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operators with singular potentials
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Abstract

The integrable Schrödinger operators often have a singularity on the real line,

which creates problems for their spectral analysis. A classical example is the Lamé

operator

L = − d2

dx2
+m(m+ 1)℘(x),

where ℘(z) is the classical Weierstrass elliptic function. We study the spectral

properties of its complex regularisations of the form

L = − d2

dx2
+m(m+ 1)ω2℘(ωx+ z0), z0 ∈ C,

where ω is one of the half-periods of ℘(z). In several particular cases we show that

all closed gaps lie on the infinite spectral arc.

In the second part we develop a theory of complex exceptional orthogonal poly-

nomials corresponding to integrable rational and trigonometric Schrödinger oper-

ators, which may have a singularity on the real line. In particular, we study the

properties of the corresponding complex exceptional Hermite polynomials related

to Darboux transformations of the harmonic oscillator, and exceptional Laurent

orthogonal polynomials related to trigonometric monodromy-free operators.

Key words: Complex Lamé operators, monodromy-free Schrödinger operators,

exceptional orthogonal polynomials
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Introduction

The Lamé equation

−ψ′′ +m(m+ 1)℘(x)ψ = λψ, (1)

where ℘(x) is Weierstrass’ elliptic function, satisfying

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3),

was a classical object of study of 19th century mathematics.

Its solutions have remarkable properties in the complex domain, and can be

described explicitly (Hermite, Halphen, see [48]). Note that for x on the real line,

the potential ℘(x) has singularities. However, for real e1, e2, e3, one can make a pure

imaginary half-period shift z0 = ω3 and consider the Lamé operator

L = −D2 +m(m+ 1)℘(x+ z0), D =
d

dx
, (2)

with a potential which is real, periodic and regular on the whole of R. This means

that one can apply Bloch-Floquet theory, which states that in that case, the spec-

trum should have a band structure [41].

Generically, the spectrum of a periodic Schrödinger operator (or Hill operator)

on the line consists of an infinite number of bands. It was Ince who in 1940 first

pointed out a remarkable fact that for m ∈ N, the spectrum of L has a band structure

with not more than m gaps [26].

Nowadays, this example is just the simplest one in a large class of finite-gap

operators discovered in the 1970s [36, 9, 15, 28, 31, 35]. It turns out that all

such operators can be described explicitly in terms of hyperelliptic Riemann theta

functions, and the Lamé operator (2) corresponds to the elliptic case. However, the
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Spectral properties of integrable Schrödinger operators with singular potentials

Figure 1: Band structure of a generic Hill operator’s spectrum (in red).

question of exactly which gaps in the spectrum are open seems to be not explicitly

discussed in the literature even in this case.

The first result of this thesis, dealt with in Chapter 1 of Part I, is to show that it

is precisely the first m gaps which are open. For two linearly independent solutions

ψ1, ψ2 of the time-independent Schrödinger equation Lψ = λψ with a regular, peri-

odic potential (known as Hill’s equation), we can consider the monodromy matrix

M(λ) =

a b

c d

 ,

defined by

ψ1(x+ T ) = aψ1(x) + bψ2(x),

ψ2(x+ T ) = cψ1(x) + dψ2(x),

where T is a period. If ρ is an eigenvalue of M , then one can consider the Bloch-

Floquet eigenfunction satisfying

ψ(x+ T ) = ρψ(x). (3)

We refer to ρ as the Floquet multiplier. The spectrum corresponds to the bounded

solutions, which means that |ρ| = 1. The points corresponding to ρ = ±1, such that

ψ(x) is periodic or anti-periodic with period T , occur at the edges of the spectral

bands. The importance of these “band edges” lies in the fact that once they are

known, the location of the rest of the spectrum is apparent. In the finite-gap case

there are however infinitely many values of λ corresponding to a coexistence of

Introduction William Haese-Hill 6



Spectral properties of integrable Schrödinger operators with singular potentials

two linearly independent periodic (or anti-periodic) solutions, embedded within the

spectrum. These are known as “closed gaps”; as though two of the band edges, with

one linearly independent solution each, collide.

The spectral bands are defined by the condition −2 ≤ ∆(λ) ≤ 2, where ∆(λ) :=

tr(M(λ)) is usually called Hill’s discriminant (see Figure 1).

To determine the location of the infinite closed gaps, we will follow the approach

taken by Magnus and Winkler [33, 34] to prove Ince’s result that there are exactly

m open gaps. In addition, we prove that it is exactly the first m gaps which are

open. The analysis of Chapter 1 can be summarized in the following theorem:

Theorem 1. The Lamé operator (2) has all gaps of its spectrum open unless m ∈ Z,

in which case all gaps are closed except for the first m.

Although this fact may not be surprising for the experts, we could not find a

rigorous proof in the literature. For m = 1 this fact is demonstrated in Figure 2,

showing that all the closed gaps are indeed in the infinite band.

Figure 2: Band structure of Lamé operator in m = 1 case, where blue points are

“closed gaps.”

In Chapter 2, we consider the Lamé operator with a complex-valued periodic

potential

V (x) = m(m+ 1)ω2℘(ωx+ z0),

where ω = ωi, i = 1, 2, 3, are the real, complex and pure-imaginary (respectively)

half-periods of ℘, and the only assumption on z0 ∈ C is that the corresponding

potential is non-singular.

Introduction William Haese-Hill 7



Spectral properties of integrable Schrödinger operators with singular potentials

The spectral theory of Schrödinger operators with a complex periodic potential

has been studied in [42, 16, 47]. The spectrum of a Schrödinger operator

L = −D2 + u(x),

with periodic, regular, but complex-valued potential u(x) can be defined as the set

of λ ∈ C such that all solutions of the equation Lψ = λψ are bounded on the whole

line. Equivalently, the corresponding Floquet multipliers ρ(λ) should lie on a unit

circle:

|ρ(λ)| = 1.

In the case of the Lamé operator, it follows from Rofe-Beketov [42] and Weikard [47]

that the spectrum consists of finitely many regular analytic arcs of the stability set:

S (L) = {λ ∈ C : −2 ≤ ∆(λ) ≤ 2} ,

with at most one additional arc within S (L) tending to infinity.

Note that if the shift is different from z0 = ω3 in the Lamé operator (2), we in

general have a periodic, regular, but complex-valued potential. It is easy to see that

the Floquet multipliers do not depend on z0, so we have the same spectrum as in

the self-adjoint case.

For ω = ω1, ω3 we have essentially Ince’s result, since the corresponding operator

is equivalent to the previous case.

In Chapter 2 we consider the first new and true complex case of ω = ω2 assuming

that m = 1. The solutions of the Lamé equation

−d
2ψ

dz2
+ 2℘(z)ψ = λψ, λ = −℘(k),

were found explicitly by Hermite:

ψ(z; k) =
σ(z + k)

σ(z)
exp(−ζ(k)z), (4)

where k ∈ C and σ(z), ζ(z) are the Weierstrass sigma and zeta functions [48]. They

have the Floquet property

ψ(z + 2ω) = exp(2ηk − 2ζ(k)ω)ψ(z),

Introduction William Haese-Hill 8



Spectral properties of integrable Schrödinger operators with singular potentials

where η = ζ(ω). The solutions remain bounded on the line z = ωx+z0, x ∈ R when

Re[ηk − ζ(k)ω] = 0, (5)

which describe the corresponding spectral values of k for the Lamé operator

L = − d2

dx2
+ 2ω2℘(xω + z0) (6)

We use (5) to study the geometry of the spectral arcs of L. Figure 3 shows the Math-

ematica plots of the solutions of the system for g2 = 4, g3 = 1 and the corresponding

values of λ = −℘(k).
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Figure 3: Solutions of (5) for k and corresponding spectrum for g2 = 4, g3 = 1.

In agreement with Weikard [47] we see two arcs, one of them is infinite. On the

left figure this corresponds to the middle curve passing through k = 0. We show that

the infinite spectral arc has the asymptote ω̄2
2s, where s ∈ R (see the right figure in

Figure 3).

Consider now the (anti-)periodic solutions of Lψ = λψ with k satisfying:

ζ(ω)k − ζ(k)ω︸ ︷︷ ︸
f(k)

= ±pπi
2
, p ∈ Z≥0 (7)

One can check that the solutions for p = 0, 1 are exactly half-periods k =

±ωj, j = 1, 2, 3 and correspond to the edges of spectral arcs. The other solutions

must correspond to the “closed gaps”. The question is where are they located.

The main result of Chapter 2 is the following:

Theorem 2. All closed gaps of the complex Lamé operator (6) are contained on the

infinite spectral arc.

Introduction William Haese-Hill 9



Spectral properties of integrable Schrödinger operators with singular potentials

To prove this we consider first the lemniscatic case with ω3 = iω1, when a part

of the spectrum can be found explicitly (see Figure 4) and show that the closed gaps

must be on the vertical line below the intersection point. Then apply continuity

arguments for the eigenvalues to handle the general case.

− e1  = − 0.5 − e3  = 0.5− e2  = 0

− ∞

Im

Re

Figure 4: Solutions of (5) for k and corresponding spectrum in the lemniscatic case.

Part II of the thesis deals with rational and trigonometric monodromy-free

Schrödinger operators, and the related theory of the complex exceptional ortho-

gonal polynomials.

Consider polynomials pn(x) ∈ R[x] of degrees n = 0, 1, . . . , satisfying the ortho-

gonality relation

(pm, pn) = δmngn,

where the inner product of polynomials is defined by a real integral

(p, q) :=

∫ b

a

p(x)q(x)w(x)dx (8)

for some positive weight function w. Suppose that there exists a second order dif-

ferential operator

T = A(x)
d2

dx2
+B(x)

d

dx
+ C(x)

having these polynomials as eigenvectors:

Tpn(x) = Enpn(x), n = 0, 1, . . . .

Introduction William Haese-Hill 10



Spectral properties of integrable Schrödinger operators with singular potentials

A classical result due to Bochner [5] says that in that case the sequence of polyno-

mials pn(x), n ∈ Z≥0, must coincide (up to a linear change of x) with one of the

systems of classical orthogonal polynomials of Hermite, Laguerre or Jacobi.

Gómez-Ullate, Kamran and Milson [19] considered the following variation of

Bochner’s question. Let us assume now that in the previous considerations n belongs

to a certain proper subset S ⊂ Z≥0 such that Z≥0 \ S is finite. To make this non-

trivial they added the following density condition: the linear span U = 〈pn : n ∈ S〉

of the corresponding polynomials must be dense in R[x] in the sense that if (p, pn) = 0

for all n ∈ S then p ≡ 0. In that case the sequence pn(x), n ∈ S is called a system

of exceptional orthogonal polynomials.

The main example of such polynomials are exceptional Hermite polynomials [18]

having the Wronskian form

Hλ,l(x) := Wr(Hl(x), Hk1(x) . . . , Hkn(x)), l ∈ Z≥0 \ {k1, . . . , kn}, (9)

where Hl(x) are classical Hermite polynomials, λ = (λ1, . . . , λn) is a double partition

and

ki = λi + n− i, i = 1, . . . , n.

The double partitions have the very special form

λ = µ2 = (µ1, µ1, µ2, µ2, . . . , µk, µk),

where µ = (µ1, µ2, . . . , µk) is another partition with n = 2k (see [13]). According to

Krein and Adler [1] this guarantees that the corresponding Wronskian

Wλ(x) = Wr(Hk1(x) . . . , Hkn(x))

has no zeroes on the real line and thus determines a non-singular weight function

w(x) = W−2
λ (x)e−x

2

. (10)

The geometry of the complex zeroes of the corresponding Wronskians is quite inter-

esting and was studied by Felder et al. in [13].

The simplest example is given by

L = −D2 + x2 +
2

x2
(11)

Introduction William Haese-Hill 11



Spectral properties of integrable Schrödinger operators with singular potentials

Figure 5: The eigenvalues for the first few eigenfunctions when λ = (1). Red and

blue points correspond to singular, non-singular eigenfunctions, respectively.

which has eigenfunctions

ψn =
Pn(x)

x
e−x

2/2,

where Pn(x) = Wr(Hn, x) = H(1),n(x), n 6= 1. Regarding the spectrum of eigenvalues

En corresponding to these exceptional Hermite polynomials, there exists now a

subset of n-values at which ψn is in fact singular. We can interpret these as “gaps”

in the spectrum (see Figure 5).

One of the goals of the chapter is to find a proper interpretation of the exceptional

Hermite polynomials (9) for all partitions λ. As we will see, this will naturally lead

us to the notion of quasi-invariance, which appeared in the theory of monodromy-

free Schrödinger operators, going back to Picard and Darboux and more recently

revisited by Duistermaat and Grünbaum [10]. In certain classes such operators

were explicitly described in terms of Wronskians in [10, 6, 37, 17]. Grinevich and

Novikov studied the spectral properties of these and more general singular finite-gap

operators and emphasized the important link with the theory of Pontrjagin spaces

(see [20] and references therein). This chapter can be considered as dealing with the

implications of all these results for the theory of exceptional orthogonal polynomials.

More precisely, we first complexify the picture by considering the vector space

V = C[z] and replace the inner product (8) by a Hermitian product of the form

〈p, q〉 :=

∫
C

p(z)q̄(z)w(z)dz,

where q̄(z) := q(z̄) is the Schwarz conjugate of the polynomial q(z), C ⊂ C is

a contour in the complex domain and w(z) is a complex weight function. The

condition that this product is Hermitian implies certain restrictions on the contour

C and function w(z) (see Section 3.2). It also requires certain restrictions on the

set of polynomials for which the product is well defined. As it turned out, such

Introduction William Haese-Hill 12



Spectral properties of integrable Schrödinger operators with singular potentials

Figure 6: The eigenvalues En = 2n + 1 corresponding to the first few complex

exceptional Hermite polynomials for λ = (1). Comparing to Figure 5, all red points

are now blue, with a single spectral “gap” remaining at n = 1.

polynomials form a subspace U ⊂ V of finite codimension defined by some quasi-

invariance conditions. Similarly to [19] we say that the polynomials pn(z), n ∈ S,

form a system of complex exceptional orthogonal polynomials if their linear span is a

subspace of U that is dense in U in the sense that 〈p, pn〉 = 0 for all n ∈ S, implies

that p ≡ 0.

We will show that the Wronskians (9) satisfy this criteria for every partition λ

and a suitable choice of C with w given by (10). For a double partition λ we can

take as a contour C the real line with U = V and recover the results of Gómez-Ullate

et al. [18].

Note that the corresponding Hermitian form is positive definite only for double

partitions, otherwise we always have polynomials with negative norms. The appear-

ance of negative norms for singular potentials was first emphasized by Grinevich

and Novikov [20].

Returning to the example with L as in (11), by accepting negative norms in this

consideration of a general partition λ, we can “reclaim” those n-values, that had

previously corresponded to singular eigenfunctions, as a part of the spectrum. Now,

the spectral “gaps” are only those values n = µk that form the partition (see Figure

6).

We also consider the Laurent version of our approach, related to trigonomet-

ric monodromy-free Schrödinger operators. Some Laurent versions of orthogonal

polynomials are already known in the literature (see e.g. [8] and references therein),

but our approach is different since it is not based on the Gram-Schmidt procedure.

Similarly, it does not fit into the theory of orthogonal polynomials on the unit circle

Introduction William Haese-Hill 13



Spectral properties of integrable Schrödinger operators with singular potentials

initiated by Szegö [45], who considered the case of usual polynomials.

Consider the Laurent polynomials Λ = C[z, z−1] and the following complex bi-

linear form on Λ:

(P,Q) =
1

2πi

∮
C

P (z)Q(z)
dz

z

where C = {z ∈ C : |z| = 1} is the unit circle. The standard basis zn, n ∈ Z,

satisfies the Laurent orthogonality relation

(zk, zl) = δk+l,0, k, l ∈ Z.

We consider more general forms

(P,Q) =
1

2πi

∮
Cµ

P (z)Q(z)w(z)
dz

z
,

where Cµ is the circle defined by |z| = µ and w(z) = W (z)−2, with W (z) some

Laurent polynomial. For this form to be well-defined, we need to assume that P,Q

belong to a suitable subspace of quasi-invariants Q ⊂ Λ of finite codimension.

Let K be a finite subset of N. Suppose that Pn ∈ Λ, n ∈ Z, satisfy the Laurent

orthogonality relation

(Pk, Pl) = δk+l,0hk, k, l ∈ Z,

but Pn is proportional to P−n for n ∈ K, which implies that the corresponding

hn = 0, and thus Pn is orthogonal to all Pk, k ∈ Z. If the minimal complex Euclidean

extension of the linear span of Pn, n ∈ Z, coincides with the subspace of quasi-

invariants Q, then we call them exceptional Laurent orthogonal polynomials. The

need to consider such an extension is the novelty of the Laurent case, which is

related to the fact that the corresponding form is degenerate on the linear span of

Pn, n ∈ Z.

We present an example of such polynomials corresponding to the trigonometric

monodromy-free Schrödinger operators [6]. Namely, for any set κ = {k1, . . . , kn}

of distinct natural numbers k1 > k2 > · · · > kn > 0 and any choice of complex

Introduction William Haese-Hill 14



Spectral properties of integrable Schrödinger operators with singular potentials

parameters a = (a1, . . . , an), ak ∈ C \ {0}, we define the Laurent polynomials

Pκ,a;l(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

Φk1(a1; z) Φk2(a2; z) · · · Φkn(an; z) zl

DΦk1(a1; z) DΦk2(a2; z) · · · DΦkn(an; z) Dzl

...
...

. . .
...

...

DnΦk1(a1; z) DnΦk2(a2; z) · · · DnΦkn(an; z) Dnzl

∣∣∣∣∣∣∣∣∣∣∣∣
where Φk(a; z) = azk + a−1z−k, k ∈ N and D = z d

dz
.

When parameters ak satisfy the condition |ak| = 1 for all k = 1, . . . n, we intro-

duce a Hermitian form on a certain subspace of quasi-invariant Laurent polynomials

Qκ,C , and show that the minimal Hermitian extension of the linear span of Pκ,a;l,

l ∈ Z, coincides with the subspace of quasi-invariants Qκ, and is dense in Qκ,C .

