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Introduction

Beams and panels with viscoelastic (VE) damping are widely used
in state-of-the-art engineering structures, allowing to achieve im-
proved safety, increased durability, and noise and vibration control,
as well as reduced costs during the through-life manufacturing, op-
eration, and maintenance of the structural systems (e.g., Lockett
1972; Soong and Dargush 1997; Zhang and Soong 1992; Lee
1997; Rao 2003). This is the case with sandwich beams, where stiff
(elastic) external layers are combined with a soft (VE) internal core
that has been specifically designed to offer significant damping
capabilities in a variety of engineering situations (e.g., Palmeri
2010; Hohe and Librescu 2004; Arikoglu and Ozkol 2010). This
in turn has driven the continuous development of new VE materials
and laminate configurations and improved and cost-effective manu-
facturing processes, as well as the formulation of more efficient
modeling and design methods. Composite steel-concrete beams
(e.g., Adam et al. 1997; Berczyński and Wróblewski 2005; Shen
et al. 2011) are another well-known example of multilayered struc-
tural members, in which each layer is optimized to achieve an
overall better performance and the mechanical properties of the in-
terface (typically represented by shear studs) play a fundamental
role in their dynamics (e.g., Kasinos et al. 2015). Different model
assumptions for the free undamped vibration of sandwich beams
were recently studied by Lenci and Clementi (2012), showing
how shear deformations, axial and rotatory inertia, and interface
stiffness affect modal frequencies and modal shapes, while Lenci

and Warminski (2012) used the multiple-scale method to determine
the effects of a nonlinear interface in combination with a pure vis-
cous damping.

The dynamics of three-layered sandwich beams has been ad-
dressed in several studies involving the finite element (FE) method
(e.g., Soni 1980; Sainsbury and Zhang 1999; Zhang and Sainsbury
2000; Daya and Potier-Ferry 2001; Galucio et al. 2004; Hu et al.
2008; Abdoun et al. 2009; Amichi and Atalla 2009; Won et al.
2013), implementing both linear and nonlinear VE models. For the
linear case, the dependance of stiffness and dissipation of the struc-
tural elements on the vibration frequency is usually accounted for
via complex-valued, frequency-dependent material coefficients.
This approach generally involves specialized numerical methods
for the solution of nonlinear eigenvalue problems (e.g., Daya and
Potier-Ferry 2001), with an increased computational cost for the
frequency-domain response functions, as the complex-valued dy-
namic stiffness matrix has to be formed and decomposed at many
different frequencies. A different computational strategy consists
of defining the dynamic stiffness matrix for the composite beam
(Howson and Zare 2005), but this requires the solution of a tran-
scendental eigenvalue problem with the so-called Wittrick-Williams
algorithm (Williams and Wittrick 1983).

In addition to FEs, some researchers (e.g., Vu et al. 2000;
Oniszczuk 2000; Oniszczuk 2003; and further works cited in
Palmeri and Adhikari 2011) have derived analytical solutions for
this class of dynamic problems by modeling the sandwich beam as
two parallel Euler-Bernoulli beams continuously connected by a
layer of distributed springs. This approach, although very appealing
from a theoretical point of view and useful to obtain benchmark
solutions, can hardly be applied to cases with different boundary
conditions (BCs), functionally graded materials, or both. Such dif-
ficulties have been tackled by Palmeri and Adhikari (2011), who
proposed a Galerkin-type state-space formulation for the vibration
analysis of double-beam systems, in which the computational cost
is reduced by (1) adopting simple harmonic functions to discretize
the equations of motion and (2) using modal relaxation functions
(Palmeri et al. 2004; Muscolino and Palmeri 2007) to represent
the VE behavior of the inner layer. In their formulation, however,
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the inner springs are assumed to provide stiffness in the transverse
direction only, so that their contribution is associated with exten-
sion or compression of the inner layer, not to any shear strain. On
the contrary, such a mode of deformation may play a fundamental
role in the dynamics of VE sandwich beams.

Motivated by these considerations, this paper presents a novel
Galerkin-type approximation for the fields of both axial and trans-
verse displacements in the outer beams, which allows to represent
their relative shear slip. The proposed technique also allows con-
sidering (1) any BCs, which in general are different for the two
outer layers; and (2) rate-dependent constitutive laws for the inner
layer through an enlarged state-space model conveniently built in a
reduced modal space. Numerical applications to composite beams
with different configurations demonstrate the accuracy and versa-
tility of the proposed approach.

Definition of the Problem

Fig. 1(a) shows the composite system under investigation, which
consists of two parallel elastic beams of the same length L, con-
tinuously connected by an inner layer of shear-type VE springs.
In the right-handed Cartesian reference system, z is the abscissa
along the beam (which is pointing to the right) and φ is the in-plane
rotation (which is positive anticlockwise).

The two elastic beams are prismatic and slender enough for the
classical Euler–Bernoulli theory to be valid (i.e., shear deforma-
tions and rotatory inertia are negligible). Different material and sec-
tional properties are allowed for the beams, and each of them is
fully characterized by modulus of elasticity Er, mass density ρr,
frequency-independent viscous damping ratios ζr, cross-sectional
area Ar, and second moment Ir, where the subscript r denotes
the top (r ¼ 1) and bottom (r ¼ 2) beam, respectively.

The inner layer is homogeneous and, within the limits of the linear
viscoelasticity theory, its behavior in shearing is fully characterized
by the complex-valued stiffness per unit length, kinnðωÞ, which de-
pends on the vibration frequency ω; minn ¼ ρinnAinn is the mass den-
sity per unit length; and d0 is the distance between their centroids.

Without loss of generality, the Standard Linear Solid (SLS)
model is adopted as constitutive law for the inner layer. As illus-
trated within Fig. 1(b), the model consists of a primary elastic
spring (called equilibrium modulus), K0 ≡ kinnð0Þ, acting in paral-
lel with a Maxwell element, which in turn is given by a secondary
elastic spring, K1, in series with a viscous dashpot, C1 ¼ K1τ1,
where τ1 is the single relaxation time of the VE material.

For the SLS model, the function kinnðωÞ can be expressed as

kinnðωÞ ¼ K0 þ K1

iτ1ω
1þ iτ1ω

ð1Þ

where i ¼ ffiffiffiffiffiffi−1p
= the imaginary unit. The shear reaction force,

SðtÞ, experienced by the VE inner layer can be related to the asso-
ciated displacement, sðtÞ (i.e., the internal slippage between top and
bottom beam), as

SðtÞ ¼ F−1
�
1

iω
kinnðωÞ

�
� ṡðtÞ ð2Þ

where F−1 = the inverse Fourier transform operator; ∗ stands for
the convolution operator; and the over-dot means derivative with
respect to time t, so that ṡðtÞ is the pertinent velocity (i.e., the rate
of variation of the shear strain within the inner layer). The reaction
force SðtÞ can be expressed as (Palmeri et al. 2003)

SðtÞ ¼ K0sðtÞ þ K1λ1ðtÞ ð3Þ

where K0sðtÞ = the elastic part in the VE constitutive law;
K1λ1ðtÞ = the contribution of the Maxwell element; λ1ðtÞ = the
additional internal variable, which measures the elongation of the
spring, K1, and is ruled by

λ̇1ðtÞ ¼ ṡðtÞ − λ1ðtÞ
τ1

ð4Þ

The extension to more sophisticated linear VE models such as
the generalized Maxwell (GM) model is straightforward (Palmeri
et al. 2003) and requires considering more internal variables λkðtÞ
on the right side of Eq. (3). The associated parameters Ki and τ i can
be determined from the storage modulus and loss modulus of the
VE material, which are measured experimentally for different
frequencies of vibration.

