
For Peer Review
 O

nly
 

 

 

 

 

 

Forecasting reservoir inflows using remotely sensed 

precipitation estimates: A pilot study for the River Naryn, 
Kyrgyzstan 

 

 

Journal: Hydrological Sciences Journal 

Manuscript ID: HSJ-2014-0082.R1 

Manuscript Type: Original Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Dixon, Samuel; Loughborough University, Geography 

Wilby, Robert; Loughborough University,  

Keywords: TRMM, Flow forecast, Toktogul reservoir, Central Asia, Regression model 

  

 

 

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal



For Peer Review
 O

nly

Forecasting reservoir inflows using 1 

remotely sensed precipitation 2 

estimates: A pilot study for the River 3 

Naryn, Kyrgyzstan. 4 

 5 

Samuel G. Dixon and Robert L. Wilby 6 

Department of Geography, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK 7 

 8 

 9 

 10 

 11 

Re-submitted to: Hydrological Sciences Journal 12 

HSJ-2014-0082R1 13 

 14 

Main body words: 5813 15 

 16 

18 October 2014 17 

 18 

 19 

Corresponding author: 20 

Robert L Wilby 21 

Department of Geography 22 

Loughborough University 23 

Loughborough 24 

Leicestershire 25 

LE11 3TU 26 

 27 

Email: r.l.wilby@lboro.ac.uk 28 

Tel: +44 1509 223093 29 

  30 

Page 1 of 44

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

2 
 

Abstract 31 

This study explores the feasibility of applying remotely sensed precipitation 32 

estimates (in this case from the Tropical Rainfall Measuring Mission [TRMM]) for 33 

forecasting inflows to the strategically important Toktogul reservoir in the Naryn 34 

basin, Kyrgyzstan. Correlations between observed precipitation at Naryn and 0.5° 35 

TRMM totals is weaker for daily (r=0.25) than monthly (r=0.93) totals, but the Naryn 36 

gauge is representative of monthly TRMM precipitation estimates across ~60% of 37 

the basin. We evaluate predictability of monthly inflows given TRMM estimates, air 38 

temperature, and antecedent flows. Regression model skill was superior to the Zero 39 

Order Forecast (mean flow) for lead times up to three months, and had lower errors 40 

in estimated peaks. Over 80% of the variance in monthly inflows is explained with 41 

three month lead, and up to 65% for summer half-year average. The analysis also 42 

reveals zones that are delivering highest predictability and hence candidate areas for 43 

surface network expansion. 44 

 45 

Key words 46 

Remotely sensed precipitation, river flow forecast, Toktogul reservoir, regression 47 

model  48 
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1 Introduction 49 

Early river flow forecasting systems relied on accurate ground based measurements 50 

of precipitation at meteorological stations – a basic input requirement that is still 51 

difficult to achieve in data sparse and/or physically remote regions (Artan et al., 52 

2007). Partial information on precipitation variation in space and time continues to 53 

limit the development of flow forecasts for infrastructure operation and hazard 54 

warning (Bitew et al., 2012; Kekete et al., 2004). Even where data exist, absence of 55 

treaties for information sharing can hinder modelling and management of extreme 56 

events in transboundary situations (Hossain, 2007). 57 

Remotely sensed, near real-time precipitation estimates have the potential to 58 

address these shortcomings (Hughes, 2006; Su et al., 2008; Collischonn and Pante, 59 

2011) and may offer particular advantages for strengthening flow forecasts for large, 60 

transboundary river basins (Balthrop and Hossain, 2010). These capabilities have 61 

attracted growing attention from researchers and national agencies alike, with short-62 

term flood forecasting models utilising passive microwave data for both precipitation 63 

and discharge estimation (e.g., Hopson and Webster, 2010; Hirpa et al., 2013). 64 

The purpose of this paper is twofold. First, we assess the accuracy of a remotely 65 

sensed precipitation product for a strategically significant river basin in Central Asia. 66 

Second, we investigate the potential for river flow forecasting based on remotely 67 

sensed precipitation, surface temperature and gauged discharge, over monthly to 68 

seasonal horizons. We evaluate the data and forecasting techniques using flows in 69 

the Syr Darya, Kyrgyzstan upstream of the Toktogul reservoir. This system was 70 

chosen because of the importance of the basin as a ‘water tower’ for sustaining 71 

livelihoods downstream (Immerzeel et al., 2010). In addition to socio-economic 72 

challenges the region also faces a range of geophysical and meteorological hazards. 73 

Earthquakes and landslides are common in the Tien Shan, with most of the 74 

population of Kyrgyzstan living in areas of high or very high seismic hazard (UNDP, 75 

2012). The primary meteorological hazard in the Syr Darya is flooding, which can be 76 

exacerbated by reservoir operations (UNDP, 2012). 77 

The following section provides more background to the pilot study region and data. 78 

Section 3 describes the methods used to evaluate satellite products, and to build 79 
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statistical forecast models of reservoir inflows, drawing on input data from different 80 

scales and locations within the basin. Section 4 presents the results of these 81 

analyses, and Section 5 offers interpretations of model skill based on the 82 

hydrometeorological processes within the basin. Finally, section 6 briefly considers 83 

the transferability of the approach beyond the Naryn-Syr Darya cascade and offers 84 

suggestions for further research. 85 

 86 

2 Study area and data 87 

The Naryn basin is located in the Central Tien Shan mountain range of Kyrgyzstan, 88 

the headwaters of the Syr Darya River (Figure 1). The Syr Darya is one of two major 89 

rivers (along with the Amu Darya) that supplies water to the Central Asian Republics. 90 

The basin area of the Naryn is 55,944 km2 with an elevation range of more than 91 

4,000 m including major mountain belts such as the Kyrgyz Range in the north, 92 

Talas Ala Toosu and Fergana ranges in the southwest (Kriegel et al., 2013). The 93 