Chapters 1 and 2 of the Thesis are based on the paper in preparation [22], while

Chapters 3 and 4 are based on [21].

Introduction William Haese-Hill 15
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Spectral properties of the complex

Lamé operator
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Chapter 1

Real spectrum

1.1 Introduction

In this chapter we study the spectrum of the Lamé operator

L = − d2

dx2
+m(m+ 1)℘(x+ z0)

with m ∈ N and z0 ∈ C chosen so that ℘(x + z0) is regular for x ∈ R. More

specifically, following the exposition by Magnus and Winkler [33, 34], we review the

general theory of the Hill equation and Ince’s remarkable result that the spectrum

of L has a band structure with not more than m gaps. Moreover, we prove that

it is precisely the first m gaps in the spectrum that are open. As discussed in

the introduction, it seems that this result has not been explicitly discussed in the

literature.

We proceed to sketch a construction of Hermite’s [24] solutions of the Lamé

equation

−d
2ψ

dx2
+m(m+ 1)℘(x+ z0)ψ = λψ, x ∈ R, (1.1)

where λ is arbitrary. As we shall see below, the explicit form of these solutions

allows us to conclude that the spectrum of L is independent of our specific choice

of z0.

A direct computation reveals that the product X of any pair of solutions of (1.1)

satisfies the third order equation

−d
3X

du3
+ 4
(
m(m+ 1)℘(u)− λ

)dX
du

+ 2m(m+ 1)℘′(u)X = 0,

17



Spectral properties of integrable Schrödinger operators with singular potentials

where u = x + z0. Changing variable to ξ = ℘(u) and utilising the chain rule, we

can derive an algebraic form of this equation:

4(ξ − e1)(ξ − e2)(ξ − e3)
d3X

dξ3
+ 3(6ξ2 − 1

2
g2)

d2X

dξ2

− 4{(m2 +m− 3)ξ + λ}dX
dξ
− 2m(m+ 1)X = 0.

(For an explanation of the objects e1, e2, e3 and g2, see the definitions and identities

associated with the Weierstrass ℘ function in Section 2.1.1). We can take an infinite

series of the form
∞∑
r=0

cr(ξ − e2)m−r, c0 = 1,

for some coefficients cr ∈ C, as a solution to this equation. From the recurrence

relation for the coefficients cr we find that it terminates at r = m, so that

X =
m∑
r=0

cr(ξ − e2)m−r.

Factorising this polynomial yields the following important fact: Lamé’s equation

(1.1) has two solutions whose product X is of the form

X(u) =
m∏
r=1

(℘(u)− ℘(kr)),

for some kr ∈ C. Assuming there exist two linearly independent solutions of (1.1)

ψ1(u), ψ2(u), then their Wronskian will be constant (see Section 1.2), so that

ψ1ψ
′
2 − ψ2ψ

′
1 = 2C,

for some constant C. From this, and the fact that ψ1ψ2 = X, we have the following

d logψ2

du
− d logψ1

du
=

2C

X
,

d logψ2

du
+
d logψ1

du
=

1

X

dX

du
,

from which we get

ψ1,2 := ψ±(u) =
√
X exp

{
∓C

∫ u

0

du

X

}
. (1.2)

We can take the Lamé equation with solutions of the form (1.2) and u = kr to find

C, resulting in
2C

X
=

m∑
r=1

℘′(kr)

℘(u)− ℘(kr)
.

Chapter 1 William Haese-Hill 18



Spectral properties of integrable Schrödinger operators with singular potentials

Finally, using the addition theorems for the Weierstrass σ and ζ functions:

℘(u)− ℘(v) =
σ(v + u)σ(v − u)

σ2(u)σ2(v)
,

ζ(u+ v) = ζ(u) + ζ(v) +
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
,

we are able to determine Hermite’s solutions of (1.1), given by [48]:

ψ±(x) =
m∏
i=1

{
σ(x+ z0 ± ki)
σ(x+ z0)σ(ki)

}
e∓

∑m
i=1 ζ(ki)(x+z0). (1.3)

They have the Floquet property

ψ±(x+ 2ω) = µψ±(x),

with

µ = ζ(ω)
m∑
j=1

kj − ω
m∑
j=1

ζ(kj).

Since µ is manifestly independent of z0, it follows that the spectrum of L is indeed

also independent of z0 as long as ℘(x+ z0) is regular for x ∈ R.

Hence we can without loss of generality fix z0 = ω3, which ensures that the

potential

V (x) = m(m+ 1)℘(x+ z0)

is regular and real-valued for x ∈ R.

1.2 The Hill equation: General theory

Hill equations take the following form:

d2y

dx2
+ (λ+Q(x))y = 0, (1.4)

where λ is a real parameter, and Q(x) is a real (or complex) piecewise-continuous

periodic function, with real variable x and primitive period π so that

Q(x+ π) = Q(x).

There exist (see, e.g., [27]) two continuously differentiable solutions y1(x), y2(x) for

equation (1.4), determined uniquely by the following conditions:

y1(0) = 1, y′1(0) = 0,

y2(0) = 0, y′2(0) = 1.
(1.5)
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Due to the fact that Q(x) is π-periodic, we can take x→ x+π to get the following:

y′′(x+ π) + (λ+Q(x))y(x+ π) = 0,

and so for each pair of solutions y1(x), y2(x), we must also have the corresponding

solutions y1(x + π), y2(x + π). As y1(x), y2(x) are linearly independent, we can use

them as a basis for constructing y1(x+ π), y2(x+ π):

y1(x+ π) = α1y1(x) + α2y2(x),

y2(x+ π) = β1y1(x) + β2y2(x).

We can apply the boundary conditions (1.5) to find αi, βi (by taking x = 0):

α1 = y1(π), α2 = y′1(π),

β1 = y2(π), β2 = y′2(π).

This yields the monodromy matrix M ; an object describing the growth of solutions

y1(x), y2(x) after a shift by π in x:y1(x+ π)

y2(x+ π)

 =

y1(π) y′1(π)

y2(π) y′2(π)


︸ ︷︷ ︸

M

y1(x)

y2(x)

 . (1.6)

The characteristic equation det (M − ρI) = 0 determining the eigenvalues ρ of M is

given by:

ρ2 − [y1(π) + y′2(π)] ρ+ y1(π)y′2(π)− y2(π)y′1(π) = 0. (1.7)

We define the Wronskian of y1(x), y2(x) as follows:

W (y1, y2)(x) :=

∣∣∣∣∣∣y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣ = y1(x)y′2(x)− y2(x)y′1(x). (1.8)

If we take the x-derivative of W (x), we get the following:

W ′(x) = y1(x)y′′2(x)− y2(x)y′′1(x), (1.9)

where first-order terms have cancelled. As y1(x), y2(x) are linearly independent

solutions of (1.4), we can substitute the following for the second order terms of
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(1.9):

y′′1(x) = −(λ+Q(x))y1(x),

y′′2(x) = −(λ+Q(x))y2(x).

It is clear that W ′(x) = 0, ∀x, and so W (x) = C, ∀x, for some constant C. Taking

x = 0 and substituting the boundary conditions (1.5) into (1.8), we see that W (0) =

1. Therefore, W (y1, y2)(x) = 1,∀x. Due to this, we can simplify (1.7) as follows:

ρ2 − [y1(π) + y′2(π)] ρ+ 1 = 0. (1.10)

If this equation has two distinct roots ρ1, ρ2, a fundamental set of solutions y1(x), y2(x)

can be found so that:

y1(x+ π) = ρ1y1(x),

y2(x+ π) = ρ2y2(x),
(1.11)

whereas with repeated roots ρ1 = ρ2, we have:

y1(x+ π) = ρ1y1(x),

y2(x+ π) = ρ1(y2(x) + y1(x)).
(1.12)

Note that to ensure y1(x), y2(x) remain bounded over all x, we must ensure |ρ1| =

|ρ2| = 1, ρ1ρ2 = 1. For example, if |ρ1| > 1, applying subsequent periods will lead

to the following:

|y1(x+Nπ)| = |ρ1|N |y1(x)| → ∞, N →∞.

The spectrum of

L = − d2

dx2
+Q(x)

consists of all λ ∈ C so that the solutions of (1.4) are bounded. The following the-

orem characterises the two forms that the solutions can take depending on whether

the roots of (1.10) are repeated or distinct, and establishes the conditions that ensure

boundedness.

Theorem 1.1 (Floquet’s Theorem). When ρ1 6= ρ2, equation (1.4) has two linearly

independent solutions:

f1(x) = eiaxp1(x),

f2(x) = e−iaxp2(x),
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for some π-periodic functions pi(x), and ρ1 = eiaπ, ρ2 = e−iaπ. When ρ1 = ρ2 := ρ

(which only occurs when ρ1 = ρ2 = ±1), (1.4) has a non-trivial π-periodic (2π-

periodic for ρ1 = ρ2 = −1) solution g1(x), as well as a linearly independent solution

g2(x) satisfying:

g2(x+ π) = ρg2(x) + θg1(x), (1.13)

where θ is some constant.

Proof. We will split the proof into two parts. Firstly, for the case of distinct roots

ρ1 6= ρ2, we can construct two quasi-periodic solutions (1.11) to (1.4), so that:

y1(x) = eiaxp1(x) =: f1(x),

y2(x) = e−iaxp2(x) =: f2(x),

where p1(x), p2(x) are some π-periodic functions, and a ∈ R. We can see that this

satisfies (1.11) with ρ1 = eiaπ, ρ2 = e−iaπ. To show that f1(x), f2(x) are linearly

independent, we consider the contrary:

c1f1(x) + c2f2(x) ≡ 0,

c1f1(x+ π) + c2f2(x+ π) = c1ρ1f1(x) + c2ρ2f2(x) ≡ 0,

for some non-vanishing constants c1, c2. As we know that f1(x), f2(x) do not vanish

identically, this can only be the case if ρ1 = ρ2, which is a contradiction.

For the second part of the proof, we will consider repeated roots ρ1 = ρ2. We

can construct a single (anti-)periodic solution y(x) from (1.12), so that:

y(x+ π) = ρ1y(x) = ±y(x), (1.14)

where we have used that |ρ1| = |ρ2| = 1, ρ1 = ρ2 =⇒ ρ1 = ρ2 = ±1. We can

express y(x) in terms of the basis of linearly independent solutions y1(x), y2(x):

y(x) = c1y1(x) + c2y2(x),

for some non-vanishing constants c1, c2. Shifting by π, we get:

y(x+ π)− ρ1y(x) = [c1 (y1(π)− ρ1) + c2y2(π)] y1(x)

+ [c1y
′
1(π) + c2 (y′2(π)− ρ1)] y2(x) = 0,
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where we have used (1.14). As we know that y1(x), y2(x) do not vanish identically,

we get the following equations which must be satisfied for c1, c2:

c1(y1(π)− ρ1) + c2y2(π) = 0, (1.15)

c1y
′
1(π) + c2(y

′
2(π)− ρ1) = 0. (1.16)

As such, we can construct the following solution:

y2(π)y1(x) + [ρ1 − y1(π)] y2(x) =: g1(x), (1.17)

where we have chosen c1 = y2(π), c2 = ρ1 − y1(π) (for (1.16), we have used the

characteristic equation (1.10)). This solution (1.17) is linearly independent of the

solution:

y2(x) =: g2(x),

as long as y2(π) 6= 0. Shifting g2(x) by π, we get the following:

g2(x+ π) = ρ1g2(x) + g1(x), (1.18)

where we have used y1(π) +y′2(π) = 2ρ1 from (1.10). It is clear that due to the pres-

ence of g1(x) in (1.18), g2(x) must be unbounded. For example, applying subsequent

periods gives:

g2(x+Nπ) = ±g2(x) +Ng1(x)→ ±∞, N → ±∞.

If instead y2(π) = 0, we can construct the following linearly independent solu-

tions:

g1(x) = y2(x), (1.19)

g2(x) = y1(x), (1.20)

Utilising (1.6), and shifting (1.19) and (1.20) by π, gives the following:

g1(x+ π) = y2(x+ π) = y′2(π)y2(x)

= ρ1g1(x),

g2(x+ π) = y1(x+ π) = y1(π)y1(x) + y′1(π)y2(x)

= ρ1g2(x) + y′1(π)g1(x), (1.21)
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where we have used W (y1, y2)(x) = y1(π)y′2(π) = 1, and y1(π) + y′2(π) = 2ρ1 from

(1.10). Therefore, θ in (1.13) is equal to 1 when y2(π) 6= 0, or y′1(π) when y2(π) =

0.

Remark 1.1 (Stability test). Notice that if ρ1 = ρ2, it is necessary that:

y1(π) + y′2(π) = ±2, (1.22)

y2(π) = 0, (1.23)

y′1(π) = 0, (1.24)

to ensure that all solutions of (1.4) remain bounded. Condition (1.22) follows from

y1(π) + y′2(π) = 2ρ1, and ρ1 = ±1, (1.23) was demonstrated in (1.18), and (1.24)

was demonstrated in (1.21). For ρ1 6= ρ2, we must ensure that:

|y1(π) + y′2(π)| < 2,

which occurs when a ∈ R \ Z in (1.10), for all solutions to be bounded. We can see

this by considering ρ1 + ρ2 = 2 cos(aπ), which is equal to ±2 when ρ1 = ρ2, and

belongs to (−2, 2) when ρ1 6= ρ2.

We will call bounded solutions “stable”, and unbounded solutions “unstable”.

The following theorem will set out the notion of “interlacing” eigenvalues, which

will play an important part in determining the structure of the Lamé spectrum in

the next section. Essentially, eigenvalues corresponding to periodic and anti-periodic

solutions alternate in pairs which can potentially coexist (i.e. correspond to the same

eigenvalue). The proof of the theorem will consist of analysing gradients of the trace

of the monodromy matrix:

tr(M) ≡ y1(π) + y′2(π),

as a function of λ.

Theorem 1.2 (Oscillation Theorem). There exist two monotonically increasing in-

finite sequences of real numbers:

λ0, λ1, λ2, . . . ,

λ′1, λ
′
2, λ
′
3, . . . ,

Chapter 1 William Haese-Hill 24



Spectral properties of integrable Schrödinger operators with singular potentials

so that the Hill equation (1.4) has a solution of period π if and only if λ = λn, n ∈ N,

and a solution of period 2π if and only if λ = λ′n, n ∈ N∗, and:

λ0 < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 ≤ λ′4 < λ3 ≤ λ4 < . . . . (1.25)

The solutions of (1.4) are stable in the open intervals:

(λ0, λ
′
1), (λ

′
2, λ1), (λ2, λ

′
3), (λ

′
4, λ3), . . . , (λ2n, λ

′
2n+1), (λ

′
2n+2, λ2n+1), . . . .

Solutions at the endpoints of an “interval of stability” will be unstable (i.e. y′1(π) 6= 0

or y2(π) 6= 0) unless λ2n+1 = λ2n+2, λ′2n+1 = λ′2n+2, for any n ∈ N. Solutions at λ0

are always unstable.

Figure 1.1 provides a visual demonstration of the intertwining eigenvalues.

Figure 1.1: A hypothetical ∆(λ) with roots at±2. Intervals of instability (or “gaps”)

are seen at [λ1, λ2], [λ
′
3, λ
′
4], [λ3, λ4]. λ

′
1 = λ′2 is what we will call a “closed gap”.

In order to prove Theorem 1.2, we will need to first prove three lemmas.

Lemma 1.1. There exists some λ0 ∈ R so that for λ ≤ λ0 all solutions of (1.4) are

unstable.

Proof. We choose λ0 so that, ∀x:

λ0 +Q(x) < 0,
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which is possible due to Q(x) being periodic in x, and therefore bounded ∀x. This

ensures that (1.4) becomes:
d2y

dx2
= D(x)y, (1.26)

with D(x) > 0,∀x, where D(x) = − (λ0 +Q(x)). We will show that if λ ≤ λ0,

y1(x, λ)→∞ as x→∞, so that y1(x, λ) is unstable. Substituting x = 0 into (1.26)

and using the boundary conditions (1.5) for y = y1(x, λ), we find that y′′1(0, λ) > 0,

y′1(0, λ) = 0. The second-derivative test tells us that y1(x, λ) has a local minimum

at x = 0. Therefore, either y′1(x, λ) > 0,∀x > 0 (i.e. y1(x, λ) is monotonically

increasing for x > 0), or there exists some positive ε so that y′1(ε, λ) = 0, and

y′1(x, λ) > 0 for x ∈ (0, ε). We will take the latter case and prove that it leads to a

contradiction, so that we must instead have the former.

By substituting y′′1(x, λ) = 1
2y′1(x,λ)

d
dx

(y′21 (x, λ)) into (1.26) we get the following

when integrating over 0 ≤ x ≤ ε:

y′21 (ε, λ) = 2

∫ ε

0

D(x)y1(x, λ)y′1(x, λ) dx.

Now, the LHS will equal zero due to y′1(ε, λ) = 0, but D(x) > 0,∀x, y′1(x, λ) ≥ 0

for 0 ≤ x ≤ ε and, as y1(0, λ) = 1 from (1.5), y1(x, λ) ≥ 1 for 0 ≤ x ≤ ε.

The RHS is therefore positive, and we have a contradiction. This implies that

y′1(x, λ) > 0,∀x > 0. Let us choose some x = x0 > 0, so that δ = y′1(x0, λ) > 0.

Then, from the Taylor expansion of y1(x, λ) about x0, we have:

y1(x, λ) = y1(x0, λ) + (x− x0)y′1(x0, λ) + . . .

≥ 1 + (x− x0)δ, x ≥ x0

and so y1(x, λ)→∞ as x→∞, as required.

Using the same method as above, we can show that y′2(x, λ) > 1 for x > 0.