It is worth mentioning here that Eqs. (1)–(4) are formally similar
to those used for double-beam systems by Palmeri and Adhikari
(2011), with the key difference that shear forces and shear defor-
mations are considered in the current work instead of extensions
and compressions of the core.

Kinematics of the System

By resorting to a Galerkin-type approximation, the in-plane vibra-
tion of the sandwich beam of Fig. 1(a) can be fully characterized
by three independent time-varying fields of displacement: (1) two
axial displacements, u1ðz; tÞ and u2ðz; tÞ, for the top and bottom
beams, respectively; and (2) a single transverse displacement,
vðz; tÞ, as long as the inner VE layer can be assumed to be incom-
pressible in the transverse direction. It follows that the top and
bottom beams will have the same transverse displacements, rota-
tions φðz; tÞ ¼ −v 0ðz; tÞ, and curvatures χðz; tÞ ¼ −v 0 0ðz; tÞ, in
which the prime means a derivative with respect to the spatial
coordinate z.

Axial Assumed Modes

For the axial displacements of the outer beams, the Galerkin shape
functions (or assumed modes) can be defined by taking their first n
axial modes of vibration, which are the nontrivial solutions of the
eigenproblem (Den Hartog 1984; Clough and Penzien 2010):

ϕ 0 0
rjðzÞ þ α2

r;jϕr;jðzÞ ¼ 0 ð5Þ

where ϕr;jðzÞ and αr;j are the jth pair of eigenfunction and eigen-
value for the rth bar [the eigenpairs satisfying Eq. (5) are offered in
Table 1 for different BCs in the axial direction; i.e., Constrained–
Constrained (C–C), Constrained–Free (C–F), and Free-Free (F–F)].
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Fig. 1. (a) Sketch of the composite beam; (b) SLS rheological model
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Once the arrays ϕrðzÞ ¼ fϕr;1ðzÞ · · · ϕr;nrðzÞg⊤ are defined for
the top (r ¼ 1) and bottom (r ¼ 2) beams, with ⊤ denoting the
transpose operator, the displacements in the rth outer beam can
be expressed as

urðz; tÞ ¼ ϕ⊤
r ðzÞ · qrðtÞ ¼

Xnr
j¼1

ϕr;jðzÞqr;jðtÞ ð6Þ

in which the nr-dimensional array qrðtÞ ¼ fqr;1ðtÞ · · · qr;nrðtÞg⊤
collects the Lagrangian coordinates associated with the axial shape
functions; and the central dot · = matrix product. Importantly, the
BCs in the axial direction can be different for the two outer beams,
allowing for maximum versatility.

Transverse Assumed Modes

A convenient array of assumed modes for the transverse deflections
can be obtained by taking the first n buckling modes of a homo-
geneous slender beam, which are the nontrivial solutions of the
eigenproblem (e.g., Timoshenko and Gere 2009):

ϕ 0 0 0 0
0;j ðzÞ þ α2

0;jϕ
0 0
0;jðzÞ ¼ 0 ð7Þ

where, similar to the previous case, ϕ0;jðzÞ and α0;j are the jth
pair of eigenfunction and eigenvalue. Table 2 displays the nontri-
vial roots of Eq. (7) for different BCs at z ¼ 0 and z ¼ L;
i.e., Pinned–Pinned (P–P), Clamped–Free (C–F), Clamped–Pinned
(C–P), and Clamped–Clamped (C–C).

It is worth noting here that the same assumed modes were ex-
ploited by Palmeri and Adhikari (2011) for the dynamic analysis of
VE double-beam systems as a way to avoid numerical difficulties
due to the presence of hyperbolic functions in the exact modes of
vibration of homogeneous Euler-Bernoulli beams. This is advanta-
geous for two reasons: first, it allows avoiding complicated numeri-
cal integrations when evaluating the mass and stiffness coefficients
(see the appendix); second, it removes any inaccuracy associated
with the unbounded nature of the hyperbolic functions, which can
affect the higher modes of vibration (Tang 2003).

It also should be noted that, although in the double-beam system
studied by Palmeri and Adhikari (2011) the outer beams are con-
nected by transverse springs (and therefore two fields of transverse
displacements are required for them), in the present case the inner
layer imposes a rigidity constrain in the transverse direction. Thus,
a single field of transverse displacements is introduced. Moreover,
the associated BCs must be defined in such a way that deflection
vðz; tÞ and rotation φðz; tÞ at z ¼ 0 and z ¼ L are allowed if and

only if they are compatible with both restraints at the same end of
the top and bottom beams. For example, the BCs in the transverse
direction for the sandwich beam sketched in Fig. 1(a) must be C–P
since the top beam prevents both deflection and rotation at z ¼ 0,
while at z ¼ L, the deflection is not permitted by the roller support
in the bottom beam and the rotation is allowed in both beams.

Similar to Eq. (6), the time-varying field vðz; tÞ of transverse
displacements experienced by the composite sandwich beam can
be expressed as

vðz; tÞ ¼ ϕ⊤
0 ðzÞ · q0ðtÞ ¼

Xn0
j¼1

ϕ0;jðzÞq0;jðtÞ ð8Þ

where the n0-dimensional arrays ϕ0ðzÞ ¼ fϕ0;1ðzÞ · · · ϕ0;n0ðzÞg⊤
and q0ðtÞ ¼ fq0;1ðtÞ · · · q0;n0ðtÞg⊤ collect assumed modes and
associated Lagrangian coordinates, respectively.

Undamped Equations of Motion

Kinetic and Potential Energy

According to Eqs. (6) and (8), total kinetic energy, TðtÞ, and total
potential energy, VðtÞ, can be evaluated as the sum of three terms
each:

TðtÞ ¼
X2
r¼0

TrðtÞ; VðtÞ ¼
X2
r¼0

VrðtÞ ð9Þ

Specifically, for the axial vibration of top and bottom layer
(r ¼ 1, 2):

TrðtÞ ¼
1

2
μr

Z
L

0

u̇rðz; tÞ2dz ð10aÞ

VrðtÞ ¼
1

2
ErAr

Z
L

0

u 0
rðz; tÞ2dz ð10bÞ

where μr ¼ ρrAr; and for the transverse vibration (r ¼ 0):

T0ðtÞ ¼
1

2
μ0

Z
L

0

v̇ðz; tÞ2dz ð11aÞ

V0ðtÞ ¼
1

2
EI0

Z
L

0

v 0 0ðz; tÞ2dzþ 1

2
K0

Z
L

0

sðz; tÞ2dz ð11bÞ

where μ0 ¼ minn þ ρ1A1 þ ρ2A2 = the mass per unit length of the
whole composite beam; EI0 ¼ E1I1 þ E2I2 = the flexural stiffness
of the sandwich beam without shear interaction (i.e., at the limiting
condition when K0 → 0; and sðz; tÞ = the shear slip experienced by
the inner layer, given by

sðz; tÞ ¼ u1ðz; tÞ − u2ðz; tÞ þ d0φðz; tÞ ð12Þ
which couples the axial and transverse movements of the outer
beams. In the presence of full interaction between the top and