Naryn is fed by a major tributary below Song Kol Lake which runs during the melt 94 

season (April to September). Land cover is mainly grass and shrub, with pastoral 95 

farming on mountain sides, and some arable crop and hay production in valleys 96 

sustained by irrigation. 97 

The Tien Shan mountain range has a continental climate with the main source of 98 

moisture originating from the Atlantic Ocean (Aizen et al., 1995a). Several weather 99 

systems meet over the region, including westerly air streams, the Siberian 100 

anticyclone and south/south-westerly cyclonic circulations (Aizen et al., 1995a; 2001). 101 

The mountains prevent penetration of moisture into central areas resulting in low 102 

winter precipitation, with maximum totals typically occurring in June and July (Aizen 103 

et al., 1995a; 1996). Orographic factors produce a general decrease in precipitation 104 

and temperature along a north-west to south-east gradient (Sorg et al., 2012, 105 

Karaseva et al., 2012). Temperatures vary from 30°C in the western valleys in 106 

summer to -25 °C in the glacierised regions in winter, but values as low as -50 °C 107 

have been recorded in the Ak-Say valley. Snow depth is dependent upon aspect 108 

relative to the western air masses, and an average melt season of ~70 days has 109 

been observed in northern parts of the region (Aizen et al., 1995a; b). 110 
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The Naryn River has mean annual discharge of 13.8 km3 with more than 50% of the 111 

flow originating from snow and glacier melt (Savoskul et al., 2003). The Syr Darya 112 

has been extensively managed to re-allocate water to satisfy the needs of countries 113 

through which it flows (Kyrgyzstan, Uzbekistan, Tajikistan and Kazakhstan). Six 114 

large and several smaller reservoirs were built along the Syr Darya by the Soviet 115 

Union, providing a total storage capacity of ~35 km3 (Savoskul et al., 2003). These 116 

reservoirs have contributed to a management system described as one of the most 117 

complicated in the world (Raskin et al., 1992). 118 

Water diversions from the Syr Darya have contributed to the Aral Sea losing two-119 

thirds volume since 1957 (UNEP, 2008). Contention also surrounds the differing 120 

interests of Kyrgyzstan to release water for hydropower generation during the winter, 121 

versus downstream needs of Uzbekistan and Kazakhstan for irrigation in summer 122 

(Karaev, 2005). During the Soviet era such energy-water trade-offs were managed 123 

centrally (Hodgson, 2010); post-independence Kyrgyzstan has increased the volume 124 

of water released from Toktogul during winter months for hydropower to reduce the 125 

risk of black outs (Umaraliev, 2012). Attempts have been made to resolve these 126 

competing interests (Kraak, 2012a) with operation of Toktogul reservoir central to 127 

such discussions due to the immense storage capacity (19.5 km3) and position of the 128 

impoundment within the system (Figure 1).  129 

 130 

2.1 Remotely sensed precipitation 131 

UNDP (2012) concluded that as well as greater regional cooperation, there is also a 132 

need to strengthen monitoring and modelling capacity in the region. Remotely 133 

sensed precipitation data offer a means of filling these gaps. Several satellite 134 

precipitation products are available including: the Tropical Rainfall Measuring 135 

Mission (TRMM) and its successor the Global Precipitation Measurement (GPM) 136 

Core Observatory (launched February 2014)1; Precipitation Estimation from 137 

Remotely Sensed Information using Artificial Neural Networks (PERSIANN); and 138 

NOAA Center for Satellite Applications and Research (STAR).  139 

                                            
1
 http://www.nasa.gov/content/goddard/nasa-rainfall-satellite-out-of-fuel-but-continues-to-provide-

data/#.VDLDG_nueuJ  
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This study demonstrates proof of concept using the TRMM Multi-satellite 140 

Precipitation Analysis (TMPA) but our approach is applicable to other sources of 141 

remotely sensed data. The TRMM product was constructed in four stages (NASA, 142 

2011). First, microwave precipitation estimates are calibrated and combined; second, 143 

infrared precipitation estimates are created with the aid of the calibrated microwave 144 

precipitation estimates; third, microwave and infrared estimates are combined; and 145 

fourth, rain gauge data are incorporated into the final estimate. Microwave 146 

precipitation estimates are collected by multiple satellites (TRMM, DMSP, Aqua and 147 

NOAA) which cover the area between 50°N and 50°S. Infrared data are collected by 148 

the TRMM satellite and provides high temporal and spatial coverage. Rain gauge 149 

data used in TRMM were obtained from Global Precipitation Climatology Centre 150 

(GPCC) and the Climate Assessment and Monitoring System (CAMS) (Huffman et 151 

al., 2007; Huffman and Bolvin, 2013).  152 

Two previous studies have evaluated TRMM products for the Tien Shan Mountains. 153 

One compared TRMM with every rain gauge in Kyrgyzstan (Karaseva et al., 2012); 154 

the other examined basins in the mid Tien Shan Mountain range (Ji and Chen, 2012). 155 

Both found that TRMM underestimated precipitation in mountainous areas and 156 

during heavy precipitation events, possibly due to difficulties in detecting shallow, 157 

orographic rainfall (Adler et al., 2003). Aspect was found to be an important factor 158 

with south facing slopes having higher accuracy and correlation compared with north 159 

facing slopes. However, there is low confidence in this finding because of limited 160 

data for south facing slopes (Ji and Chen, 2012). Karaseva et al. (2012) report low 161 

correlations in the vicinity of large lakes (e.g., Issyk Kul and Toktogul) due to 162 

contamination of the microwave signal by water bodies and mountains within the 163 

sensor footprint. Strongest correlations were found in the high plateaus, including for 164 

the Naryn gauge (Karaseva et al., 2012).  165 

Rain gauge data are incorporated differently depending on aggregation period. The 166 

3B43 (V7) (monthly precipitation estimate) is produced by first summing original 167 

three-hour values by calendar month. Second, monthly precipitation gauge analysis 168 

is used to create a large scale bias adjustment to the satellite estimates. Lastly, 169 

monthly gauge adjusted satellite estimates are combined directly with gauge 170 

precipitation via inverse error variance weighting to create the final product. The 171 

