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Abstract  

 

How do kindergarteners solve different single-digit addition problem formats? We 

administered problems that differed solely on the basis of two dimensions: response type 

(approximate or exact), and stimulus type (nonsymbolic, i.e. dots, or symbolic, i.e. Arabic 

numbers). We examined how performance differs across these dimensions, and which 

cognitive mechanism (mental model, transcoding, or phonological storage) underlies 

performance in each problem format with respect to working memory (WM) resources and 

mental number line representations. As expected, nonsymbolic problem formats were easier 

than symbolic ones. The visuospatial sketchpad was the primary predictor of nonsymbolic 

addition. Symbolic problem formats were harder because they either required the storage and 

manipulation of quantitative symbols phonologically or taxed more WM resources compared 

to their nonsymbolic counterparts. In symbolic addition, WM and mental number line results 

showed that when an approximate response was needed, children transcoded the information 

to the nonsymbolic code. When an exact response was needed, however, they phonologically 

stored numerical information in the symbolic code. Lastly, we found that more accurate 

symbolic mental number line representations were related to better performance in exact 

addition problem formats, not the approximate ones. This study extends our understanding of 

the cognitive processes underlying children’s simple addition skills. 

 
 

Keywords: Numerical Cognition, Kindergarten Children, Mental Model, Simple Arithmetic, 
Nonsymbolic and Symbolic addition.  
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Working Memory and Number Line Representations in Single-digit Addition:  

Approximate versus Exact, Nonsymbolic versus Symbolic 

 

The mastery of simple arithmetic is a prerequisite for the further development of 

mathematical competencies (Geary, 2011; Hamann & Ashcraft, 1985; Price, Mazzocco, & 

Ansari, 2013). A substantial body of research has demonstrated that early childhood 

nonsymbolic and symbolic numerosity processing skills, even before school entry, are 

important for later cognitive and educational development (for reviews see De Smedt, Noël, 

Gilmore, & Ansari, 2013; Feigenson, Dehaene & Spelke, 2004; Piazza, 2010). To enhance 

early numeracy skills performance, research must first identify how performance differs 

across the various problem formats and their underlying cognitive mechanisms. Kindergarten 

age is of special interest, as it is the preparatory stage before primary school entry. At this 

stage, mathematics instruction primarily focuses on teaching children how to solve simple 

addition problems with single-digits.  

In the literature, one identifies several different addition problem formats. Despite the 

prominent roles that are being attributed to small numerosity nonsymbolic or symbolic 

processing skills (see De Smedt et al., 2013), very little is known about their underlying 

mechanisms. Addition in the form of “a + b = c” asks for an exact response and typically 

entails symbolic stimuli (i.e., Arabic numbers). This skill may take years to master (Hamann 

& Ashcraft, 1985). Children, however, can already perform better in such addition problems 

from the preschool age, if instead of symbolic stimuli they entail nonsymbolic stimuli, e.g. 

objects like chips (Rasmussen & Bisanz, 2005). Furthermore, developments in the field of 

numerical cognition have highlighted the importance of children’s early abilities to add and 

compare quantities in problems that ask for an approximate response (e.g. “a + b” vs. “c”, 

“which is more?”) and entail nonsymbolic (Barth, La Mont, Lipton, & Spelke, 2005; De 
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Smedt, Verschaffel, & Ghesquière, 2009; Gilmore, McCarthy, & Spelke, 2010; Holloway & 

Ansari, 2009; Mazzocco, Feigenson, & Halberda, 2011; Xenidou-Dervou, van Lieshout, & 

van der Schoot, 2014), or symbolic stimuli (Gilmore, McCarthy, & Spelke, 2007; Xenidou-

Dervou, De Smedt, van der Schoot, & van Lieshout, 2013).  

Approximate and exact, nonsymbolic and symbolic mental representation skills are 

assumed to comprise the core systems that underlie our ability to process and manipulate 

numbers (Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010). However, very little is known 

about how kindergarteners’ performance differs across the different problem formats. 

Existing measures in the literature differ on the basis of multiple design characteristics. Also, 

little focus has been placed on these abilities’ underlying cognitive mechanisms at the early 

stages of development. We developed and studied measures that permitted for the first time, 

to the best of our knowledge, the comparison of different single-digit addition problem 

formats on the basis of two important dimensions: 1) response type (approximate or exact), 

and 2) stimulus type (nonsymbolic or symbolic). Our aim was twofold:  Firstly, to examine 

how kindergarteners’ performance differs across the two dimensions. Secondly, to uncover 

the commonalities and differences of these abilities’ cognitive profiles. On the basis of the 

mental model for simple arithmetic (Huttenlocher, Jordan, & Levine, 1994; Rasmussen & 

Bisanz, 2005), we examined which working memory (WM) component and which mental 

number line representation form relates to performance in these different addition problem 

formats.     

 

Performance across the different single-digit addition problem formats. 

Some problem formats are easier than others (Caviola, Mammarella, Cornoldi, & 

Lucangeli, 2012; Kalaman & Lefevre, 2007; Rasmussen & Bisanz, 2005). Caviola et al., 

(2012), though, did not find this to be the case for the approximate versus exact problem 
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format dimension. In their study, school-aged children (Grades 3 and 4) found the 

approximate and exact addition problems equally difficult. Notably, however, Caviola et al.’s 

(2012) experiments addressed complex (multidigit) addition skills. Research so far has not 

examined whether the same stands for simpler arithmetic, i.e. single-digit addition, in the case 

of novice arithmeticians, who may employ different solution strategies. Additionally, Caviola 

et al’s (2012) study only addressed symbolic arithmetic. In contrast, Rasmussen and Bisanz 

(2005)’s work revealed the importance of the nonsymbolic versus symbolic1 dimension in 

single-digit mental arithmetic problems. The authors showed that novice learners perform 

better in nonsymbolic problems compared to symbolic ones. We presume that nonsymbolic 

problems are easier because nonsymbolic skills are evident already from infancy (Xu & 

Spelke, 2000) and have been shown to require little or no previous instruction even with large 

numerosities (Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou, et al., 2013, 2014). 

Furthermore, nonsymbolic approximate arithmetic skills are often thought to comprise the 

foundation for learning symbolic arithmetic (Gilmore et al., 2007; Mundy & Gilmore, 2009; 

Xenidou-Dervou, et al., 2013). We, therefore, hypothesized that nonsymbolic single-digit 

addition problem formats would be easier than symbolic ones for kindergarten children.  

But why is it that some problems are easier than others? The answer comes from 

research, which has demonstrated that different problem formats employ different cognitive 

mechanisms (Caviola et al., 2012; Kalaman & Lefevre, 2007; Rasmussen & Bisanz, 2005). 

