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ON HYPERBOLIC SYSTEMS WITH TIME DEPENDENT HÖLDER
CHARACTERISTICS

CLAUDIA GARETTO AND MICHAEL RUZHANSKY

Abstract. In this paper we study the well-posedness of weakly hyperbolic systems
with time dependent coefficients. We assume that the eigenvalues are low regular,
in the sense that they are Hölder with respect to t. In the past these kind of sys-
tems have been investigated by Yuzawa [Yuz05] and Kajitani [KY06] by employing
semigroup techniques (Tanabe-Sobolevski method). Here, under a certain uniform
property of the eigenvalues, we improve the Gevrey well-posedness result of [Yuz05]
and we obtain well-posedness in spaces of ultradistributions as well. Our main idea
is a reduction of the system to block Sylvester form and then the formulation of
suitable energy estimates inspired by the treatment of scalar equations in [GR12].

1. Introduction

We want to study the Cauchy problem for first order hyperbolic systems of the
type

Dtu− A(t, Dx)u− B(t)u = 0, x ∈ R
n, t ∈ [0, T ],

u|t=0 = g0,
(1)

where A and B are m×m matrices of first order and zero order differential operators,
respectively, with t-dependent coefficients, u and g0 are column vectors withm entries.
We work under the assumptions that the system matrix is of size m ×m with real
eigenvalues and that the coefficients are of class Cm−1 with respect to t. It follows that
at the points of highest multiplicity the eigenvalues are of Hölder class (m − 1)/m.
We will therefore assume that the matrix A(t, ξ) has m real eigenvalues λj(t, ξ) of
Hölder class Cα, 0 < α ≤ 1 with respect to t. Note that it is not restrictive to assume
that the eigenvalues λj, j = 1, . . . , m, are ordered because we can always reorder
them to satisfy this (ordering) assumption, and the Hölder continuity is preserved by
such reordering. If α = 1, it is sufficient to assume that λj, j = 1, . . . , m, is Lipschitz.
In analogy with scalar equations in [GR12] and [CK02] we work under the hypoth-

esis of the following uniform property : there exists a constant c > 0 such that

(2) |λi(t, ξ)− λj(t, ξ)| ≤ c|λk(t, ξ)− λk−1(t, ξ)|,

for all 1 ≤ i, j, k ≤ m, t ∈ [0, T ] and ξ ∈ R
n.

Assumptions of Hölder regularity of this type and the uniform condition (2) are
rather natural, see Colombini and Kinoshita [CK02] and the authors’ paper [GR12]
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for a discussion and examples. In particular, Colombini and Kinoshita [CK02] treated
the scalar version of the Cauchy problem (1) with n = 1, and the authors extended it
to the multidimensional case n ≥ 1 in [GR12], also improving some Gevrey indices.
The research of this paper continues investigations of properties of solutions to

Cauchy problems for hyperbolic equations with multiplicities. The case of time-
dependent coefficients already presents a number of challenging problems, most im-
portantly in view of the fact that already the scalar wave equation

(3) ∂2
t v − a(t)∆v = 0, v(0) = v0, ∂tv(0) = v1,

in dimension n = 1 may not be well-posed even for smooth data v0, v1 ∈ C∞. More
precisely, if a ∈ Cα is Hölder with 0 < α < 1, even in the strictly hyperbolic
case a > 0 the Cauchy problem (3) may have non-unique solutions (see Colombini,
Jannelli and Spagnolo [CJS87]); and in the weakly hyperbolic case a ≥ 0 even if a is
smooth a ∈ C∞, the Cauchy problem (3) may have no distributional solutions (see
Colombini and Spagnolo [CS82]). However, the Cauchy problem (3) is well-posed in
suitable Gevrey classes, see Colombini, de Giorgi and Spagnolo [CDGS79]. At the
moment, scalar higher order equations with time-dependent coefficients are relatively
understood, see e.g. [CK02, KS06] and their respective extensions in [GR12, GR13].
Further extreme cases: analytic coefficients and distributional coefficients have been
also investigated, see e.g. authors’ papers [GR14, GR15, G15], respectively, and
references therein. Hyperbolic systems of the form (1) have been also investigated,
see e.g. Yuzawa [Yuz05], Kajitani and Yuzawa [KY06] and Garetto [G15].