When we also take into consideration that y1(x, λ) ≥ 1 for x ≥ 0 from (1.5), we

subsequently find that:

∆(λ) ≡ y1(π, λ) + y′2(π, λ) > 2, (1.27)

for λ ≤ λ0, where ∆(λ) will be termed Hill’s discriminant.
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Lemma 1.2. Let µ, µ′ be roots of the equations ∆(λ) = 2, ∆(λ) = −2, so that

∆′(µ) ≤ 0, ∆′(µ′) ≥ 0, respectively. Then ∆′(λ) < 0 in any open interval µ < λ <

µ1, so that ∆(λ) > −2, and ∆′(λ) > 0 in any open interval µ′ < λ < µ′1, so that

∆(λ) < 2.

The assertions of Lemma 1.2 are demonstrated in Figure 1.1.

Proof of Lemma 1.2. We will begin by attempting to construct a convenient repres-

entation of ∆′(λ). Let us introduce the following:

zi(x, λ) =
d

dλ
yi(x, λ),

z′i(x, λ) =
d

dλ
y′i(x, λ),

for i = 1, 2, where the prime represents differentiation with respect to x. This allows

us to write the following:

∆′(λ) = z1(π, λ) + z′2(π, λ), (1.28)

where ∆′(λ) implies differentiation with respect to λ. We can express zi(x, λ), z′i(x, λ)

in integral form by differentiating (1.4) with respect to λ:

z′′i (x, λ) + (λ+Q(x))zi(x, λ) = −yi(x, λ),

and solving using the variation of constants method for zi(x, λ) (see [27]). We obtain

the following linearly independent solutions, and their derivatives:

zi(x, λ) = y1(x, λ)

∫ x

0

y2(t, λ)yi(t, λ) dt− y2(x, λ)

∫ x

0

y1(t, λ)yi(t, λ) dt,

z′i(x, λ) = y′1(x, λ)

∫ x

0

y2(t, λ)yi(t, λ) dt− y′2(x, λ)

∫ x

0

y1(t, λ)yi(t, λ) dt,

(1.29)

where we have used the boundary conditions zi(0) = z′i(0) = 0 as a direct result of

(1.5). Taking x = π and substituting (1.29) into (1.28), we get the following:

∆′(λ) =

∫ π

0

{(y1(π, λ)− y′2(π, λ))y1(t, λ)y2(t, λ)

−y2(π, λ)y21(t, λ) + y′1(π, λ)y22(t, λ)
}
dt.

(1.30)

As the integrand is quadratic, we can complete the square to form the following:

∆′(λ) =±
∫ π

0

(√
|y′1(π, λ)|y2(t, λ)± y1(π, λ)− y′2(π, λ)

2
√
|y′1(π, λ)|

y1(t, λ)

)2

dt

∓ ∆2(λ)− 4

4|y′1(π, λ)|

∫ π

0

y21(t, λ) dt,

(1.31)
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where the choice of sign depends on whether y′1(π, λ) > 0 or y′1(π, λ) < 0, respect-

ively, and it is assumed that y′1(π, λ) 6= 0. We have also made use of the identity

W (y1, y2)(t) = 1, ∀t, and subsequently that:

∆2(λ)− 4 = (y1(π, λ)− y′2(π, λ))2 + 4y′1(π, λ)y2(π, λ). (1.32)

Notice from Theorem 1.1 that y′1(π, λ) 6= 0 corresponds to there being unstable

solutions when ∆(λ) = ±2. We can see from (1.31) that ∆′(λ) shares the sign of

y′1(π, λ) as long as ∆2(λ) ≤ 4, and also that:

y′1(π, λ) = 0 =⇒ ∆′(λ) = 0. (1.33)

Returning now to the statement of the lemma, we want to show that when taking

λ = µ so that ∆(µ) = 2, ∆′(µ) ≤ 0, we will find 2 > ∆(λ) > −2, ∆′(λ) < 0

for µ < λ < µ1, where µ1 − λ is sufficiently small. Obviously, this is the case

when ∆′(µ) < 0, so let us consider the case where ∆′(µ) = 0, which occurs when

y′1(π, µ) = 0. We can make use of (1.32), where

∆(µ) = 2 =⇒ ∆2(µ)− 4 = 0,

and W (y1, y2)(t) = 1, ∀t, to find that:

y1(π, µ) = y′2(π, µ) = 1,

and so, with y′1(π, µ) = 0, (1.30) becomes:

∆′(µ) = −y2(π, µ)

∫ π

0

y21(t, µ) dt = 0,

which implies that:

y2(π, µ) = 0.

We clearly can’t determine whether ∆(λ) is decreasing just from ∆′(µ) = 0, so we

will need to take the second derivative of ∆(λ) at λ = µ and check that it is negative

when:

y′1(π, µ) = y2(π, µ) = 0,

y1(π, µ) = y′2(π, µ) = 1.
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Differentiating (1.30) with respect to λ, and substituting the relations (1.29) with

λ = µ, we find:

∆′′(µ) = 2

{∫ π

0

y1(t, µ)y2(t, µ) dt

}2

− 2

∫ π

0

y21(t, µ)dt

∫ π

0

y22(t, µ) dt.

We can see using Schwarz’s Inequality that, because y1(t, µ), y2(t, µ) are linearly

independent, we get:

∆′′(µ) < 0,

as required.

Let us assume, contrary to the statement of the lemma, that there exists some

µ∗ > µ, so that ∆′(λ) < 0 for µ < λ < µ∗, but ∆′(µ∗) = 0 for ∆(µ∗) > −2 (i.e.

there is a turning point within the region |∆(λ)| < 2 in Figure 1.1). From (1.32)

with λ = µ∗ we find that y′1(π, µ
∗)y2(π, µ

∗) < 0. But because ∆′(µ∗) = 0, we also

find from (1.31) that y′1(π, µ
∗) = 0, which implies that y′1(π, µ

∗)y2(π, µ
∗) = 0, and so

we have a contradiction. This proves the Lemma in the case where ∆(λ) = 2. For

∆(λ) = −2, we can apply the same method for some λ = µ′ to prove the Lemma

completely.

Remark 1.2. By considering the equation:

∆2(λ)− 4 = 0, (1.34)

in Lemma 1.2 for a particular λ = µ, we see that ∆′(µ) = 0 implies a double root,

so that:

∆′′(µ) < 0, if ∆(µ) = 2,

∆′′(µ) > 0, if ∆(µ) = −2,

whereas ∆′(µ) 6= 0 implies a simple root.

Lemma 1.3. Let λ0 be the smallest root of ∆2(λ)− 4 = 0. Then λ0 is a simple root

so that ∆′(λ0) < 0.

Proof. We have already proved that λ < λ0 implies ∆(λ) > 2 in (1.27). Therefore,

if ∆(λ0) = 2, we must have either that ∆′(λ0) = 0 or ∆′(λ0) < 0. If we take the

former case, Remark 1.2 highlights that ∆′′(λ0) < 0 (i.e. a maximum), which is a

contradiction due to ∆(λ) > 2 for λ < λ0. Therefore, we must have the latter case;

that ∆′(λ0) < 0 and λ0 is a simple root.
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We now have everything we need to prove Theorem 1.2.

Proof of Theorem 1.2. It is clear from considering Remarks 1.1 and 1.2 that the

roots corresponding to the equation (1.34), which we shall call λ = λ2n+1 for

∆(λ) = 2 and λ = λ′2n+1 for ∆(λ) = −2, are simple iff ∆′(λ) 6= 0, so that y′1(π, λ) 6= 0

from (1.33), which implies that solutions are unstable. Whereas, they are double

iff ∆′(λ) = 0, so that y′1(π, λ) = y2(π, λ) = 0, which implies that solutions are

stable, and in turn that λ2n+1 = λ2n+2, λ
′
2n+1 = λ′2n+2, as required. We can see from

Theorem 1.1 that ρ1 = ρ2 = ±1 corresponds to ∆(λ) = ±2, and so solutions corres-

ponding to these roots will be π-periodic, 2π-periodic, respectively. This completes

the proof of Theorem 1.2.

It was subsequently proved in [33], by analysing ∆(λ) as an entire analytic func-

tion of a complex variable λ, that the functions ∆(λ)±2 have infinitely many zeroes.

This implies that there are infinitely many points of coexistence of (anti-)periodic

solutions (i.e. “closed gaps”) in the spectrum of (1.4).

In the next section, we will aim to utilise the theory of this section to investigate

the spectrum of the Jacobi Lamé equation, which is of Hill type.

1.3 Spectral gaps of the Lamé operator: Jacobi

form

Here, we will consider the Lamé equation in Jacobi form:

d2y

dx2
+
[
λ−m(m+ 1)k2sn2(x)

]
y = 0, (1.35)

where 0 < k < 1, m ∈ R, and sn(x) is one of the Jacobi elliptic functions (see [48]).

As sn(x) is periodic in x with real period 4K, it is clear that (1.35) is an equation

of Hill type (1.4), and therefore subject to the findings of the preceding section. We

can use this to help us prove the following theorem (and accompanying lemmas) due

to Magnus and Winkler, which will be the focus of the entire section.

Theorem 1.3. [34] Periodic (resp. anti-periodic) solutions of period 4K of (1.35)

coexist (i.e. correspond to a double root of ∆2(λ)− 4 = 0) iff m ∈ Z. If l is defined
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by:

l =

 m, m ∈ Z+,

−m− 1, m ∈ Z−,

then (1.35) will have at most l + 1 intervals of instability, including (−∞, λ0].

To prove Theorem 1.3, we will need to prove three lemmas and a corollary. First,

it will be necessary to transform (1.35) into Ince’s equation:

(1 + a cos 2φ)
d2y

dφ2
+ b(sin 2φ)

dy

dφ
+ (c+ d cos 2φ)y = 0, (1.36)

where a, b, c, d are real constants. We define sn(x) as the solution to:(
∂y

∂x

)2

= (1− y2)(1− k2y2).

We can reformulate this to get the following integral equation:

x =

∫ sn(x)

0

(1− y2)−
1
2 (1− k2y2)−

1
2 dy,

which, with the substitution of y = sin t, becomes:

x =

∫ φ

0

(1− k2 sin2 t)−
1
2 dt = F (φ, k), the elliptic integral of the first kind,

where φ = am(x, k) is known as the Jacobi amplitude, which obeys the following:

sinφ = sn(x, k),

dφ

dx
= dn(x, k) = (1− k2 sin2 φ)

1
2 .

Now, using the chain rule we can convert (1.35) to the following:

(1− k2 sin2 φ)
d2y

dφ2
− k2

2
(sin 2φ)

dy

dφ
+
[
λ−m(m+ 1)k2 sin2 φ

]
y = 0, (1.37)

which is in the form of Ince’s equation (1.36), where a, b, c, d are as follows:

a =
k2

2− k2
= −b,

c =
2λ−m(m+ 1)k2

2− k2
,

d =
m(m+ 1)k2

2− k2
.

The real period 4K now corresponds to π in (1.37).

We now state the first lemma, which characterises the solutions to (1.36).
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Lemma 1.4. If Ince’s equation (1.36) has two linearly independent solutions of

period π or 2π, then two solutions y1, y2 can be found so that:

y1 =
∞∑
n=0

A2n cos 2nφ, y2 =
∞∑
n=1

B2n sin 2nφ, (1.38)

for period π, or:

y1 =
∞∑
n=0

A2n+1 cos(2n+ 1)φ, y2 =
∞∑
n=0

B2n+1 sin(2n+ 1)φ, (1.39)

for period 2π, so that NpAN , N
pBN → 0 as N →∞ for every p > 0.

Proof. We can convert Ince’s equation (1.36) into an equation of Hill type (1.4) by

applying the following transformation:

y = (1 + a cos 2φ)
b
4a z, (1.40)

where a, b are defined as before (where a 6= 0), so that we get the following:

d2z

dφ2
+
α + β cos 2φ+ γ cos 4φ

(1 + a cos 2φ)2︸ ︷︷ ︸
Q(φ)

z = 0, (1.41)

where α, β, γ are as follows:

α = c− ab− b2

8
+
ad

2
,

β = d+ ac− b,

γ =
ad

2
+
b2

8
.

Clearly, the coefficient Q(φ) of (1.41) is π-periodic, and therefore the equation is of

Hill form (1.4). From Theorem 1.2, we know that an equation of Hill type cannot

have both a π-periodic and 2π-periodic solution corresponding to the same double

root of ∆(λ). Therefore, since y in (1.40) is π-periodic iff z is, the same must be

true for Ince’s equation. Due to the boundary conditions for linearly independent

solutions of Hill equations:

z1(0) = 1, z′1(0) = 0,

z2(0) = 0, z′2(0) = 1,

we see that z1(φ) must be even, while z2(φ) must be odd. On this basis, (1.36) will

have an even and an odd solution, both with the same period (being either π or 2π).
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Solutions y1, y2 in (1.38),(1.39) are π-periodic (2π-periodic, resp.), solve (1.36) for

some fixed a, b, c, d, and are linearly independent. Also, y1 is even, while y2 is odd,

as required.

To show that AN , BN → 0 as N → ∞, we can invoke the Riemann-Lebesgue

lemma for Fourier series. In particular, because y1, y2 are infinitely differentiable:

|An| ≤
M

|n|p
, |Bn| ≤

N

|n|p
, (1.42)

for some constants M,N and ∀p ∈ N. This proves the lemma.

Starting with the π-periodic case, we can plug (1.38) into (1.37) and compare

coefficients of cos 2nφ and sin 2nφ respectively, to get the following recurrence rela-

tions:

Λ0A0 + P−1A2 = 0,

2P0A0 + Λ1A2 + P−2A4 = 0,

Pn−1A2n−2 + ΛnA2n + P−n−1A2n+2 = 0, for n ≥ 2,

 (1.43)

Λ1B2 + P−2B4 = 0,

Pn−1B2n−2 + ΛnB2n + P−n−1B2n+2 = 0, for n ≥ 2,

 (1.44)

where we have used the following:

Pn =
m(m+ 1)k2

4
− nk2

2
− n2k2, (1.45)

Λn = λ− m(m+ 1)k2

2
−
(

1− k2

2

)
4n2.

For the 2π-periodic solutions we repeat the same procedure with (1.39), compar-

ing coefficients of cos(2n + 1)φ and sin(2n + 1)φ respectively, to get the following

recurrence relations:

(P ∗0 + Λ∗0)A1 + P ∗−1A3 = 0,

P ∗nA2n−1 + Λ∗nA2n+1 + P ∗−n−1A2n+3 = 0, for n ≥ 1,

 (1.46)

(−P ∗0 + Λ∗0)B1 + P ∗−1B3 = 0,

P ∗nB2n−1 + Λ∗nB2n+1 + P ∗−n−1B2n+3 = 0, for n ≥ 1,

 (1.47)
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where we have used the following:

P ∗n =
m(m+ 1)k2

4
− (2n− 1)k2

4
− (2n− 1)2k2

4
, (1.48)

Λ∗n = λ− m(m+ 1)k2

2
−
(

1− k2

2

)
(2n+ 1)2.

Noticing that the coefficients of (1.43) and (1.44) are equal for general n (as are

the coefficients of (1.46) and (1.47)), we can multiply (1.43) by B2n, (1.44) by A2n

(multiply (1.46) by B2n+1, (1.47) by A2n+1, respectively), and subtract to get the

following:

PnDn = P−n−2Dn+1, for n ≥ 1,

2P0D0 = P−2D1,

 (1.49)

P ∗nD
∗
n = P ∗−n−1D

∗
n+1, for n ≥ 1,

2P ∗0D
∗
0 = P ∗−1D

∗
1,

 (1.50)

where we have used the following:

Dn = A2nB2n+2 −B2nA2n+2, for n = 1, 2, . . . ,

D0 = A0B2,

 (1.51)

D∗n = A2n−1B2n+1 −B2n−1A2n+1, for n = 1, 2, . . . ,

D∗0 = A1B1,


which will satisfy the following conditions due to the vanishing nature of the coeffi-

cients (see Lemma 1.4):

lim
t→∞

tpDt = 0, (1.52)

lim
t→∞

tpD∗t = 0,

for any positive integer p.

If the recurrence relations (1.49) and (1.50) are satisfied, then the functions y1, y2

from (1.38), (1.39) solve Ince’s equation (1.36). The following lemma states what is

required to ensure that this is the case.

Lemma 1.5. For the recurrence relation (1.49) (resp. (1.50)) to be satisfied, either

all Dn (resp. D∗n) vanish or Pn (resp. P ∗n) has an integral root when viewed as a

function of n.
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As all Dn (resp. D∗n) vanishing implies trivial solutions, we will concern ourselves

with the case of Pn (resp. P ∗n) having an integral root. Returning to (1.45) and

(1.48), we see that Pn, P
∗
n have roots when:

n =
m

2
,−m+ 1

2
,

n∗ =
m+ 1

2
,−m

2
,

(1.53)

respectively, and these are only integers when m is. For fixed integer m, if Pn has a

positive integer root, P ∗n must have a negative one (and vice versa). Both cases will

be explored in the following lemma and corollary.

Lemma 1.6. If Pn (P ∗n , resp.) has a non-negative integral root, with n0 (n∗0, resp.)

being the largest such root, then (1.37) will have two linearly independent solutions

of period π (2π, resp.) provided that one solution exists that is either “infinite”, in

the sense that ∀n1 > n0 (n1 > n∗0, resp.), there exists n ≥ n1, so that

A2n, B2n 6= 0,

A2n+1, B2n+1 6= 0,

or “finite of order n1”, in the sense that for some n1 > n0 (n∗1 > n∗0, resp.):

A2n = B2n = 0, ∀n > n1,

A2n+1 = B2n+1 = 0, ∀n > n∗1,

whereas there exist at most n0 + 1 (n∗0 + 1, resp.) values of λ so that (1.37) has only

one linearly independent periodic solution.

Corollary 1.1. If Pn (P ∗n , resp.) has a negative root, so that −n0 − 1 for n0 =

0, 1, . . . (−n∗0 − 1 for n∗0 = 0, 1, . . . , resp.) is the smallest, then (1.37) will have two

“infinite” linearly indepedent solutions of period π (2π, resp.), except for at most

n0 + 1 (n∗0 + 1, resp.) values of λ for which (1.37) has only one linearly independent

periodic solution.