Table 1. Assumed Axial Modes for the Outer Beams

Boundary conditions Eigenfunctions ϕr;jðzÞ Eigenvalue equation

C–C sinðαr;jzÞ αr;j ¼ jπ=L
C–F sinðαr;jzÞ αr;j ¼ ð2j − 1Þπ=ð2LÞ
F–F

�
1; j ¼ 1

cosðαr;jzÞ; j ≥ 2

αr;j ¼ ðj − 1Þπ=L

Table 2. Assumed Transverse Modes for the Composite Beam

Boundary conditions Eigenfunctions ϕ0;jðzÞ Eigenvalue equation

P–P sinðα0;jzÞ α0;j ¼ jπ=L
C–F 1 − cosðα0;jzÞ α0;j ¼ ð2j − 1Þπ=ð2LÞ
C–P 2

3
½ðz − LÞ=L − sinðα0;jzÞ=ðα0;jLÞ þ cosðα0;jzÞ� tanðα0;jLÞ ¼ α0;jL

C–C
�
cosðα0;jzÞ − 1

sinðα0;jzÞ=ðα0;jLÞ − ð1=2Þ cosðα0;jzÞ þ ðL − 2zÞ=ð2LÞ
α0;j ¼ 2jπ=L; j is odd
tanðα0;jL=2Þ ¼ α0;jL=2; j is even

© ASCE 04016036-3 J. Eng. Mech.
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bottom beam (i.e., at the limiting condition when K0 → ∞), the
shear slip goes to zero, sðz; tÞ → 0. Therefore, the axial displace-
ments u1ðz; tÞ and u2ðz; tÞ become constrained by the transverse
displacement vðz; tÞ; i.e., the sandwich beam behaves like a solid
beam, whose overall cross section remains plane in bending.

Substituting Eqs. (6) and (8), respectively, into Eqs. (10)
and (11) leads to the following expressions for the axial vibration
of the outer beams (r ¼ 1, 2):

TrðtÞ ¼
1

2

Xnr
j¼1

Xnr
k¼1

Mðr;rÞ
j;k q̇r;jðtÞq̇r;kðtÞ ð13aÞ

VrðtÞ ¼
1

2

Xnr
j¼1

Xnr
k¼1

Kðr;rÞ
j;k qr;jðtÞqr;kðtÞ ð13bÞ

and for the synchronous transverse vibration of the three layers
(r ¼ 0):

T0ðtÞ ¼
1

2

Xn0
j¼1

Xn0
k¼1

Mð0;0Þ
j;k q̇0;jðtÞq̇0;kðtÞ ð14aÞ

V0ðtÞ ¼
1

2

Xn0
j¼1

Xn0
k¼1

½Kð0;0Þ
j;k q0;jðtÞq0;kðtÞ þΔKð0;0Þ

j;k q0;jðtÞq0;kðtÞ

þΔKð1;1Þ
j;k q1;jðtÞq1;kðtÞ þΔKð2;2Þ

j;k q2;jðtÞq2;kðtÞ
þ 2Kð0;1Þ

j;k q0;jðtÞq1;kðtÞ þ 2Kð0;2Þ
j;k q0;jðtÞq2;kðtÞ

þ 2Kð1;2Þ
j;k q1;jðtÞq2;kðtÞ� ð14bÞ

The sets of mass and stiffness coefficients Mðr;rÞ
j;k , Kðr;sÞ

j;k , and
ΔKðr;rÞ

j;k in Eqs. (13) and (14) couple the jth assumed mode of
the rth field of displacements with the kth assumed mode of the
rth (M and ΔK) or sth (K) field. The mathematical expressions
of these coefficients, which are different with respect to the analo-
gous coefficients presented by Palmeri and Adhikari (2011) for
double-beam systems, are provided in the Appendix. In particular,
the shear deformations within the core determine the full coupling
between the three layers in the sandwich beams considered in this
study [Eq. (19b)], while there was no direct coupling between the
top and bottom beams in the model investigated by Palmeri and
Adhikari (2011).

Generalized Forces

In order to derive the forcing terms in the equations of motion,
the external dynamic load fðz; tÞ, transversally applied to the
composite beam, is projected onto the assumed modes in the trans-
verse direction. The jth generalized force is then given by

Q0;jðtÞ¼
Z

L

0

fðz; tÞ ∂
∂q0;jðtÞvðz; tÞdz¼

Z
L

0

fðz; tÞϕ0;jðzÞdz ð15Þ

Since u1ðz; tÞ and u2ðz; tÞ are orthogonal to fðz; tÞ, the corre-
sponding generalized forces are identically zero [i.e., Q1;jðtÞ ¼
Q2;jðtÞ ¼ 0]. Accordingly, the n-dimensional array Q0ðtÞ ¼
fQ0;1ðtÞ · · · Q0;n0ðtÞg⊤ fully describes the dynamic loading, while
Q1ðtÞ ¼ 0n1×1 and Q2ðtÞ ¼ 0n2×1, with 0r×s being a zero matrix
with r rows and s columns [Eq. (18b)].

Lagrangian and Modal Equations of Motion

Having defined kinetic energy, potential energy and generalized
forces [Eqs. (13)–(15)] in the previous subsections of this paper,

the Lagrange equations for the undamped dynamic system can be
written as (for r ¼ 0, 1, 2 and j ¼ 1; : : : ; nr)

d
dt

� ∂
∂q̇r;jðtÞLðtÞ

�
− ∂
∂qr;jðtÞLðtÞ ¼ Qr;jðtÞ ð16Þ

where LðtÞ ¼ TðtÞ − VðtÞ is the Lagrangian function of the sys-
tem, and is then cast in the following matrix form:

M · üðtÞ þK · uðtÞ ¼ FðtÞ ð17Þ
where the arrays uðtÞ and FðtÞ, of size N ¼ n0 þ n1 þ n2, collect
Lagrangian coordinates and generalized forces for the three subsys-
tems, respectively:

uðtÞ ¼ fq⊤
0 ðtÞq⊤

1 ðtÞq⊤
2 ðtÞg⊤ ð18aÞ

FðtÞ ¼ fQ⊤
0 ðtÞ 01×n1 01×n2g⊤ ð18bÞ

while M and K are the generalized mass and stiffness matrices, of
dimensions N × N:

M ¼

2
664
Mð0;0Þ 0n0×n1 0n0×n2
0n1×n0 Mð1;1Þ 0n1×n2
0n2×n0 0n2×n1 Mð2;2Þ

3
775 ð19aÞ

K ¼

2
664
Kð0;0Þ þΔKð0;0Þ ΔKð0;1Þ ΔKð0;2Þ

½ΔKð0;1Þ�⊤ Kð1;1Þ þΔKð1;1Þ ΔKð1;2Þ

½ΔKð0;2Þ�⊤ ½ΔKð1;2Þ�⊤ Kð2;2Þ þΔKð2;2Þ

3
775

ð19bÞ

Importantly, matrix assembly procedures are not required in the
proposed formulation, as the mass and stiffness coefficients can be
allocated directly to their pertinent positions within the elementary
square blocks Mðr;rÞ and Kðr;rÞ (of size nr) and the (generally) rec-
tangular block ΔKðr;sÞ, of dimensions nr × ns.