The main new idea behind this paper enabling us to obtain an improvement in the
well-posedness results for the system in (1) is the transformation of the system (1)
to a larger system which, however, enjoys the property of being in block Sylvester
form. Such a transformation, which can be performed under the assumption that
the system coefficients are of class Cm−1 with respect to t, is carried out following
the method of D’Ancona and Spagnolo [DS98], leading to the Cauchy problem of the
form

DtU −A(t, Dx)U − L(t, Dx)U = 0,

Ut=0 = {Dj−1
t 〈Dx〉

m−jg0}j=1,2,...,m.
(4)

This is a Cauchy problem for the first order hyperbolic system of the size m2 ×m2

of pseudo-differential equations. Despite the increase of the size of the system from
m×m to m2 ×m2 and the change from a differential system to a pseudo-differential
one, the system (4) has a crucial advantage of being in a block Sylvester form, see
(9) for a precise formulation. This allows us to implement the ideas developed in
[GR12] for scalar equations, where the reduction of a scalar equation to a Sylvester
form system was performed.
To summarise our result here we first note that combining the results in [Yuz05,

KY06] we already know that the Cauchy problem (1) is well-posed in the Gevrey
class γs, with

(5) 1 ≤ s < 1 +
α

m
.

Arguing by the Fourier characterisation of Gevrey-Beurling ultradistributions one
can easily extend the Gevrey well-posedness above to spaces of ultradistributions. It
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is our aim in this paper to show that the interval of Gevrey well-posedness in (5) can
be enlarged under the uniform property (2) of the eigenvalues. Since by the results of
Kajitani and Yuzawa at least an ultradistributional solution exists for Gevrey initial
data with s ≥ 1+ α

m
we will prove, for suitable values of s, that this solution is indeed

Gevrey, because it solves the reduced Cauchy problem (4). In this sense, the well-
posedness of (1) can be determined by studying the well-posedness of the reduced
Cauchy problem (4). More precisely, by standard arguments it is sufficient to find an
a-priori estimate on the Fourier transform with respect to x of the solution U of (4).
We assume that the Gevrey classes γs(Rn) are well-known: these are spaces of all

f ∈ C∞(Rn) such that for every compact set K ⊂ R
n there exists a constant C > 0

such that for all β ∈ N
n
0 we have the estimate

(6) sup
x∈K

|∂βf(x)| ≤ C |β|+1(β!)s.

For s = 1, we obtain the class of analytic functions. We refer to [GR12] for a detailed
discussion and Fourier characterisations of Gevrey spaces of different types. Since we
are dealing with vectors in this paper, we will write γs(Rn)m for m-vectors consisting
of functions in γs(Rn). This is our main result:

Theorem 1.1. Assume that coefficients of the m×m matrices A and B are of class
Cm−1 and that the matrix A(t, ξ) has m real eigenvalues λj(t, ξ) of Hölder class Cα,
0 < α ≤ 1 with respect to t, that satisfy (2). Let T > 0 and g0 ∈ γs(Rn)m. Then, the
Cauchy problem (1) has a unique solution u ∈ C1([0, T ], γs(Rn)m) provided that

(7) 1 ≤ s < 1 + min

{
α,

1

m− 1

}
.

For the proof we can assume that s > 1 since the case s = 1 is essentially known,
see [Jan84] and [Kaj86].
Also, we note that the proof also covers the case α = 1, in which case it is enough

to assume that the eigenvalues are Lipschitz.
We note that the result of Theorem 1.1 is an improvement of known results in

terms of the Gevrey order. For example, this is an improvement of Yuzawa’s and
Kajitani’s order (5) from [KY06, Yuz05]. See Remark 2.2 for more details.