Proof of Lemma 1.5. Notice in (1.49) that if Pn does not have integral roots, none

of Pn for n = 1, 2, . . . will vanish, so either all Dn are zero, or none of them are.

Let us assume that none of Dn vanish for n = 0, 1, . . . (which we require to ensure
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non-trivial solutions). Taking some fixed integer j > 0, we can iterate (1.49) to get

the following:

Dj =
P−j−2P−j−3 . . . P−j−r−2

PjPj+1 . . . Pj+r
Dj+r+1, r = 0, 1, 2, . . . , (1.54)

As Pn is a polynomial in n of degree two, we can express it in the following way:

Pn = A(n− µ1)(n− µ2),

where A is some constant. Now (1.54) becomes:

Γ(j + 2 + µ1)Γ(j + 2 + µ2)

Γ(j − µ1)Γ(j − µ2)
Dj =

Γ(j + 3 + µ1 + r)Γ(j + 3 + µ2 + r)

Γ(j − µ1 + 1 + r)Γ(j − µ2 + 1 + r)
Dj+r+1,

(1.55)

where Γ(n) is the classical Gamma function defined by (see [3]):

Γ(n) = (n− 1)!, (1.56)

Γ(x) = lim
k→∞

k!kx−1

(x)k
, (1.57)

for n ∈ N, x ∈ C \ {0,−1,−2, . . .}, while (x)k is the Pochhammer symbol defined

by:

(x)k = x(x− 1)(x− 2) . . . (x− n+ 1),

so that from (1.56) we get

(x)k =
Γ(x+ k)

Γ(x)
. (1.58)

Setting t = j + 2 + r and ρα = µα + 1 for α = 1, 2, the RHS of (1.55) becomes the

following:
Γ(t+ ρ1)

Γ(t− ρ1)
t−2ρ1

Γ(t+ ρ2)

Γ(t− ρ2)
t−2ρ2t2(ρ1+ρ2)Dt,

where we have included the t factors for what follows. Now, taking the limit r →∞

in (1.55) is equivalent to taking t→∞, so this becomes:

lim
t→∞

∣∣∣∣ Γ(ρ1)

Γ(−ρ1)
(ρ1)t

(−ρ1)t
t−2ρ1

Γ(ρ2)

Γ(−ρ2)
(ρ2)t

(−ρ2)t
t−2ρ2t2(ρ1+ρ2)Dt−1

∣∣∣∣ (1.59)

=
Γ(ρ1)

Γ(−ρ1)
Γ(ρ2)

Γ(−ρ2)
lim
t→∞

∣∣∣∣ (ρ1)t
(−ρ1)t

t−2ρ1
(ρ2)t

(−ρ2)t
t−2ρ2t2(ρ1+ρ2)Dt−1

∣∣∣∣
=

Γ(ρ1)

Γ(−ρ1)
Γ(ρ2)

Γ(−ρ2)
Γ(−ρ1)
Γ(ρ1)

Γ(−ρ2)
Γ(ρ2)

lim
t→∞

∣∣t2(ρ1+ρ2)Dt−1
∣∣ (1.60)

= lim
t→∞

∣∣t2(ρ1+ρ2)Dt−1
∣∣ = 0, (1.61)
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where we have used (1.58) for (1.59), (1.57) for (1.60), and (1.52) for (1.61). There-

fore, the LHS of (1.55), which has no dependence on r, must be equal to zero as

follows:
Γ(j + 2 + µ1)Γ(j + 2 + µ2)

Γ(j − µ1)Γ(j − µ2)
Dj = 0. (1.62)

As none of Dj vanish for integer j > 0 in our assumption, their coefficient must be

equal to zero, or rather:

(j+µ1+1)(j+µ1) . . . (j−µ1+1)(j−µ1)(j+µ2+1)(j+µ2) . . . (j−µ2+1)(j−µ2) = 0,

but this can only occur if µ1 or µ2 are equal to an integer so that one of the brackets

disappears. Therefore, Pn must have an integral root. The proof for P ∗n follows the

same method.

Remark 1.3. Notice that all Dn (resp. D∗n) vanish only if Pn (resp. P ∗n) has no

integral root. If it has a positive integral root n0 (resp. n∗0), then according to (1.49)

(resp. (1.50)) Dn = 0 for n > n0 (resp. D∗n = 0 for n > n∗0). If it has a negative

root −n0−1 (resp. −n∗0−1), then all Dn = 0 for n < n0 (resp. D∗n = 0 for n < n∗0).

Proof of Lemma 1.6. Consider that (1.37) has the following solution:

y2 =
∞∑
n=1

B2n sin 2nφ,

so that B2n1 6= 0 for some n1 > n0. Notice that this solution can be either infinite

or finite of order n1. Now, we can consider a second solution:

y1 =
∞∑
n=0

A2n cos 2nφ,

so that A2n = B2n for n > n0, to ensure that the solution is not identically zero. For

y1 to be a solution, it must satisfy the recurrence relations (1.43) for all n. Clearly

for n > n0 the recurrence relations are already satisfied, as A2n = B2n and (1.44)

(which we know to be satisfied due to y2 being a solution) is identical to (1.43). For

n ≤ n0, we construct the following matrix representation of the recurrence relations

Chapter 1 William Haese-Hill 37



Spectral properties of integrable Schrödinger operators with singular potentials

(1.43), where we utilise the fact that Pn0 = 0 and A2n = B2n for n > n0:

Λ0 P−1 0 · · · 0

2P0 Λ1 P−2
. . .

...

0 P1 Λ2
. . . 0

...
. . . . . . . . . P−n0

0 · · · 0 Pn0−1 Λn0





A0

A2

...

...

A2n0


=



0

0
...

0

−P−n0−1B2n0+2


. (1.63)

Reducing an infinite tri-diagonal matrix in this way is only possible by setting one

of the off-diagonal elements to zero. In other words, ensuring Pn has a non-negative

or negative integral root will split an infinite matrix into one finite and one infinite

tri-diagonal block.

Recall that Λn contains the eigenvalue λ of (1.37) linearly. As the determinant

of the LHS of (1.63) is not equal to zero due to B2n0+2 6= 0, by Cramer’s rule

there exists a unique solution for A0, . . . , A2n0 . Therefore, we have two linearly

independent solutions y1, y2 to (1.36) as long as y2 is “infinite” or “finite of order

n1”, as required.

However, if instead we define y1 as before but with B2n0+2 = A2n0+2 = 0, we can

construct the following matrix equation for its coefficients:

Λ0 P−1 0 · · · 0

2P0 Λ1 P−2
. . .

...

0 P1 Λ2
. . . 0

...
. . . . . . . . . P−n0

0 · · · 0 Pn0−1 Λn0


︸ ︷︷ ︸

M



A0

A2

...

...

A2n0


=



0
...
...
...

0


. (1.64)

On the basis that Pn0 = 0, (1.43) with n = n0 + 1 will become the following:

P−n0−2A2n0+4 = 0,

and as P−n0−2 is not equal to zero, we must have that A2n0+4 = 0, which ensures that

all A2n = 0, n > n0 (i.e. y1 is finite of order n0). Therefore, taking the determinant

of the LHS of (1.64) will form a polynomial in λ of degree ≤ n0+1 (being the rank of

the matrix). The roots of this polynomial correspond to the points of the spectrum
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where there exists one linearly independent solution to (1.37) that is finite of order

n0. The same result applies had we chosen some y2 of finite order k0.

The proof for non-negative roots of P ∗n follows the same procedure.

Remark 1.4. The proof to Lemma 1.6 highlights the procedure by which we can

locate the finite simple roots of ∆(λ) = ±2 corresponding to a single bounded linearly

independent solution: By solving det(M) = 0 for M in (1.64) (as well as similar

determinants for periodic y2 and the anti-periodic solutions) for some n0 (which

depends on fixed integer m). The two linearly independent (anti-)periodic solutions

must occur instead at the double roots of ∆(λ) = ±2, of which there are an infinite

number.

Proof of Corollary 1.1. The proof follows on from the fact that if Pn (P ∗n , resp.)

has no non-negative roots, the recurrence relations (1.43) and (1.44) demonstrate

that all A2n,B2n (A2n+1, B2n+1, resp.) will vanish for n ≤ n0 if they also vanish for

n0 + 1, n0 + 2. Therefore, periodic solutions can not be of finite order (as all the

coefficients would vanish).

Now, if we assume that Pn has a negative root at −n0 − 1 and no positive root,

(1.49) shows that all Dn will vanish for n < n0 (see Remark 1.3). So considering

D0 = A0B2 = 0, we have two sets of conditions. Either A0 = 0, in which case (1.43)

and (1.51) show us that:

A0 = A2 = . . . = A2n0 = 0, B2n0 = 0, (1.65)

where we assume A2n0+2 is the first coefficient not to vanish, or B2 = 0, in which

case (1.44) and (1.51) show us that:

B2 = . . . = B2n0 = 0, A2n0 = 0, (1.66)

where we assume B2n0+2 is the first coefficient not to vanish. This ensures that there

exist two linearly independent (anti-)periodic solutions of infinite order, as required.

For example, taking the first set of conditions (1.65) and assuming a solution y2

from (1.38) exists so that B2n satisfy (1.44). The fact that B2n0 is zero implies that

all B2n for n < n0 also equal zero by (1.44), with P−n0−1 = 0. Therefore we can
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construct two infinite order linearly independent solutions as follows:

y1 =
∞∑

n=n0+1

B2n cos 2nφ,

y2 =
∞∑

n=n0+1

B2n sin 2nφ,

where A2n = B2n for n > n0 to ensure the solution y1 exists.

However, if say we take the second set of conditions (1.66) but assume that B2n0+2

vanishes this time, rather than A2n0 , we see that due to P−n0−1 = 0 and (1.44), all

B2n will vanish. Therefore, we can construct a solution y1 from (1.38), and form the

following matrix equation from the recurrence relation of its coefficients (1.43):

Λ0 P−1 0 · · · 0

2P0 Λ1 P−2
. . .

...

0 P1 Λ2
. . . 0

...
. . . . . . . . . P−n0

0 · · · 0 Pn0−1 Λn0





A0

A2

...

...

A2n0


=



0
...
...
...

0


.

which is reduced from the infinite tri-diagonal form due to P−n0−1. As in Lemma

1.6, taking the determinant will form a polynomial equation in λ of degree ≤ n0 +1.

Therefore there can be at most n0 + 1 values of λ that ensure we only have one

linearly independent periodic solution y1. If we had taken the first set of conditions

(1.65) with A2n0+2 = 0 instead of B2n0 = 0, we can find the same result for a solution

of the form y2 in (1.38).

The proof for negative roots of P ∗n follows using the same procedure.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. For two linearly independent (anti-)periodic solutions of (1.37)

to exist, Lemma 1.5 implies that Pn (P ∗n , resp.) must have an integral root. Lemma

1.6 and Corollary 1.1 state the conditions required to ensure this is the case for

non-negative and negative integer values of n, respectively. From (1.53), n ∈ Z iff

m ∈ Z. This completes the first part of the proof.

For the second part, we must consider the integral roots (1.53) of Pn and P ∗n

once more. When m is even, so that m = 2l′ for some non-negative integer l′, we
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have roots when:

n = l′, n∗ = −l′,

so from Lemma 1.6 and Corollary 1.1, respectively, we find that for (1.37) to have

only one linearly independent solution of period π there can be at most l′+ 1 values

of λ (l′ = n0 the largest non-negative root), while for only one linearly independent

solution of period 2π there can be at most l′ values of λ (−l′ = −n0− 1 the smallest

negative root). Therefore, by summing these two sets of eigenvalues, there can be at

most 2l′+ 1 = m+ 1 intervals of instability in the spectrum of (1.37) (and therefore

also that of (1.35)), when m is non-negative and even. For non-negative, odd m, we

get exactly the same result.

To complete the proof of Theorem 1.3, we note that the Lamé equation (1.35)

is invariant when m is replaced by −m− 1, and therefore we only need to consider

non-negative m.

The following case studies will explore the spectrum of the Lamé operator for

fixed values of m, utilising the machinery highlighted in Remark 1.4 to find explicitly

the location of the simple roots of ∆(λ) = ±2 that correspond to one linearly

independent solution. Subsequently, we will state the equations that must be solved

to find these simple roots for the general m ∈ N case.

1.3.1 Case study: m = 1

For m = 1, it follows from (1.53) that the integral roots of Pn, P
∗
n are:

−n0 − 1 = −1,

n∗0 = 1,

where we have used (1.45),(1.48), respectively. For the positive root, we utilise

the fact that P ∗1 = 0 to solve (1.46),(1.47) for n < 1. In so doing, we are able

to determine the finite number of eigenvalues corresponding to a single linearly

independent 2π-periodic solution of (1.37):

P ∗0 + Λ∗0 = 0 → λ′1 = 1,

−P ∗0 + Λ∗0 = 0 → λ′2 = 1 + k2,
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(a) A hypothetical spectrum corresponding tom = 1, for some k ∈ (0, 1).

The curve is defined by ∆(λ).

(b) Eigenvalues plotted over k for m = 1, demonstrating that at no point

does the spectrum become multi-valued. Notice that there is apparent

closing of gaps at k = 1, also.

Figure 1.2
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which correspond to solutions of the form:

y1 =
∞∑
n=0

A2n+1 cos(2n+ 1)φ,

y2 =
∞∑
n=0

B2n+1 sin(2n+ 1)φ,

respectively, so that A2n+1 = B2n+1 = 0,∀n ≥ 1. For the negative root we utilise

the fact that P−1 = 0 to solve (1.43), and determine the eigenvalue corresponding

to a single linearly independent π-periodic solution of (1.37):

Λ0 = λ− k2 = 0 → λ0 = k2,

which corresponds to a solution of the form:

y1 =
∞∑
n=0

A2n cos(2n)φ,

with A2n = 0,∀n ≥ 1. As we can see in Figure 1.2a, the eigenvalues obtained

by solving the equations correspond to the edges of the spectral bands (with a

dependence only on parameter k), or in terms of Theorem 1.2, simple roots of the

equation ∆2(λ)− 4 = 0.

1.3.2 Case study: m = 2

Using (1.53), (1.45), and (1.48) once more, integral roots for Pn, P
∗
n are:

n0 = 1,

−n∗0 − 1 = −1,

respectively. Therefore, we solve the following determinant equation for the positive

first root: ∣∣∣∣∣∣ Λ0 P−1

2P0 Λ1

∣∣∣∣∣∣ = 0,

which provides eigenvalues corresponding to solutions of the form y1 in (1.38)

λ0 = 2
(

1 + k2 −
√

1− k2 + k4
)
,

λ2 = 2
(

1 + k2 +
√

1− k2 + k4
)
.
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(a) A hypothetical spectrum corresponding to m = 2, for some k ∈ (0, 1)

(b) Eigenvalues plotted over k for m = 2

Figure 1.3
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We can also solve the following equation:

Λ1 = 0,

to find the single eigenvalue which corresponds to a solution of the form y2 in (1.38)

(notice that the index of the solution coefficient starts at n = 1, which explains the

reduction by one in the rank of the matrix):

λ1 = 4 + k2.

It is clear that as k → 0, the gap between λ1 and λ2 (as illustrated in Figure 1.3a)

will close, so that λ1 = λ2 = 4. In such a case we will have coexistence of two linearly

independent solutions. For the anti-periodic solutions, P ∗n has a root at n = −1,

therefore we again find the eigenvalues using the equations from (1.46), (1.47):

P ∗0 + Λ∗0 = 0 → λ′1 = 1 + k2,

−P ∗0 + Λ∗0 = 0 → λ′2 = 1 + 4k2.

The corresponding gap (as illustrated in Figure 1.3a) will again close, so that λ′1 =

λ′2 = 1, as k → 0. We can see how the eigenvalues change when altering k in Figure

1.3b.

1.3.3 Case study: m = 3

Following the same procedure, we solve the following equations:

Λ1 = 0,∣∣∣∣∣∣ Λ0 P−1

2P0 Λ1

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣±P
∗
0 + Λ∗0 P ∗−1

P ∗1 Λ∗1

∣∣∣∣∣∣ = 0,

which yield the following eigenvalues for the band edges, respectively:

λ1 = 4(1 + k2),

λ0,2 = 2 + 5k2 ∓ 2
√

1− k2 + 4k4,

λ′1,3 = 5 + 2k2 ∓ 2
√

4− k2 + k4,

λ′2,4 = 5 + 5k2 ∓ 2
√

4− 7k2 + 4k4,
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(a) A hypothetical spectrum corresponding to m = 3, for some k ∈ (0, 1)

(b) Eigenvalues plotted over k for m = 3

Figure 1.4

Chapter 1 William Haese-Hill 46



Spectral properties of integrable Schrödinger operators with singular potentials

corresponding to periodic, anti-periodic solutions for λi, λ
′
i, respectively. The spec-

trum is shown in Figure 1.4a, while the eigenvalues as a function of k are displayed

in Figure 1.4b.

It is clear that we can manually continue this process for ever higher values of

m showing the same pattern every time. For this reason, we will next consider the

case of general m.

1.3.4 General m

For even m = 2j, where j = 1, 2, . . ., we must solve the following equations:

Pn0 = 0,

n0 = j,



detM0
j ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ0 P−1 0 · · · 0

2P0 Λ1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P−j

0 · · · 0 Pj−1 Λj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

detM1
j ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ1 P−2 0 · · · 0

P1 Λ2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P−j

0 · · · 0 Pj−1 Λj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

P ∗−n∗0−1 = 0,

n∗0 = j − 1,



detN+
j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P ∗0 + Λ∗0 P ∗−1 0 · · · 0

P ∗1 Λ∗1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P ∗−(j−1)

0 · · · 0 P ∗j−1 Λ∗j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

detN−j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−P ∗0 + Λ∗0 P ∗−1 0 · · · 0

P ∗1 Λ∗1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P ∗−(j−1)

0 · · · 0 P ∗j−1 Λ∗j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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For odd m = 2j − 1, where j = 1, 2, . . ., we must solve the following equations:

P−n0−1 = 0,

n0 = j − 1,



detM0
j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ0 P−1 0 · · · 0

2P0 Λ1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P−(j−1)

0 · · · 0 Pj−2 Λj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

detM1
j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ1 P−2 0 · · · 0

P1 Λ2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P−(j−1)

0 · · · 0 Pj−2 Λj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

P ∗n∗0 = 0,

n∗0 = j,



detN+
j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P ∗0 + Λ∗0 P ∗−1 0 · · · 0

P ∗1 Λ∗1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P ∗−(j−1)

0 · · · 0 P ∗j−1 Λ∗j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

detN−j−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−P ∗0 + Λ∗0 P ∗−1 0 · · · 0

P ∗1 Λ∗1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . P ∗−(j−1)

0 · · · 0 P ∗j−1 Λ∗j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

These equations will need to be solved simultaneously (for even or odd m) in order

to find the explicit location of the eigenvalues for the edges of the spectral bands.

