
study to assess energy storage technologies [10]. In a study of 172
domestic PV installations in Germany, with system ratings from 1
to 5 kWp, and annual yields between 430 and 875 kWh/kWp, SC
fractions ranging from 20 to 60% were observed [14]. A large
number of studies have reported a similar wide variation in SC
[15]. Each has been measured for specific domestic contexts with
a fixed system rating and annual electricity consumption which do
not necessarily capture the variability in the wider population. In
the UK, recent measured specific annual yields have been recorded
[16] from 600 to 1100 kWh/kWp and domestic PV system ratings
over the past 5 years range from 1 to 4 kWp [17]. Meanwhile,
measured domestic annual electricity consumption ranges widely
up to 25 MWh/year [18]. It is thus apparent that the prediction of
SC is not straightforward due to the wide variability of predictor
parameters, which in turn are derived from the variety of contexts
in which solar PV is installed. Given the stochastic nature of both
demand and generation, a deterministic relationship of the form
SC = f (consumption, generation) is inappropriate, not least
because important parameters (such as user behaviour effects) are
uncertain and not easily quantified [19]. Thus, an approach that
endogenises uncertainties due to unknown variables, and in which
the probabilistic relationships between SC, consumption and
generation are quantified, offers distinct advantages. This can be
represented by a conditional probability distribution (CPD) of the
form as shown in (1)

P SC|consumption, generation
( )

(1)

This CPD can be used in a probabilistic graphical model based on a
Bayesian network (BN) to evaluate the energy balance between
electricity consumption, generation, import and export in a manner
which captures the variety of building contexts via the use of
appropriate building stock datasets. This model can then be
utilised to assess a number of multi-domain system impacts,
including network point-of-connection load-flow or socio-economic
outcomes such as geographical variances in household net fuel
spent [20].
2 PV self-consumption

PV SC (also known as the load match index or cover factor) [21]
occurs when PV generation temporally matches or exceeds the
building load. The temporal load profile is dependent on such
factors as occupant practices and the associated use of appliances
[22]. Similarly, the temporal profile of solar PV generation is
subject to the predictable motion of the sun modified by
unpredictable transient weather characteristics [23]. Figs. 1a and b
show simulated demand and generation profile for an arbitrary day
in the UK Midlands at two different temporal resolutions. Where
demand exceeds generation, electricity is imported, and where
generation exceeds demand excess electricity is exported. The
resultant SCs are shown by the dashed line. The area under this,
divided by the area under the generation curve, yields fractional
SCs. These are seen to differ significantly, with an apparent 30%
increase in SC when using 1 h data compared with 1 min temporal
resolution.

Rapid fluctuations in demand occur due to the stochastic
switching of electrical appliances, either automatically or due to
occupant behaviour [24, 25]. Whilst under conditions of clear (or
consistently overcast) skies, plane-of-array irradiance changes only
slowly, under conditions such as partial cloud, rapid fluctuations in
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power output occur due to the attenuation of irradiance by
transient clouds, particularly in high wind speed conditions [26].

A limited number of simultaneous direct measurements of PV
generation, export and demand have been described [13, 14]. One
approach to garnering more data with greater variety is to use
demand profile data and estimate the SC fraction using separately
obtained PV data. However, demand profile data is commonly
measured at time resolutions of 5 min or greater, which has the
effect of smoothing the spiky demand profiles. This results in
apparent reduced peak loads as illustrated in Fig. 1b, where the
sharp demand spikes, observed either side of midday, would have
to be partially met by imported electricity. However, when
aggregated to 1 h resolution (Fig. 1a), these spikes are no longer
discernible and appear adequately covered by on-site PV
generation. Thus, in this example, SC is over-estimated at 71.3%
using 1 h data, compared with 54.8% when using 1 min data. This
effect has been studied [2, 27] and errors as large as 80% have
been reported. Thus data of high temporal resolution are required
to accurately quantify SC.