The following sections describe the theoretical framework regarding two types of cognitive 

predictors of mental arithmetic, which comprised the focus of the present study; namely, WM 

and mental number line estimations. Their role in mental arithmetic is apprehended via the 

theoretical framework of the “mental model for simple arithmetic” (Huttenlocher et al., 1994; 

Rasmussen & Bisanz, 2005).  
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The mental model in WM for single-digit addition. 

The mental model assumes that performance variations across different simple 

arithmetic problem formats occur because different presentation formats place different 

demands on one’s WM (Huttenlocher et al., 1994; Rasmussen & Bisanz, 2005). This is 

evidenced by the differential role of WM’s components (Rasmussen & Bisanz, 2005). Before 

we continue describing the mental model, however, a short description of WM and its 

subcomponents is rendered necessary.  

WM refers to the domain general cognitive capacity that is responsible for the short-

term storage and manipulation of a limited amount of information; a necessary process for 

mental arithmetic (for reviews see DeStefano & LeFevre, 2004; Raghubar, Barnes, & Hecht, 

2010). In the influential theoretical account of WM by Baddeley and Hitch (1974; see 

Baddeley, 2012), WM is conceived as a multicomponent construct. It comprises the 

Phonological Loop (PL), which is responsible for the storage of phonological information, the 

Visuospatial Sketchpad (VSSP), which retains visuo-spatial information, and the Central 

Executive (CE), which monitors, controls and regulates the processes of the other two 

systems. All three components of WM have been demonstrated to be essential for mental 

arithmetic processing although their roles vary according to the cognitive demands of a given 

mathematical problem format (Caviola et al., 2012; DeStefano & LeFevre, 2004; Kalaman & 

Lefevre, 2007; Simmons, Willis, & Adams, 2012; Friso-van den Bos, van der Ven, 

Kroesbergen, & van Luit, 2013) and the children’s developmental stage (McKenzie, Bull, & 

Gray, 2003; Passolunghi, Mammarella, & Altoè, 2008; Rasmussen & Bisanz, 2005).  

According to the mental model, before the age of six, children perform better in 

nonsymbolic problems than in symbolic ones because they use a readily accessible mental 

model for representing the nonsymbolic quantities in their VSSP, e.g. by retaining a 

representation of each nonsymbolic item in their WM. This was evidenced by Rasmussen and 
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Bisanz (2005), who showed that the VSSP was the best and only unique predictor of 

preschoolers’ nonsymbolic exact addition performance. Symbolic problems, on the other 

hand, are harder because they require the manipulation of quantitative symbols, which are not 

so readily accessible for young novice learners. Rasmussen and Bisanz’s (2005) findings 

reveal two alternative cognitive processes that could be taking place when young learners 

solve a symbolic math problem: a) If a problem format is familiar and can be solved by means 

of a counting strategy, then children can store symbolic information phonologically and thus 

use a phonological approach to solve the problem, without needing to resort to a mental 

model. This process would demand PL resources since it regards the storage of phonological 

information. In agreement with this assumption, the authors found Grade 1 children’s 

symbolic exact addition skills to be uniquely predicted by PL measures. b) If a problem 

cannot be solved via a formal math strategy like counting, i.e. if the children have no previous 

experience or relevant knowledge to a specific problem format, then they may attempt to 

transcode the symbolic information to the nonsymbolic code. This way they can represent 

them in their readily accessible mental model (VSSP). This transcoding process inherently 

calls for the manipulation of information in one’s WM, which necessitates CE resources. 

Accordingly, symbolic exact addition performance at the beginning of the kindergarten year 

was predicted best by a CE measure in Rasmussen and Bisanz’s (2005) study. In the present 

study, we tested kindergarteners at the end of their school year. We, therefore, expected that 

they would be familiar with the symbolic exact addition format and that the PL would be the 

best WM predictor, reflecting a phonological approach.  

This theoretical framework provides a basis for understanding how young children 

solve nonsymbolic and symbolic exact addition problems. But do the mental model 

implications also extend to approximate problems? We expected that the difference in 

response type would not alter the result: the VSSP would be the primary predictor also for 
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nonsymbolic approximate problems, as kindergarteners would represent the nonsymbolic 

quantities in their readily accessible mental model. Symbolic approximate addition, however, 

is not a problem format that they encounter within their kindergarten education, at least in the 

Netherlands. We, therefore, expected that the CE would best predict performance in this 

problem format, reflecting the aforementioned transcoding process.   

The mental model, as described thus far, introduces clear predictions with respect to 

the role of the domain-general ability of WM and its’ components in simple arithmetic. 

However, even though Rasmussen and Bisanz (2005) make reference to the way numerical 

information can be mentally (trans)coded from the symbolic to the nonsymbolic code, they 

did not test domain-specific coding, i.e. how math-specific information is mentally coded. 

The present study aimed to examine the mental model’s assumptions with respect to WM’s 

components and extend it by examining also domain-specific coding, namely nonsymbolic 

and symbolic mental number line representations and the role they play in conjunction with 

WM processing in solving different addition problem formats.   

 

The role of mental number line estimations. 

One of our aims was to explore what happens beyond the storage (i.e., WM) of 

numerical information. In which form is the numerical information mentally represented in 

the different addition problem formats? It is generally perceived that people mentally 

represent numerosities on a mental number line, an equivalent to a mental ruler (e.g., Aiello et 

al., 2012; Dehaene, Bossini, & Giraux, 1993). Tasks assessing number line estimation 

typically ask participants to place a symbolic (i.e., Arabic) or a nonsymbolic (e.g., objects) 

numerosity on an empty number line that ranges, for example, from 0 to 10 and 0 to 100 

(Booth & Siegler, 2006; Sasanguie, De Smedt, Defever, & Reynvoet., 2011; Siegler & Booth, 

2004). To the best of our knowledge, the question of whether different mental number line 
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representations relate to performance in different addition problem formats has not been 

previously addressed. Below we report previous findings that broadly relate mental number 

line representations to approximate and general math achievement.  