For the purposes of the modal analysis, the matrices M and
K can be simultaneously diagonalized through the real-valued
eigenproblem

~ω2
j M · ~xj ¼ K · ~xj ð20aÞ

with the orthonormal condition

~x⊤
j · M · ~xj ¼ δj;k ð20bÞ

where δj;k = Kronecker delta symbol, so that δj;k ¼ 0 when j ≠ k
and δj;k ¼ 1 when j ¼ k; ~ωj is the approximate jth natural circular
frequency of the undamped sandwich beam; and the corresponding
modal shape is given by the vector

~vjðzÞ ¼ f ~vjðzÞ ~u1;jðzÞ ~u2;jðzÞg⊤ ¼ ΓðzÞ · ~xj ð21Þ

where ΓðzÞ = the 3 × N transformation matrix, defined as follows:

ΓðzÞ ¼

2
664
ϕ⊤
0 ðzÞ 0n0×1 0n0×1

0n1×1 ϕ⊤
1 ðzÞ 0n1×1

0n2×1 0n2×1 ϕ⊤
2 ðzÞ

3
775 ð22Þ

Eq. (17) can be further reduced to the modal (decoupled) form

θ̈ðtÞ þΩ2 · θðtÞ ¼ X⊤ · FðtÞ ð23Þ

© ASCE 04016036-4 J. Eng. Mech.
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where θðtÞ ¼ fθ1ðtÞ : : : θmðtÞg⊤ = the array listing the first m mo-
dal coordinates of the sandwich beam under investigation, with
m ≤ N; Ω ¼ diagf ~ω1; : : : ; ~ωmg = the m ×m spectral matrix; and
X ¼ ½ ~x1 · · · ~x1� = the N ×m modal matrix, whose jth column is
the jth eigenvector ~xj satisfying Eq. (20).

After some algebra, one can prove that when the first m modes
of the sandwich beam are retained in the analysis, the time-domain
dynamic response can be expressed as

vðz; tÞ ¼ ΓðzÞ ·
�Xm

j¼1

~xjθjðtÞ
�

¼ ΓðzÞ · X · θðtÞ ð24Þ

while the frequency-domain dynamic response at a given abscissa
z ¼ z̄ can be evaluated as

F hvðz̄; tÞi ¼ Z̄ðωÞ · F hFðtÞi ð25Þ
where F = the Fourier transform operator; and Z̄ðωÞ ¼
fZ̄0ðωÞ; Z̄1ðωÞ; Z̄2ðωÞg⊤ = three-dimensional (3D) array collecting
the frequency response functions (FRFs) at the selected abscissa
z ¼ z̄, given by

Z̄ðωÞ ¼ Γðz̄Þ · H0ðωÞ ð26Þ
where H0ðωÞ is the N × N complex-valued frequency-dependent
matrix that collects the FRFs of the Lagrangian coordinates of
the system when the first m modes of the system are retained in
the analysis. For the undamped case, the matrix H0ðωÞ at a given
circular frequency ω can be evaluated as

H0ðωÞ ¼ − i
ω
G⊤

0 · ½fωI2m − D0�−1 · G0 ð27Þ

where D0 = 2m × 2m state-space matrix of the dynamic system
without damping; and G0 = the corresponding 2m × N input
matrix:

D0 ¼
�
0m×m Im
−Ω2 0m×m

�
; G0 ¼

�
0m×N

X⊤
�

ð28Þ

and the symbol Is stands for the identity matrix of size s.

Damped Equations of Motion

Eq. (17) in the Lagrangian space and Eq. (23) in the modal
subspace do not include energy dissipation. Following a similar
approach to Palmeri and Adhikari (2011), both viscous and VE
damping can be introduced. Assuming that the former is propor-
tional to the mass density ρr and modulus of elasticity Er of the
rth outer layer (r ¼ 1, 2), and adopting the Rayleigh model
(Clough and Penzien 2010; Chopra 2007), the following expres-
sion can be devised for the N × N viscous damping matrix in the
Lagrangian space:

C ¼

2
664
Cð0;0Þ

1 þCð0;0Þ
2 0n0×n1 0n0×n2

0n1×n0 Cð1;1Þ
1 0n1×n2

0n2×n0 0n2×n1 Cð2;2Þ
2

3
775 ð29Þ

in which the elementary n × n blocks are given by

Cð0;0Þ
r ¼ 2ζr

�
αM

ρrAr

μ0

Mð0;0Þ þ αK
ErIr
EI0

Kð0;0Þ
�

ð30aÞ

Cðr;rÞ
r ¼ 2ζr½αMMðr;rÞ þ αKKðr;rÞ� ð30bÞ

where αK ¼ ð ~ω1 þ ~ωmÞ−1 and αM ¼ ~ω1 ~ωmαK are the two propor-
tionality coefficients for stiffness and mass, respectively.

Since the VE damping is provided by the shear deformations
within the core, their effects on the sandwich beam are proportional
to the shear stiffness of the inner layer, whose N × N influence
matrix in the Lagrangian space is

Linn ¼
1

K0

2
664

ΔKð0;0Þ ΔKð0;1Þ ΔKð0;2Þ

½ΔKð0;1Þ�⊤ ΔKð1;1Þ ΔKð1;2Þ

½ΔKð0;2Þ�⊤ ½ΔKð1;2Þ�⊤ ΔKð2;2Þ

3
775 ð31Þ

Now, exploiting the same modal transformation of variables
as in the previous section [i.e., uðtÞ ¼ X · θðtÞ], the matrices of
Eqs. (30) and (31) can be projected onto the reduced modal sub-
space, which then gives the m ×m matrices of modal viscous
damping, Ξ ¼ X⊤ · C · X, and rigidity influence of the inner layer
on the modal subspace, Binn ¼ X⊤ · Linn · X. These new matrices
allow including viscous and VE damping directly into the modal
equations of motion [Eq. (23) for the undamped case], which now
take the form

�
θ̈ðtÞ þ Ξ · θ̇ðtÞ þΩ2 · θðtÞ þ K1Binn · λ1ðtÞ ¼ X⊤ · FðtÞ;
λ̇1ðtÞ ¼ θ̇ðtÞ − 1

τ1
λ1ðtÞ

ð32Þ

where the m-dimensional array λ1ðtÞ ¼ ½λ1;1ðtÞ · · · λ1;mðtÞ�⊤ has
an additional time-varying internal variable for each modal coor-
dinate. Since the spectral matrix Ω is diagonal, it appears from
Eq. (32) that the modal coordinates collected by the array θðtÞ
are only coupled by the modal matrices Ξ and Binn. If these ma-
trices are diagonal (or if their out-of-diagonal terms are negligible),
the dynamic system becomes classically damped in the sense
that the modes of vibration are decoupled (Palmeri et al. 2004;
Adhikari 2006).