The energy estimates obtained in the proof of Theorem 1.1 allow one to also obtain
the ultradistributional well-posedness results. First we note that the Gevrey spaces
γs(Rn) considered in (6) are of Gevrey-Roumeau type. At the same time, we denote
by γ(s)(Rn) the Gevrey spaces of Gevrey-Beurling type, i.e. the space of all f ∈
C∞(Rn) such that for every compact set K ⊂ R

n and for every constant A > 0 there
exists a constant CA,K > 0 such that for all β ∈ N

n
0 we have the estimate

sup
x∈K

|∂βf(x)| ≤ CA,KA
|β|(β!)s.

For 1 < s < ∞, we denote by D′
(s)(R

n) := (γ
(s)
c (Rn))′ the topological dual of

compactly supported functions in γ(s)(Rn) and by E ′
(s)(R

n) the topological dual of

γ(s)(Rn). Consequently, arguing similarly to [GR12], the proof of Theorem 1.1 yields
the following ultradistributional well-posedness:
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Theorem 1.2. Assume that coefficients of the m×m matrices A and B are of class
Cm−1 and that the matrix A(t, ξ) has m real eigenvalues λj(t, ξ) of Hölder class Cα,
0 < α ≤ 1 with respect to t, that satisfy (2). Let T > 0 and g0 ∈ (E ′

(s)(R
n))m. Then,

the Cauchy problem (1) has a unique solution u ∈ C1([0, T ], (D′
(s)(R

n))m) provided
that

1 < s ≤ 1 + min

{
α,

1

m− 1

}
.

2. Proof of Theorem 1.1

The first step in our new approach to the Cauchy problem (1) is to rewrite the
system in a special form, i.e., in block Sylvester form. This is possible thanks to the
reduction given by d’Ancona and Spagnolo in [DS98], which is summarised in the
following subsection.

2.1. Reduction to block Sylvester form. We begin by considering the cofactor
matrix L(t, τ, ξ) of (τI−A(t, ξ))T where I is the m×m identity matrix. By applying
the corresponding operator L(t, Dt, Dx) to (1) we transform the system

Dtu−A(t, Dx)u−B(t)u = 0

into

(8) δ(t, Dt, Dx)Iu− C(t, Dt, Dx)u = 0,

where δ(t, τ, ξ) = det(τI − A(t, ξ)), C(t, Dt, Dx) is the matrix of lower order terms
(differential operators of order m−1). Since the entries of A and B are of class Cm−1

with respect to t the equation above has continuous t-dependent coefficients. Indeed,
the coefficients of the equation Dtu − A(t, Dx)u − B(t)u = 0 are of class Cm−1 and
the operator L(t, Dt, Dx) is of order m− 1 being defined via the cofactor matrix of a
m×m matrix. Note that δ(t, Dt, Dx) is the operator

Dm
t +

m−1∑

h=0

bm−h(t, Dx)D
h
t ,

with bm−h(t, ξ) homogeneous polynomial of order m− h.
We got in this way a set of scalar equations of order m which can be transformed

into a first order system of size m2 ×m2 of pseudodifferential equations, by setting

U = {Dj−1
t 〈Dx〉

m−ju}j=1,2,...,m,

where 〈Dx〉 is the pseudodifferential operator with symbol 〈ξ〉. More precisely, the
equation (8) is now written as

DtU −A(t, Dx)U −L(t, Dx)U = 0,
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where A is a m2 ×m2 matrix made of m identical blocks of the type

〈Dx〉·



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

−bm(t, Dx)〈Dx〉
−m −bm−1(t, Dx)〈Dx〉

−m+1 · · · · · · −b1(t, Dx)〈Dx〉
−1


 ,

and the matrix L of the lower order terms is made of m blocks of size m×m2 of the
type 



0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

lj,1(t, Dx) lj,2(t, Dx) · · · · · · lj,m2−1(t, Dx) lj,m2(t, Dx)


 ,

with j = 1, . . . , m. Note that the entries of the matrices A and L are pseudodiffer-
ential operators of order 1 and 0, respectively.
Concluding, the Cauchy problem (1) has been transformed into

DtU −A(t, Dx)U − L(t, Dx)U = 0,

Ut=0 = {Dj−1
t 〈Dx〉

m−jg0}j=1,2,...,m.
(9)

This is a Cauchy problem of first order pseudodifferential equations with principal
part in block Sylvester form. The size of the system is increased from m × m to
m2 × m2 but the system is still hyperbolic, since the eigenvalues of any block of
A(t, ξ) are the eigenvalues of the matrix A(t, ξ).