3B42 (V7) dataset (daily precipitation estimate) is derived by scaling the original 172 
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three-hourly estimates so they sum approximately to the monthly gauge adjusted 173 

satellite-gauge combination value calculated in step two of the 3B43 (V7) procedure 174 

(Huffman and Bolvin, 2013). Henceforth, we refer to 3B42 (V7) as daily TRMM, and 175 

3B43 (V7) as monthly TRMM. 176 

Monthly and daily TRMM were obtained at 0.5° resolution from the TRMM Online 177 

Visualisation and Analysis System (TOVAS) for every cell in the Naryn basin for the 178 

years 1998 to 2010 inclusive. In addition, monthly and daily data were downloaded 179 

for the same time period but at 0.25° resolution for cells within the 0.5° grid nearest 180 

to the Naryn meteorological station (Figure 1). 181 

 182 

2.2 Ground-based measurements 183 

Daily meteorological and hydrological data were collected as part of a European 184 

Bank for Reconstruction and Development (EBRD) project investigating downstream 185 

consequences of climate change and flow regulation on the River Naryn (Wilby et al., 186 

2011). Daily precipitation totals and mean daily temperature were obtained for the 187 

meteorological station at Naryn for the years 1981 to 2010 (Figure 1). This single 188 

station was chosen for two reasons. First, an earlier analysis of all stations in 189 

Kyrgyzstan showed that the correlation between TRMM and gauge precipitation was 190 

strongest at Naryn (Karaseva et al., 2012). Second, the site is centrally located 191 

within the Naryn basin, and the record is unbroken for the period over-lapping with 192 

river flow data. Daily discharges were obtained for a site upstream of Toktogul for the 193 

years 2000 to 2009. The inflow record has several months with missing data which 194 

were filled by interpolating from monthly mean values. 195 

 196 

3 Methods 197 

The analysis proceeded in two stages. First, we evaluated the quality of daily and 198 

monthly remotely sensed (TRMM) precipitation estimates in the vicinity of the Naryn 199 

meteorological station. Second, we assessed the feasibility of forecasting monthly 200 

inflows to Toktogul based on a blend of remotely sensed and ground-based 201 

observations. Each step is described below. 202 
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3.1 Evaluation of TRMM products 203 

We extend earlier analyses by comparing Naryn and TRMM precipitation at different 204 

spatial and temporal resolutions. We recognise that it is not possible to undertake a 205 

fully independent test of TRMM in data sparse regions because it is likely that data 206 

from available meteorological stations have been assimilated by the algorithm. 207 

Inspection of the gauges used for Kyrgyzstan confirms that this is the case2. 208 

Consistent with other networks in the post-Soviet era, the number of gauges 209 

assimilated by TRMM declined from 23 (1998) to 12 (2010), but data for the station 210 

at Naryn was blended with other sites throughout our study period (Figure 2). 211 

With these points in mind we investigated specific instances in which there are major 212 

discrepancies between TRMM and Naryn gauge data. Monthly mean and annual 213 

precipitation totals were calculated for the 0.5° TRMM cell overlying the Naryn 214 

meteorological station for the years 1998 to 2010. Likewise, cumulative precipitation 215 

totals and distributions were derived for the nearest 0.25° and 0.5° TRMM cells for 216 

the same period. The false alarm ratio was calculated for each month as the fraction 217 

of days on which TRMM detects precipitation but the gauge did not, divided by the 218 

total number of days on which TRMM measured precipitation (Scheel et al., 2011). 219 

Next, the non-parametric Spearman rank correlation coefficient was estimated using 220 

daily time series for the same cells. This was followed by a wider analysis of 221 

covariance across all cells in the Naryn basin in which data were stratified by 222 

calendar month and season. Finally, all cells, permutations of concurrent and lagged 223 

(0 to 3 months) TRMM precipitation, and moving averages (0 to 6 months) were 224 

correlated with monthly river flow at Toktogul. This was undertaken in order to 225 

identify the TRMM cell(s) and area(s) of the basin, lag interval (t), and averaging 226 

period (m) that potentially yield predictability of inflows.  227 

 228 

3.2 River flow estimation 229 

Following earlier studies we evaluated various combinations of predictor variable, 230 

averaging period and lag interval to develop multiple-linear regression models of 231 

                                            
2
 The GPCC visualizer enables inspection of sites used in TRMM: 

http://kunden.dwd.de/GPCC/Visualizer 
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monthly inflow to Toktogul for the period May 1999 to July 2010 (Schär et al., 2004; 232 

Archer and Fowler, 2008; Magar and Jothiprakash, 2011; and Pal et al., 2013). 233 

Available monthly variables were precipitation and temperature observations at 234 

Naryn, basin average TRMM precipitation, lagged and time-averaged TRMM 235 

precipitation from individual cells, and dummy variable for month to capture the 236 

annual cycle (Table 1). The dummy variable regression weights give the flow 237 

anomaly with respect to a reference month (in this case December) once the 238 

influence of other predictors has been accounted for. 239 

Regression modelling proceeded in two steps. First, the large number of lagged, 240 

time-averaged and spatially-explicit candidate variables was reduced to a smaller set 241 

of statistically significant, independent predictors. Second, the forecast skill of 242 

chosen predictors was determined using cross-validation. These stages ensure that 243 

the most parsimonious models, with out of sample forecast skill, are constructed. 244 

We began by examining simple linear regression relationships between runoff in the 245 

summer snow melt season (April to September) as a function of individual predictors: 246 

year, precipitation, temperature and runoff in the preceding winter (October to 247 

March). This split-year approach has been applied to other runoff records in Central 248 

Asia and informs the preliminary selection of candidate predictor variables for sub-249 

seasonal forecast models (e.g., Schär et al., 2004; Pal et al., 2013). Preferred 250 

monthly variables were then screened by stepwise multiple-linear regression, 251 

terminating at the point where inclusion of additional variables did not improve the 252 

amount of explained variance (when adjusted for sample size and number of 253 

predictors). Optimal sets of predictors of monthly discharge (Q) were identified for 254 

concurrent (t), one (t+1), two (t+2) and three (t+3) months lead time. 255 

Regression model skill was then assessed using cross-validation by which monthly 256 