We now present the main result of the chapter.

Theorem 1.4. The Lamé operator:

− d2

dx2
+m(m+ 1)k2sn2(x) k ∈ (0, 1), x ∈ R, (1.67)

has all gaps of its spectrum open unless m ∈ Z, in which case all gaps are closed

except for the first m.
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Proof. As we proved in Theorem 1.3, coexistence of solutions only occurs when m is

an integer. This coexistence also corresponds to a closed gap of the corresponding

spectrum (a double root of the equation ∆2(λ) − 4 = 0). Therefore if m /∈ Z, we

can only have open gaps in the spectrum.

In Theorem 1.3 it was proved that the Lamé operator (1.67) will contain no more

than m gaps in its spectrum, while Erdélyi showed [11, 12] that there will be no

fewer than m gaps, for non-negative m. Therefore we can assert that the number

of gaps in the spectrum will be exactly m, for fixed m ∈ N.

In order to prove the assertion that only the first m gaps are open if m ∈ Z,

implying that no “closed gaps” (or double roots of ∆(λ) = ±2) appear before open

ones in the spectrum, we will need to prove the following lemma:

Lemma 1.7. The last open gap of the spectrum will close at λ = m2, as k → 0.

Proof. For a generic tri-diagonal matrix K0
n:

K0
n =



λ0 a1 0 · · · 0

b1 λ1 a2
. . .

...

0 b2 λ2
. . . 0

...
. . . . . . . . . an

0 · · · 0 bn λn


,

we can utilise the following recurrence relation to express the determinant:

detK0
n = λ0 detK1

n − a1b1 detK2
n,

where Kj
n are the sub-matrices with λj in the upper left and λn in the lower right,

for j ≤ n. Applying this to our determinants from Section 1.3.4, and taking k → 0
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Figure 1.5: m gaps expressed over the range 0 < k ≤ k1. The curve in bold

represents a closed gap ∀k, which we shall call an “always-closed gap”. The existence

of a potential always-closed gap amongst the open gaps is represented by the dashed

curve with a question mark.

(so that Pi, P
∗
i → 0), we can derive the following:

detM0
j = Λ0 detM1

j − 2P0P−1 detM2
j

= Λ0Λ1 . . .Λj −O(k4)

=

j∏
i=0

[
λ− (2i)2

]
−O(k2),

detM1
j =

j∏
i=1

[
λ− (2i)2

]
−O(k2),

detN±j−1 =

j−1∏
i=0

[
λ− (2i+ 1)2

]
−O(k2),

for the even m = 2j determinants (the odd m = 2j − 1 determinants are found in a
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similar way). At the limit k = 0, the roots corresponding to even (odd, respectively)

solutions will be equal, other than the first root λ0 = 0. The fact that the eigenvalues

are analytic, and therefore continuous in k (see Theorem XIII.89 in [41]), implies

that the gaps will close as k → 0. Therefore, it is clear that whether we take m = 2j

or m = 2j − 1 for j = 1, 2, . . . , for some small k = k1 > 0, the last open gap will

close at the point λ = m2 (as illustrated in Figure 1.5) as k → 0:

detM0
j = λ(λ− 4) . . . (λ−m2)−O(k2),

detM1
j = (λ− 4) . . . (λ−m2)−O(k2),

detN+
j−1 = (λ− 1) . . . (λ− (m− 1)2)−O(k2),

detN−j−1 = (λ− 1) . . . (λ− (m− 1)2)−O(k2),

where we have shown this for the even m = 2j determinants.

Now, if we assume that an always-closed gap appears amongst the open gaps (as

illustrated in Figure 1.5), it would have to approach one of the points λ = n2, n ∈ Z,

for k → 0. As all of these points, up to and including λ = m2, are associated with

gaps that open for k > 0 (from Lemma 1.7), we can not have always-closed gaps

within this range. Therefore, there exists some k1 > 0 so that the open gaps are the

first m gaps for all k ≤ k1.

In order to complete the proof of Theorem 1.4, we will need to address three

potential scenarios for k > k1, as illustrated in Figure 1.6. Scenario (a) considers the

possibility that for k > k1, a previously always-closed gap becomes open. Scenario

(b) considers the possibility that for k > k2, a previously open gap becomes always-

closed. Scenario (c) considers the possibility that for some k > k1, an always-closed

gap intersects an open gap.

Scenario (a)’s occurrence can be disproved by the following lemma:

Lemma 1.8. A gap which is closed for 0 < k < k1, for some k1 > 0, will remain

closed for all k ∈ (0, 1).

Proof. Let f(k) = λi(k) − λi−1(k). As λn(k) are analytic ∀k, so must be f(k),
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Figure 1.6: Three potential scenarios for k > k1 that must be disproved.

therefore we can express it in the following way:

f(k) =
∞∑
n=0

cn(k − k0)n,

where k0 ∈ (0, k1) is a zero of f(k). From the Taylor Series expansion about k = k0,

we can express cn in the following way:

cn =
f (n)(k0)

n!
.

Now, either all cn = 0, or ∃j > 0 so that cj 6= 0. In the first case, f(k) ≡ 0,∀k ∈

(0, 1), which implies that the always-closed gaps will remain closed, as required. In

the second case:

f(k0) = f ′(k0) = . . . = f (j−1)(k0) = 0, f (j)(k0) 6= 0,
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and so f(k) can be rewritten as the following:

f(k) =
∞∑
n=j

f (n)(k0)

n!
(k − k0)n

=
∞∑
n=0

f (n+j)(k0)

(n+ j)!
(k − k0)n+j

= (k − k0)j
∞∑
n=0

f (n+j)(k0)

(n+ j)!︸ ︷︷ ︸
dn

(k − k0)n

= (k − k0)jg(k),

where g(k) is analytic in k, by definition. At k0, g(k0) = d0 6= 0, and as g(k) is

continuous at k0 (owing to it being analytic here), there must exist a disk centred

at k0 with radius greater than zero, in which g(k) is also non-zero. Therefore, f(k)

must only have isolated zeroes (at discrete points such as k0). However, as f(k) = 0

for k ∈ (0, k1), we know that this can not be the case.

On this basis, only the first case is viable, and so f(k) = 0,∀k, corresponding to

an always-closed gap remaining closed everywhere in its domain, as required.

For scenario (b) we refer back to the assertion that the number of gaps is always

fixed at m. When taken in conjunction with the fact that gaps can not “split” open

(from Lemma 1.8), we know that, were any particular gap to close at some k, we

would have only m− 1 open gaps in the spectrum (as opposed to the required m).

Therefore, this can not happen.

Finally, for scenario (c), the interlacing property (1.25) from Theorem 1.2, com-

bined with the continuity of the eigenvalues in k, ensures that two gaps can not

“swap places”. Indeed, the interlacing property states that

. . . < λi−2(k) ≤ λi−1(k) < λ′i(k) ≤ λ′i+1(k) < . . . ,

and so what is shown in Figure 1.6 can not occur.

We have shown that the first m gaps, all of which are open for some small

k = k1 > 0, must remain open ∀k ∈ (0, 1), while the subsequent always-closed gaps

in the spectrum will remain closed ∀k ∈ (0, 1). This concludes the proof of Theorem

1.4.
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1.4 Discussion

The approach used in formulating Theorem 1.4 was taken in a recent paper by

Hemery and Veselov [23], where the terminology and results of Magnus and Wink-

ler [33, 34] were utilised in a similar way as that presented above. In their case,

the concern involved extending another theorem presented in [34] regarding the

Whittaker-Hill operator:

L = − d2

dx2
−
[
4αs cos 2x+ 2α2 cos 4x

]
, (1.68)

where α, s ∈ R. The operator (1.68) is in Hill form, with period π, and can be

transformed to an operator of Ince type (1.36) by the substitution:

ψ = yeα cos 2x,

where ψ(x) is an eigenfunction of (1.68). The theorem in question stated that if

s = 2m, then all even gaps will be open, while all but m odd gaps will be closed.

Likewise, with s = 2m + 1, all odd gaps will be open, while all but m even gaps

will be closed. The operator (1.68) was extended using Darboux transformations in

[23], and it was proved that the spectra of these transformed operators would have

the same structure as that of (1.68).

This notion of Darboux transformed Schrödinger operators and their spectra

will be explored in Part II. In the next chapter, we will investigate whether Lamé

equations with complex eigenvalues obey an analogous result to that of Theorem

1.4.
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Chapter 2

Complex spectrum

2.1 Introduction

Consider the Lamé operator with complex potential

L = − d2

dx2
+m(m+ 1)℘(ωx+ z0), (2.1)

where x ∈ R, ω is one of the half-periods ω1, ω2, ω3. We assume also that z0 ∈ C is

in a generic position so that the real line z = ωx + z0 does not contain any lattice

points z = 2k1ω1 + 2k3ω3, k1, k3 ∈ Z.

By the spectrum of this operator we mean the set of λ ∈ C such that all the

solutions of the corresponding Schrödinger equation Lψ = λψ are bounded. Equi-

valently, the corresponding Floquet multipliers µ(λ) defined by

ψ(x+ 2ω) = µψ(x)

must have the absolute value |µ| = 1.

In the present chapter, we will investigate the location of the complex spectrum

λ in the case of m = 1. From the results of Weikard [47] we have that for m ∈ N,

the spectrum consists of finitely many analytic arcs and up to one arc tending to

infinity. In analogy with Theorem 1.4 we show that all “closed gaps” of the spectrum

(corresponding to coexistence of two bounded eigenfunctions) are contained only on

the infinite spectral arc.

First, we will outline some general theory of the Weierstrass functions.
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2.1.1 The Weierstrass ℘ function, and its associated differ-

ential equation

We define the Weierstrass elliptic function ℘(z) as

℘(z) =
1

z2
+
∑

m,n∈Z∗

{
1

(z − 2mω1 − 2nω3)2
− 1

(2mω1 + 2nω3)2

}
, (2.2)

where z ∈ C and ω3

ω1
= τ ∈ iR 6= 0.

Now, to derive the differential equation satisfied by ℘(z), we take Taylor series

expansions of (2.2) and its derivative close to z = 0 to get the following:

℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 + . . . , (2.3)

℘′(z) = − 2

z3
+
g2
10
z +

g3
7
z3 + . . . ,

where the elliptic invariants g2, g3, defined with respect to ω1, ω3, are:

g2 = 60
∑

m,n∈Z∗

1

(2mω1 + 2nω3)4
,

g3 = 140
∑

m,n∈Z∗

1

(2mω1 + 2nω3)6
.

(2.4)

We can now construct the following:

F (℘(z), ℘′(z)) := [℘′(z)]2 − 4℘3(z) + g2℘(z) + g3 = O(z2).

The elliptic function F (℘(z), ℘′(z)) is analytic, and therefore bounded, for all z.

Therefore, by Liouville’s Theorem (see [2]), F (℘(z), ℘′(z)) is constant. Taking z → 0

we can see that this constant is zero, revealing to us that ℘(z) satisfies the following

differential equation:

[℘′(z)]2 = 4℘3(z)− g2℘(z)− g3. (2.5)

As ℘(z) is even, ℘′(z) will be odd, and so substituting z = −ω into

℘′(z + 2ω) = ℘′(z)

reveals that ℘′(ω) = 0. Therefore we can consider the following polynomial equation

for y = ℘(ω):

4y3 − g2y − g3 = 0, (2.6)

(y − e1)(y − e2)(y − e3) = 0,
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where the roots of the equation e1, e2, e3 satisfy the following:

e1 + e2 + e3 = 0,

℘(ω1) = e1, ℘(ω2) = e2, ℘(ω3) = e3,
(2.7)

and are related to g2, g3 in the following way:

g2 = −4(e1e2 + e2e3 + e3e1), g3 = 4e1e2e3. (2.8)

As (2.6) is a third order polynomial equation, we can analyse its discriminant to

determine the nature of the roots e1, e2, e3:

∆

16
= g32 − 27g23, (2.9)

so that:

∆ > 0 : e1 > e2 > e3, e1, e2, e3 ∈ R,

∆ = 0 : e1 = e2, e3 = −2e1,

∆ < 0 :


e1 = −α + iβ,

e2 = 2α,

e3 = ē1 = −α− iβ,

for α, β ∈ R.

(2.10)

℘(z) is homogeneous, so that:

℘(λz; g2, g3) = λ−2℘(z;λ4g2, λ
6g3). (2.11)

2.1.2 The Weierstrass zeta and sigma functions: ζ and σ

We define ζ(z) with respect to ℘ [48]

ζ(z) =
1

z
−
∫ z

0

{
℘(v)− 1

v2

}
dv, (2.12)

or as a series

ζ(z) =
1

z
+
∑

m,n∈Z∗

{
1

z − 2mω1 − 2nω3

+
1

2mω1 + 2nω3

+
z

(2mω1 + 2nω3)2

}
, (2.13)

so that:

ζ ′(z) = −℘(z). (2.14)
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From (2.13), it is clear that ζ is an odd function, so that:

ζ(−z) = −ζ(z). (2.15)

When shifting by 2ω in relation (2.14), we find

ζ ′(z + 2ω) = ζ ′(z),

ζ(z + 2ω) = ζ(z) + 2η,
(2.16)

and exploiting (2.15), we can substitute z = −ω into this equation to find η:

η = ζ(ω), (2.17)

for i = 1, 2, 3. The objects ηi, ωj satisfy the following identity:

ηiωj − ηjωi = ρij
πi

2
, (2.18)

where i, j ∈ (1 2 3) is a cycle so that:

ρi,i = ρi,i+3 = 0,

ρi,i+1 = −1,

ρi,i+2 = 1.

The addition theorem for ζ is

ζ(u+ v) = ζ(u) + ζ(v) +
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
. (2.19)

We define the Weierstrass sigma function as [48]

σ(z) = z
∏

m,n∈Z∗

(
1− z

Ωm,n

)
exp

(
z

Ωm,n

+
z2

2Ω2
m,n

)
,

where Ωm,n = 2mω1 + 2nω3, so that

d

dz
log σ(z) = ζ(z).

Shifting by 2ω yields

σ(z + 2ω) = − exp(2η(z + ω))σ(z).
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2.2 Conditions for bounded solutions

In the case m = 1, the complex Lamé equation

−d
2ψ

dz2
+ 2℘(z)ψ = λψ, λ = −℘(k), (2.20)

has the explicit solutions [48]:

ψ(z; k) =
σ(z + k)

σ(z)
exp(−ζ(k)z), (2.21)

where k ∈ C. These solutions have the following periodicity property:

ψ(z + 2ω) = exp(2ζ(ω)k − 2ζ(k)ω)ψ(z),

To ensure that our solutions remain bounded on the line z = ωx+ z0, x ∈ R, we

require that the following condition is satisfied:

| exp(2ζ(ω)k − 2ζ(k)ω)| = 1. (2.22)

Therefore, values of k ∈ C satisfying this condition will constitute the spectrum.

Equivalently we have the following condition for k to be in the spectrum:

Re [ζ(ω)k − ζ(k)ω] = 0, (2.23)

The periodic and anti-periodic solutions correspond to

exp(2ζ(ω)k − 2ζ(k)ω) = ±1

or, equivalently,

periodic : ζ(ω)k − ζ(k)ω = 2p
iπ

2
,

anti-periodic : ζ(ω)k − ζ(k)ω = (2q + 1)
iπ

2
,

(2.24)

for some p, q ∈ Z. From the relations (2.18):

ζ(ω)ωj − ζ(ωj)ω = ρj
πi

2
, (2.25)

where ρj = 0 or ±1 depending on the choice of half-periods (see [2]), it follows that

that k = ω1, ω2, ω3 are solutions of (2.24) with q = 0, p = 0 and q = −1, which

correspond to the edges of the spectral arcs.

Now we are going to study the geometry of these arcs in more detail.
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2.3 Investigation of the complex spectrum

We start with the special lemniscatic case when ω3 = iω1, or equivalently when

g3 = 0.

2.3.1 The lemniscatic case

Without loss of generality we can assume that g2 = 1, so e1, e2, e3 are solutions of

y(4y2 − 1) = 0,

which are −e1 = −0.5,−e2 = 0,−e3 = 0.5. We can write k from a period parallelo-

gram as

k = aω1 + bω3, a, b ∈ [−1, 1].

Using (2.19), we have for ω = ω1:

Re [ζ(ω1)(aω1 + bω3)− ζ(aω1 + bω3)ω1] = 0, (2.26)

Re

aω1ζ(ω1) + bω3ζ(ω1)︸ ︷︷ ︸
∈iR

−

ζ(aω1) + ζ(bω3)︸ ︷︷ ︸
∈iR

+
1

2

℘′(aω1)

℘(aω1)− ℘(bω3)
− 1

2

℘′(bω3)

℘(aω1)− ℘(bω3)︸ ︷︷ ︸
∈iR

ω1

 = 0,

which gives us the following condition for the spectrum:

aω1ζ(ω1)− ω1ζ(aω1)−
1

2

ω1℘
′(aω1)

℘(aω1)− ℘(bω3)
= 0.