2.2. Energy estimates. As in [GR12] we regularise the eigenvalues λj(t, ξ) with
respect to t and we separate them by adding some power of a parameter ε → 0. In
detail, assuming that the λj ’s are ordered and taking a mollifier ϕ ∈ C∞

c (R), ϕ ≥ 0
with

∫
ϕ(t) dt = 1 we set

λj,ε(t, ξ) := (λj(·, ξ) ∗ ϕε)(t) + jεα〈ξ〉, t ∈ [0, T ], ξ ∈ R
n,

where ϕε(t) = ε−1ϕ(t/ε) and j = 1, . . . , m. The next proposition collects the main
properties of these regularised eigenvalues and has been proven in [GR12] (see Propo-
sitions 18 and 19).

Proposition 2.1. Let ϕ ∈ C∞
c (R), ϕ ≥ 0 with

∫
R
ϕ(x) dx = 1.

Under the assumptions of Theorem 1.1, let

(10) λj,ε(t, ξ) := (λj(·, ξ) ∗ ϕε)(t) + jεα〈ξ〉,

for j = 1, ..., m and ϕε(s) = ε−1ϕ(s/ε), ε > 0. Then, there exists a constant c > 0
such that

(i) |∂tλj,ε(t, ξ)| ≤ c εα−1〈ξ〉,
(ii) |λj,ε(t, ξ)− λj(t, ξ)| ≤ c εα〈ξ〉,
(iii) λj,ε(t, ξ)− λi(t, ξ) ≥ εα〈ξ〉 for j > i,

for all t, s ∈ [0, T ′] with T ′ < T and all ξ ∈ R
n.
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We can now define the m2 × m2 block diagonal matrix Hε made of m identical
blocks of the type

(11)




1 1 1 . . . 1
λ1,ε〈ξ〉

−1 λ2,ε〈ξ〉
−1 λ3,ε〈ξ〉

−1 . . . λm,ε〈ξ〉
−1

λ2
1,ε〈ξ〉

−2 λ2
2,ε〈ξ〉

−2 λ2
3,ε〈ξ〉

−2 . . . λ2
m,ε〈ξ〉

−2

. . . . . . . . . . . . . . .
λm−1
1,ε 〈ξ〉−m+1 λm−1

2,ε 〈ξ〉−m+1 λm−1
3,ε 〈ξ〉−m+1 . . . λm−1

m,ε 〈ξ〉−m+1




.

By separation of the regularised eigenvalues one easily sees that the matrix Hε is
invertible. Since weakly hyperbolic equations and systems posses the finite speed of
propagation property, we know that if the initial data is compactly supported then
the solution will be compactly supported in x as well. Hence, instead of dealing with
the Cauchy problem (9) directly we can apply the Fourier transform with respect to
x to it and focus on the corresponding Cauchy problem

DtV −A(t, ξ)V −L(t, ξ)V = 0,

Vt=0 = {Dj−1
t 〈ξ〉m−j ĝ0}j=1,2,...,m.

(12)

Note assuming compactly supported initial data in Theorem 1.1 is not restrictive.
We look for a solution V (t, ξ) of the type

(13) V (t, ξ) = e−ρ(t)〈ξ〉
1
s (detHε)

−1HεW,

where ρ ∈ C1[0, T ] will be determined in the sequel. By substitution in (12) we obtain

e−ρ(t)〈ξ〉
1
s (detHε)

−1HεDtW + e−ρ(t)〈ξ〉
1
s iρ′(t)〈ξ〉

1
s (detHε)

−1HεW+

+ ie−ρ(t)〈ξ〉
1
s
∂t detHε

(detHε)2
HεW + e−ρ(t)〈ξ〉

1
s (detHε)

−1(DtHε)W

= e−ρ(t)〈ξ〉
1
s (detHε)

−1(A+ L)HεW.