Q for individual years was predicted using models built on other years of data. For 257 

instance, flows for the year April 1999 to March 2000 would be predicted by a model 258 

calibrated on data for April 2000 to March 2010. Year-by-year a full series of 259 

predicted flows was built enabling validation against data not used in model 260 

calibration. Available records for Toktogul and TRMM permit cross-validation of 11 261 

year-long segments of data, each with their own regression parameter sets. This 262 

provides a more stringent test of model skill than measures of calibration fit to the 263 
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whole data. Note that, however, an operational version of the model would be fit to 264 

the selected predictor set using the entire record then recalibrated periodically as 265 

more data become available. 266 

All model predictions were benchmarked with respect to the Zero Order Forecast 267 

(ZOF): the amount of explained variance that can be obtained from the simplest 268 

possible model – in this case the long-term monthly mean flow. For comparability, 269 

identical segments of data were used for estimating the long-term mean as those 270 

entered into the 11 cross-validated regression models. The HydroTest tool (Dawson 271 

et al., 2007) was used to derive five metrics of model forecast skill: Root Mean 272 

Squared Error (RMSE); A Information Criteria (AIC); Nash-Sutcliffe Coefficient (NSC); 273 

Percentage Error in Peak (PEP); and the Mean Absolute Relative Error (MARE). 274 

 275 

4 Results 276 

With the caveat about lack of full independency of data in mind, we first assessed 277 

realism of TRMM precipitation estimates at different temporal scales using the gauge 278 

data at Naryn. These data were then used to build and validate models of monthly 279 

inflows to Toktogul with forecast horizons of up to three months. 280 

 281 

4.1 Evaluation of TRMM products 282 

When compared with gauge precipitation at Naryn, 0.5° TRMM estimates totals 283 

during the accumulation (October to March) and melt-season (April to September) 284 

with -1% and +11% bias respectively. The equivalent biases for the nearest 0.25° 285 

TRMM cell are -2% and +5%. The largest over-estimation by TRMM occurs in July, 286 

August and September (Figure 3a). Conversely, 0.5° TRMM April totals 287 

underestimate gauge totals by 16%. The monthly false alarm ratio for daily 288 

precipitation occurrence varied between 0.41 (March) and 0.67 (September). 289 

Figure 3b shows the variability in annual gauge precipitation with 2003 having more 290 

than twice the total of 2006. TRMM overestimates the annual total in the majority of 291 

years, however, monthly time-series show strong correlation with the gauge at both 292 

0.25° TRMM (r=0.86) and 0.5° TRMM (r=0.86) resolutions (Figure 4). Overall, the 293 

Page 10 of 44

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

11 
 

correlation between monthly gauge and TRMM is strongest in February, September 294 

and November (r=0.94) and weakest in May (r=0.16) and July (r=0.66). This is 295 

explained by three significant discrepancies which occurred in May 2003, July 2006 296 

and July 2010 when 0.5° TRMM overestimates gauge totals by 72.1%, 99.7% and 297 

199.6% respectively. Over the course of the 13 year period, 0.25° TRMM and 0.5° 298 

TRMM over-estimate the cumulative total at Naryn by 5% and 10% respectively with 299 

the departure beginning at the May 2003 anomaly (Figures 5). 300 

Consistent with earlier studies (Karaseva et al., 2012; Ji and Chen, 2012), TRMM 301 

over-estimates the frequency of light precipitation days, and under-estimates the 302 

occurrence of heavy precipitation (Figure 6). However, it is evident that 0.25° TRMM 303 

provides a better match to the cumulative percentile distribution than 0.5° TRMM. 304 

The correlation between daily gauge and TRMM totals is weak (r=0.25) compared 305 

with monthly totals (r=0.93) (Figure 7). This is to be expected because the bias 306 

correction procedure within TRMM scales sub-daily amounts such that their monthly 307 

aggregate converges with that of the monthly gauge total (Huffman et al., 2007). 308 

The strength of correlation between gauge precipitation and 0.5° TRMM totals varies 309 

with distance from the meteorological station. Marginally stronger correlations are 310 

found in upwind TRMM cells for daily series (Figure 8a), and to the north and west 311 

of Naryn for monthly series (Figure 8b). These correlation surfaces show the extent 312 

to which the record at Naryn might be representative of precipitation elsewhere in the 313 

basin (assuming that TRMM values are ‘truth’).  314 

 315 

4.2 River flow estimation 316 

Discharge in the summer half-year (April to September) is significantly related to 317 

winter TRMM precipitation totals averaged across the Naryn basin (PA) or over the 318 

most sensitive sub-basin (PO) (Table 2). Precipitation measured at Naryn and 319 

antecedent discharge are weakly related to summer flow (but are statistically 320 

insignificant predictors since p>0.05). Winter temperatures at Naryn and time (year) 321 

have no predictive skill over the fit period. This is consistent with the findings of 322 

Schär et al. (2004) and Schiemann et al. (2007) for the Syr Darya as a whole. 323 
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Monthly discharge typically rises from a minimum in February to maximum in June. 324 

However, peak flows are subdued during low precipitation years such as 2007 and 325 

2008, arrive earlier in warm years (2006), or later in cold years (2009) (Figure 9). 326 

This inter-annual variability would not be captured by a ZOF based on the long-term 327 

monthly mean flow alone. Nonetheless, the ZOF still explained 81% of the variance 328 

in monthly discharge entering Toktogul and sets a challenging minimum standard for 329 

evaluating more elaborate models. 330 

Figure 10 shows the amount of variance in monthly discharge explained by TRMM 331 

for different lag intervals (zero to three months). The cells with greatest explained 332 

variance at zero lag include eastern mountain areas with seasonal snow cover and 333 

glacier storage, as well as Song-Kul Lake (cell 41.5°N, 74.75°E) during the melt 334 

season. As the length of lag interval increases the zone producing greatest 335 

predictability migrates westwards. Even at forecast horizon t+3 the amount of 336 

variance in flows explained by TRMM still exceeds 30%. 337 

The correlation between river flow and candidate predictors was assessed by 338 

systematically varying lead-time (t+0 to t+3 months) and averaging period (1 to 6 339 

months) for monthly temperature and precipitation at Naryn, the TRMM basin 340 

average precipitation, and the optimum TRMM cell(s) (identified from Figure 10). 341 