There are several distinct features to consider when quantifying
SC to adequately capture the probabilistic dependency on
generation and consumption:

† The overlap between load and generation is determined by the
magnitude of both the energy generation and the energy
consumption. The greater the magnitude of either, the greater will
be the probability of overlap and thus the magnitude of SC,
though this will necessarily approach a limiting value.
† The stochastic nature of temporal demand and generation means
that the load match is not readily modelled deterministically; rather
it requires a probabilistic analysis and a large data sample to
capture the requisite variety inherent in a population.
† The temporal frame for the stochastic events occurs over relatively
short high-resolution time-frames, but the socio-economic impacts
449Commons Attribution License



Fig. 2 Annual SC as a function of annual electricity consumption
segmented by annual system yield (generation) from the DFT data

Table 1 Starting parameters and ranges used in simulations

Parameter Lower Upper

number of residents 1 5
PV system rating, kWp 1 5
azimuth, deg −90 90
slope, deg 20 45
are generally modelled over much longer time-frames, typically
1 year.

Therefore, the challenges of garnering sufficient data to evaluate
SC and its variability are considerable; the range of annual
electricity consumption needs to match that of typical empirical
domestic electricity consumption, and for each annual demand
value a commensurate range of solar PV generation values needs
to be sampled in order to deliver a suitably granular CPD of the
form given in (1). Two approaches, one using empirical field data,
and another using simulated data have been used in this paper and
are presented in the following sections.
3 Measured (empirical) datasets

The UK PV domestic field trial (DFT) dataset [13], comprising 23
months of 5 min time resolution data from 135 domestic PV
installations, was initially used to calculate annual SC. System
ratings (typically 1 kWp) are considerably lower than those now
deployed in the UK, whilst specific yields are lower than those
reported for today’s systems [16]. In addition, the households in
the sample exhibited somewhat lower electricity consumption
compared with the general population [18].

However, whilst these data are within a limited parameter space of
low generation and low consumption compared with contemporary
PV deployment contexts, SC analysis of the dataset demonstrates
relevant trends. Figs. 2 and 3 illustrate an increase in SC with both
annual household electricity demand and PV generation. The
scatter of SC data indicates a high degree of stochasticity, resulting
Fig. 3 Comparison of the distribution of electricity consumption in the
DFT, simulated data and the NEED framework

450 This is an open access article publi
largely from a wide variety of building occupant behaviours,
together with varying PV generation.

This dataset did not comprise a wide, random sample of PV
adopters, but a purposeful selection of new-build, tenanted social
housing properties. Thus, though expected dependencies and
variability are evident, the results may not be representative of
those for the wider population.
4 Stochastic simulation of SC

To garner more data at higher generation and consumption, a hybrid
stochastic/probabilistic model [22] was used to simulate daily
electricity load and generation profiles. This generates 1 min
time-step demand data from a set of household appliances
randomly assigned to the dwelling, based on published statistics of
appliance ownership and ratings. Appliances are categorised into
groups: those that run all the time, consuming a base load (e.g. a
freezer), and those operated by an active occupant performing a
particular activity (e.g. leisure). Active occupancy and activity
profiles within the dwelling are simulated stochastically using
temporal probabilities derived from a time-use survey for between
1 and 5 residents. Separate probability data were used for
weekdays and weekends. The model also predicts the load due to
lighting using a seasonally linked lighting simulation module [28].

The software simultaneously creates a PV generation profile [29]
from a calculated minute-by-minute clear-sky irradiance attenuated
using a clearness index. The latter is stochastically generated for
each minute using a transition probability matrix constructed using
1 min time-series of empirical horizontal irradiance data recorded
in Loughborough, England, over one calendar year [30]. Array tilt
and azimuth are used to calculate irradiance in the plane-of-array
(PoA) [31] and a simple system efficiency method is applied to
convert PoA irradiance into an estimation of the minute-by-minute
AC electrical output of the system.

The simulation cycles through every day of a whole year with a
fixed set of start parameters randomly allocated from a uniform
distribution between the upper and lower limits (Table 1). In
addition a random allocation of appliances and lighting loads is
generated.