Eq. (32) can then be arranged in a more convenient state-space
form:

ẏ1ðtÞ ¼ D1 · y1ðtÞ þG1 · FðtÞ ð33Þ

where y1ðtÞ ¼ f θðtÞ⊤ θ̇ðtÞ⊤ λ1ðtÞ⊤ g⊤ = enlarged state array
(which includes modal displacements, modal velocities, and
additional internal variables in the modal subspace), while dynamic
matrix D1 and load influence matrix G1 are

D1 ¼

2
64
0m×m Im 0m×m

−Ω2 −Ξ −K1Binn

0m×m Im − 1
τ1
Im

3
75; G1 ¼

2
64
0m×N

X⊤

0m×N

3
75 ð34Þ

and the subscript 1 means that only one relaxation time (τ1), and
therefore only one additional state variable [λ1ðtÞ], have been used
for the VE behavior of the core. If more than one relaxation time is
required, the GM model can be used instead. In this case, the shear
force SðtÞ within the inner layer becomes

SðtÞ ¼ K0sðtÞ þ C0ṡðtÞ þ K1λ1ðtÞþ · · · þKlλlðtÞ ð35Þ

where a viscous dashpot of damping constant C0 and further
(l − 1) Maxwell elements are ideally appended in parallel to the
spring-dashpot system of Fig. 1(b). The additional internal variable
λiðtÞ then describes the elongation of the elastic spring Ki within
the ith Maxwell element, whose evolution in time is ruled by

© ASCE 04016036-5 J. Eng. Mech.
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λ̇iðtÞ ¼ ṡðtÞ − λiðtÞ
τ i

ð36Þ

with τ i as the ith relaxation time of the VE core.
The introduction of the GM model has the effect of enlarging

the size of the dynamic problem. One can prove that if l Maxwell
elements are considered in the analysis, the state-space equations of
motion can be posed in the form

ẏlðtÞ ¼ Dl · ylðtÞ þGl · FðtÞ ð37Þ
where the expanded array ylðtÞ ¼
f θðtÞ⊤ θ̇ðtÞ⊤ λ1ðtÞ⊤ · · · λlðtÞ⊤ g⊤ collects the state variables
of the system; and dynamic matrix and load influence matrix take
the generalized expressions

Dl ¼

2
6666666666664

0m×m Im 0m×m · · · · · · 0m×m

−Ω2 −½Ξþ C0Binn� −K1Binn · · · · · · −KlBinn

0m×m Im − 1
τ1
Im · · · 0m×m

..

. ..
. . .

. ..
.

..

. ..
. ..

. . .
.

0m×m Im 0m×m · · · − 1
τl
Im

3
7777777777775

ð38aÞ

Gl ¼

2
64

0m×N

X⊤

0ðlmÞ×N

3
75 ð38bÞ

The time-domain solution of Eq. (33) or (37) can be sought ei-
ther with standard techniques [e.g., the classical RK4 Runge-Kutta
method (2012)] or specifically tailored numerical schemes (Palmeri
et al. 2003; Palmeri and Muscolino 2011).

Alternatively, the dynamic response of the system can be evalu-
ated in the frequency domain. In this case, the solution of Eq. (25)
can still be used, provided that the FRF matrix of Eq. (27) is gen-
eralized to take into account the effect of viscous and VE damping,
as modeled previously. If m modes of vibration are retained in the
analysis, and l is the number of relaxation times needed to describe
the VE behavior of the core, the N × N complex-valued FRF
matrix can be evaluated as

HlðωÞ ¼ G⊤
l · ½iωIð2þlÞm −Dl�−1 · Gl ð39Þ

which at given frequency ω requires the inversion of a square ma-
trix of size ð2þ lÞm; i.e., the size of the problem increases linearly
with both m and l.

Numerical Applications

Modal Shapes and Modal Frequencies

In the first stage, the eigenproperties of three undamped
(ζ1 ¼ ζ2 ¼ 0; l ¼ 0) sandwich beams have been determined.
The two outer layers are assumed to be simply supported at their
ends; the geometrical and mechanical parameters of the top layer
are ρ1 ¼ 2,000 kg=m3, E1 ¼ 10 GPa, A1 ¼ 500 cm2, and I1 ¼
40,000 cm4; and for the bottom layer: ρ2 ¼ ρ1, E2 ¼ E1, A2 ¼
A1=2, and I2 ¼ I1=2. The length of the beam is L ¼ 10 m and the
distance between the centroids of the outer layers is d0 ¼ 50 cm;
the core is assumed to be massless (i.e., minn ¼ 0). It is worth not-
ing that, although the outer layers are the same as in some examples
presented by Oniszczuk (2003) and by Palmeri and Adhikari
(2011), the shear stiffness of the core results in a completely differ-
ent type of interaction between the top and bottom layers (for in-
stance, all the transverse modes of vibration of the sandwich beams
are affected by the stiffness of the inner layer, while this does not
happen with the double-beam assemblies studied in those previous
papers).

Table 3 lists the values of the first 12 (m ¼ 12) modal frequen-
cies predicted by the commercial FE software SAP2000 against
those computed with the proposed procedure [Eq. (20)], for three
different values of the shear stiffness K0 of the inner layer; namely,
Case A, K0 ¼ 0 (no shear interaction between the outer layers);
Case B, K0 ¼ 2.0 MN=m2 (medium core); and Case C, K0 ¼
200 MN=m2 (stiff core). The results of the proposed Galerkin-type
approximation have been obtained using eight shape functions for
each component (n0 ¼ n1 ¼ n2 ¼ 8), and the bold values in Table 3
denote the predominantly axial modes of the system.

For the first two values of K0 (Cases A and B), the modal
frequencies so computed are in excellent agreement with the values
predicted with a relatively coarse FE model (21 spring elements for
the inner layer and 40 beam elements for the two outer layers),
while the effects of a very stiff core (Case C) are not fully captured

Table 3. Comparison between the Values of the Modal Frequencies Given by the Proposed Analytical Model and Those Predicted by the FEM for the
Sandwich Beam of Cases A, B, and C

Mode

Modal frequencies ~ν (Hz)

Case A Case B Case C

Analytical FEM(21) Analytical FEM(21) Analytical FEM(21) FEM(161)

1 3.142 3.142 4.245 4.059 16.148 15.658 16.473
2 12.566 12.566 13.795 13.743 39.820 36.1916 39.616
3 28.274 28.274 29.556 29.314 69.649 62.538 69.276
4 50.266 50.265 51.565 51.316 104.73 93.927 104.09
5 78.540 78.538 79.849 79.595 111.80 111.77 111.78
6 111.80 111.77 111.80 111.77 144.46 130.18 143.68
7 111.80 111.77 114.41 114.15 189.33 171.22 187.91
8 113.10 113.09 118.41 116.33 223.61 217.21 223.55
9 153.94 153.93 155.26 154.99 238.35 223.38 236.84
10 201.06 201.04 202.38 202.10 297.95 268.35 290.65
11 223.61 222.38 223.61 223.38 335.41 324.85 335.30
12 223.61 222.38 226.98 225.69 406.50 332.286 349.55

Note: Bold values denote the predominantly axial modes of the system.
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by this FE model. Increasing the fidelity of the FE model (161
spring elements for the core and 320 beam elements for the two
outer layers), the values of the modal frequencies so predicted be-
come closer to the values computed with the proposed method
(keeping n0 ¼ n1 ¼ n2 ¼ 8), as revealed by the last column of
Table 3. It follows that, independent of the relative stiffness of
the core, the proposed approach is able to deliver accurate results
by using only a few assumed modes for each component (8 × 3 ¼
24 in total), while a large number of degrees of freedom (2 × 320 ¼
640 for Case C) may be required by the FE model.