The correlation coefficient for temperature is strongest with no lead-time (t+0) or 342 

smoothing (r=0.73) (Figure 11). Greater lead-times and longer averaging periods 343 

show weak but statistically significant correlations (r>0.17) that eventually become 344 

negative as the temperature and flow regimes are in anti-phase. 345 

The correlation with Naryn precipitation is strongest for t+0 when averaged over the 346 

previous three months (r=0.74) (Figure 11). Lead-time t+1 correlations are 347 

strengthened by averaging over two months (r=0.68). The correlation is statistically 348 

significant up to t+3 months if there is no averaging (r=0.28). Lead-time correlations 349 

are strengthened (relative to Naryn) when applying basin area or optimum TRMM 350 

cells. For comparison, these predictors yield significant t+3 (no-averaging) 351 

correlations r=0.39 and r=0.43 respectively. Regardless of the averaging period, no 352 

significant correlations were found for any TRMM product (whether single cell or 353 

basin average) beyond t+3, indicating a limit to predictability from this data source. 354 
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Estimation of current flows (Q0) was improved by including antecedent discharge 355 

and TRMM precipitation from the most highly correlated cell (smoothed over four 356 

months) alongside the monthly dummy variable (Tables 3 and 4). The best predictor 357 

set for the one month ahead flow forecast model (Q1) also includes temperature 358 

(lag-1) (Tables 3 and 4). Regression fit remains superior to the ZOF fit for two (Q2) 359 

and three (Q3) month lead-times but these do not incorporate antecedent 360 

temperatures. In fact, temperature explains only 9% and 1% of the variation in flow 361 

at t+2 and t+3 months respectively. Only the optimum TRMM cell provides 362 

predictability in Q3 beyond that which can be achieved by the monthly mean flow 363 

alone (Tables 3 and 4). 364 

Given the limited data, cross-validation was used to compare predictive skill of 365 

regression models relative to the ZOF over forecast horizons t+1 to t+3 months 366 

(Figure 12). According to the chosen performance metrics, Q1, Q2 and Q3 models 367 

are superior to ZOF for all diagnostics, except the MARE for Q3 (Table 5). Hence, 368 

regression models have lower RMSE and AIC and higher NSC than the ZOF up to 369 

Q3. Regression models also have lower errors in the estimated peak, even though 370 

these are still under-predicting by typically 20 to 30% (compared with 35% for ZOF). 371 

The circumstances under which there are large (t+1) forecast errors were explored 372 

through closer inspection of daily series of precipitation at Naryn and daily inflow at 373 

Toktogul (Figure 13). For example, the forecasted peak monthly flow in 2002 is too 374 

low and too late (see Q1 model in Figure 12) because heavy precipitation in late 375 

June 2002 is smoothed and lagged by the model such that it impacts estimated flows 376 

in July 2002. In this case, the monthly time-step of the model is simply too coarse to 377 

resolve the observed near synchronous daily rainfall-runoff response in June. Other 378 

discrepancies may be attributed to interpolation of missing daily flows from monthly 379 

means (such as the overestimation of discharge during June to September 2007). 380 

 381 

5 Discussion 382 

Here we interpret our results in the context of other river flow forecast models 383 

developed for the region, and from physical reasoning about the underlying hydro-384 

climatic processes. 385 
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 386 

5.1 Evaluation of TRMM products 387 

The quality of TRMM products has been reviewed elsewhere from the perspective of 388 

skill linked to temporal and spatial resolution (Scheel et al., 2011) or physical 389 

environment (Berg et al., 2006); performance and corrections needed in 390 

mountainous terrain (Condom et al., 2011; Matzler and Standley, 2000; Ji and Chen, 391 

2012); local micro-meteorological and orographic effects (Petty, 2001; Barros et al., 392 

2004); snowfall detection and evaluation (Gebremichael et al., 2010; Ji and Yu, 393 

2013); and utility for hydrologic prediction (Yong et al., 2012). 394 

These studies show that assessing the quality of remotely sensed precipitation 395 

estimates is not straightforward. First, lack of ground measurements limits scope to 396 

‘ground truth’ satellite data (Ebert et al., 2007). Some studies resort to spatial 397 

interpolation to infill between stations, but this introduces additional uncertainties (Ji 398 

and Chen, 2012). Second, interpretations are complicated when comparing point 399 

measurements from gauges with area-averages from satellites because spatial 400 

averaging can lead to over-estimation of precipitation occurrence or reduce the 401 

magnitude of extreme events relative to local observations (Scheel et al., 2011). 402 

Third, gauge data are accumulated over fixed intervals (such as 3-hourly or daily 403 

totals) whereas TRMM is a snapshot measurement (Scheel et al., 2011).  404 

Good agreement between the Naryn gauge and TRMM precipitation during the 405 

accumulation period implies that the latter is able to estimate snowfall totals well at 406 

this site (Figure 3). This is contrary to some studies that assert TRMM should not be 407 

used without calibration for snowfall (Gebremichael et al., 2010; Yong et al., 2012). It 408 

is possible that the rate applied to snowfall (0.1 mm hour-1) is close to that observed 409 

at Naryn which, along with relatively low totals during winter months, results in a 410 

small absolute bias. However, it must be kept in mind that the accuracy of the gauge 411 

for snowfall is also unknown. Therefore, it is unclear whether the gauge or TRMM 412 

estimate for May 2003 is most trustworthy. TRMM gave 40 mm of precipitation on 413 

one day whilst the gauge recorded zero, followed by two days of rainfall measured 414 

by the gauge totalling 30 mm that TRMM estimated to be less than 5 mm. It is 415 

conceivable that during this time very few if any of the TMPA instruments covered 416 

the study area, thereby reducing the accuracy of the TRMM estimate (Huffman et al., 417 