About 25,000 such simulations are required to generate 100
samples for each 1 MWh/year interval over the consumption range
0–10 MWh/year, generation range 0–5 MWh/year and SC range
0–5 MWh/year. Demand, generation and export were aggregated
for each minute of each day and added to a running total for the
year. After the last day of the year, the annual totals were saved
along with the start parameters and the simulation repeats for
another whole year with a new set of random start parameters.
5 Joint probability distribution (JPD) for SC

The data for simulated and empirical annual consumption and PV
generation were organised into 500 kWh/year intervals (bins), and
SC data into 200 kWh/year intervals. A 3-way contingency table
was created with the cell frequency corresponding to the number
of samples satisfying the corresponding intervals. To be
representative, the marginal distribution for electricity consumption
should correspond to the empirical distribution observed in the
general population. A comparison of the distribution of electricity
consumption in the DFT, simulated data and the National Energy
Efficiency Data (NEED) framework [18] is as shown in Fig. 4. It
IET Renew. Power Gener., 2016, Vol. 10, Iss. 4, pp. 448–455
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Fig. 4 Annual PV SC as a function of annual electricity consumption
segmented by annual system yield
is evident that the simulation model under-represents low electricity
consumers, possibly due to an over-estimation of either active
occupancy, the probability of specific energy consuming
behaviours, or appliance ownership. All these factors can mitigate
against the observation of low electricity consumption. However,
the measured DFT data covers this gap, and thus the combined
dataset exhibits a realistic range of domestic electricity
consumption as observed in the general population.

A graphical representation of the resultant dataset is shown Fig. 4,
in which SC is plotted against annual consumption, and with annual
PV generation represented by colour coded intervals of 1000 kWh.
This quantifies the dependence and the uncertainty of SC on both
PV generation and consumption, with a hitherto unreported level
of detail. It confirms that SC increases as both consumption and
PV generation increase, whilst the high level of variability is
indicative of uncertainty inherent in specific parameters (‘missing’
variables) [32]. To investigate the influence of household
occupancy, simulations with a typical 3 kWp system and using six
idealised occupancy archetypes [19] were conducted. This allowed
the dependency of simulated SC to occupancy parameters to be
quantified (Table 2). Little difference between morning and
afternoon occupancies (SCs of 44 and 47%, respectively) is
observed. Home-comers at 16:00 have 25% SC compared with
19% for those that return at 18:00. In contrast, all-day occupancy
achieves 69% SC, compared with an average SC of 15% for
all-day unoccupied. The use of idealised occupancy archetypes
strongly suggests that the variability in SC is due to different
occupancy behaviours, and it is significant that even all-day
occupied dwellings rarely achieve 100% SC with a 3 kWp system.

At this point, it should be noted that in this paperwe have not sought
to introduce an occupancy archetype parameter, but rather, to
endogenise the occupancy-related uncertainty for SC predicted
solely by consumption and generation. Thus, in the JPD defined by
(1), the occupant behaviour remains a hidden variable. In the next
section, the use of this JPD in probabilistic modelling is explored.
Fig. 5 Example of a DAG

Table 2 Typical appliance load profiles for average domestic household
related to occupancy archetypes with the average simulated SC observed

Occupancy archetype Average SC,%

unoccupied 9:00–13:00 44
unoccupied 9:00–16:00 25
unoccupied 9:00–18:00 19
unoccupied 13:00–18:00 47
all-day occupied 69
all-day unoccupied 15
6 Integrated BN model for domestic solar PV

BNs are used to model causal relationships between variables using
conditional probabilities [33]. A BN is represented by a directed
acyclic graph (DAG), in which ‘nodes’ represent variables, and
directed ‘arcs’ from parent nodes to child nodes represent
conditional probability relationships between them (Fig. 5). A BN
is an expedient representation of a JPD over the whole parameter
space, which, using the chain rule (2), can be factorised into the
marginal distributions of the leaf nodes (those without any parents
such as node A in Fig. 5), and CPDs of each child node V given
their parents, πV [34]. These distributions can be learnt from data
or provided directly using an empirical JPD