Multiplying both sides of the previous equation by eρ(t)〈ξ〉
1
s (detHε)H

−1
ε we get

DtW + iρ′(t)〈ξ〉
1
sW + i

∂t detHε

detHε

W +H−1
ε (DtHε)W = H−1

ε (A+ L)HεW.

Thus,

(14) ∂t|W (t, ξ)|2 = 2Re(∂tW (t, ξ),W (t, ξ))

= 2ρ′(t)〈ξ〉
1
s |W (t, ξ)|2 + 2

∂t detHε

detHε

|W (t, ξ)|2 − 2Re(H−1
ε ∂tHεW,W )

− 2Im(H−1
ε AHεW,W )− 2Im(H−1

ε LHεW,W ).

Inspired by the treatment of higher order equations given in [GR12] we proceed by
estimating the terms:

(i) ∂t detHε

detHε

,

(ii) ‖H−1
ε ∂tHε‖,

(iii) ‖H−1
ε AHε − (H−1

ε AHε)
∗‖,

(iv) ‖H−1
ε LHε − (H−1

ε LHε)
∗‖.
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2.2.1. Estimate of (i), (ii), (iii) and (iv). We begin by noting that them identical
blocks of the m2×m2-matrix Hε are exactly given by the matrix H used in the paper
[GR12] (formula (3.4)). Hence we can set

H =




1 1 1 . . . 1
λ1,ε〈ξ〉

−1 λ2,ε〈ξ〉
−1 λ3,ε〈ξ〉

−1 . . . λm,ε〈ξ〉
−1

λ2
1,ε〈ξ〉

−2 λ2
2,ε〈ξ〉

−2 λ2
3,ε〈ξ〉

−2 . . . λ2
m,ε〈ξ〉

−2

. . . . . . . . . . . . . . .
λm−1
1,ε 〈ξ〉−m+1 λm−1

2,ε 〈ξ〉−m+1 λm−1
3,ε 〈ξ〉−m+1 . . . λm−1

m,ε 〈ξ〉−m+1




.

and observe that
∂t detHε

detHε

=
∂t detH

detH
.

By arguing as in (4.3) in [GR12] we immediately have that

(15)

∣∣∣∣
∂t detHε(t, ξ)

detHε(t, ξ)

∣∣∣∣ ≤ c1ε
−1,

for all t ∈ [0, T ], ξ ∈ R
n and ε ∈ (0, 1].

Since Hε is block diagonal its inverse will be block diagonal as well and precisely
given by m identical blocks H−1 as defined in Proposition 17(ii) in [GR12]. It follows
that to estimate ‖H−1

ε ∂tHε‖ it is enough to estimate the norm of the corresponding
block H−1∂tH . This has been done in Subsection 4.2 in [GR12] and leads to

(16) ‖H−1
ε ∂tHε‖ ≤ c2ε

−1.

Note that to obtain (16) one uses the uniform property (2) of the eigenvalues and of
the corresponding regularisations.
The same block argument applies to ‖H−1

ε AHε − (H−1
ε AHε)

∗‖. Indeed, the ma-
trix H−1

ε AHε − (H−1
ε AHε)

∗ is block diagonal with m blocks of the type H−1AH −
(H−1AH)∗. This is the type of matrix which has been estimated in Subsection 4.3
in [GR12]. In detail, ‖H−1AH − (H−1AH)∗‖ ≤ c3ε

α〈ξ〉 and therefore

(17) ‖H−1
ε AHε − (H−1

ε AHε)
∗‖ ≤ c3ε

α〈ξ〉.

Finally, if we consider now the matrix of the lower order termsH−1
ε LHε−(H−1

ε LHε)
∗

we easily sees that it is made of m blocks of the type (detH)−1 times a matrix with
0-order symbols bounded with respect to ε (see Subsection 4.4. in [GR12]). More
precisely by following the arguments of Proposition 17(iv) in [GR12] we get the esti-
mate

(18) ‖H−1
ε LHε − (H−1

ε LHε)
∗‖ ≤ c4ε

α(1−m).