Page 14 of 44

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

15 
 

2007). Alternatively, observed precipitation may have been aggregated over more 418 

than one day or entered incorrectly against these dates. 419 

TRMM overestimated the frequency of occurrence (not shown) and total precipitation 420 

in July, August and September (Figure 3). The relatively high false alarm ratio at this 421 

time could be linked to localised heavy precipitation events under southerly monsoon 422 

airflows. Such events may be detected by the area estimates of TRMM but were 423 

missed by point measurements at the gauge (Bothe et al., 2012; Bell and Kundu, 424 

2003; Bowman, 2004). This is supported by the fact that the highest overestimation 425 

occurred in the lower half of the 0.5° TRMM cell – the area furthest from the gauge. 426 

The correlation surfaces (Figure 8) partly reflect the time-varying influence of 427 

neighbouring gauges within the domain. Overall, the r≥0.7 correlation field (i.e., more 428 

than 50% variance explained) for monthly amounts covers 21 out of 35 cells in the 429 

study area (Figure 8b). In other words, the Naryn record is strongly correlated with 430 

TRMM precipitation estimates over approximately 60% of the basin area. The Naryn 431 

record is least representative of TRMM values in the Fergana Range (the southwest 432 

portion of the basin, Figure 1). Karaseva et al. (2012) and the GPCC visualizer show 433 

a cluster of five gauges in this area (Figure 2) which presumably exert a stronger 434 

influence than Naryn on local TRMM estimates. 435 

 436 

5.2 River flow estimation 437 

A growing number of studies are exploring the application of remotely sensed 438 

information in hydrological modelling (e.g., Yilmaz et al., 2005; Artan et al., 2007; Su 439 

et al., 2008; Bookhagen and Burbank, 2010; Stisen and Sandholt, 2010; Wilby and 440 

Yu, 2013). Previous research shows that model skill can be improved by bias 441 

correcting TRMM precipitation estimates, or by blending TRMM with gauge data to 442 

simulate runoff (Yu et al., 2011; Bitew et al., 2012). Many studies have focused on 443 

large scale modelling (medium/ large basins to global scale); relatively few examine 444 

the utility of satellite data for runoff simulation at smaller scales (Hong et al., 2007a; 445 

Milewski et al., 2009). It is also recognised that different satellite products can yield 446 

different river flow simulations even when passed through the same hydrological 447 

model (Chintalapudi et al., 2012). Arid and semi-arid basins can be particularly 448 
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challenging to model with satellite precipitation estimates because of localised, 449 

heavy precipitation events, coupled with strongly non-linear rainfall-runoff processes 450 

(Sagintayev et al., 2012). 451 

Earlier research into river flows within the Naryn/Syr Darya basins examined how 452 

climate change could impact water resources with and without adaptation (e.g., 453 

Siegfried et al., 2012; Ismaiylov et al., 2007; Wilby et al., 2011). Others have used 454 

satellite precipitation estimates to calibrate models. For example, Immerzeel et al. 455 

(2012) applied a conceptual model with PERSIANN satellite precipitation inputs to 456 

assess climate change impacts on water resources. Pereira-Cardenal et al. (2011) 457 

used TRMM precipitation with radar altimetry to produce near real-time simulations 458 

of Toktogul reservoir water levels. 459 

Savoskul et al. (2003) observed that a substantial fraction of winter precipitation 460 

contributes to runoff with delay due to seasonal and perennial storage of 461 

precipitation in snow and ice. Onset of snowmelt occurs later in the year at higher 462 

elevations so these regions might be expected to contribute at longer lag intervals. 463 

This is indeed the case, with strongest correlations for delayed runoff from the 464 

mountain ranges in the north and southwest of the basin. A further factor is the 465 

spatial variation in magnitude of the spring peak in precipitation. Aizen et al. (1996; 466 

1997) report that areas below 2,500 m have two maxima with the main occurring 467 

between March-May; whereas areas above 2,500 m have a single maximum 468 

between May-July. They also noted that the proportion of annual precipitation 469 

occurring during spring varies from 35-45 % in areas below 2,500 m compared to 45-470 

55 % above 2,500 m. 471 

Schär et al. (2004) assumed that accumulated runoff for the Syr Darya in summer 472 

(May to September) is a linear function of accumulated precipitation in the preceding 473 

winter and spring (December to February, March and April). Temperature potentially 474 

influences contributions from glacier melt, timing of melt season onset and proportion 475 

of total precipitation in liquid state. However, their stepwise regression model of 476 

summer runoff omitted all temperature variables, depending instead on precipitation 477 

during winter (December to February), March and April alone despite a high degree 478 

of glaciation of the test basin.  479 
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Predictability of summer flows into Toktogul appears to be maximised by using 480 

TRMM precipitation estimates for the cell over Song-Kul Lake (Figure 1). The TRMM 481 

basin average for winter also surpassed observed precipitation at Naryn as a 482 

predictor. This suggests that seasonal inflows to Toktogul may be routinely 483 

forecasted using publicly available satellite products and regression models akin to 484 

those shown in Table 2. As more satellite and river flow data become available it will 485 

be possible to re-evaluate the stationarity of model parameters, and to discern 486 

possible long-term augmentation of summer flow by glacier wastage (Kriegel et al., 487 

2013). 488 

In the meantime, temperature was found to be a statistically insignificant predictor of 489 

summer discharge and was retained in only one of the four monthly models 490 

developed for the Naryn (Tables 3 and 4). Once the seasonal snow and ice melt 491 

regime is captured by the monthly dummy variable, the remaining temperature effect 492 

is negative: months preceded by higher air temperatures typically have lower than 493 

average runoff. This could be interpreted as earlier onset of melting, greater 494 

evaporative losses at lower elevations, or as reflecting the weak negative correlation 495 