V1, V2, . . . , Vn

( ) =
∏n

i=1

P(Vi|pVi
) (2)

Observations made at one or more nodes can be used to update the
probability distributions on target nodes of interest using belief
propagation algorithms [34]. Observations applied to one or more
nodes are known as ‘evidence’; of these there are two key forms.
First, a variable V is instantiated to state vx given evidence e such
that P(V = vx|e) = 1, referred to as ‘hard evidence’, or a ‘hard
finding’. Second, probabilistic evidence may be applied to an
observed variable which establishes a new local probability
distribution on the variable [35]. Once evidence has been applied
to a variable, probabilistic reasoning algorithms update the
probability distributions of all dependent nodes to yield new
posterior distributions. This facilitates both prognostic and
diagnostic inference, depending on whether evidence is applied to
a key input or output parameter. A BN can be used as a tool for
multi-criteria decision support [36] and reasoning under
uncertainty [37] and represent a powerful transdisciplinary
knowledge representation and inference tool [38].
IET Renew. Power Gener., 2016, Vol. 10, Iss. 4, pp. 448–455
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The current work involves the creation of a BN model which
utilises the CPD for SC discussed above (Fig. 6a). Here, the
consumption and generation input parameters have been set to a
uniform distribution since the marginal distributions obtained in
the simulations do not conform to any specific empirical evidence;
rather they serve to quantify the conditional probabilities. The BN
also includes a node to display SC as a percentage. The model can
be used to enter hard evidence for consumption and generation in
order to generate a new posterior distribution for SC. In Fig. 6b,
hard evidence for consumption (4–4.5 MWh/year), and generation
(2.5–3 MWh/year) results in a 58% probability of yielding an SC
of 800–1000 kWh/year. The posterior distribution, presented as
percentage SC is shown in Table 3. In this manner, the BN can be
adapted and used to estimate SC for any interval of consumption
and generation likely to be observed in a specific building context.
451Commons Attribution License



Fig. 6 BN model for SC

a With uniform distribution for consumption and generation
b Hard evidence for consumption (4–4.5 MWh/year) and generation (2.5–3 MWh/year)
The model proves most versatile when instead of hard evidence
for PV yield and electricity consumption, these are given as
probabilistic evidence. To this end, two BN models were
developed which probabilistically predict building energy
consumption and solar PV yield, for four urban areas in the UK
452 This is an open access article publi
[39]. As inputs, these models take building stock parameters from
a third BN model. This model includes data for floor area,
building age, building form and geographical region. These in turn
are used to predict electricity and gas consumption, whilst roof
pitch, orientation and area are used to predict PV yield. The data
IET Renew. Power Gener., 2016, Vol. 10, Iss. 4, pp. 448–455
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Table 3 Example of the posterior probability distribution for SC given
hard evidence for generation and PV yield as in Fig. 6b

PV SC, % Probability,%

20–30 16.4
30–40 65.6
40–50 17.8

Fig. 8 Posterior distributions for electricity consumption, PV yield and SC
(kWh/year) showing EV obtained using the building stock parameters for
census areas in Camborne, Cornwall and England

a Consumption (kWh/year)
b PV yield (kWh/year)
c SC (kWh/year)
have been calibrated using empirical data from the NEED framework
[18] and the UK Microgeneration Database [16].

The SC BN model was integrated with these models such that
electricity consumption (derived from the building energy
consumption model) and PV yield (derived from the PV yield
model) are used as its inputs. This is represented schematically in
Fig. 7, with each BN shown as an entity (or object), and the
interfaces shown as relationships, in an ‘entity relationship diagram’
[40]. This concept of connecting autonomous BNs through common
interfaces is referred to an object-oriented BN [41].