In approximate tasks with single-digits, the role of the mental number line is assumed 

to be evidenced via the so-called distance effect: the smaller the distance between two 

quantities is, the harder it is to compare them. This effect has been consistently demonstrated 

in both nonsymbolic and symbolic approximate tasks (e.g. De Smedt, Verschaffel, & 

Ghesquière, 2009; Holloway & Ansari, 2008, 2009; Sasanguie, et al., 2011). Even though 

performance on approximate magnitude measures has received a lot of research attention with 

respect to its role in children’s mathematical achievement, very little is known so far about the 

underlying cognitive mechanisms of nonsymbolic and symbolic approximate number 

processing (De Smedt, Noël, Gilmore, & Ansari, 2013; Gilmore, Attridge, De Smedt, & 

Inglis, in press; Gilmore, Attridge, & Inglis, 2011). In Sasanguie et al.'s (2011) study, the 

single-digit approximate measures did not correlate with their number line measures. Contrary 

to the rest of their tasks, however, the nonsymbolic number line task was a paper and pencil 

version. Also, the reliance of children’s approximate judgments on the physical features of the 

nonsymbolic stimuli was not systematically controlled for in relation to the interval 

comparison quantity (i.e., target quantity vs the 10 or 100 nonsymbolic stimulus interval). For 

the present study, we developed computerized number line measures, in order to explore the 

specific relationship between mental number line representations and the four addition 

problem formats. For the first time, continuous quantity features of the nonsymbolic number 

line task were controlled for with the same methodology as that used in nonsymbolic 

approximate addition tasks (Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou, et al., 

2014).  
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The relationship between mental number line representations and exact arithmetic is 

yet unclear. Mental number line representation skills have been associated with the 

development of children’s general mathematics achievement (Booth & Siegler, 2006; 

Sasanguie et al., 2011; Siegler & Booth, 2004) but not exact arithmetic per se.  

Based on the theoretical background presented so far, we generally hypothesized that 

mental number line representations would be also associated with approximate and exact 

mental arithmetic. As mentioned earlier, according to the mental model, in nonsymbolic 

approximate and exact addition each nonsymbolic element is assumed to be mentally 

represented as such. We, therefore, expected nonsymbolic mental number line representation 

to predict performance in the nonsymbolic problem formats. The case of symbolic addition is 

less straightforward. On the one hand, in symbolic exact addition, it is assumed that children 

store the symbolic information phonologically; so symbolic number line representation should 

be expected as a predictor. On the other hand, in symbolic approximate addition, we 

hypothesized that a transoding process would take place and thus nonsymbolic number line 

representation would best predict performance.  

To summarize, the present study examined kindergarteners’ performance in 

nonsymbolic and symbolic, approximate and exact single-digit addition problem formats. Our 

aim was two-fold: Firstly, to identify which problem formats are easier for children of this 

age. Secondly, to examine how the elements of the different problem formats are stored, 

manipulated and mentally represented. In other words, we scoped to uncover the cognitive 

correlates underlying performance in each of these problem formats and identify their 

underlying cognitive mechanisms (i.e., mental model, transcoding, phonological storage). In 

general, we hypothesized that nonsymbolic problem formats would be easier than symbolic 

ones due to differences in their underlying cognitive mechanisms; the first would rely 

primarily on the children’s readily accessible mental model (Rasmussen & Bisanz, 2005). 
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Furthermore, we expected that the relationship between single-digit addition problem formats, 

WM and number line representations would depend on the characteristics of the addition 

problem format, namely: 1. Response type (approximate and exact), and 2. Stimulus type 

(nonsymbolic and symbolic). Table 1 summarizes our hypotheses for each single-digit 

addition problem format.     

 

(Table 1 about here) 

 

Method 

Participants 

We tested children from four urban kindergartens in the Netherlands. From the 

original sample four participants were removed from the analyses because they were 

identified as outliers (i.e., scored 3 standard deviations above/below the group mean in: 

symbolic approximate addition [n = 1], digit recall forwards [n = 1], digit recall backwards [n 

= 1], or symbolic number line 0-100 [n = 1]). The resulting sample consisted of 103 children 

(51 girls) Mage = 5.98, SD = 0.40. Passive consent was acquired from all participants’ legal 

guardians. All children completed testing.  

 

Procedure 

Trained experimenters tested each child individually in a quiet setting within the 

school facilities. The tasks were introduced as games and were administered in three sessions, 

each lasting approximately thirty minutes. Between each testing session there was a time span 

of minimum one day and maximum two weeks. After each session participants received small 

tokens (e.g. stickers) to sustain their motivation and interest.  
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Materials 

 Tasks used in this study were programmed in E-Prime, version 1.2 (Psychological 

Software Tools, Pittsburgh, PA, USA) and presented in HP Probook 6550b laptops.  

 

Single-digit addition problem formats. Four addition tasks were used that differed 

only on the basis of type of stimulus and response. They all entailed 3 practice and 24 testing 

trials, the latter were presented in a random sequence (see Appendix Table A1). Instructions 

and feedback were provided only during practice. The addition tasks were adapted versions of 

the approximate addition tasks used in Xenidou-Dervou, et al. (2013, 2014). Every trial in 

these tasks entailed the images of a girl on the left side of the screen (Sarah) and a boy on the 

right side (Peter). Figure 1 depicts example trials from each of the four addition problem 

formats. Numerosities in these tasks ranged from 1 up to 9 as in well-known magnitude 

comparison tasks (e.g. Holloway & Ansari, 2009) and simple arithmetic exact addition tasks 

(e.g. Rasmussen & Bisanz, 2005). The numerical distance between the stimuli ranged from 1 

up to 3 with 8 trials per distance block (see Appendix).  

 

(Figure 1 about here)  

 

Nonsymbolic approximate addition. In the nonsymbolic condition children saw (a) a 

set of blue dots appearing on the screen, (b) these were then covered up by a grey box, (c) 

then another set of blue dots fell inside the box, lastly (d) a set of red dots appeared on the 

right upper side of the screen and fell down (Figure 1). Each animated event lasted 1300ms 

and the interval between each step was 1200ms. Participants were asked to estimate “who got 

more dots, Sarah or Peter?” and to respond as correctly and as fast as possible. From the 

moment the red dots appeared on the screen, they had a maximum of 7000ms to respond. To 
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avoid responses being reliant on non-numerical characteristics, we used dot-stimuli where 

total dot surface area, total dot contour length and density were controlled for (see Appendix; 

Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou et al., 2014). Dot size varied across 

the blue and red arrays: 10.5 or 3.5 mm diameter. All dot-stimuli were developed with 

MATLAB 7.5 R2007b.  

Symbolic approximate addition. The symbolic condition was identical to the 

nonsymbolic with the sole difference of the stimuli presented. The children were told that 

Sarah and Peter would now play a game with numbers. First, Sarah would get blue boxes with 

a number of stickers in them and then Peter got a red box with a number of stickers in it. 

These boxes were labeled with Arabic numbers. Children were asked to estimate “who got 

more stickers, Sarah or Peter?” In both tasks the children responded by pressing the blue or 

the red response box situated in front of them. 

 Nonsymbolic exact addition. As depicted in Figure 1, the first two steps in the exact 

tasks were identical to the previously described approximate tasks. The sole difference of this 

nonsymbolic task with the approximate one laid in the response procedure. In the 

nonsymbolic condition children were asked to reproduce the “Exact amount of dots Sarah 

got”. They could do this by pressing the “+” or “-” response buttons situated in front of them 

in order to create dots on the screen and a separate key when their response was ready. In 

order to encourage an exact response, no response time limit was set; only at the beginning of 

the task children had been instructed to respond as correctly and as fast as possible.  

