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ABSTRACT 
A simple data-driven Lumped Parameter thermal 
model is developed linking the radiator surface 
temperature to the whole house gas consumption 
using operational data collected from a real house. 
The indoor room air temperatures, the radiator 
surface temperatures and the whole house gas 
consumption are used as input data. The model 
parameters are estimated using the Ordinary Least 
Squares technique. Results show that an improved fit 
can be achieved by excluding data points for which 
gas consumption is being used for purposes other 
than space heating using a lower threshold (Tr,pred-
Tr,meas) of 1oC during the model calibration. Finally, 
the model is applied to disaggregate the gas 
consumption data that are linked to space heating 
from the original whole house gas consumption at 
half -hourly intervals. 

INTRODUCTION 
As advanced equipment is emerging in the domestic 
sector (e.g. Smart Home equipment), we are faced 
with a wealth of operational data which is often 
unused. Appropriate thermal modelling techniques 
need to be identified that are able to best make use of 
the real-time performance data arising from in-home 
sensors in order to reduce heating energy demand, 
better inform maintenance and retrofit actions and 
help towards the reduction of the performance gap 
(De Wilde, 2014). The Lumped Parameter method 
has proven popular in the field of data-driven 
statistical modelling (Andersen et al., 2000, Déqué et 
al., 2000, Bacher and Madsen, 2011, Foucquier et al., 
2013 and Dimitriou et al., 2014). The term ‘Lumped’ 
refers to the grouping of multiple layers of the 
building elements into a single node. The Lumped 
Parameter modelling technique, originally developed 
in the 1970s, has found multiple applications 
throughout the years (Tindale, 1993, Lombard and 
Mathews, 1999, Gouda et al. 2002 and Xu and Wang, 
2008). The Lumped Parameter models have been 
extensively used to represent parts of the heating 
system and, in particular, to model the radiator 
surface temperature and heat output to its 
surrounding environment.   
A Lumped Parameter model is used in the software 
ANSYS© FLUENT Academic Research to represent 

the radiator surface by using a non-constant heat 
transfer coefficient that accounts for the variability of 
the heat output due to different boundary conditions. 
Gouda et al. (2000) describe the heat emitted through 
a radiator by dividing the emitter system in two 
connected subsystems; the first subsystem relates to 
the water flow through the radiator panel; the second 
subsystem refers to the heat transferred from the 
water to the radiator material and subsequently to the 
room air node. In a similar approach, Tahersima et al. 
(2011) calculated the power from the radiator due to 
convection by separating the radiator into a number 
of elements and by using multiple measurements of 
the radiator temperature. Liao and Dexter (2004) and 
more recently Maivel and Kurnitski (2014) explain 
that the thermal dynamics of the radiator are 
governed by the power supplied to the radiator, the 
power emitted through radiation and the power 
emitted through convection. Underwood (1999) used 
a non-linear model to describe the output of a hot 
water heat emitter describing both natural convection 
and heat exchange due to long-wave radiation. The 
radiator model used by Andersen et al. (2000) relates 
the heat output of the radiator to the supply and 
return water temperatures of the flow and the room 
air temperature using a constant ‘c’ and assuming a 
rather constant flow. Similarly, in their work on 
dynamic modelling of a room Yu and Paassen (2004) 
introduce an additional term for the radiative heat 
exchange from the radiator to other solid surfaces 
(e.g. wall). A heat balance equation for the 
Thermostatic Radiator Valves (TRV) has been 
proposed by Xu et al. (2008) which relates the 
temperature difference of the TRV sensor to the 
temperature difference between the sensor and the 
room air by using a heat transfer coefficient ‘K’. 
Finally, Garbai and Barna (2005) in their work on 
modelling the non-steady-state conditions in a gas 
boiler heated room link the radiator heat output to the 
energy output from the boiler using an equation 
describing the heat balance of the heat circuit. 
This paper focuses on developing a simple data-
driven Lumped Parameter thermal model linking the 
radiator surface temperature to the whole house gas 
consumption using operational data collected from a 
real house. The model parameters are calculated and 
the goodness of fit to the monitored data is assessed. 
By excluding time-stamps of assumed mixed-use gas 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288373885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


consumption (gas used for purposes other than 
heating, such as cooking and Domestic Hot Water) 
the model fit is improved. Finally the model is used 
to disaggregate the gas consumption data linked to 
space heating from the original whole house gas 
consumption at half-hourly intervals. 