In the present analysis, four urban census areas in England, each
comprising ∼600 dwellings, have been used to populate the
building stock model. Building parameters were obtained by
integrating data from the photointerpretation of high-resolution
digital aerial photography [42], ordnance survey mapping data
[43] and commercial lidar data which provided roof geometries
and orientations [44]. The benefit of utilising census areas is that
they are used as a basis for various socio-economic studies, and a
range of statistical data can be sourced and integrated into the BN
model. In the present paper, household income has been integrated
into the building stock parameters using an iterative proportional
fitting technique [45], which supports the evaluation of
socio-economic impacts of solar PV.
7 Quantification of SC

Having furnished the building stock BN model object with
probabilistic evidence parameters, posterior distributions are
delivered for electricity consumption (Fig. 8a) and PV generation
(Fig. 8b). When these distributions are further propagated through
Fig. 7 Entity relationship diagram showing the SC BN model integrated into an ob
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the BN model, the posterior distribution for SC is delivered
(Fig. 8c). These specific distributions are for a census area in
Camborne, in the southwest of England.

Table 4 shows the comparative data for the four census areas in
this paper. The median value of percentage SC ranges from 31 to
34% with an inter-quartile range of circa ±12%. The distribution is
positively skewed, with upper and lower decile values of circa 60
and 13% SC, respectively.

The influence on the variability of SC by other nodes can be tested
using a variance reduction sensitivity analysis (Table 5). This tests
how much the variability of SC is reduced by fixing the values of the
other variables in the BN [46]. The results of the sensitivity analysis
show that the most influential parameter in this context is electricity
consumption, with a 50% SC variance reduction. PV generation in
contrast exhibits only a 6% influence on the variability of SC.

Fig. 4 shows that absolute SC increases as PV yield increases, but
as a percentage of the yield, it decreases. The median value of SC is
lower than that reported in the DFT study [13] at 44 ± 16%. This is
attributed to the lower system ratings in the DFT study than those
typically deployed today. In comparison, for a system rating node
ject-oriented BN to model the energy system for defined building stock models
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Table 4 Results for four census areas in England, UK, showing expected value (EV), standard deviation (SD), coefficient of variation (CV) and percentile
points for consumption, generation, SC and per cent SC

Percentile

EV SD CV,% 10 25 50 75 90

Camborne consumption 3623 2371 65 1268 2160 3250 4622 6201
generated 2814 1192 42 1658 2092 2683 3364 4086

SC 872 516 59 405 566 769 1044 1375
percentage SC 33 18 54 13 21 30 41 54

Loughborough consumption 3689 3198 87 1102 1918 3053 4634 6655
generated 2609 952 36 1549 1941 2494 3160 3881

SC 869 573 66 358 523 741 1036 1434
percentage SC 34 20 57 13 21 31 44 58

Huddersfield consumption 3741 2693 72 1206 2155 3297 4741 6556
generated 2319 835 36 1325 1710 2225 2825 3452

SC 830 524 63 371 528 727 976 1319
percentage SC 37 19 53 15 24 34 47 60

Newcastle consumption 3264 2254 69 1078 1905 2944 4189 5624
generated 2390 846 35 1401 1775 2297 2887 3493

SC 808 553 68 345 501 698 935 1270
percentage SC 35 20 57 14 22 31 43 58

Table 5 Sensitivity of ‘SC’ to a finding at another node using a variance
reduction sensitivity analysis

Node Variance reduction Percent

consumption 1.47 × 105 49.7
generation 1.83 × 104 6.18
roof area 1.28 × 104 4.33
floor area 5524 1.87
specific yield 2244 0.76
census area 706.7 0.239
orientation 571.3 0.193
pitch 183.9 0.0622
value of 1.5–1.75 kWp, the new posterior distribution for SC has a
median of 44 ± 20%. Similarly, when the electricity consumption
node is set to 2500–3000 kWh/year, and the system rating set to
4.25–4.5 kWp, the mean percentage SC is 20.6 ± 6.1%. This
compares with the value obtained by Parra et al. [10] of 19%. In
contrast, a Swedish study of 200 single family dwellings [3] with
a mean electricity consumption and PV generation of 13.8 and
2.8 MWh, respectively, gave an average SC of 63%. When these
values are approximated in the relevant BN nodes (consumption of
13.9 and generation of 2.9 MWh) an SC value of 57 ± 9% is
obtained. Thus, the BN constructed in the present paper deliver
comparable results to all these various studies.
8 Discussion and conclusions