Symbolic exact addition. The symbolic condition was identical to the nonsymbolic 

one with the sole difference that now the children were instructed to show the “Exact number 

of stickers Sarah got” by pressing the correct number on the keyboard and a separate key 

when their response was ready.    
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Predictors. We aimed to identify how digits or the numerosities they correspond to 

are mentally stored, manipulated and represented when kindergarteners solved the different 

single-digit addition problem formats in order to be able to make a distinction between the 

hypothesized underlying cognitive mechanisms (i.e., mental model, transcoding, phonological 

storage). In essence, we wanted our predictor tasks to differ with our dependent variables only 

on the key aspects of interest: storage, manipulation and representation. Therefore, we used 

WM and mental number line estimation tasks, which entailed only digits or nonsymbolic 

stimuli as in the addition problem formats. 

 

WM. Kindergarteners’ WM capacity was assessed with three widely used WM tasks 

(Alloway, Gathercole, Kirkwood, & Elliott, 2008; Alloway, Gathercole, & Pickering, 2006; 

Ang & Lee, 2008; Rasmussen & Bisanz, 2005). 

 

Corsi Blocks. This task assessed VSSP WM (Ang & Lee, 2008). A cross appeared and 

disappeared on one of nine randomly positioned squares on the screen. It entailed five span 

levels, with an extra cross appearing at each span. The children were given three practice 

trials: one for the first span (one cross), the second (two crosses) and the third (three crosses). 

Children were asked to recall the location and sequence of squares where the crosses 

appeared. They could respond by clicking on the corresponding squares. Each span entailed 

six trials. After four correct responses they automatically advanced to the next span, whereas 

three incorrect responses within one span terminated the task. The maximum score within one 

span was six. The outcome measure entailed the number of trials across the spans, where the 

child recalled correctly both the location and the presentation sequence of the crosses (for 

more information see Ang & Lee, 2008). This task has demonstrated test-retest reliability .83 

in children from 4.5 to 11.5 years (Alloway et al., 2006). 
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Digit Span Forwards. This task measures children’s PL capacity (Alloway, 2007). We 

used an adapted Dutch version. Children heard a sequence of recorded digits and were asked 

to repeat them correctly in the same order. They received two practice trials, one with one 

digit and one with two. The task entailed six spans: it started with one digit and continued up 

to the sequence of six digits. With four consecutive correct answers within one span, the child 

automatically advanced to the next span. Three incorrect responses within one span led to the 

termination of the task. The maximum score within one span was four. The outcome measure 

entailed the number of correctly repeated digits in the correct order. For children from 4.5 to 

11.5 years, this task has demonstrated test-retest reliability .84 (Alloway et al., 2006).   

Digit Span Backwards. This task assesses CE processing (Alloway, 2007; for the 

adapted version see Toll, Van der Ven, Kroesbergen, & Van Luit, 2011). It was similar to the 

digit span forwards only this time the child had to recall the sequence of digits backwards. 

The task started with two digits. For children from 4.5 to 11.5 years, this task has 

demonstrated test-retest reliability .64 (Alloway et al., 2006).   

 

Mental Number line Estimations. Two computerized tasks were developed: a 

nonsymbolic and a symbolic version (Figure 2). The tasks were based on the story of 

Pinocchio. A 25 cm empty number line that started from Pinocchio’s nose was presented. 

Two intervals were administered in both conditions: 0-10 and 0-100 as in previous studies 

(e.g. Sasanguie et al., 2011). Children received four practice trials for each of the two 

intervals. The quantity to be positioned (target quantity), dots or number, was presented in a 

circle in the middle of the screen (6.7 cm diameter), 1.7 cm above the line. The intervals were 

indicated with two circles, 3 cm beneath the line on its far right and far left side. Zero was 

indicated with an empty circle.  Children were asked to “pull” Pinocchio’s nose using the 

mouse until it reached the point that they thought corresponded to the target quantity. By 
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moving the mouse right or left, Pinocchio’s nose grew larger or smaller on the line. The child 

had to click with the mouse to indicate the estimated position of the target quantity on the 

line. In the 0-10 interval, quantities 1 through 9 were presented. In the 0-100 interval the 

following quantities were presented: 2, 3, 4, 6, 11, 18, 22, 25, 42, 48, 52, 67, 71, 86 

(Sasanguie et al., 2011; Siegler & Opfer, 2003).  

Nonsymbolic stimuli were white circles with blue dots developed with the same method 

as in the nonsymbolic addition tasks (see Xenidou-Dervou et al., 2014). Dot size varied across 

the target and interval quantities: 12 or 2 mms diameter (0-10 interval) and 3.5 or 1 mm 

diameter (0-100 interval). Therefore, contrary to previous nonsymbolic number line versions, 

in this task continuous quantity variables related to the target and the interval quantity were 

controlled for, namely: total dot surface area, total dot contour length and density. Symbolic 

stimuli were circles with blue Arabic digits made in Paint with 38 font size. For the outcome 

variables Percentages of Absolute Error (PAE) were computed (see Siegler & Booth, 2004) 

based on the formula: |(Estimate – To Be Estimated Quantity)/Scale of Estimates|. Thus, if a 

child was asked to estimate the position of the number 67 on the 0-100 interval and pulled the 

“nose” to the position corresponding to the number 90 on the line, then its PAE would 

correspond to (90-67)/100 or 23%.  

It should be noted that recent research with kindergarteners has demonstrated that small 

numerosity nonsymbolic and symbolic processing skills are related to large-range (0-100) 

number line performance (Friso-van den Bos, Kroesbergen, & van Luit, 2014). Therefore, we 

included small-range number lines (0-10) because the addition problems entailed small 

numerosities, but also large-range number lines (0-100). In essence, we were interested in 

how kindergarteners’ general ability to map numbers onto a number line relate to their 

performance in simple addition problem formats, irrespective of specific strategies that may 

be employed (linear or loglinear) due to the range of the number line. Thus, in the analyses 
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the children’s mean PAE performance across all mental number line trials was used 

(Sasanguie et al., 2011), weighted on the basis of the number of trials within each range.  

 

(Figure 2 about here)  

 

Results 

Descriptive and preliminary analyses 

Table 2 presents descriptive statistics on all dependent measures and predictors. First, 

a series of analyses were conducted in order to verify that our approximate tasks indeed 

tapped the abilities in question. Participants performed above chance level (50%) in both the 

nonsymbolic, M = 81.72%, t(102) = 29.4, p < .001, and the symbolic approximate addition 

task, M = 74.68%, t(102) = 16.71, p < .001. Also, the characteristic distance effects were 

found for performance in both approximate tasks: nonsymbolic, F(2, 204) = 39.0, p < .001, 

and symbolic F(2, 204) = 14.52, p < .001 (see Figure 3). This meant that the smaller the 

distance between the summed blue quantities and the red quantity was, the harder it was to 

compare them. Further analyses showed that children did not use systematic response 

strategies alternative to approximate addition (Appendix). Also, their responses in the 

nonsymbolic condition did not rely on the physical features of the dots (Appendix). 