Figs. 2 and 3 illustrate the relative contribution of transverse and
axial deformations to some selected modal shapes of the undamped
sandwich beam [Eq. (21)]. Each of the top subplots [(a), (c), (e),
and (g)] shows the vertical deflection v of the sandwich beam (inner
dashed line) in a given mode. To make visible the deformations
experienced by the core, this has been divided into 30 equally
spaced intervals, each one delimited by vertical links, whose incli-
nation in the deformed shape depends on the relative slippage be-
tween the top layer (dashed line) and the bottom layer (solid line).
The axial displacements u1 at the top (dashed line) and u2 at
the bottom (solid line) of the sandwich beam are shown in the bot-
tom subplots [(b), (d), (f) and (h)].

Case B with a medium core has been selected for this analysis,
and the inspection of Fig. 2 reveals that the first four modes (j ≤ 4)

are dominated by transverse deflections, as their amplitude is two
orders of magnitude larger that the axial displacements. This is also
confirmed by the links, which are all substantially vertical and
equally spaced (i.e., they simply appear to move vertically within
Fig. 2). The lowest four modes of vibration with dominant axial
deformations (j ¼ 6, 8, 11 and 12) are depicted within Fig. 3. In-
terestingly, the 6th and 11th modes show exactly the same axial
displacements in the two outer beams and, being perfectly in phase,
there are no shear deformations within the inner layer. Once
again, this is confirmed by the links, which are all vertical in
Figs. 3(a and e). As a result, these modes are not affected by
the stiffness K0 of the core, as is also evident in Table 3, where
the modal frequencies at ~ν ¼ ~ω=ð2πÞ ¼ 111.80 Hz and ~ν ¼
223.61 Hz are the same for all three cases. On the contrary, the
axial displacements experienced by the outer beams in the 8th
and 12th mode of vibration are in opposition of phase. For this rea-
son, they also involve shear deformations in the inner layer, which
appear in Figs. 3(c and g). Accordingly, the associated modal
frequencies increase with the stiffness K0 of the core.

Figs. 4(a and c) display the absolute value of the FRFs jZ̄rj of
displacements v, u1, and u2 at abscissa z̄ ¼ L=6 [Eq. (26)], all nor-
malized with respect to the pseudostatic value of jZ̄0j when the fre-
quency approaches zero (ν → 0). The dynamic load is uniformly
distributed, and the undamped sandwich beams of Cases B and C

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 2. First four transverse modal shapes of the Case B undamped sandwich beam

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 3. First four axial modal shapes of the Case B undamped sandwich beam

© ASCE 04016036-7 J. Eng. Mech.
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have been considered for this analysis. Figs. 4(b and d) also show
the argument ∠Z̄0ðωÞ for the transverse deflection v. Comparing
the two log-lin graphs at the top of Fig. 4 reveals that the axial
response of the outer beams (bottom lines) increases significantly
due to the shear impedance introduced by the stiffness of the inner
layer, which also increases the modal frequencies.

Damped Beams

In the second stage, the effects of VE damping have been quanti-
fied. In this case, the top and bottom layers are identical, and they
have the same geometrical and mechanical parameters as the top
layer (r ¼ 1) in the undamped sandwich beams considered in

the previous subsection; the length (L ¼ 10 m) and inner depth
(d0 ¼ 50 cm) are also the same. The viscous damping ratios of
the outer layers are taken as ζ1 ¼ ζ2 ¼ 0.05. For the inner layer, the
mass per unit length is minn ¼ 12 kg=m, while its VE constitutive
law consists of the equilibrium modulus K0 ¼ 300 kN=m2 and one
or two Maxwell elements (l ¼ 1, 2), with varying stiffness coef-
ficients K1 and K2 and relaxation times τ 1 and τ2. The BCs are
those shown in Fig. 1, given as C-F for the axial deformation of
the top layer, C-C for the bottom layer, and C-P for the transverse
deflections.

Fig. 5 shows four selected modal shapes ~vjðzÞ, namely: (1) the
first two transverse modes (j ¼ 1, 2), in which the amount of
axial displacements is negligible in comparison to the transverse

(a) (c)

(b) (d)

Fig. 4. Absolute value jj of the normalized complex-valued FRF Zr of displacements v, u1, and U − 2 at z ¼ L=6 for the sandwich beams of Case B
(a) and Case C (c), along with corresponding argument ∠ (b, d)

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 5. Selected modal shapes of the damped sandwich beam
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deflections (and for this reason, the links are all substantially ver-
tical); and (2) the first two axial modes, in which either the bottom
layer (j ¼ 5) or the top layer (j ¼ 7) experiences relatively large
axial displacements. The number of assumed modes considered
for this analysis is n0 ¼ n1 ¼ n2 ¼ 8. As expected, due to the
different BCs, the axial profiles of the top and bottom layers
can be largely different, which confirms the versatility of the pro-
posed approach.

Fig. 6 plots the absolute value jZ̄0ðωÞj and phase angle ∠Z̄0ðωÞ
(in rad) for the transverse response of the sandwich beam at ab-
scissa z̄ ¼ L=6, considering five different damping conditions,
namely:
• Viscous damping only (thin solid lines)
• Additional VE damping for the core, modeled with a single

Maxwell element (l ¼ 1) of parameters K1 ¼ 5K0 and τ1 ¼
0.1 s (dashed lines)

• Additional VE damping, again with a single Maxwell element
(l ¼ 1), with the same stiffness K1 ¼ 5K0 and a smaller relaxa-
tion time τ1 ¼ 0.01 s (dotted lines)

• Additional VE damping with two Maxwell elements (l ¼ 2),
having K1 ¼ K2 ¼ 2.5K0, τ1 ¼ 0.1 s and τ2 ¼ 0.01 s (dot-
dashed lines)

• Additional VE damping with larger stiffness coefficients, K1 ¼
K2 ¼ 5K0, and the same relaxation times as in the previous
case, τ1 ¼ 0.1 s and τ2 ¼ 0.01 s (thick dot-dot-dashed lines)
A comparison among the different curves demonstrates the

beneficial effect of the additional VE damping, which allows reduc-
ing the dynamic response at the resonant frequencies, particularly
for the lower modes of vibration. Moreover, the values of the res-
onant frequencies reduce with the relaxation time τ 1, meaning that

the stiffness and energy dissipation are intrinsically interdependent
in presence of VE damping. It follows that, for a complex struc-
ture made of sandwich elements, selecting the most appropriate
mechanical properties of the VE inner layer (in this example, K0,
K1, K2, τ1, and τ 2) is an effective way to optimize and control
the global behavior of the structure under dynamic forces, and
the proposed state-space formulation can be used to assess the per-
formance of different solutions with less computational effort.

Finally, a convergence study is presented to highlight the influ-
ence of the number of assumed modes on the accuracy of the pro-
posed model. For the same composite beam considered previously,
the modal frequencies ~ωfn0;n1;n2g

j for the first six transverse modes
of vibration have been calculated, simultaneously increasing the
number of assumed modes n ¼ n0 ¼ n1 ¼ n2. The convergency
measure has been defined as

ej ¼
		 ~ωfn;n;ng

j − ~ωfnþ1;nþ1;nþ1g
j

		
~ωfnþ1;nþ1;nþ1g
j

ð40Þ

and plotted in Fig. 7(a). Monotonic convergence is observed for
all the modal frequencies, and in this example, an accuracy of
0.1% (i.e., ej¼ 10−3) for the jth transverse mode is achieved with
n ¼ jþ 4 assumed modes.