A probability distribution for SC, conditional on annual electricity
consumption and PV yield, has been created with a high
granularity, such that it permits the probabilistic prediction of PV
SC for the wide variety of consumption/generation scenarios found
in various building and occupancy contexts. The model predicts
the ranges and typical values of SC found in a number of
empirical studies, and accurately quantifies probability
distributions for SC given input distributions of PV generation and
consumption produced by calibrated models for a number of
defined census areas for which the building stock has been
parameterised. Calibration of the model for other geographic
regions and building stock may be readily conducted using similar
empirical PV yield and generation data.

The distributions reported for each census area are similar,
despite variations in median PV generation and electricity
consumption for each census area. In Camborne, the median
generation is 200 kWh/year higher than the next most southerly
area, Loughborough. Camborne however, also exhibits a higher
median electricity consumption. Similar SCs for all four sites,
despite their differing locations, arise as a result of a complex
interaction of predictor parameters, including differing PV
454 This is an open access article publi
installed area, socio-economic aspects (impacting on total power
consumption) and irradiation. Together, these act to balance
positive and negative influences on SC.

The model has been validated, delivering results comparable with
published studies, for cases of both low and high annual domestic
electricity consumption. The BN-derived mean SC (∼30%) differs
significantly from the 50% SC value assumed within the UK
feed-in-tariff programme in the absence of an export meter. Only
22% of the dwellings in the housing stock models used in this
paper had an SC between 40 and 60%. The implications for the
magnitude and distribution of SC are significant in relation to
the techno-economic analyses of deployed PV, especially where
the value of avoided electricity imports represents a significant
cash flow. Simplistic SC estimates should be avoided in future
studies of techno-economic analyses involving energy storage and
demand shifting. Thus the magnitude and variability of exported
electricity available for exploiting by demand shifting or energy
storage has been quantified; here, a mean PV export value of 70%
has been derived. Significantly, only 10% of dwellings had an SC
parameter above 60%, with the occupancy archetype analysis
implying that this is a limiting factor for dwellings that are heavily
occupied, in this case with 40% of PV generation exploitable
using demand side management or energy storage.

The application of a Bayesian modelling approach in the context
of building integrated PV, demonstrated for the first time in the
current study, illustrates the power of BNs as a means to
endogenise uncertainties inherent in such complex systems that
feature many variable parameters such as building stock
characteristics, PV attributes and occupant behaviours. By
propagating parameter uncertainties, the model rapidly calculates
the resultant distribution of SC given a set of input conditions.
This posterior distribution can then be used as an input to further
BN models which evaluate specific outcomes such as
techno-economic or socio-economic impacts. For example, the
determination of probability distributions for investment returns
and household energy spending facilitates effective risk analysis
and options appraisal for investors and policy makers alike.

Finally, as well as SC, this paper enables the evaluation of the
variability of import and export for grid-connected PV across
varying scales, from district to national levels. Thus the model
allows a more thorough techno-economic analysis of such
technologies as energy storage, and of PV integration with the
low-voltage network. With such improved predictions of the energy
flux at the point of connection, the impacts on the grid and the
requirement of mitigation strategies such as reinforcement, demand
shifting and curtailment required under high PV penetration can be
assessed. In terms of wider implications, such a detailed knowledge
of the variability of import and export on smart-grids is useful for
the development of new market paradigms such as local
(peer-to-peer) energy trading and time-of-use tariffs.
IET Renew. Power Gener., 2016, Vol. 10, Iss. 4, pp. 448–455
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