Therefore, performance in these approximate addition tasks replicated previous characteristic 

findings (Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou, et al., 2013; 2014). 

 

(Table 2 about here) 

 

 (Figure 3 about here) 
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Task comparisons 

All addition tasks had a maximum score of 24. However, in the approximate tasks a 

score of 12 reflected chance level performance. These scores, therefore, were transformed on 

a percentage scale with 0% as chance level and 100% as highest score. When “k” was the 

number of trials (24) and “m” the child’s performance on an approximate task then new 

scores were calculated with the formula: 100 x {[m – (k/2)] / (k/2)}. Additionally, accuracy 

data on the exact tasks were re-scaled to percentages. A 2 x 2 repeated measures ANOVA was 

conducted with the two response types (approximate and exact) and the two types of stimuli 

(nonsymbolic and symbolic). Results showed a significant main effect for stimulus type, F(1, 

102) = 20.30, p <.001, partial η2 = .17, on addition performance. No main effect for response 

type (p = .16) or interaction effect (p = .10) was found. As expected, kindergarteners’ 

performance was significantly better in the nonsymbolic conditions (M = 59.93 %) compared 

to the symbolic ones (M = 49.55%). Their performance did not differ, however, between the 

approximate (M = 56.39 %) and exact tasks (M = 53.10 %). 

 

Correlations 

Next, correlations were computed in order to determine which WM and number line 

variable correlated with each of the four different addition problem formats (Table 3). Age did 

not correlate with children’s performance in any of the measures. Accuracy in all addition 

measures correlated significantly with the VSSP and PL measure. The CE only correlated 

with symbolic approximate and nonsymbolic exact addition. Furthermore, performance in all 

addition tasks correlated with both number line measures with the exception of the 

nonsymbolic approximate addition task, which did not correlate with either of the number line 

measures. Further analyses revealed possible sources of performance differentiation across the 

different addition problem formats. 
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(Table 3 about here) 

 

Regression analyses 

We were interested in which WM and number line measure predicted performance in 

each of the four addition problem formats. We did not have specific hypotheses with respect 

to the order of importance of the predictors for all dependent variables. We, therefore, 

conducted four stepwise multiple linear regression analyses for each addition problem format 

with their respective predictors2. Table 4 shows the regression analyses’ results and Table 5 

depicts a summarized representation of these findings alongside the corresponding mental 

process proposed.  

 (Table 4 about here) 

 

Nonsymbolic Approximate. Results showed that the VSSP, t(102) = 2.83, p =	.006, was 

the best and only unique predictor of nonsymbolic approximate addition. As evidenced in the 

correlation analyses, performance in this task did not correlate with either of the two mental 

number line estimation tasks. Thus, one may doubt whether the nonsymbolic approximate 

task used in this study actually tapped the desired ability. We found that children performed 

highly above chance level and replicated the characteristic distance effect. However, five 

trials in our nonsymbolic approximate task could have been subitized and not estimated 

approximately (see Table A1; trials 2, 5, 6, 12 & 15). Subitizing is a mental process, which 

reflects the accurate numeration of sets up to 3 or 4 (Revkin, Piazza, Izard, Cohen, & 

Dehaene, 2008). In these trials, both the summed addends and the comparison quantity 

belonged in this small number-range category (1-4) and could have thus been solely subitized. 

We, therefore, re-ran the analyses having removed these trials. Results remained the same. 
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Once again, nonsymbolic approximate addition did not correlate with either the nonsymbolic 

(p = .117) or the symbolic number line estimation task (p = .350).  

 

Symbolic Approximate. As expected, nonsymbolic number line estimation, t(102) = - 

4.03, p < .001, the VSSP, t(102) = 2.91, p = .004 and the CE, t(102) = 2.18, p = .032, were 

demonstrated to be significant predictors of symbolic approximate addition. This pattern of 

results is consistent with the transcoding assumption (involvement of the CE), which permits 

the quantities to be transcoded to the nonsymbolic code and thus be processed in ones mental 

model (VSSP).  

 

Nonsymbolic Exact. Results showed that, for kindergarteners the VSSP was the best 

WM predictor (see beta values in Table 4) of nonsymbolic exact addition in the multiple 

regression model, t(102) = 5.89, p < .001. Aside from the VSSP, though, the symbolic mental 

number line predictor, t(102) = -3.73, p < .001 and the CE, t(102) = 2.00, p = .049 also 

explained significant variance. These results suggest an alternative transcoding process. 

Namely, that the nonsymbolic quantities mentally represented in the VSSP can be transcoded 

via the CE to the symbolic code (symbolic number line estimation).   

 

Symbolic Exact. In the case of symbolic exact addition, as expected, children’s 

performance in the symbolic mental number line representation task, t(102) = -3.89, p < .001, 

and the PL, t(102) = 2.97, p = .004, were identified as the significant predictor variables.  

 

(Table 5 about here) 
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 Discussion 

The present study examined kindergarteners’ performance in four addition problem 

formats that differed solely on the basis of response type (approximate or exact) and stimulus 

type (nonsymbolic or symbolic). Our aim was to examine how performance differs across 

these problem formats and to uncover their underlying cognitive mechanisms (i.e., mental 

model, transcoding, or phonological storage).  Specifically, we sought for the commonalities 

and differences in these addition skills’ cognitive profiles on the basis of the mental model for 

simple arithmetic (Huttenlocher et al., 1994; Rasmussen & Bisanz, 2005). We expected that 

nonsymbolic problems would be easier compared to symbolic ones and that different 

combinations of WM components and mental number line representations would be related to 

performance in the different problem formats. These expectations were confirmed (Table 5).  

We found that kindergarteners’ performance did not differ on the basis of the response 

type of the addition problem (approximate or exact); both problem formats were equally 

difficult for them. Caviola et al., (2012) evidenced the same result for school-aged children 

when comparing their performance across symbolic approximate and exact tasks. Our study 

extends previous findings by showing that what makes a difference in the level of difficulty of 

an arithmetic problem format (either approximate or exact) is the type of stimuli used. As 

expected, problem formats with nonsymbolic stimuli were easier than the symbolic ones. 