If a = ±1 then from (2.16) we see that the first two terms cancel, while the third

will be equal to zero, and thus a = ±1 is a solution for all b. If instead we take a = 0

in (2.26), we get the following:

Re

bω3ζ(ω1)︸ ︷︷ ︸
∈iR

−ω1ζ(bω3)︸ ︷︷ ︸
∈iR

 = 0,

which is satisfied as long as b 6= 0 (to avoid poles). From this, we can deduce that

k = aω1 + bω3 satisfies (2.26) iff

b ∈

 [−1, 1], for a = ±1,

[−1, 0) ∪ (0, 1], for a = 0.
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For ω = ω3 we have the following condition:

Re [ζ(ω3)(2mω1 + bω3)− ζ(2mω1 + bω3)ω3] = 0.

Using the same method we come to the following set of solutions:

a ∈

 [−1, 1], for b = ±1,

[−1, 0) ∪ (0, 1], for b = 0.

The corresponding values of k are represented in Figure 2.1. Since ω3 = iω1

they differ by multiplication by i. The associated spectral bands with gaps are

represented in Figure 2.2. As expected, we can see two gaps in the spectrum:

(−∞,−e1), (−e2,−e3) for ω = ω1 and (−e1,−e2), (−e3,+∞) for ω = ω3, in agree-

ment with the results of the previous chapter.

The case ω = ω2 represents more of a challenge. However, in the lemniscatic case,

we can use that ω3 = iω1 and ζ(ik) = −iζ(k) to find that k = aω̄2, a ∈ [−1, 0)∪(0, 1]

satisfies the condition (2.23). Indeed,

Re [ζ(ω2)(aω̄2)− ζ(aω̄2)ω2]

= Re [aζ(ω1 + iω1)(ω1 − iω1)− ζ(a(ω1 − iω1))(ω1 + iω1)]

= −ω1

2

℘′(aω1) + i℘′(iaω1)

℘(aω1)− ℘(iaω1)
= 0,

where we have used the property of the lemniscatic ℘-function

℘(iz) = −℘(z), ℘′(iz) = i℘′(z).

We use Mathematica to find the remaining solutions of (2.23) numerically and

plot the subsequent eligible values of k, as shown in Figure 2.3.

We can map the coordinates of k that analytically solve (2.23) (as well as an

approximation of the rest from Figure 2.3) to λ = −℘(k), and construct a visual

representation of the spectrum, as seen in Figure 2.4.

2.3.2 Generic case

The cases ω = ω1 and ω = ω3 can be analysed in the same way as in the lemniscatic

case.

Chapter 2 William Haese-Hill 61



Spectral properties of integrable Schrödinger operators with singular potentials

0 ω1 : e1

ω3  : e3 ω2 : e2

− ω1  : e1

− ω3 : e3− ω2 : e2

− ω̅2
  : e2

ω̅2 : e2

(a) ω = ω1

0 ω1 : e1

ω3  : e3 ω2 : e2

− ω1  : e1

− ω3 : e3− ω2 : e2

− ω̅2
  : e2

ω̅2  : e2

(b) ω = ω3

Figure 2.1: Spectral values of k.

− e1

− e2 − e3 ∞

− e2

− e1

− e3− ∞

i = 1 :

i = 3 :

Figure 2.2: Spectral bands, corresponding to ω = ωi.
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Figure 2.3: Spectral values of for k = aω1 + bω3 corresponding ω = ω2. Black points

and diagonal line are found analytically, red arcs are from numerical solution of

(2.23) in Mathematica.

− e1  = − 0.5 − e3  = 0.5− e2  = 0

− ∞

Im

Re

Figure 2.4: Complex spectrum corresponding to Figure 2.3.
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For ω = ω2 we can again use Mathematica to solve numerically the spectral

condition (2.23). Figure 2.5 shows the corresponding plots for g3 = 1 and different

values of g2.

Out[7]= :
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Figure 2.5: Spectral values of k corresponding to ω = ω2. For each image, g3 = 1,

while g2 is equal to the bracketed number.

It is clear that for large g2 and fixed g3, we have a picture similar to the lem-

niscatic g2 = 1, g3 = 0 case (as expected).

Note that all these curves are passing through k = 0, which corresponds to the

limit λ → ∞. We can use this to study the asymptotic behaviour of the infinite

spectral arc at infinity.

Proposition 2.1. The infinite spectral arc has the asymptote ω̄2
2s, where s ∈ R.

Proof. Assume that

k = aω1 + bω3, a, b� 1

and substitute this into (2.23) with ω = ω2. Using the expansion of ζ(k) for k ≈ 0

ζ(k) =
1

k
− g2

60
k3 + . . .
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we have

Re

[(
1

ω2

+ . . .

)
(aω1 + bω3)−

(
1

aω1 + bω3

+ . . .

)
ω2

]
=

1

a2ω2
1 − b2ω2

3︸ ︷︷ ︸
∈R, 6=0

Re

[
−ω2(aω1 − bω3) +

aω1 + bω3

ω2

(
a2ω2

1 − b2ω2
3

)
+ . . .

]

≈ − aω2
1 − bω2

3

a2ω2
1 − b2ω2

3

= 0.

This implies that

a ≈ τ 2b,

where τ = ω3/ω1. Therefore, k will be parametrised by b, in a neighbourhood close

to zero, in the following way:

k = b(τ 2ω1 + ω3) = bτ(ω1 + ω3) = bτω2 = itbω2,

where τ = it, t ∈ R+.

Using the expansion of ℘ at zero we have

λ = −℘(k) = −℘(itbω2) =
1

(tbω2)2
+
g2
20

(tbω2)
2 + . . . ≈ 1

ω2
2

s ∼ ω̄2
2s

where s = (tb)−2 → +∞ as b→ 0.

The special case g2 = 4, g3 = 1 is plotted in Figure 2.6.

2.3.3 Location of closed gaps in the spectrum

Consider the (anti-)periodic solutions of (2.24) and the corresponding conditions on

k:

ζ(ω)k − ζ(k)ω︸ ︷︷ ︸
f(k)

= ±pπi
2
, p ∈ Z≥0. (2.27)

We know that the solutions of this condition for p = 0, 1 are k = ±ωj, j = 1, 2, 3,

which correspond to the edges of arcs. The question is what can we say about other

solutions, which must correspond to the “closed gaps.”

The main result of this chapter is the following theorem.

Theorem 2.1. All closed gaps of the complex Lamé operator (2.1) with m = 1 and

ω = ω2 are contained on the infinite spectral arc.
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− e1  = − 1.11 − e3  = 0.84− e2  = 0.27

s → +∞

Im

Re

( ω
1  

−
 ω
3  
)² s

Figure 2.6: Complex spectrum corresponding to g2 = 4, g3 = 1 in Figure 2.5.

Proof. The location of closed gaps are the solutions of the following systems
Re[ζ(ω2)k − ζ(k)ω2] = 0,

Im[ζ(ω2)k − ζ(k)ω2] = ±pπ
2
,

(2.28)

with integer p ≥ 2.

Numerical analysis of the case g2 = 4, g3 = 1 for different values of p are shown

in Figure 2.7.

We prove first analytically that the closed gaps appear on the infinite arc in the

lemniscatic case, and then using continuity arguments demonstrate that it must be

true for all g2, g3.

Consider the function

f(k) = ζ(ω2)k − ζ(k)ω2.

We know that in the lemniscatic case the arc edges are at k = ±ω1,±ω3,±ω̄2 and

the line k = a(ω3 − ω1), a ∈ [−1, 1] is part of the spectrum.

To find the point of intersection of the arcs in this case write f(k) as

f(k) = u(k) + iv(k), k = x+ iy.
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Figure 2.7: Solutions of equations (2.28) for g2 = 4, g3 = 1. Intersections of curves

represent the k values of closed gaps. It is evident that the closed gaps tend towards

infinity along the spectral arc as p→∞.

On the curves in Figure 2.3 we have Re[f(k)] = u(k) = 0. At the intersection point

k∗ we must have additionally that ux(k∗) = uy(x∗) ≡ 0.

From the Cauchy-Riemann relations we have

ux(k∗) = vy(k∗) = 0,

uy(k∗) = −vx(k∗) = 0,

which implies that the complex derivative f ′(k∗) = 0 at this intersection point:

f ′(k∗) = ζ(ω2) + ℘(k∗)ω2 = 0 =⇒ −℘(k∗) =
ζ(ω2)

ω2

.

As ℘ is even and of order 2 we have two intersection points at ±k∗.
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Now, as f(k) is holomorphic at k∗, we can consider the Taylor expansion for k

close to k∗:

f(k) = a0 + a1(k − k∗) +
a2
2

(k − k∗)2 + . . . = c(k − k∗)2 + . . . ,

where a0 ≡ f(k∗) = 0, a1 ≡ f ′(k∗) = 0, and c is some complex number: c = a + ib.

Let us substitute z = k − k∗, where z = x+ iy, and take the leading order

f(z) ≈ (a+ ib)(x+ iy)2

= a(x2 − y2)− 2bxy + i
{
b(x2 − y2) + 2axy

}
.

We are interested in the imaginary part of f(z). The Hessian matrix H (Im[f(z)]) is

H (Im[f(z)]) =

2b 2a

2a −2b

 .
It is easy to see that H is indefinite (i.e. it has both positive and negative eigenval-

ues), therefore k∗ is a saddle point of the function Im[f(z)].

Figure 2.8: Direction of increase of Im[f(k)] along the curve Re[f(k)] = 0. Values

of p at the end-points correspond to Im[f(k)] = ±pπ
2
.
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Now, recalling (2.28), we know that closed gap locations correspond to the values

of k that simultaneously solve:
Re[ζ(ω2)k − ζ(k)ω2] = 0,

Im[ζ(ω2)k − ζ(k)ω2] = ±pπ
2
.

We also know that Im[f(k)] close to k∗ is a saddle surface, which implies that in

one direction Im[f(k)] will be increasing, whereas in another it will be decreasing.

We claim that on each of the intersecting curves from Figure 2.8 the function

Im[f(k)] is monotonic. Indeed, we know that ±k∗ are the only zeros of f ′(z), which

means that Im[f(k)] can not contain any critical points on the curves Im[f(k)] = 0.

Thus we can conclude that for any k along the finite band, as well as from k = k∗

to k = ω3 − ω1, the associated value of p must be between −1 and 0.

Since p must be an integer this is impossible. This proves the theorem in the

lemniscatic case.

The general case follows from the continuity arguments. Indeed, if the arcs

continue to intersect when we change τ from τ = i then we can repeat the arguments

of the lemniscatic case. If the curves break up as in Figure 2.7 we will have two

disconnected curves and the closed gaps can not change the curve by continuity.

We believe that the theorem is true for all m ∈ N.

2.4 Discussion

We also considered a difference version of the Lamé operator, which appeared in

relation with representations of the so-called Sklyanin algebra [44]. This algebra is

generated by Sa, a = 0, . . . , 3, with the relations

[Sα, S0]− = iJβγ[Sβ, Sγ]+,

[Sα, S0]− = i[S0, Sγ]+,

where [A,B]± = AB ± BA. The difference analogue of the Lamé operator corres-

ponds to S0 in Sklyanin’s representation of this algebra

S0 =
θ1(x−mη)

θ1(x)
T η +

θ1(x+mη)

θ1(x)
T−η, x ∈ C, (2.29)
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where T is the shift operator defined by T ηψ(x) = ψ(x + η), and θ1 are the Jacobi

theta functions (see e.g. [30]). The case of η ∈ C has been studied by Ruijsenaars

[43].

We can show that S0 reduces to the differential Lamé operator (2) at the non-

relativistic limit η → 0. For this, we can rewrite S0ψ = λψ using

ψ(x) = Ψ(x)
m∏
j=1

θ1(x− jη),

as (see [29])

S̃0Ψ ≡ Ψ(x+ η) +
θ1(x+mη)θ1(x− (m+ 1)η)

θ1(x)θ1(x− η)
Ψ(x− η) = λΨ(x).

Now, taking Taylor series expansions for η → 0, and using the fact that ℘(x) =

D2(log θ1(x)), we get:

S̃0

∣∣∣
η→0

= 2 + η2
(
D2 −m(m+ 1)℘(x)

)
+O

(
η3
)
.

Krichever and Zabrodin [29, 49, 50] studied the spectrum of (2.29), for arbitrary

generic η ∈ R, and derived the explicit formulas for the band edges.

We considered the case of rational η = P/Q, P,Q ∈ N. While it is known that

the spectrum will contain exactly Q bands [49], we wanted to explore the role that

P played in determining the location of closed gaps (see Figure 2.9, as an example).
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(a) P = 1, 4

-3 -2 -1 1 2 3
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-2

2
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(b) P = 2, 3

Figure 2.9: Spectral gaps for l = 1, Q = 5, with different P values.

This yielded some interesting patterns, which warrant further study.
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Chapter 3

Complex exceptional Hermite

polynomials

3.1 Darboux transformations and exceptional

Hermite polynomials

The following operator defines the harmonic oscillator in quantum mechanics:

L = −D2 + x2, (3.1)

where D = d
dx

. It is well known that

ψk = Hk(x)e−x
2/2, (3.2)

where Hk(x) are the classical Hermite polynomials, are the eigenfunctions:

L ψk(x) = (2k + 1)ψk(x), k ∈ Z≥0,

of L , which can be used as a definition of Hermite polynomials. We choose the

normalisation of Hermite polynomials such that the highest coefficient of Hl(z) is 2l

and all the coefficients are integer:

H0 = 1, H1 = 2z, H2 = 4z2 − 2, H3 = 8z3 − 12z, H4 = 16z4 − 48z2 + 12, . . . .

Alternatively Hermite polynomials can be defined as orthogonal polynomials with

respect to the Gaussian measure

dµ(x) = e−x
2

dx.
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The Darboux transformation (DT) can be defined for any Schrödinger operator L

with potential u(x) with known eigenfunction ψk(x) by

ũ(x) = u(x)− 2D2 log(ψk(x)). (3.3)

If we know all the eigenfunctions ψl of L then one can check that the corresponding

Schrödinger equation

−D2ψ̃l + ũ(x)ψ̃l = (2l + 1)ψ̃l

has solutions

ψ̃l =

(
D − ψ′k

ψk

)
ψl, (3.4)

for l 6= k. These transformations can be iterated a number of times [7]. Eigenfunc-

tions for an operator iterated n times can be written in the form:

ψ̃
(n)
l =

Wr(ψl, ψk1 , ψk2 , . . . , ψkn)

Wr(ψk1 , ψk2 , . . . , ψkn)
, (3.5)

or alternatively:

ψ̃
(n)
l =

(
D −D log

(
ψ̃

(n−1)
kn

))
ψ̃

(n−1)
l , (3.6)

for some increasing sequence of integers k1, . . . , kn, where l /∈ k1, . . . , kn, Wr is the

Wronskian determinant, and where the transformed potential takes the form:

ũ(n)(x) = u(x)− 2D2 log Wr(ψk1 , . . . , ψkn). (3.7)

In our case of the harmonic oscillator, all DT are described by partitions as

follows [13]. Let 0 ≤ k1 < . . . < kn be the level at which we applied the DT and

define the partition λ by

λ = (λ1, . . . , λn), 0 ≤ λ1 ≤ . . . ≤ λn, λi = ki − i+ 1.

The resulting potential of these DT (up to adding a constant) has the form

ũ(n)(x) = x2 − 2D2 logWλ,

where

Wλ = Wr(Hk1 , . . . , Hkn). (3.8)
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Felder et al [13] showed that these Wronskians have some remarkable properties, in

particular

degWλ = |λ| ≡
n∑
i=1

λi. (3.9)

Note that in order to have a regular potential, we need that Wλ 6= 0 for any x ∈ R. It

is known after M. Krein and V. Adler [1] that this is the case as long as the sequence

{k1, . . . , kn} is composed of a finite number of blocks of even length, preceded by an

arbitrary length block of integers starting from 0. In the language of Felder et al.

[13], this corresponds to the case of double partitions of the form

λ = µ2 = (µ1, µ1, µ2, µ2, . . . , µp, µp),

where µ = (µ1, . . . , µp) is another partition with n = 2p.

In that case, Gomez-Ullate et al. [18] defined exceptional Hermite polynomials

by

Hλ,l := Wr(Hk1 . . . , Hkn , Hl), l ∈ Z≥0 \ {k1, . . . , kn}.

They have shown that they are orthogonal and, in spite of the fact that some of the

degrees are missing, they are dense in L2(R) with density measure

w(x) = W−2
λ (x)e−x

2

. (3.10)

Note that after the gauge transformation using the weight function:

−
(
ex

2/2Wλ

)
◦ L̃ (n) ◦

(
e−x

2/2W−1
λ

)
, (3.11)

where

L̃ (n) = −D2 + ũ(n)(x)

we derive the following operators:

Tλ = D2 − 2

(
x+

W ′
λ

Wλ

)
D +

(
W ′′
λ

Wλ

+ 2x
W ′
λ

Wλ

)
(3.12)

T = D2 − 2xD (3.13)

where ′ denotes differentiation with respect to x. T is the classical Hermite operator,

while Tλ is solved by Hλ,j with eigenvalue 2n − 2j. For a double partition λ, Tλ is

non-singular in R.

Now we are going to understand the situation for general partition λ.
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3.2 Complex exceptional Hermite polynomials

Let us define now the complex exceptional Hermite polynomials (CEHPs) by the

same formula:

Hλ,l := Wr(Hk1 . . . , Hkn , Hl), l ∈ Z≥0 \ {k1, . . . , kn}, (3.14)

but now partition λ is arbitrary. This means that the corresponding measure has

singularities on the real line. From the previous section, the functions

ψλ,l = Hλ,l
e−z

2/2

Wλ

, (3.15)

have the eigenfunction property

Lλψλ,l = (2l + 1)ψλ,l,

where

Lλ = − d2

dz2
− 2

d2

dz2
(

log Wr(ψk1 , . . . , ψkn)
)

+ z2, (3.16)

and ψl = Hl(z)e−z
2/2. By a direct computation, it is readily inferred that Hλ,l is a

formal eigenfunction of the singular operator

Tλ =
d2

dz2
− 2

(
z +

W ′
λ

Wλ

)
d

dz
+

(
W ′′
λ

Wλ

+ 2z
W ′
λ

Wλ

)
with eigenvalue 2n− 2l.