CASE STUDY: A HOME IN 
LOUGHBOROUGH 
An initial exploration of the selected modelling 
method was realised for a typical UK domestic 
building.  The building has a varying occupancy of 
up to three people and thus the applicability of the 
modelling methods to real-life households was 
investigated. In contrast to experimental buildings 
and laboratory environments where most of the 
parameters can be controlled and adapted, this study 
explores the uncertainties involved in real domestic 
buildings where occupant behaviours and heating 
practices play a significant role in the total energy 
performance. In this section a description of the 
building is given, followed by a description of the 
measurement equipment and the data collected. 

House description 
The house is a two-storey traditional semi-detached 
house built in the early 1970s, situated in 
Loughborough, UK. In Figure 1 the floorplans of the 
house are given along with the openings and radiator 
placement. The groundfloor consists of an entrance 
hallway, a living room, a kitchen-dining room and 
the first floor has three bedrooms and a family 
bathroom. The total floor area amounts to 
approximately 78m2. The external construction 
consists of insulated cavity walls and double glazed 
openings. The floor to ceiling height is 2.4m. The 
central heating system is a typical wet system with 
radiators and a central boiler. The condensing combi 
boiler, model of 2013, is using gas as its primary 
fuel. There are seven radiators in the house, five of 
which are single-surface radiators and the remaining 
two (in the kitchen-dining room and the living room) 
are double-surface radiators. The living room is also 
equipped with a solid fuel stove (woodburner).  

 
Figure 1 Floorplans of groundfloor (left) and first 

floor (right) with radiator positioning (in black 
blocks) 

Measurement equipment and data collected 
Table 1 summarises the measured data and 

provides further details on the time intervals and 
equipment used. Hobo temperature data loggers were 
placed in each room at a head high level away from 
obstacles, direct solar radiation, currents and heat 
sources (when possible) to capture the internal air 
temperature (Ti). For the monitoring of the radiator 
surface temperature (Tr) One-wire iButton standalone 
sensors were selected for their small size and their 
advantage of non-intrusive attachment to the surfaces 
due to the lack of wiring. The capability of the 
iButton sensors to monitor the temperature of a 
surface has been already proven in the field of 
thermophysiology by Van Marken Lichtenbelt et al. 
(2006) and more recently by Smith et al. (2010) in 
their research work on evaluating the human skin 
temperature using iButtons. An external company 
was employed to monitor the whole house gas 
consumption (Qh) at a half-hourly interval. The 
monitoring lasted for a 8-week time-period during 
the 2014 heating season; starting the 1st of February 
and ending the 28th of March 2014.  

 
Table 1 

Operational data captured, the equipment used and 
the time interval used 

THE RADIATOR-GAS CONSUMPTION 
MODEL 
Model development 
A simple two-node linear model describing the 
dynamics between the gas consumption Qh, the 
radiator surface temperature Tr and the building 
internal temperature Ti is developed. The model is 
used to identify how the radiator surface temperature 
relates to gas consumption and quantify the energy 
used for space heating using the main heating system. 
Figure 2 shows the relevant lumped parameter model 
taking into account the convective heat transfer 
between the radiator surface and the indoor air 
temperature node. 

Monitoring of Positioning Equipment 
used 

Interval  
(min) 

Internal air 
temperature 

Ti (oC) 

One in each 
room  including 

hallways and  
landing 

HOBO U12 
- HOBO 
Pendants 

30 

Radiator 
surface 

temperature 
Tr (oC) 

One on each 
radiator 

One-wire 
iButtons 30 

Gas 
consumption 

Qh (m3) 

Whole house, 
cumulative 

measurements1 

Automated 
meter reader 30 

1Conversion factor used for Loughborough, sourced from 
http://www.energylinx.co.uk; 1m3 equals to 11.363kWh 



 
Figure 2 A two dimensional representation of the 

lumped parameter model (left) and the RC-
network/electrical analogy (right) 

The differential equations describing the heat transfer 
occurring at the internal air node at a whole house 
level are given below: 
 

 𝑑𝑑𝑑𝑑𝑟𝑟,𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 = ��𝑇𝑇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑟𝑟,𝑝𝑝𝑟𝑟𝑚𝑚𝑝𝑝�

𝐶𝐶𝑟𝑟𝑅𝑅𝑖𝑖𝑟𝑟
+ a𝑄𝑄ℎ

𝐶𝐶𝑟𝑟
� 𝑑𝑑𝑑𝑑                       (1) 

 𝑑𝑑𝑑𝑑𝑟𝑟,𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 = �𝑎𝑎�𝑑𝑑𝑖𝑖,𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑟𝑟,𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝�+𝛽𝛽𝛽𝛽ℎ�𝑑𝑑𝑑𝑑               (2)             
 
where Ti,meas is the non-weighted average of all the 
room air temperature measurements of the previous 
time step, Tr,pred is the non-weighted average of all 
the radiator surface temperature predictions of the 
previous time step and dTr,pred is the difference in the 
radiator surface temperature as predicted by the 
model. 