Consistent with the assumptions put forward by Huttenlocher et al. (1994) and Rasmussen & 

Bisanz (2005), these problems were easier because their performance seemed to primarily rely 

on a readily accessible cognitive system allowing them to be solved without needing a lot of 

previous instruction. This system necessitates the VSSP (Huttenlocher et al., 1994; 

Rasmussen & Bisanz, 2005) and, accordingly, the VSSP was the primary predictor of both 

exact and approximate nonsymbolic addition. In the following section, we discuss our 

findings for each single-digit problem format. 
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Our results demonstrated for the first time that the VSSP was the best and only WM 

predictor of single-digit nonsymbolic approximate addition. Contrary to large-numerosity 

nonsymbolic approximate addition, which necessitates the CE component of WM in order to 

process condensed whole arrays (Xenidou-Dervou, et al., 2014), single-digit nonsymbolic 

approximate addition was not related to CE processing. Thus, as expected, kindergarteners’ 

performance in this task reflected the use of a mental model for representing quantities in 

their WM (Huttenlocher et al., 1994; Rasmussen & Bisanz, 2005). Notably, performance in 

this problem format did not correlate with either of the two number line measures as in the 

case of Sasanguie et al.'s (2011) results. 

The assumption that mental number line representation underlies approximate 

estimation has been derived from findings relating numerical distance with spatial distance 

(e.g. Dehaene et al., 1993). Barth and Paladino (2011), however, have suggested that mental 

number line estimation tasks may actually tap the ability to judge proportions.  Our results 

suggest that single-digit nonsymbolic approximate addition is not related to the ability to 

estimate quantities or proportions on a mental number line. This finding may be attributed to 

the different nature of the nonsymbolic approximate addition task and the number line tasks: 

the first asks for an approximate estimation, whereas the latter ask for a more precise 

estimation of the target. We found that nonsymbolic approximate tasks with single-digits 

primarily reflect children’s VSSP capacity. Nonsymbolic approximate magnitude measures 

with numerosities ranging from 1 up to 9 (as in our task) have been widely used within the 

literature but their underlying mechanisms had been so far largely unexplored. The most well 

known ones are the magnitude comparison tasks (e.g. Holloway & Ansari, 2009; Nosworthy, 

Bugden, Archibald, Evans, & Ansari, 2013; Sasanguie et al., 2011). Our findings suggest that 

VSSP WM capacity should be taken into account when examining the role of such small-
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numerosity approximate magnitude tasks in young children and raise the question of to what 

extent do such tasks assess numerical estimation beyond VSSP capacities.     

In the case of symbolic approximate addition, as expected, our results showed that 

performance in this problem format was related with nonsymbolic mental number line 

representation, the CE and the VSSP. This pattern of results supported the assumption that at 

this young age in unfamiliar problem formats children transcode symbolic information to the 

nonsymbolic code in order to process them in their mental model (Rasmussen & Bisanz, 

2005). This way, the symbolic information can be held in memory in its original code 

(symbolic) while translating it via the CE into the nonsymbolic code (nonsymbolic mental 

number line representation), in order for it to be represented in the readily accessible system 

that requires the VSSP (Rasmussen & Bisanz, 2005). Previous research had not addressed 

domain-specific coding, namely what happens beyond the storage of numerical information in 

ones’ WM. These findings demonstrated for the first time the collective roles that mental 

number line representation and WM components play in symbolic approximate mental 

addition. Aside from the nonsymbolic number line estimation skills, the CE and the VSSP 

were rendered as significant predictors. Symbolic approximate addition, therefore, placed a 

significant amount of cognitive demands on the kindergarteners, making it a harder problem 

format than its nonsymbolic counterpart.  

In the nonsymbolic exact addition problem format, besides the expected primary role 

of the VSSP, the CE and symbolic mental number line representation were unexpectedly also 

shown to be contributing predictors reflecting an alternate type of a transcoding mechanism. 

This is contradictory to Rasmussen and Bisanz’s (2005) finding where the VSSP was the only 

predictor of nonsymbolic exact addition and our hypothesis that nonsymbolic number line 

representation would predict performance in this addition task. On the contrary, results 

suggested that the nonsymbolic information of the addition task may have been mentally 
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transcoded to the symbolic form via the CE. A key difference between our study and that of 

Rasmussen and Bisanz’s (2005), was the time-point within the school year when the 

kindergarteners were tested. In our study they were tested at the end of their school year, 

when they were already very familiar with symbolic exact addition problems of the form “a + 

b = c”. It seems as if, at this developmental stage, the preferred representation mode for exact 

problem formats is the symbolic code, i.e., the solution of the addition problem being 

represented in its Arabic numeral form. Thus, we assume that some children instead of using 

solely their mental model to represent this nonsymbolic information (VSSP), they attempted 

to transcode it into the symbolic code via their CE in order to produce the appropriate exact 

response. In Table 5, one notices that in symbolic approximate addition the opposite 

transcoding process was reflected. Our findings, therefore, suggest that based on the response 

and stimulus type of a given problem format, children may use different transcoding 

processes in order to produce the appropriate responses. As this is the first indication of 

alternate transcoding processes taking place when solving different simple addition problems, 

this interpretation should be considered as tentative and future research should further 

examine the different transcoding processes that may take place when solving different math 

problem formats.  

Symbolic exact addition, is a problem format with which kindergarteners are very 

familiar with, namely the “a + b = c” form of math problems. Rasmussen and Bisanz’s (2005) 

findings in exact symbolic addition had suggested that when a symbolic problem format is 

familiar, then the children could use a phonological approach to solve the problem. As 

expected, kindergarteners’ PL and symbolic mental number line estimation skills predicted 

their symbolic exact addition performance. This suggested that they could solve this problem 

format by phonologically storing numerical information in the symbolic code. Thus, 

performance in this task was related to previous experience with symbolic arithmetic and not 
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with the children’s readily accessible mental model, constituting symbolic exact addition a 

harder problem format than its nonsymbolic version.  

 

General remarks 

The present study’s findings demonstrated that symbolic single-digit problem formats 

(approximate or exact) are harder than their nonsymbolic counterparts because they tend to 

either tax more WM resources or require the phonological storage and manipulation of 

quantitative symbols. Our findings extend the existing literature by: a) demonstrating the 

interrelationship of storage, manipulation and representation of numerosities when solving 

different types of simple addition problem formats, b) uncovering the different cognitive 

mechanisms - mental model, transcoding or phonological storage - which may take place 

while solving nonsymbolic or symbolic, approximate or exact simple addition problems. 

One of the outstanding questions in numerical cognition relates to not only identifying 

predictors of arithmetic performance but also their interrelations and integrative roles 

(Xenidou-Dervou et al., 2013). The present study demonstrated how different combinations of 

WM predictors reflect different underlying cognitive mechanisms for the first time in 

conjunction with domain-specific coding, such as mental number line estimation skills. With 

respect to the role of number line representations, our findings provided proof for the mental 

model assumptions with respect to domain-specific coding, and highlighted for the first time 

their differential relation to solving different single-digit addition problem formats. We found 

that more accurate symbolic number line representations relate to better performance in exact 

addition problem formats, but not the approximate ones. In other words, the better 

kindergarteners could mentally represent symbolic notations, the better they could perform on 

math problems of the form “a + b = c” with either nonsymbolic or symbolic stimuli. More 

accurate nonsymbolic number line representations, on the other hand, were related to 
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performance in a problem format, which is not familiar to children, namely symbolic 

approximate addition.  