We now insert (15), (16), (17) and (18) in the energy estimate (14). We obtain

(19) ∂t|W (t, ξ)|2 ≤ 2(ρ′(t)〈ξ〉
1
s + c1ε

−1 + c2ε
−1 + c3ε

α〈ξ〉+ c4ε
α(1−m))|W (t, ξ)|2

≤ (2ρ′(t)〈ξ〉
1
s + C1ε

−1 + C2ε
α〈ξ〉+ C3ε

α(1−m))|W (t, ξ)|2.

We now set ε = 〈ξ〉−γ in (19) and we compare the terms

〈ξ〉γ, 〈ξ〉1−γα, 〈ξ〉γα(m−1).

For γ = min{ 1
1+α

, 1
αm

} one has that

max{γ, γα(m− 1)} ≤ 1− γα
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and therefore

∂t|W (t, ξ)|2 ≤ (2ρ′(t)〈ξ〉
1
s + C〈ξ〉1−γα)|W (t, ξ)|2.

2.3. Conclusion of the proof of Theorem 1.1. Let ρ(t) = ρ(0)−κt, where κ > 0.
If

(20)
1

s
> 1− γα = 1−min

{
α

1 + α
,
1

m

}
= max

{
1

1 + α
,
m− 1

m

}
,

for |ξ| large enough we have that ∂t|W (t, ξ)|2 ≤ 0, i.e., W (t, ξ) = W (0, ξ). Therefore,

(21) |V (t, ξ)| = e−ρ(t)〈ξ〉
1
s

1

detHε(t, ξ)
|Hε(t, ξ)||W (t, ξ)| ≤

e−ρ(t)〈ξ〉
1
s

1

detHε(t, ξ)
|Hε(t, ξ)||W (0, ξ)| =

e(−ρ(t)+ρ(0))〈ξ〉
1
s
detHε(0, ξ)

detHε(t, ξ)
|Hε(t, ξ)||H

−1
ε (0, ξ)||V (0, ξ)|,

where, arguing on the block level for γ as above, we have

detHε(0, ξ)

detHε(t, ξ)
|Hε(t, ξ)||H

−1
ε (0, ξ)| ≤ c ε−α

(m−1)m
2 = c〈ξ〉γα

(m−1)m
2 .

It follows that,

|V (t, ξ)| ≤ ceκT 〈ξ〉
1
s 〈ξ〉γα

(m−1)m
2 |V (0, ξ)|.

By choosing κ small enough we can conclude that |V (t, ξ)| ≤ c′e−δ〈ξ〉
1
s for some

c′, δ > 0. By the Paley-Wiener characterisation of Gevrey functions this yields to the
existence and uniqueness of the solution U ∈ C1([0, T ]; γs(Rn)) of the Cauchy problem
(9) and therefore to the Gevrey well-posedness of the original Cauchy problem (1).

Remark 2.2. Note that (20) implies

s < 1 + min

{
α,

1

m− 1

}
.

This is an improvement in terms of Gevrey order of Yuzawa’s and Kajitani’s result
in [KY06, Yuz05]. Indeed, Yuzawa first for t-dependent systems (without lower order
terms) in [Yuz05] and later Yuzawa and Kajitani for (t, x)-dependent systems in
[KY06] have proven well-posedness in the Gevrey class γs, with

1 ≤ s < 1 +
α

m
.

It is easy to see that

(22)
α

m
≤ min

{
α,

1

m− 1

}
.

Remark 2.3. The strategy adopted in the proof of Theorem 1.1 shows how the energy
estimate used for scalar equations in [GR12] can be directly applied to systems after
reduction to block Sylvester form to obtain Gevrey well-posedness. In the same way
one can get well-posedness in spaces of ultradistributions. In other words, Theorem
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1.2 is proven by arguing on the reduced Cauchy problem (9) as in Subsection 4.5
from the aforementioned paper.
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