 Initial model fit 
To calculate the unknown model parameters, α and β, 
the Ordinary Least Square (OLS) parameter 
estimation technique is used (Reddy, 2011).  
Table 2 summarises the model results. The parameter 
values that minimise the Sum of the Squared Errors 
(SSE) between the measured radiator surface 

temperature, Tr,meas, and the predicted radiator surface 
temperature, Tr,pred, are calculated. The model is 
calibrated using as input variables all half-hourly 
interval time-stamps of room air temperature, Ti, and 
gas consumption, Qh.  The Root Mean Squared Error 
(RMSE) i.e. the mean error between the predicted 
and measured radiator surface temperature per time-
stamp (oC) is also calculated.  
 

Table 2 
Model parameters and goodness of fit metrics 

α β SSE (based on 2688 
measurements) 

RMSE 
(oC) 

0.43 1.99 59802.60 4.72 

 
Figure 3 presents the model output, Tr,pred, the 
measured radiator surface temperature, Tr,meas, and 
the gas consumption input variable values, Qh, 
against time. It is clear that the model under-predicts 
the radiator surface temperature (a difference of 
about 5oC) during most of the daily peaks throughout 
the 8-week time-period. Occasionally the model 
over-predicts, driven by the very high gas 
consumption of the relative time-stamps. This was 
expected as the gas consumption data used to 
calculate the radiator surface temperature included 
the gas consumption used for other purposes such as 
Domestic Hot Water (DHW) and cooking. The 
inclusion of gas consumption for uses other than 
space heating through the central heating system 
during the model calibration using the OLS technique 
results in unreasonable temperature peaks, driving 
the model to under-predict for the rest of the time-
period in order to compensate for the increased error.  
To further explore how the model predicts Figure 4 
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Figure 3 Radiator surface temperature as measured Tr,meas (oC) and as predicted Tr,pred (oC) using the total gas 
consumption data Qh (kW) for the 8-week period of the 2014 heating season. 

 



presents the model output, Tr,pred, the measured 
surface temperature, Tr,meas, and the input gas 
consumption, Qh, against time for an example day 
(the 19th of February 2014). The model under-
predicts the radiator temperature (within a range of 
about 3oC to 6oC) when the heating is on and over-
predicts the radiator temperature at midday when the 
heating should be off. This is a clear indication that 
the gas consumption presented between 11:00 and 
14:00 is used for purposes other than space heating 
causing the model to predict an increased radiator 
surface temperature when there is no space heating 
through the central heating system.  

 
Figure 4 Tr,meas (oC), Tr,pred (oC) using the total gas 

consumption data Qh (kW) for the 19th of February. 
Another example day of the 8-week time-period (the 
19th of March 2014) is presented in Figure 5. In this 
case, the model both under-predicts and over-predicts 
during the time-period that the radiator temperatures 
are highest, presenting a peak in the surface 
temperature that cannot be related to the measured 
radiator temperature. This could be an indication that 
during the space heating period (18:00 and 22:00) 
gas consumption is being used to serve for additional 
purposes, misleading to even higher peaks of radiator 
surface temperature than the expected.  

 
Figure 5 Tr,meas (oC), Tr,pred (oC) using the total gas 
consumption data Qh (kW) for the 19th of March. 

 
Figure 6 is a scatter plot of the model output, Tr,pred, 
against the measured surface temperature, Tr,meas, 

which can be used to assess how well the model 
predicts across the whole 8-week time-period. A 
perfect fit between the predicted and measured data 
would be indicated by a perfect positive linear 
association. In this case, all the data points would fall 
perfectly on the black line. However, having already 
explored the time-plots, a less than perfect fit should 
be expected. Indeed, while most of the data-points 
fall on the black line indicating an adequate fit, a 
significant number of data-points deviates from the 
linear association.  With the y axis indicating the 
value of the predicted temperatures and the x axis the 
relative measured values, any values falling above 
the black line indicate an instance of overprediction 
and all values below the line should be linked to 
underprediction. The RMSE value of 4.72oC from 
Table 2 can be used as an indication of how scattered 
the data are from the black line. The better the linear 
association, the closer the RMSE value is to zero. 