In general, the literature so far, has focused on the differential predictive role of 

nonsymbolic and symbolic magnitude estimation abilities in children’s general math 

achievement (De Smedt & Gilmore, 2011; Holloway & Ansari, 2009; Sasanguie et al., 2011; 

Xenidou-Dervou, et al., 2013). Despite the importance of this issue, though, it is also 

important to understand how these abilities affect performance in different arithmetic problem 

formats. Our findings comprise a stepping-stone towards this direction. We did not, however, 

address the different number line ranges as different predictors. This was done for statistical 

and psychometric reasons (e.g. would lead to too many predictors in total and too few trials 

within the 0-10 range); moreover this issue was beyond the immediate scope of the study. 

Developmental research in this domain, though, should examine the role of the different 

mental number line ranges and the issue of linear versus logarithmic number line 

representation when addressing the prediction of different math problem formats, since 

evidence suggests that different number line ranges demonstrate differential developmental 

trajectories (Siegler & Booth, 2004). There is also the question of whether number line tasks 

actually assess numerical magnitude processing (Barth & Paladino, 2011). Especially, in light 

of the absence of a relation between nonsymbolic approximate addition and number line 

estimation, we suggest that future research addresses alternative questions of underlying 

number processing, such as magnitude comparison (e.g. Holloway & Ansari, 2009).  

Future research should also shed further light in the solution processes involved in the 

different single-digit problem formats. It would be interesting, for example, to examine the 

different strategies employed when solving nonsymbolic and symbolic single-digit problem 

formats and execute more rigorous experimental tests in order to examine the online role of 

the proposed underlying cognitive mechanisms. This can be done with dual-task designs, 
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which can be applied in children as young as pre-school (Xenidou-Dervou et al., 2014). 

Furthermore, the relatively small amount of variance explained in certain regression models, 

indicates that further underlying skills should be examined in conjunction with WM and 

number line representation, such as subitizing, magnitude comparison or counting skills. 

Lastly, it would be interesting for future research to examine the role of WM in these problem 

formats also with math non-specific WM predictors, as well as use a CE measure that taps on 

the VSSP subcomponent of WM. 

In summary, the present experiment’s findings introduce new insights into 

understanding how children conduct simple arithmetic before they start primary school 

instruction. Especially from an educational design perspective, our findings demonstrate how 

specific variations amongst addition problem formats relate to different cognitive processes, 

which are important for the development of children’s mathematical progress and 

achievement.  
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Footnotes 
1 In their study, Rasmussen and Bisanz (2005) address nonverbal (i.e., chips) and verbal 

quantities (i.e. verbal formulation of the symbolic problem). In essence, though, what they 

called “nonverbal” quantities is the same as what we and other authors mean with 

“nonsymbolic” quantities.  

2 We also conducted two sets of reversed hierarchical multiple regressions for each problem 

format with the group of WM measures in one step and the group of number line predictors in 

the other. The measures within each group of predictors were entered stepwise. Results were 

similar; therefore, for clarity purposes only the single stepwise linear regression results are 

reported. 
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Appendix 

 

The present study’s approximate addition tasks were designed based on well known 

approximate magnitude tasks. They entailed the presentation format of approximate addition 

tasks (Barth et al., 2006; Gilmore et al., 2007; Xenidou-Dervou, et al., 2013) and the 

numerosity range of magnitude comparison tasks (De Smedt, Verschaffel, & Ghesquière, 

2009; Holloway & Ansari, 2009; Sekuler & Mierkiewicz, 1977). This numerosity range, 

namely one up to nine, could be directly compared with corresponding single-digit exact 

addition tasks (Huttenlocher et al., 1994; Rasmussen & Bisanz, 2005). Table A1 shows the 24 

trials used across all addition problem formats. They were designed in such a manner that 

allowed post-hoc examination of possible strategies alternative to approximate addition (e.g., 

Xenidou-Dervou et al., 2014).  

Since the numerosity range in our addition tasks was much smaller compared to other 

approximate tasks (Xenidou-Dervou et al., 2013, 2014)., we could by default control for less 

alternative systematic response preferences. In Table A1, under the “strategy response 

preferences column”, two alternative strategies are shown: Strategy “Blue” controlled for 

children’s possible tendency to press only the blue response button. Strategy “red” reflects the 

respective control for the red response button. A trial listed as 1 indicated that the strategy 

predicted the correct response in this trial, whereas -1 signifies the prediction of an incorrect 

response. If children made use of one of the two strategies, then they would have performed at 

chance level (50%). Results in Table A2, demonstrated that neither strategy was used in the 

nonsymbolic and the symbolic approximate addition problem.  

 

(Table A1 about here)
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Furthermore, we examined whether children’s responses were reliant on combined 

feature-variables of the dots in the nonsymbolic addition problem: namely, dot size, summed 

dot surface area, summed dot circumference, density and array total area (Barth et al., 2006; 

Gilmore et al., 2007; Xenidou-Dervou et al., 2013). As shown in Table A1 (continuous 

quantity column), half of the trials were presented in condition A, where dot size, summed dot 

surface area, total dot contour length and density were positively correlated with number. In 

condition B, these dot-feature characteristics were negatively correlated with number. 

Children performed above chance level in both conditions (Table A2) indicating that their 

responses were not reliant on continuous quantity variables. 

 

(Table A2 about here) 
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Figure 1. Example trials from the four addition problem formats. 
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Figure 2. Example trials from the nonsymbolic and symbolic mental number line tasks. 

  

A) Nonsymbolic number line  

B) Symbolic number line 
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Figure 3. Distance effects in the two approximate addition tasks: nonsymbolic and symbolic. 

The horizontal axis represents the three distance levels: from the small distance (D1), to the 

middle (D2) and largest one (D3). 
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Table 1. 

 

Hypothesized WM and Mental Number Line Estimation Predictors for Each of the Four 

Single-digit addition Problem Formats and the Expected Underlying Cognitive Mechanisms. 

 

 

  

Approximate  Exact 

Nonsymbolic  Symbolic  Nonsymbolic  Symbolic 

  WM   

VSSP  CE  VSSP  PL 

  VSSP     

  Mental Number Line    

Nonsymbolic  Nonsymbolic  Nonsymbolic  Symbolic 

  Cognitive Mechanism   

Mental model 

 

 Transcoding 

 

 Mental model 

 

 Phonological 
storage of 
symbolic 

information 
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Table 2. 
 