Example 3.1. Consider the special case λ = (1), which corresponds to the Schrödinger

operator

L(1) = − d2

dz2
− 2

d2

dz2
(

log(2ze−z
2/2)
)

+ z2

= − d2

dz2
+ z2 +

2

z2
+ 2.

Already in this simple example, we obtain eigenfunctions

ψλ,l =
Wr(ψl, ψk1 , . . . , ψkn)

Wr(ψk1 , . . . , ψkn)
, l /∈ k1, . . . , kn, (3.17)

with a singularity on the real line (at z = 0). Indeed, this can be seen explicitly by

writing out the first exceptional Hermite polynomials H(1),k = Wr(ψk, ψ1) and the
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corresponding few eigenfunctions ψ(1),k = Wr(ψk,ψ1)
ψ1

:

H(1),0 = 1, ψ(1),0 = 1
z
e−z

2/2,

H(1),2 = −(2 + 4z2), ψ(1),2 = −2+4z2

z
e−z

2/2,

H(1),3 = −16z3, ψ(1),3 = −16z2e−z
2/2,

H(1),4 = 12(1 + 4z2 − 4z4), ψ(1),4 = 12(1+4z2−4z4)
z

e−z
2/2,

H(1),5 = 64z3(5− 2z2), ψ(1),5 = 64z2(5− 2z2)e−z
2/2,

H(1),6 = 40(3 + 18z2 − 36z4 + 8z6), ψ(1),6 = −40(3+18z2−36z4+8z6)
z

e−z
2/2.

More generally, using the fact that

Wr(ψ2l+1, ψ1)(−z) = −Wr(ψ2l+1, ψ1)(z), l ∈ N,

as well as the fact that each classical Hermite polynomial H2l(z), l ∈ Z≥0, has a

nonzero constant term, it is readily seen that ψ(1),l(x) is regular on the whole real

line if and only if l ∈ Z≥0\{1} is odd. The eigenvalues of the first few eigenfunctions

are given in Figure 3.1, where open and filled circles indicate that the corresponding

eigenfunctions are singular and non-singular, respectively. In addition, the cross

represents the eigenvalue removed by the Darboux transformation.

Note that in the theory of quantum Calogero-Moser systems (of which this ex-

ample is the simplest case) only non-singular solutions are considered (see e.g. [39]).

Figure 3.1: The eigenvalues of the first few eigenfunctions for λ = (1).
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The Schrödinger operator Lλ satisfies the intertwining relation

Dλ ◦L = Lλ ◦Dλ, (3.18)

where L = −d2/dz2 + z2, and where the intertwining operator Dλ acts according

to

Dλψ =
Wr(ψ, ψk1 , . . . , ψkn)

Wr(ψk1 , . . . , ψkn)
,

see e.g. [1, 7]. We will now use the fact that Dλ is obtained as the composition of

first order intertwining operators. To be more specific, let us introduce the short

hand notation

Wm = Wr(ψkm , . . . , ψkn), Wm(ψ) = Wr(ψ, ψkm , . . . , ψkn),

(where it is convenient to allow m = n + 1 and set Wn+1 = 1, Wn+1(ψ) = ψ), and

recall the standard identity

Wm−1Wm(ψ) = Wm
d

dx
Wm−1(ψ)−Wm−1(ψ)

d

dx
Wm, m ≥ 1.

Then it is readily verified that

Dλ = D1 ◦ · · · ◦Dm ◦ · · · ◦Dn, (3.19)

with

Dm =
d

dz
− d

dz

(
log

Wm

Wm+1

)
. (3.20)

For our purposes, a key notion is that of trivial monodromy, see e.g. [46]. A

Schrödinger operator L = −d2/dz2 + u(z), whose potential u is a meromorphic

function of z, is said to have trivial monodromy if all solutions of its eigenvalue

equation

L ψ(z) = Eψ(z) (3.21)

are meromorphic in z for all E.

We recall that every monodromy-free Schrödinger operator L with a quadratic-

ally increasing rational potential is of the form (3.16) for some partition λ. The fact

that each Schrödinger operator Lλ has trivial monodromy is easily seen. Indeed,

in the special case u(z) = z2 all eigenfunctions are entire, and trivial monodromy is
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preserved under (rational) Darboux transformations. The converse result is due to

Oblomkov [37].

Duistermaat and Grünbaum [10] obtained local conditions for trivial monodromy.

Specifically, in a neighbourhood of a pole z = zi the potential u(z) must have a

Laurent series expansion of the form

u(z) =
∑
r≥−2

cr(z − zi)r,

with

c−2 = mi(mi + 1) for some mi ∈ N,

and

c2j−1 = 0, ∀j = 0, 1, . . . ,mi.

In addition, every eigenfunction ψ has a Laurent series expansion of the form

ψ(z) = (z − zi)−mi
∞∑
r=0

dr(z − zi)r,

with

d2j−1 = 0, ∀j = 1, . . . ,mi.

We proceed to consider the implications for the CEHPs Hλ,l. Let Zλ be the set

of zeros zi ∈ C of the Wronskian Wλ(z) with multiplicities mi ∈ N. In addition,

we need the subset ZR
λ ⊂ Zλ obtained by restriction to zi ∈ R. We say that a

meromorphic function ψ(z) is quasi-invariant at the point z = zi with multiplicity

mi if it satisfies the following two conditions:

1. ψ(z)(z − zi)mi is analytic at z = zi,

2. (ψ(z)(z − zi)mi)(2j−1)|z=zi = 0, for all j = 1, . . . ,mi.

The second condition can be rewritten as

ψ(σi(z)) = (−1)miψ(z) +O((z − zi)mi),

where σi(z) = 2zi − z is the reflection with respect to zi. This explains the termin-

ology.
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Introducing the subspace

Qλ =

{
p ∈ C[z] : ψ(z) := p(z)

e−z
2/2

Wλ(z)
is quasi-invariant at z = zi,∀zi ∈ Zλ

}
,

it follows from the above that the C-linear span

Uλ = 〈Hλ,l : l ∈ Z≥0 \ {k1, . . . , kn}〉

belongs to Qλ. From Proposition 5.3 in [18], we recall that the codimension of Uλ in

C[z] is equal to |λ|. On the other hand, |λ| is the degree of Wλ(z), and therefore the

number of quasi-invariance conditions that any p ∈ Qλ should satisfy. This yields

the converse inclusion, and thus the following result.

Proposition 3.1. The C-linear span of CEHPs coincides with polynomial quasi-

invariants:

〈Hλ,l : l ∈ Z≥0 \ {k1, . . . , kn}〉 = Qλ.

Whenever λ is not a double partition, the Wronskian Wλ(z) will have one or

more real zeros [1], so that the weight function is no longer non-singular on the

real line. To resolve this problem, we replace the standard contour R by a shifted

contour C = iξ + R and consider a corresponding Hermitian product

〈p, q〉 :=

∫
C

p(z)q̄(z)w(z)dz.

where q̄(z) := q(z̄) is the Schwarz conjugate of the polynomial q(z), and w(z) is a

complex weight function. As will become clear below, to ensure that the product is

Hermitian we need to restrict attention to the following subspace of quasi-invariant

polynomials:

Qλ,R =

{
p ∈ C[z] : ψ(z) := p(z)

e−z
2/2

Wλ(z)
is quasi-invariant at z = zi,∀zi ∈ ZR

λ

}
.

By counting quasi-invariance conditions, we obtain the next proposition.

Proposition 3.2. The codimension of Qλ in Qλ,R is |λ| −
∑

zi∈ZR
λ
mi.

We are now ready for the main definition of this section.

Chapter 3 William Haese-Hill 79



Spectral properties of integrable Schrödinger operators with singular potentials

Definition 3.1. Let ξ ∈ R be such that

0 < |ξ| < |Im zi|, ∀zi ∈ Zλ \ ZR
λ . (3.22)

Then, we define a sesquilinear product 〈·, ·〉 on Qλ,R by setting

〈p, q〉 =

∫
iξ+R

p(z)q̄(z)
e−z

2

W 2
λ (z)

dz, p, q ∈ Qλ,R. (3.23)

Now we will show that the product does not depend on the specific choice of ξ.

We find it worth stressing that this important property relies on our restriction to

the subspace Qλ,R.

Proposition 3.3. For any p, q ∈ Qλ,R, the value of 〈p, q〉 is independent of ξ ∈ R

provided the condition (3.22) is satisfied.

Proof. Let Iξ denote the integral in the right-hand side of (3.23). By Cauchy’s

theorem, it suffices to show that Iξ − I−ξ = 0 for some ξ satisfying (3.22). From

the residue theorem, we deduce that the difference between the two integrals is

proportional to ∑
zi∈ZR

λ

Res
z=zi

(
p(z)q̄(z)

e−z
2

W 2
λ (z)

)
.

We claim that each of these residues vanish. In fact, we have the following more

general result.

Lemma 3.1. If ψ, φ are quasi-invariant at z = zi with multiplicity mi, then

Res
z=zi

(
ψ(z)φ(z)

)
= 0.

Indeed, it follows from Condition (2) above that

(
ψ(z)φ(z)(z − zi)2mi

)(2mi−1)
z=zi

=

2mi−1∑
j=0

(
2mi − 1

j

)(
ψ(z)(z − zi)mi

)(2mi−1−j)
z=zi

(
φ(z)(z − zi)mi

)(j)
z=zi

= 0.

It is now straightforward to show that Definition 3.1 yields a Hermitian product.
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Proposition 3.4. The sesquilinear product 〈·, ·〉 is Hermitian:

〈p, q〉 = 〈q, p〉, ∀p, q ∈ Qλ,R.

Proof. In what follows, we find it convenient to use the notation

w(z) =
e−z

2

W 2
λ (z)

,

and use a subscript to indicate the choice of ξ in (3.23). Since the classical Hermite

polynomials have real coefficients, it is evident from (3.8) that w̄(z) = w(z). Hence,

we have the following equalities:

〈p, q〉ξ =

∫
R
p(iξ + x)q̄(iξ + x)w(iξ + x)dx

=

∫
R
p̄(−iξ + x)q(−iξ + x)w(−iξ + x)dx

= 〈q, p〉−ξ.

Combined with Proposition 3.3, this yields the asserted Hermiticity property.

We recall that the classical Hermite polynomials Hl(x) satisfy the orthogonality

relation ∫
R
Hj(x)Hl(x)e−x

2

dx = δjl2
ll!
√
π, j, l ∈ Z≥0. (3.24)

Combining this fact with the factorisation (3.19) of the intertwining operator Dλ, it

is now readily established by induction on the length n of λ that the CEHPs Hλ,l(x)

are orthogonal with respect to the Hermitian form 〈·, ·〉 (cf. [18]).

Theorem 3.1. The CEHPs Hλ,l satisfy the orthogonality relation

〈Hλ,j, Hλ,l〉 = δjl
√
π2ll!

n∏
m=1

2(l − km), j, l ∈ Z≥0 \ {k1, . . . , kn}. (3.25)

Proof. The assertion clearly holds true for n = 0, with the empty product taken to

be equal to one. Introducing the partition

λ̂ = (λ2, . . . , λn),

we have

〈Hλ,j, Hλ,l〉 =

∫
iξ+R

(D1ψλ̂,j)(z)(D1ψλ̂,l)(z)dz.
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Since Wm = Wm, the (formal) adjoint of D1 is given by

D∗1 = − d

dx
− d

dx

(
log

W1

W2

)
.

The factorisation

D∗1D1 = Lλ̂ − 2k1 − 1

thus entails that

〈Hλ,j, Hλ,l〉 = 2(l − k1)〈Hλ̂,j, Hλ̂,l〉.

This completes the induction step, and the theorem is proved.

Remark 3.1. Since 〈·, ·〉 is Hermitian, each squared norm 〈p, p〉, p ∈ Qλ,R, is real,

but need not be positive. In fact, if the partition is not double, there is always a

finite number of polynomials with negative squared norm, which can be easily iden-

tified using formula (3.25). For example, setting λ = (1) in (3.25), we see that

〈H(1),l, H(1),l〉 < 0 if and only if l = 0. Grinevich and Novikov [20] pointed out a

similar fact in a finite-gap case.

We conclude this chapter by showing that the linear span of the CEHPs Hλ,l,

l ∈ Z \ {k1, . . . , kn}, is dense in Qλ,R in the sense that

〈p,Hλ,l〉 = 0, ∀l ∈ Z≥0 \ {k1, . . . , kn} =⇒ p ≡ 0.

By Proposition 3.1, we can formulate the result as follows.

Theorem 3.2. The subspace Qλ is dense in Qλ,R.

Proof. Suppose that p ∈ Qλ,R is such that

〈p, q〉 = 0, ∀q ∈ Qλ.

Introducing the polynomials

qλ,l(z) = W 2
λ (z)Hl(z), l ∈ Z≥0,

which clearly belong to the subspace Qλ, we obtain

0 = 〈p, qλ,l〉 =

∫
iξ+R

p(z)H̄l(z)e−z
2

dz, ∀l ∈ Z≥0.

Since the integrand is entire, we can take the limit ξ → 0. Then expanding p in

terms of the classical Hermite polynomials Hl, it follows immediately from (3.24)

that p ≡ 0.
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Remark 3.2. If we assume that λ is a double partition, then we recover orthogonal-

ity and completeness results from [18] (see Propositions 5.7–5.8). Indeed, to recover

the former it is enough to note that the weight function (3.10) is guaranteed to be

non-singular on the real line, so that we can take the limit ξ → 0 in (3.23); and the

latter follows from the observation that we have Qλ,R = C[z].
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Chapter 4

Exceptional Laurent orthogonal

polynomials

In this chapter we generalise our approach to the space of Laurent polynomials

Λ = C[z, z−1] using the trigonometric monodromy-free Schrödinger operators [6],

which play an important role in the theory of Huygens’ principle [4].

More specifically, we consider the Laurent polynomials Pκ,a;l:

Pκ,a;l(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

Φk1(a1; z) Φk2(a2; z) · · · Φkn(an; z) zl

DΦk1(a1; z) DΦk2(a2; z) · · · DΦkn(an; z) Dzl

...
...

. . .
...

...

DnΦk1(a1; z) DnΦk2(a2; z) · · · DnΦkn(an; z) Dnzl

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.1)

where Φk(a; z) = azk + a−1z−k, k ∈ N and D = z d
dz
. Due to the results of The-

orem 4.1 and Proposition 4.2 we call Pκ,a;l, l ∈ Z, exceptional Laurent orthogonal

polynomials (ELOPs).

4.1 The general case

In this first section we allow any choice of complex parameters a = (a1, . . . , an),

ak ∈ C \ {0}.

We start from the elementary fact that the exponential functions

el(x) = exp(ilx), l ∈ Z,

84



Spectral properties of integrable Schrödinger operators with singular potentials

have the eigenfunction property

L el ≡ −
d2el
dx2

= l2el, x ∈ C/2πZ.

Note that, instead of the usual unit circle R/2πZ, we consider its complex version:

the cylinder C/2πZ. This is natural from the trivial mondromy point of view, see

[6].

Sequences of Darboux transformations at the levels 0 < kn < kn−1 < · · · < k1 are

now parametrised by n complex parameters θ = (θ1, . . . , θn), θk ∈ C. Specifically,

introducing the functions

φkj(θj, x) = 2 cos(kjx+ θj), j = 1, . . . , n, (4.2)

the resulting Schrödinger operator takes the form

Lκ = − d2

dx2
− 2

d2

dx2
(

log Wr(φk1 , . . . , φkn)
)
, (4.3)

where κ = {k1, . . . , kn}. Furthermore, letting Dκ act by

Dκφ =
Wr(φ, φk1 , . . . , φkn)

Wr(φk1 , . . . , φkn)
,

the intertwining relation (3.18) holds true, and the functions

φκ,θ;l =
Wr(el, φk1 , . . . , φkn)

Wr(φk1 , . . . , φkn)
, l ∈ Z, (4.4)

have the eigenfunction property

Lκφκ,l = l2φκ,l.

We note that at each level kj, j = 1, . . . , n, the multiplicity is reduced from two to

one. Indeed, by (4.2)–(4.4) and linearity of the Wronskian, we have the relation

exp(iθj)φκ,kj(θj;x) + exp(−iθj)φκ,−kj(θj;x) ≡ 0, j = 1, . . . , n.

To establish the precise connection between the functions φκ,l and the ELOPs

Pκ,a;l given by (4.1), we change variable to

z = exp(ix)
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and fix the values of the parameters a = (a1, . . . , an) according to

ak = exp(iθk) ∈ C \ {0}, k = 1, . . . , n.

Then, it is readily seen that

φκ,θ;l(θ, x) = Pκ,a;l(z)Wκ,a(z)−1,

with Pκ,a;l(z) given by (4.1) and

Wκ,a(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

Φk1(a1; z) Φk2(a2; z) · · · Φkn(an; z)

DΦk1(a1; z) DΦk2(a2; z) · · · DΦkn(an; z)
...

...
. . .

...

Dn−1Φk1(a1; z) Dn−1Φk2(a2; z) · · · Dn−1Φkn(an; z)

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.5)

where D = zd/dz and

Φk(a; z) = azk + a−1z−k.

Furthermore, a direct computation reveals that Pκ,a;l is an eigenfunction of the

operator

Tκ = −D2 + 2
DWκ,a

Wκ,a

D − D2Wκ,a

Wκ,a

with eigenvalue l2.

Example 4.1. In the particular case κ = {1} the corresponding Schrödinger oper-

ator is given by

L{1} = − d2

dx2
− 2

d2

dx2
(

log(2 cos(x+ θ1))
)

= − d2

dx2
+

2

cos2(x+ θ1)
.