A second analysis has been performed by keeping constant the
number of assumed modes for the transverse vibration, n0 ¼ 12,
and simultaneously increasing n1 and n2 for the axial vibrations.

(a)

(b)

Fig. 6. Modulus (a) and phase (b) of the complex-valued FRF of
transverse displacements at z ¼ L=6 for different values of relaxation
time τ1

(a)

(b)

Fig. 7. Convergence study in terms of the modal frequencies
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In order to enhance the interaction between transverse and axial
deformations, the elastic modulus of the outer layers has been as-
sumed in this case to be E1 ¼ E2 ¼ 0.1 GPa. The convergency
measure particularizes as

ej ¼
		 ~ωf12;n;ng

j − ~ωf12;nþ1;nþ1g
j

		
~ωf12;nþ1;nþ1g
j

ð41Þ

and the results are reported in Fig. 7(b) for the first four transverse
modes and the first two axial modes. This time, the convergence is
not always monotonic, as a result of the complex dynamic inter-
action between the transverse and axial deformations. For this ap-
plication, at least n1 ¼ n2 ¼ 6 assumed modes are required for the
axial vibrations to achieve an accuracy of 0.1%.

Conclusions

A new state-space formulation has been developed and numerically
validated for the dynamic analysis of sandwich beams consisting of
two parallel Euler-Bernoulli elastic beams continuously connected
by a shear-type VE layer. The proposed approach can be used with
any boundary conditions of the outer layers and any number l ≥ 0
of Maxwell’s elements to represent the constitutive law of the core.
The derivation of the state-space model requires the following
three steps:
1. The fields of displacements are conveniently described by

means of Galerkin-type approximations with simple harmonic
functions; namely, the first n1 and n2 axial modes of vibration
for the two outer layers and the first n0 bucking modes for the
whole composite beam, which are all available in closed analy-
tical form (N ¼ n0 þ n1 þ n2 functions are used in total). In this
way, the use of hyperbolic functions is avoided.

2. The undamped equations of motion are derived in the Lagran-
gian space with a convenient matrix form, in which each
element of the N × N matrices of mass and stiffness can be eval-
uated with a simple numerical integration and then allocated to
its position. An assembly procedure is not required.

3. The equations of motion are projected onto a reduced modal
subspace (of dimensions m ≤ N) and then cast into an enlarged
state-space form, where a set of l ×m additional internal vari-
ables takes into account the VE damping provided by the inner
layer, and the inherent viscous damping of the outer layers can
be included.

Appendix. Mass and Stiffness Coefficients

This appendix offers the analytical expressions for the mass and
stiffness coefficients introduced in Eqs. (13) and (14) and collected
in the n × n block matrices Mðr;rÞ, Kðr;sÞ, and ΔKðr;rÞ appearing
in Eq. (19).

The generic mass coefficient Mðr;rÞ
j;k for the rth field of displace-

ments in the composite sandwich beam is given by

Mðr;rÞ
j;k ¼ μr

Z
L

0

ϕr;jðzÞϕr;kðzÞdz ð42Þ

where the mass per unit length μr takes different expressions
for axial displacements (r ¼ 1, 2) and transverse displacements
(r ¼ 0).

The stiffness coefficients associated with flexural rigidity of the
outer beams are given by

Kð0;0Þ
j;k ¼ EI0

Z
L

0

ϕ 0 0
0;jðzÞϕ 0 0

0;kðzÞdz ð43Þ

while those due to their axial rigidity (r ¼ 1, 2) take the expression

Kðr;rÞ
j;k ¼ ErAr

Z
L

0

ϕ 0
r;jðzÞϕ 0

r;kðzÞdz ð44Þ

The remaining sets of stiffness coefficients in Eq. (14b) are
those associated with deformations within the inner layer of shear-
type springs, which in turn couples the three fields of displacements
characterizing the kinematics of the system. These coefficients can
be evaluated as follows (with r ¼ 1, 2 and s ¼ 1, 2):

ΔKð0;0Þ
j;k ¼ K0d20

Z
L

0

ϕ 0
0;jðzÞϕ 0

0;kðzÞdz ð45aÞ

ΔKðr;sÞ
j;k ¼ ð−1ÞrþsK0

Z
L

0

ϕr;jðzÞϕs;kðzÞdz ð45bÞ

Kð0;rÞ
j;k ¼ ð−1ÞrK0d0

Z
L

0

ϕ 0
0;jðzÞϕr;kðzÞdz ð45cÞ

Importantly, all the integrands appearing in the right side of
these expressions are the product of simple trigonometric functions
of the abscissa z, and therefore the evaluation of these coefficients
can be done in a closed form.
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Notation

The following symbols are used in this paper:
A = cross-sectional area;

Binn = influence matrix of the core in the modal
subspace;

C, C = viscous damping coefficient and viscous damping
matrix;

D = state-space matrix of the dynamic system;
d0 = inner depth of the composite beam;
E = modulus of elasticity;
F = superarray of generalized forces;

F , F−1 = Fourier and inverse-Fourier transform operators;
f = external force;
G = state-space matrix of the dynamic excitation;
H = FRF matrix;
I = second moment of area;
I = identity matrix;
f = imaginary unit;

K, K = stiffness coefficient and stiffness matrix;
kinn = complex-values stiffness of a unit length of

the core;
L = length of the composite beam;
L = Lagrangian function;

Linn = influence matrix of the core;
l = number of Maxwell elements;

M, M = mass coefficient and mass matrix;
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m = number of modal coordinates;
minn = mass of the unit length of the core;
N = total number of assumed modes (N ¼ n0 þ n1 þ n2);
nr = number of assumed modes in the rth component;

Q, Q = generalized force and array of generalized forces;
q, q = Lagrange coordinate and array of Lagrange

coordinates;
S = shear force within the core;
s = internal slippage between top and bottom beam;
T = kinetic energy;
t = time instant;
u = axial displacement;
u = superarray of Lagrangian coordinates;
V = potential energy;
v = transverse displacement;
~v = array of the modal shape components;
X = modal matrix;
~x = eigenvector;
y = array of the state variables;
Z̄ = array of FRFs at a given abscissa;
z = abscissa along the beam;
0 = zero matrix;

αK, αM = proportionality coefficients for the Rayleigh
damping;

Γ = transformation matrix;
δ = Kronecker delta;
ζ = viscous damping ratio;

θ, θ = modal coordinate and array of the modal coordinates;
λ, λ = additional internal variable and array of additional

internal variables;
μ = mass per unit length;
~ν = modal frequency (Hz);
Ξ = viscous damping matrix in the modal subspace;
ρ = mass density;
τ = relaxation time;

ϕ, ϕ = assumed mode and array of assumed modes;
φ = rotation;
χ = curvature;
Ω = spectral matrix; and

ω, ~ω = frequency of vibration and modal frequency
(rad=s).
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Berczyński, S., and Wróblewski, T. (2005). “Vibration of steel-concrete
composite beams using the timoshenko beam model.” J. Vibr. Control,
11(6), 829–848.

Chopra, A. (2007). Dynamics of structures, 3rd Ed., Pearson Prentice Hall,
Upper Saddle River, NJ.

Clough, R., and Penzien, J. (2010). Dynamics of structures, 2nd Ed.,
Computers and Structures, Berkeley, CA.