Descriptive Statistics. 

 

Addition measures M(SD) Max 

Nonsymbolic Approximate 19.61 (2.63) 24 

Symbolic Approximate 17.92 (3.60) 24 

Nonsymbolic Exact 13.54 (4.60) 24 

Symbolic Exact 11.94 (8.01) 24 

Predictors 
 

 

WM 	 	

Visuospatial (VSSP) 14.31 (5.32) 30 

Phonological Loop (PL) 13.51 (2.46) 24 

Central Executive (CE) 4.59 (2.10) 24 

Mental Number Line 	 	

Nonsymbolic NL PAE 0.22 (0.07) 1 

Symbolic NL PAE  0.23 (0.06) 1 

 

Note. PAE = Percentage of Absolute Error, Max = Theoretical Maximum, NL PAE = Number 

Line Percentage of Absolute Error. 
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Table 3. 

Correlations Between the Four Addition Problem Formats (1 – 4) and Performance in the 

WM (5-7) and Mental Number Line (8-9) Tasks. 

 

Note. VSSP = Visuospatial, PL = Phonological Loop, CE = Central Executive, NL PAE = Number 

Line Percentage of Absolute Error. * p ≤ .05, ** p ≤ .01, *** p ≤ .001. 

  

Variables 1 2 3 4 5 6 7 8 

1. Nonsymbolic Approximate 
        

2. Symbolic Approximate   .27** 
       

3. Nonsymbolic Exact   .34***  .39*** 
      

4. Symbolic Exact   .13  .23*  .33*** 
     

5. VSSP   .27**  .35***  .51***  .25* 
    

6. PL   .25*  .23*  .33**  .32***  .36*** 
   

7. CE   .11  .36***  .39***  .14  .32***  .26** 
  

8. Nonsymbolic NL PAE -.17 -.37*** -.39*** -.21* -.27** -.05 -.33*** 
 

9. Symbolic NL PAE -.15 -.28** -.38*** -.36*** -.16 -.15 -.32*** .49*** 
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Table 4.  
 
Stepwise Multiple Linear Regression Analyses for each of the four single-digit addition problem formats. 

 

Note. 

Predictor’s 

standardized 

beta 

coefficient in 

the 

correspondin

g model (β), 

Adjusted R2, 

R2 and F 

statistics for ΔR2 are reported. VSSP = Visuospatial WM, PL = Phonological Loop, CE = Central Executive, NL PAE = Number Line Percentage of Absolute 

Error. In all tests df1 = 1.  

Addition Problem format Model Predictors β Adjusted R2 ΔR2 F df2 p 

Nonsymbolic Approximate 1 VSSP  .27 .06 .07  8.00 101 .006 

Symbolic Approximate 1 Nonsymbolic NL PAE -.37 .13 .14 16.25 101 .000 

  2 VSSP  .27 .19 .07 8.47 100 .004 

 

3 CE  .21 .22 .04 4.75 99 .032 

Nonsymbolic Exact 1 VSSP  .51 .25 .26 34.68 101 .000 

 

2 Symbolic NL PAE -.31 .33 .09  13.94 100 .001 

  3 CE .18 .35 .03  4.00 99 .049 

Symbolic Exact 1 Symbolic NL PAE -.36 .12 .13 15.12 101 .001 

  2 PL .27 .19 .07 8.83 100 .004 
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Table 5.  
 
Summarized Representation of Findings for the Four Single-digit Addition Problem Formats. 

Approximate  Exact 

Nonsymbolic  Symbolic  Nonsymbolic  Symbolic 

  WM predictors   

VSSP           VSSP  VSSP  PL 

  CE  CE   

  Mental Number Line Predictors   

ns  Nonsymbolic  Symbolic  Symbolic 

  Cognitive Mechanism   

Mental model  Transcoding   Transcoding   Phonological 
storage of symbolic 

information 

 

Note. VSSP = Visuospatial WM, PL = Phonological Loop, CE = Central Executive, ns = no 

significant predictor. 
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Table A1. 

Testing Trials and Control Conditions in the Four Addition Problem Formats. 

Trials First blue 
array (B1) 

Second blue 
array (B2) 

Correct Exact 
Response Red array (R)  Distance 

Correct 
Approximate 

Response 

Systematic Response Preferences a  Continuous 
quantity c  Blue Red 

1 2 6 8 7 -1 Sum blue 1b -1 B 
2 3 1 4 3 -1 Sum blue 1 -1 A 
3 2 3 5 4 -1 Sum blue 1 -1 B 
4 4 2 6 5 -1 Sum blue 1 -1 A 
5 1 1 2 3 1 Red -1 1 B 
6 1 2 3 4 1 Red -1 1 A 
7 2 2 4 5 1 Red -1 1 B 
8 5 2 7 8 1 Red -1 1 A 
9 5 2 7 5 -2 Sum blue 1 -1 B 

10 2 3 5 3 -2 Sum blue 1 -1 A 
11 5 3 8 6 -2 Sum blue 1 -1 B 
12 3 1 4 2 -2 Sum blue 1 -1 A 
13 2 4 6 8 2 Red -1 1 B 
14 1 2 3 5 2 Red -1 1 A 
15 1 1 2 4 2 Red -1 1 B 
16 2 2 4 6 2 Red -1 1 A 
17 5 2 7 4 -3 Sum blue 1 -1 B 
18 1 4 5 2 -3 Sum blue 1 -1 A 
19 3 3 6 3 -3 Sum blue 1 -1 B 
20 4 5 9 6 -3 Sum blue 1 -1 A 
21 1 1 2 5 3 Red -1 1 B 
22 2 1 3 6 3 Red -1 1 A 
23 2 2 4 7 3 Red -1 1 B 
24 2 1 3 6 3 Red -1 1 A 

a These columns present the control conditions for the case that children tended to press only the “Blue” button, or only the “Red” button. 
b 1 = if this response preference is chosen the correct answer is predicted. -1 = if chosen, does not predict correct answer for this trial. 
c  Control conditions for the physical features of the dots: A =Dot size, total dot surface area, total dot contour length and density were positively correlated with numerosity whereas array size was negatively correlated 
with numerosity. B = opposite relations. 
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Table A2. 

Examination of Systematic Response Preferences and Continuous Quantity Effects  

 
Control 

Condition 
Number of 

Trials 
Mean 

Accuracy % p value > chance 
(50%) 

Nonsymbolic Approximate Addition 
Blue 12 83.02 .000 yes 
Red 12 80.71 .000 yes 
A 12 80.79 .000 yes 
B 12 82.95 .000 yes 

Symbolic Approximate Addition 
Blue 12 72.53 .000 yes 
Red 12 76.62 .000 yes 

 
 