When expressed in terms of the variable z and the parameter a1, the first few

exceptional Laurent polynomials P{1},a;l defined by (4.1) and the corresponding ei-
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genfunctions Φ{1},a;l = P{1},a;l/Φ1, l ∈ Z are given by

P{1},a;0 = a1z − a−11 z−1, Φ{1},a;0 =
a1z−a−1

1 z−1

a1z+a
−1
1 z−1 ,

P{1},a;−1 = 2a1, Φ{1},a;−1 = 2a1
a1z+a

−1
1 z−1 ,

P{1},a;1 = −2a−11 , Φ{1},a;1 = − 2a−1
1

a1z+a
−1
1 z−1 ,

P{1},a;−2 = a−11 z−3 + 3a1z
−1, Φ{1},a;−2 =

a−1
1 z−3+3a1z−1

a1z+a
−1
1 z−1 ,

P{1},a;2 = a1z
3 + 3a−11 z, Φ{1},a;2 = − a1z3+3a−1

1 z

a1z+a
−1
1 z−1 .

From these explicit formulae, it is manifest that both P{1},a;±1 and Φ{1},a;±1 are

linearly dependent and that each eigenfunction is singular at z = ±i/a1. For general

l ∈ Z, the latter fact can be easily seen from the definition of P{1},a;l.

We note that, upon setting

Wm = Wr(φkm , . . . , φkn),

the intertwining operator Dκ factorises according to (3.19)–(3.20). Just as in the

Hermite case, it follows that each Schrödinger operator Lκ has trivial monodromy.

Moreover, every monodromy-free trigonometric Schrödinger operator is of the form

(4.3), see [6].

Let Zκ be the set of zeros zi ∈ C of the functionWκ,a(z) with multiplicities mi ∈

N and Xκ be the corresponding set consisting of xj such that exp(ixj) = zj, zj ∈ Zκ
(we drop the dependence on a in the notations for brevity in the rest of this section).

Introduce the subspace

Qκ =
{
P ∈ Λ : Φ(x) := (P/Wκ)(exp(ix)) is quasi-invariant at all xj ∈ Xκ

}
.

It follows from trivial monodromy property that

Uκ := 〈Pκ,l : l ∈ Z〉 ⊂ Qκ.

However, in contrast to Hermite case (see Proposition 3.1), the converse inclusion

does not hold. Instead, we have the following result.
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Proposition 4.1. The codimension of Uκ in Qκ is n.

Proof. From (4.1), we deduce that

Pκ,l(z) = zl+|κ| detV (l, k1, . . . , kn)
n∏
j=1

kj + l.d.,

where

|κ| =
n∑
i=1

ki,

l.d. stands for terms of lower degree and V is the Vandermonde matrix

V (α1, . . . , αm) =


1 1 · · · 1

α1 α2 · · · αm
...

...
. . .

...

αm−11 αm−12 · · · αm−1m

 .

Since detV (l, k1, . . . , kn) = 0 if and only if l = k1, . . . , kn, it follows that the degree

sequence

I+κ = {degP (z) : P ∈ Uκ}

stabilises at k1 + |κ| + 1 in the sense that l ∈ I+κ for all l ≥ k1 + |κ| + 1. Applying

the same line of reasoning to the Laurent polynomials Pκ,−l(1/z), we find that the

same statement holds true for

I−κ = {degP (z−1) : P ∈ Uκ}.

Among the ELOPs Pκ,l with |l| < k1 + |κ|+1, a maximal set of linearly independent

Laurent polynomials is given by

l ∈ {k1, . . . , kn} ∪ {0,±1, . . . ,±(kn − 1)} ∪ {±(kn + 1), . . . ,±(kn−1 − 1)}

∪ · · · ∪ {±(k2 + 1), . . . ,±(k1 − 1)}.

The cardinality of this index set equals

n+ 2kn − 1 + 2(kn−1 − kn − 1) + · · ·+ 2(k1 − k2 − 1) = 2k1 − n+ 1.

Observing that

2k1 + 2|κ|+ 1− (2k1 − n+ 1) = 2|κ|+ n,
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we conclude that the codimension of Uκ in Λ is 2|κ|+ n.

On the other hand, counting quasi-invariance conditions, we find that the codi-

mension of Qκ in Λ equals 2|κ| and so the assertion follows.

Remark 4.1. In contrast to the case of usual polynomials there are several defini-

tions of the degree of a Laurent polynomial, but none of them are convenient for our

purposes. Let us define the L-degree LdegP of a Laurent polynomial P =
∑q

i=p ciz
i

with cp 6= 0, cq 6= 0 as q if q > −p, and p if q < −p. If q = −p the L-degree is not

well-defined since it could be both p and q. Under these assumptions

LdegPκ,l = |κ|+ l, l ∈ Z+ \ κ, LdegPκ,l = −|κ|+ l, −l ∈ Z+ \ κ,

otherwise it is not well-defined. Note that the polynomials Pκ,kj and Pκ,−kj with

undefined L-degrees are linearly dependent.

Next, we consider a particular complex bilinear form on Qκ, given by

(P,Q) =
1

2πi

∮
Cµ

P (z)Q(z)w(z)
dz

z
, (4.6)

where Cµ is the circle defined by |z| = µ and w(z) = W (z)−2, with W (z) = Wκ.

We establish the corresponding Laurent orthogonality relations. A related Fourier

theory for more general algebro-geometric operators was studied by Grinevich and

Novikov in [20].

Definition 4.1. Let µ ∈ R>0 be such that

µ 6= |zi|, ∀zi ∈ Zκ. (4.7)

Then, we define a complex bilinear form (·, ·) on Qκ by setting

(P,Q) =
1

2πi

∮
Cµ

P (z)Q(z)W−2κ
dz

z
, P,Q ∈ Qκ, (4.8)

where

Cµ = {z ∈ C : |z| = µ}. (4.9)

Substituting z = exp(ix) and following the line of reasoning used in the proof of

Lemma 3.3, we readily find that the product is well-defined in the sense that it does

not depend on the choice of µ. More precisely, we have the following lemma.

Chapter 4 William Haese-Hill 89



Spectral properties of integrable Schrödinger operators with singular potentials

Lemma 4.1. For any P,Q ∈ Qκ, the value of (P,Q) is independent of µ ∈ R>0

provided (4.7) is satisfied.

We are now ready to state and prove the first of the main results in this section,

which may be viewed as a natural analogue of Theorem 3.1.

Theorem 4.1. The ELOPs Pκ,l satisfy the Laurent orthogonality relation

(Pκ,j, Pκ,l) = δj+l,0

n∏
m=1

(l2 − k2m), j, l ∈ Z.

Proof. Just as in the proof of Theorem 3.1, we note that the assertion holds true

for n = 0, and proceed by induction on the length n of κ. Letting κ̂ = (k2, . . . , kn),

we have

(Pκ,j, Pκ,l) =
1

2π

∫ 2π

0

(D1φκ̂,j)(x)(D1φκ̂,l)(x)dx.

Making use of the factorisation

D∗1D1 = Lκ̂ − k21, (4.10)

with

D∗1 = − d

dx
− d

dx

(
log

W1

W2

)
the (formal) adjoint of D1, we deduce

(Pκ,j, Pκ,l) = (l2 − k21)(Pκ̂,j, Pκ̂,l),

which completes the induction step.

Remark 4.2. Having started from an eigenvalue problem with doubly degenerate

eigenvalues, we have that (Pκ,l, Pκ,−l) = 0 for some of the ELOPs Pκ,l. More spe-

cifically, it is evident from the theorem that this is the case if and only if l = ±km,

m = 1, . . . , n.

Expanding on the result of Proposition 4.1, we proceed to establish the precise

relationship between Uκ and Qκ. We begin with a general definition.

Let V be a vector space over C. Then V is called complex Euclidean space if it

is equipped with a non-degenerate bilinear form B : V ⊗ V → C.
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Definition 4.2. Let W ⊂ V be a subspace of complex Euclidean space V. We say

that V is a minimal complex Euclidean extension of W if

dim
(

kerB|W
)

= codimVW.

For any linear space W and bilinear form B with non-trivial kernel

K := kerB,

it is readily verified that there is a unique (up to isomorphisms) minimal complex

Euclidean extension V ⊃ W . Letting K∗ denote the dual space of K, it can be

realised as follows:

V = K ⊕K∗ ⊕W/K,

with the extension of B determined by

(k1 + k̂1 + w1, k2 + k̂2 + w2) 7→ k̂2(k1) + k̂1(k2) +B(w1, w2),

where k1, k2 ∈ K, k̂1, k̂2 ∈ K∗ and w1, w2 ∈ W . Moreover, for each basis k1, . . . , kn ∈

K, there is a unique basis k̂1, . . . , k̂n ∈ K∗ such that (kj, k̂l) = δjl.

Example 4.2. Suppose that B|W = 0, so that each vector w ∈ W is isotropic.

Then we have

V ∼= W ⊕W ∗,

with

B(w1 + ŵ1, w2 + ŵ2) = ŵ2(w1) + ŵ1(w2), w1, w2 ∈ W, ŵ1, ŵ2 ∈ W ∗.

As demonstrated by the following proposition, the inclusion Uκ ⊂ Qκ provides a

concrete example of a minimal complex Euclidean extension in the sense of Definition

4.2.

Proposition 4.2. Qκ is the minimal complex Euclidean extension of Uκ.

Proof. From Theorem 4.1 we infer that

ker(·, ·)|Uκ = 〈Pκ,kj : j = 1, . . . , n〉.
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(Note the linear relations ajPκ,kj + a−1j Pκ,−kj = 0.) Since ELOPs Pκ,l corresponding

to different values of l2, and hence different eigenvalues, are linearly independent, it

follows that

dim
(

ker(·, ·)|Uκ
)

= n.

Recalling Proposition 4.1, we see that it remains only to verify that (·, ·) is non-

degenerate on Qκ. Observing that

W2
κ(z)zj ∈ Qκ, ∀j ∈ Z,

this follows, e.g., from the computation(
Pκ,l,W2

κ(z)z−l−|κ|
)

=
1

2πi

∮
Cµ

Pκ,l(z)z−l−|κ|
dz

z

= detV (l, k1, . . . , kn)
n∏
j=1

kj,

which is non-zero as long as l 6= ±kj, cf. the proof of Proposition 4.1.

4.2 The Hermitian case

In the case when all θk are real or, equivalently, when parameters a = (a1, . . . , an)

satisfy

|ak| = 1, k = 1, . . . , n, (4.11)

we can introduce the Hermitian structure as follows.

Note that in this case the weight function w(z) = Wκ(z)−2 is invariant under

the antilinear involution

P †(z) := P (1/z̄), P ∈ Λ, (4.12)

which will play much the same role as the Schwartz conjugate did in the Hermite

case. In fact, observing that (DP )† = −DP † and that Φ†k = Φk, we can deduce

from (4.5) that

W†κ(z) = (−1)n(n−1)/2Wκ(z), κ = {k1, . . . , kn}. (4.13)

In addition, the zero set Zκ becomes invariant under the involution z → 1/z̄, i.e.

zi ∈ Zκ =⇒ 1/z̄i ∈ Zκ,
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and, since z = 1/z̄ whenever |z| = 1, we have that

Wκ(z)W†κ(z) = |Wκ|2, |z| = 1. (4.14)

Letting ZC
κ = {zi ∈ Zκ : |z| = 1} and XR

κ = {xj : exp(ixj) = zj, zj ∈ ZC
κ } ⊂ R,

we introduce the following subspace of quasi-invariant Laurent polynomials:

Qκ,C =
{
P ∈ Λ : Φ(x) := (P/Wκ)(exp(ix)) is quasi-invariant at all xj ∈ XR

κ

}
.

From (4.13), it is straightforward to infer that

Q†κ = Qκ, Q†κ,C = Qκ,C ,

which allows us to define a natural sesquilinear product on Qκ,C .

Definition 4.3. Assuming that (4.11) holds true, we introduce

ν = min
zi∈Zκ
|zi|>1

|zi|,

and let µ ∈ R>0 be such that

1 < max(µ, 1/µ) < ν. (4.15)

Then, we define a sesquilinear product 〈·, ·〉L on Qκ,C by setting

〈P,Q〉L =
1

2πi

∮
Cµ

P (z)Q†(z)
(
Wκ(z)W†κ(z)

)−1dz
z
, P,Q ∈ Qκ,C . (4.16)

Again, the product does not depend on the specific choice of µ.

Lemma 4.2. For any P,Q ∈ Qκ,C, the value of (P,Q)L is independent of µ ∈ R>0

provided (4.15) is satisfied.

By adapting the proof of Proposition 3.4, we can use the lemma to show that

Definition 4.3 yields a Hermitian product.

Proposition 4.3. The sesquilinear product 〈·, ·〉L is Hermitian:

〈P,Q〉L = 〈Q,P 〉L, ∀P,Q ∈ Qκ,C .
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Proof. Using the notation

w(z) = 1
/
Wκ(z)W†κ(z)

and using a subscript to indicate the choice of µ in (4.16), we deduce the following

equalities:

〈P,Q〉L,µ =
1

2π

∫ 2π

0

P (µeiϕ)Q̄(µ−1eiϕ)w(µeiϕ)dϕ

=
1

2π

∫ 2π

0

P̄ (µe−iϕ)Q(µ−1eiϕ)w(µ−1eiϕ)dϕ

= 〈Q,P 〉L,µ−1 ,

and so hermiticity follows from Lemma 4.2.

Moreover, the proof of Theorem 4.1 is readily adapted to yield the following

orthogonality result.

Theorem 4.2. Assuming that (4.11) holds true, the ELOPs Pκ,l satisfy the ortho-

gonality relation

〈Pκ,j, Pκ,l〉L = δjl

n∏
m=1

(k2m − l2), j, l ∈ Z. (4.17)

Proof. Taking z = exp(ix) in the integral in (4.16) and observing that (cf. (4.13))

Wm(−x) = (−1)(n−m)(n−m+1)/2Wm(x),

we establish the equalities

〈Pκ,j, Pκ,l〉L =
1

2π

∫ 2π

0

(D1φκ̂,j)(x)(D1φκ̂,l)(−x)dx

= − 1

2π

∫ 2π

0

φκ̂,j(x)(D∗1D1φκ̂,l)(−x)dx.

Appealing to the factorisation (4.10), we thus obtain the relation

〈Pκ,j, Pκ,l〉L = (k21 − l2)〈Pκ̂,j, Pκ̂,l〉L,

and the assertion follows by induction on n.
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After replacing the bilinear form B by a Hermitian sesquilinear form h, Definition

4.2 as well as the succeeding discussion applies with minor changes also in the present

situation. Specifically, we say that V is a minimal Hermitian extension of W if

dim
(

kerh|W
)

= codimVW.

Then, we have the following analogue of Theorem 3.2.

Theorem 4.3. The subspace Qκ, which is the minimal Hermitian extension of Uκ,

is dense in Qκ,C.

Proof. Suppose that P ∈ Qκ,C is such that

〈P,Q〉L = 0, ∀Q ∈ Qκ.

Since the Laurent polynomials

Qκ,l =Wκ(z)W†κ(z)zl, l ∈ Z,

clearly are contained in Qκ, we have that

0 = 〈P,Qκ,l〉L =
1

2πi

∮
Cµ

P (z)zl
dz

z
, ∀l ∈ Z.

Taking the limit µ→ 1 and using the property that

1

2πi

∮
|z|=1

zkzl
dz

z
= δk+l,0, k, l ∈ Z

we conclude that P ≡ 0.

Remark 4.3. It is known from the soliton theory that for every non-empty set κ

and any choice of real θk the corresponding potential always has singularities on the

real line. This means that in the Laurent case we do not have non-trivial regular

examples (unlike the Hermite case with double partitions).
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Conclusion

In Part I, we studied the spectral properties of the complex Lamé operator

L = − d2

dx2
+m(m+ 1)ω2℘(ωx+ z0), z0 ∈ C,

with ω one of the half-periods of ℘(z). In particular, when ω is real and z0 is any

complex number such that L is regular for all real x, the spectrum is independent of

z0 and coincides with the classical self-adjoint case z0 = ω3. In that case we showed

that all closed gaps belong to the infinite spectral band for all m ∈ N.

When ω = ω2 we considered the first non-trivial case m = 1, and studied the

geometry of the corresponding spectral arcs. In this case we also showed that all

closed gaps belong to the infinite spectral arc. It remains an open problem whether

the same is true for all m ∈ N and ω.

Another interesting direction for future research is the difference case, where we

believe the answer will depend on the arithmetic properties of the shift η = P/Q.

In the limit Q→∞ we should recover the previous results.

In Part II, we have discussed two complex versions of the exceptional orthogonal

polynomials, related to two classes of monodromy-free Schrödinger operators. It

would be interesting to explore whether a similar procedure could be applied to

other classes of exceptional orthogonal polynomials, like the Jacobi and Laguerre

families [25, 40, 32].

We would like to emphasize two novelties compared to the original approach of

Gómez-Ullate et al. [19, 18].

First, in order to define the inner product in general we have to reduce the space

of polynomials to the subspace of quasi-invariants, which has a finite codimension.

The only exception is the Hermite case with double partitions considered in [18].

96



Spectral properties of integrable Schrödinger operators with singular potentials

Second, in the Laurent case the space of quasi-invariants is not generated by the

corresponding exceptional Laurent polynomials, so we need to consider the minimal

complex Euclidean extension.

The scheme for generating extended recurrence relations of exceptional ortho-

gonal polynomials from the three-term recurrence relations of the corresponding

classical orthogonal polynomial families was established by Odake in [38]. This was

adapted by Gomez-Ullate et al. for the exceptional Hermite polynomials [18]. It

would be interesting to investigate whether the same method could be applied to

the ELPQs, as well as any subsequently found exceptional orthogonal polynomials

with quasi-invariance, to develop a full picture of their characterisation.

In the rational case with sextic growth at infinity there are some partial results

[17], which lead to finite sets of orthogonal polynomials of the same degree. It would

be interesting to analyse this situation in the view of a very interesting recent paper

by Felder and Willwacher [14].

It would be interesting also to see what happens with exceptional orthogonal

polynomials in the multidimensional case. One can use the monodromy-free gener-

alised Calogero-Moser operators, playing an important role in the theory of Huygens

principle [6].
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