(r=-0.27) between summer temperature and precipitation. A negative (but statistically 496 

non-significant) regression parameter between air temperature and summer runoff 497 

has also been reported for the Syr Darya to Chinaz (Schiemann et al., 2007). More 498 

generally, positive temperature anomalies and suppressed summer convective 499 

precipitation over Central Asia are associated with strong Indian summer monsoons 500 

(Schiemann et al., 2007). 501 

 502 

6 Conclusions 503 

The purpose of this paper was to explore the feasibility of forecasting monthly and 504 

seasonal reservoir inflows given minimal surface data and remotely sensed (TRMM) 505 

precipitation estimates. Toktogul reservoir was chosen to test the approach because 506 

of the economic significance of the structure, and importance to the region’s highly 507 

complex water management system (Karaev, 2005; Kraak, 2012b). Previous studies 508 

have evaluated aspects of TRMM for Kyrgyzstan and the wider region; others have 509 

investigated the potential for seasonal forecasting of runoff for large basins in Central 510 
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Asia. We refined these analyses by showing how predictive skill might be maximised 511 

through judicious selection of TRMM cell(s), averaging and lag intervals. 512 

Despite the simplicity of the models and limited data requirements over 80% of the 513 

variance in monthly inflows is explained with three month lead, and up to 65% for 514 

summer half-year flows based on TRMM estimates of winter precipitation. In line with 515 

earlier research, temperature was found to have limited predictive skill at monthly 516 

scales, and no skill for seasonal forecasting Naryn flows. The sub-basin feeding the 517 

major tributary below Song Kol Lake was shown to have significant influence on 518 

inflows during the melt season and is a priority location for long-term monitoring. 519 

Indeed, any remaining meteorological stations in the vicinity (41° 50’N, 75° 10’E) 520 

should be protected from closure, and the area prioritised for network expansion. 521 

Despite the parsimony of the regression models there may be good reasons for 522 

parallel development of non-linear statistical or deterministic algorithms (such as the 523 

Snowmelt Runoff Model (SRM) which has already been implemented for the Naryn 524 

basin) (Wilby et al., 2011). These models could assimilate remotely sensed snow 525 

cover for initialising forecasts of runoff over days to weeks ahead, driven by 526 

numerical weather predictions of precipitation and temperature. In this way, 527 

probabilistic forecasts of extreme inflows could be issued by deploying ensemble 528 

predictions of inputs and SRM parameter sets. Snow and ice budgeting can also be 529 

used to carry-over mass balance changes between successive melt seasons and to 530 

investigate the observed long-term deglacierization of the Naryn due to prolongation 531 

of the melt season (Kriegel et al., 2013). 532 

We demonstrated the possibility of forecasting reservoir inflows using TRMM 533 

precipitation estimates but the approach remains the same regardless of the satellite 534 

products employed. Key steps include evaluating precipitation estimates against 535 

available surface data at various time and space scales, then selecting those parts of 536 

the river basin that yield greatest predictability for specified forecast horizons. 537 

Credibility of the statistical model(s) is strengthened where physically sensible 538 

explanations can be given for the prediction skill, and when stationarity of model 539 

parameters has been tested through cross-validation techniques. Although the 540 

TRMM satellite is expected to cease operating in February 2016 the successor 541 
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and/or other precipitation estimates could be calibrated then used in operational flow 542 

forecasts for strategically important water infrastructure in Central Asia. 543 

Finally, beyond river flow, other environmental hazards affecting reservoir operations 544 

may be predictable from satellite products. For instance, peak occurrence for 545 

landslides and mudflows tends to be associated with rising temperatures and heavy 546 

rainfall in spring. This opens the potential for predicting rainfall-triggered landslides 547 

(including mud and debris flows) from real-time satellite imagery (as in Hong et al., 548 

2006; 2007b; 2007c). The Goddard Space Flight Center already provides global 549 

maps of potential landslide areas based on rainfall estimates with 1, 3 and 7 day 550 

lead time3. Potential contingency measures that could be taken at individual 551 

hydropower plants include draw down of reservoir level to increase freeboard for 552 

flood waves induced by channel blockage or debris slides. 553 
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Table 1 Variables used in regression models 775 

Pt,n Naryn meteorological station precipitation 

PAt,n 0.5º TRMM area average precipitation estimate 

POt,n 0.5º TRMM optimum cell precipitation estimate 

Tt,n Naryn meteorological station temperature 

Qt,n Discharge at Toktogul 

t Variable lag interval (t months) 

n Variable averaging period (n months) 

M Dummy variable for each calendar month (0 or 1) 

 776 

 777 

 778 

 779 

Table 2 Statistical estimates of the intercepts (α) and parameters (β) of simple linear 780 

regression models, along with the amount of explained variance (R2
adj), standard 781 

error (SE) of the summer (April to September) runoff estimate (m3s-1) and model 782 

significance level (p). All predictors except for time are for the winter half-year 783 

(October to March). 784 

Predictor α (m3s-1) β R2
adj (%) SE (m3s-1) p value 

Time (year) 22993 -11.14 0 123 0.437 

T 525 -28.83 0 123 0.418 

P 473 12.67 22 107 0.096 

PA 197 16.81 50 86 0.013 

PO 247 17.85 65 71 0.003 

Q 151 2.44 18 110 0.123 

  785 
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Table 3 Summary of regression model predictor variables, explained variance (R2
adj) 786 

and standard errors (SE) by forecast horizon (t+0 to t+3 months). In each case, the 787 

final predictor set is shown in bold italics. See Table 1 for notations. 788 

Model Predictors R2
adj (%) SE (m3s-1) 