Daya, E., and Potier-Ferry, M. (2001). “Numerical method for nonlinear
eigenvalue problems application to vibrations of viscoelastic struc-
tures.” Comput. Struct., 79(5), 533–541.

Den Hartog, J. P. (1984).Mechanical vibration, 4th Ed., Dover, New York.
Galucio, A., Deüi, J.-F., and Ohayon, R. (2004). “Finite element formu-

lation of viscoelastic sandwich beams using fractional derivative
operators.” Comput. Mech., 33(4), 282–291.

Hohe, J., and Librescu, L. (2004). “Advances in the structural modeling
of elastic sandwich panels.” Mech. Adv. Mater. Struct., 11(4–5),
395–424.

Howson, W., and Zare, A. (2005). “Exact dynamic stiffness matrix for
flexural vibration of three-layered sandwich beams.” J. Sound Vibr.,
282(3–5), 753–767.

Hu, H., Belouettar, S., Potier-Ferry, M., and Daya, E. M. (2008). “Review
and assessment of various theories for modeling sandwich composites.”
Compos. Struct., 84(3), 282–292.

Kasinos, S., Palmeri, A., and Lombardo, M. (2015). “Using the vibration
envelope as a damage-sensitive feature in composite beam structures.”
Structures, 1, 67–75.

Lee, H. H. (1997). “Stochastic analysis for offshore structures with added
mechanical dampers.” Ocean Eng., 24(9), 817–834.

Lenci, S., and Clementi, F. (2012). “Effects of shear stiffness, rotatory and
axial inertia, and interface stiffness on free vibrations of a two-layer
beam.” J. Sound Vibr., 331(24), 5247–5267.

Lenci, S., and Warminski, J. (2012). “Free and forced nonlinear oscillations
of a two-layer composite beam with interface slip.” Nonlinear Dyn.,
70(3), 2071–2087.

Lockett, F. J. (1972). Nonlinear viscoelastic solids, Academic Press,
London.

Muscolino, G., and Palmeri, A. (2007). “Response of beams resting on vis-
coelastically damped foundation to moving oscillators.” Int. J. Solids
Struct., 44(5), 1317–1336.

Oniszczuk, Z. (2000). “Free transverse vibrations of elastically connected
simply supported double-beam system.” J. Sound Vibr., 232(2),
387–403.

Oniszczuk, Z. (2003). “Forced transverse vibrations of an elastically
connected complex simply supported double-beam system.” J. Sound
Vibr., 264(2), 273–286.

Palmeri, A. (2010). “A state-space viscoelastic model of double beam sys-
tems toward the dynamic analysis of wind turbine blades.” Earth and
Space, ASCE, Reston, VA, 1973–1980.

Palmeri, A., and Adhikari, S. (2011). “A Galerkin-type state-space ap-
proach for transverse vibrations of slender double-beam systems with
viscoelastic inner layer.” J. Sound Vibr., 330(26), 6372–6386.

Palmeri, A., and Muscolino, G. (2011). “A numerical method for the
time-domain dynamic analysis of buildings equipped with viscoelastic
dampers.” Struct. Control Health Monit., 18(5), 519–539.

Palmeri, A., Ricciarelli, F., De Luca, A., and Muscolino, G. (2003). “State
space formulation for linear viscoelastic dynamic systems with
memory.” J. Eng. Mech., 10.1061/(ASCE)0733-9399(2003)129:7(715),
715–724.

Palmeri, A., Ricciarelli, F., Muscolino, G., and De Luca, A. (2004). “Effects
of viscoelastic memory on the buffeting response of tall buildings.”
Wind Struct., 7(2), 89–106.

Rao, M. (2003). “Recent applications of viscoelastic damping for noise
control in automobiles and commercial airplanes.” J. Sound Vibr.,
262(3), 457–474.

Runge-Kutta method. (2012). “Encyclopaedia of mathematics.” 〈http://
www.encyclopediaofmath.org〉 (Dec. 18, 2014).

Sainsbury, M., and Zhang, Q. (1999). “Galerkin element method applied
to the vibration of damped sandwich beams.” Comput. Struct., 71(3),
239–256.

Shen, X., Chen, W., Wu, Y., and Xu, R. (2011). “Dynamic analysis of
partial-interaction composite beams.” Compos. Sci. Technol., 71(10),
1286–1294.

Soni, M. (1980). “Finite element analysis of viscoelastically damped sand-
wich structures.” Shock Vibr. Bull., 51(1), 97–108.

Soong, T. T., and Dargush, G. F. (1997). Passive energy dissipation systems
in structural engineering, Wiley, Chichester, U.K.

© ASCE 04016036-11 J. Eng. Mech.

 J. Eng. Mech., 04016036 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

 o
n 

03
/2

4/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1016/j.compstruc.2008.08.006
http://dx.doi.org/10.1007/BF01177296
http://dx.doi.org/10.1007/BF01177296
http://dx.doi.org/10.1016/j.jsv.2005.09.034
http://dx.doi.org/10.1115/1.3025828
http://dx.doi.org/10.1115/1.3025828
http://dx.doi.org/10.1016/j.compstruct.2010.05.022
http://dx.doi.org/10.1177/1077546305054678
http://dx.doi.org/10.1177/1077546305054678
http://dx.doi.org/10.1016/S0045-7949(00)00151-6
http://dx.doi.org/10.1007/s00466-003-0529-x
http://dx.doi.org/10.1080/15376490490451561
http://dx.doi.org/10.1080/15376490490451561
http://dx.doi.org/10.1016/j.jsv.2004.03.045
http://dx.doi.org/10.1016/j.jsv.2004.03.045
http://dx.doi.org/10.1016/j.compstruct.2007.08.007
http://dx.doi.org/10.1016/j.istruc.2014.10.001
http://dx.doi.org/10.1016/S0029-8018(96)00039-X
http://dx.doi.org/10.1016/j.jsv.2012.07.004
http://dx.doi.org/10.1007/s11071-012-0599-4
http://dx.doi.org/10.1007/s11071-012-0599-4
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.013
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.013
http://dx.doi.org/10.1006/jsvi.1999.2744
http://dx.doi.org/10.1006/jsvi.1999.2744
http://dx.doi.org/10.1016/S0022-460X(02)01166-5
http://dx.doi.org/10.1016/S0022-460X(02)01166-5
http://dx.doi.org/10.1016/j.jsv.2011.07.037
http://dx.doi.org/10.1002/stc.388
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:7(715)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:7(715)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:7(715)
http://dx.doi.org/10.12989/was.2004.7.2.089
http://dx.doi.org/10.1016/S0022-460X(03)00106-8
http://dx.doi.org/10.1016/S0022-460X(03)00106-8
http://www.encyclopediaofmath.org
http://www.encyclopediaofmath.org
http://www.encyclopediaofmath.org
http://www.encyclopediaofmath.org
http://dx.doi.org/10.1016/S0045-7949(98)00242-9
http://dx.doi.org/10.1016/S0045-7949(98)00242-9
http://dx.doi.org/10.1016/j.compscitech.2011.04.013
http://dx.doi.org/10.1016/j.compscitech.2011.04.013


Tang, Y. (2003). “Numerical evaluation of uniform beam modes.”
J. Eng. Mech., 10.1061/(ASCE)0733-9399(2003)129:12(1475),
1475–1477.

Timoshenko, S. P., and Gere, J. M. (2009). Theory of elastic stability,
2nd Ed., Dover, New York.
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