ZOF M 81 147 

Q0 (t+0) PA0,4 42 258 

 T0,1 53 232 

 P0,3 54 228 

 Q1,1 59 217 

 PO0,4 73 174 

 Q1,1, PO0,4 81 145 

 Q1,1, PO0,4, T0,1 84 137 

 M, Q1,1, PO0,4, T0,1 90 109 

 M, Q1,1, PO0,4* 90 109 

Q1 (t+1) T1,1 35 273 

 P1,1 37 268 

 P1,2 44 252 

 PA1,2 51 235 

 PO1,3 64 203 

 Q1,1, PO1,3 70 185 

 Q1,1, PO1,3, T1,1 71 183 

 M, Q1,1, PO1,3 89 111 

 M, Q1,1, PO1,3*, T1,1 89 110 

Q2 (t+2) T2,1 9 322 

 Q2,1 10 319 

 P2,1 30 283 

 PA2,1 43 254 

 PO2,1 48 242 

 Q2,1, PO2,1, T2,1 50 239 

 Q2,1, PO2,1 49 240 

 M, Q2,1, PO2,1* 85 132 

Q3 (t+3) T3,1 1 336 

 Q3,1 1 336 

 P3,1 7 325 

 PA3,1 14 313 

 PO3,1 30 282 

 M, PO3,1** 84 136 

Key: * cell 42°N 73.25°E; ** cell 41°N 73.25°E 789 
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Table 4 Predictor variables and regression model parameters for monthly flow 790 

forecast models Q0, Q1, Q2 and Q3 based on available data (May 1999 to July 791 

2010). Model parameters shown in bold are statistically significant (p<0.05). Note 792 

that the value of the dummy variable depends on prevailing month and may be 793 

interpreted as the flow anomaly with respect to December (value zero). 794 

Variable Q0 Q1 Q2 Q3 

Intercept -121.93 -69.29 -39.78 149.75 

Jan -1.26 -114.16 22.63 -134.57 

Feb 32.71 -119.44 53.88 -129.37 

Mar 64.44 -20.24 109.82 -79.16 

Apr 147.01 214.50 272.65 86.94 

May 348.53 546.26 580.59 460.67 

Jun 455.48 659.18 771.21 728.37 

Jul 185.64 399.02 477.50 530.45 

Aug 62.43 263.15 218.87 284.05 

Sep 16.53 215.15 31.27 147.83 

Oct 15.35 198.81 40.84 73.41 

Nov 15.86 109.27 57.99 56.92 

Q1,1 0.48 0.50 - - 

Q2,1 - - 0.35 - 

PO0,4 4.06 - - - 

PO1,3 - 2.54 - - 

PO2,1 - - 1.95 - 

PO3,1 - - - 2.31 

T1,1 - -10.90 - - 

   795 
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Table 5 Cross-validation results for ZOF, Q1, Q2 and Q3 models 796 

Metric ZOF Q1 Q2 Q3 

Root Mean Squared Error (RMSE) (m3s-1) 151 118 139 144 

A Information Criteria (AIC) 702 673 694 697 

Nash-Sutcliffe Coefficient (NSC) 0.797 0.878 0.829 0.818 

Percentage Error in Peak (PEP) (%) -34.8 -21.4 -31.6 -27.7 

Mean Absolute Relative Error (MARE) (%) 18.6 17.5 19.6 21.6 

 797 

 798 
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Figure 1 a) Location of the River Naryn basin and Toktogul reservoir within 800 

Kyrgyzstan; b) an elevation map of Kyrgyzstan. 801 

a) 802 

 803 

b) 804 
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Figure 2 Number of GPCC gauges used by TRMM across the study area for 810 

selected years. The location of the gauge at Naryn is shown by the red point. 811 

1998 (n=23) 2004 (n=16) 2010 (n=12) 
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Figure 3 Gauge versus 0.5° TRMM for a) monthly mean and b) annual precipitation 813 

totals at Naryn 1998-2012. 814 

a) 815 
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Figure 4 Monthly total precipitation recorded by the gauge at Naryn compared with 820 

the nearest a) 0.5° TRMM and b) 0.25° TRMM cell. 821 

a) 822 
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Figure 5 Cumulative monthly precipitation totals for Naryn meteorological station, 828 

coincident 0.5° TRMM and 0.25° TRMM cells 1998-2010. 829 
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Figure 6 Cumulative percentile distributions of gauged, 0.5° TRMM and 0.25° TRMM 836 

daily precipitation amounts at Naryn 1998-2012. 837 
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Figure 7 Correlation between nearest 0.5° TRMM estimates and gauge a) daily and 841 

b) monthly precipitation at Naryn 1998-2012 842 

a) 843 
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Figure 8 Correlation between a) daily and b) monthly precipitation gauge at Naryn 848 

and concurrent 0.5° TRMM estimates 1998-2012. 849 

a) 850 
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 Figure 9 Observed annual (upper panels) and monthly (lower panels) discharge into 856 

Toktogul (left) and air temperature at Naryn (right). 857 

 858 

 859 

 860 

  861 

Page 40 of 44

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

41 
 

Figure 10 Amount of variance in gauged monthly discharge at Toktogul explained by 0.5° TRMM with lag=0 (upper left), lag=1 

(upper right), lag=2 (lower left) and lag=3 (lower right) months for the period May 1999 to July 2010 inclusive 
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Figure 11 Correlation (r) of gauged flows with lagged predictors averaged over one 

to six months: temperature (T); precipitation measured at Naryn (PN); precipitation 

estimates from TRMM for the basin area (PA), and optimum location (PO). For 

n=130 and at p=0.05 significance level, rcrit=0.17. 

 

  

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

C
o

rr
e

la
ti

o
n

Averaging period (months)

T

LAG0

LAG1

LAG2

LAG3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

C
o

rr
e

la
ti

o
n

Averaging period (months)

PN

LAG0

LAG1

LAG2

LAG3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

C
o

rr
e

la
ti

o
n

Averaging period (months)

PA

LAG0

LAG1

LAG2

LAG3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

C
o

rr
e

la
ti

o
n

Averaging period (months)

PO

LAG0

LAG1

LAG2

LAG3

Page 42 of 44

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

43 
 

Figure 12 Cross-validated model forecasts with lead-time one (Q1), two (Q2) and 

three (Q3) months compared with long-term monthly mean discharge (ZOF). 
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Figure 13 Daily precipitation and discharge series for the River Naryn during melt 

seasons with large residuals in the t+1 forecast (see Q1 in Fig.12). 
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