 
Figure 6 Tr,meas (oC) against Tr,pred (oC)  indicating 

how well the model fits and all the instances of over-
/under-prediction.  

In this section the model parameters were calculated 
using all half-hour time-stamps of the input variable 
Qh. The results showed that the inclusion of gas used 
for purposes other than space heating (through the 
central heating system) in the calculation of the 
predicted radiator surface temperature resulted in an 
inadequate fit to the measured data. In particular, the 
model over-predicted the radiator temperature when 
gas consumption was used for multiple purposes and 
under-predicted throughout the rest of the time-
period.  
In the next section, to improve the model fit, selected 
time-stamps of the 8-week time-period for which gas 
consumption is causing temperature overprediction 
are excluded from the model calibration. 

Model calibration using selected time-stamps 
In order to define overprediction, an error threshold 
need to be chosen above which gas data values are 
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assumed to incorporate gas used for multiple 
purposes and therefore should be excluded from the 
model calibration. This serves to ensure that time-
stamps for which the model is overpredicting due to 
other reasons, such as inadequate initial parameter 
values, are not attributed to mixed gas consumption 
and, therefore, unecessarily removed from the input 
data.  
In Table 3 different error thresholds between the 
predicted and measured radiator surface temperature 
are being explored. Using a macro written in VBA 
Excel, time-stamps for which the error ranges from 
0oC to the maximum identified difference (e.g. 60oC) 
are gradually excluded from the model calibration 
and the model parameter values and model fit metrics 
are calculated. The number of measurements used for 
the model calibration is taken into account. The 
threshold for which the best model fit is achieved, i.e. 
the threshold for which the lowest RMSE value is 
presented, is considered to provide adequate 
calculation of the model parameter values. In this 
case, excluding all time-stamps for which Tr,pred-
Tr,meas>1oC resulted in the lowest RMSE (2.08oC). 
The proportion of gas usage data excluded during 
calibration for each threshold is listed in the last two 
columns. The threshold of 1oC resulted in the 
exclusion of 23.73% of all gas usage data (including 
the time-periods when gas consumption is zero) and 
10.97% of gas data excluded for the time-periods 
during which heating was on. Ensuring that an 
adequate proportion of gas usage data when heating 
is on is used during calibration is crucial to ensure 
that the parameter estimation is based on these 
important time-periods when most information on 
space heating is available. 

Table 3 
Exploring different thresholds for data exclusion 

from the model calibration 

Tr,pred-Tr,meas> 
threshold (oC) α β 

RMSE on 
included 

time-stamps 

Gas data 
excluded  

60 0.43 1.99 4.72 0.00% 
50 0.43 1.99 4.72 0.00% 
40 0.44 2.07 4.56 0.14% 
30 0.46 2.17 4.39 0.35% 
20 0.52 2.58 3.61 1.84% 
10 0.59 3.08 2.61 4.73% 
9 0.59 3.07 2.60 4.87% 
8 0.58 3.08 2.53 5.51% 
7 0.58 3.09 2.46 6.14% 
6 0.59 3.13 2.37 6.99% 
5 0.58 3.14 2.28 8.26% 
4 0.58 3.15 2.19 10.17% 
3 0.58 3.19 2.10 12.57% 
2 0.58 3.19 2.09 14.34% 

1 0.58 3.22 2.08 23.73% 

0 0.58 3.24 2.22 52.19% 

Figure 7 presents the time-stamps excluded during 
calibration when using the threshold of 1oC. There 
are 336 time-stamps excluded out of the 2688 
original time-stamps with 76 of them (in red) relating 
to the time-period when the heating is on. The red 
data points suggest that gas is used for both space 
heating and other purposes whereas the green data 
points suggest that gas is used only for other 
purposes. Most of the instances when space heating 
through the central heating system is used in 
conjunction with other activities requiring gas usage 
appear late in the afternoon and during the evening 
and in particular between 15:30 and 21:30. This 
result suggests that in this dwelling cooking and 
DWH are most commonly used during these hours. 
 

 

Figure 7 Time-stamps excluded during calibration 
when a threshold Tr,pred-Tr,meas>1oC  is selected. 

 
Figure 8 presents the model output, Tr,pred, and the 
measured radiator surface temperature, Tr,meas, for the 
8-week time-period. The time-stamps for which the 
Tr,pred-Tr,meas>1oC condition is satisfied are excluded 
from the model calibration and are indicated in the 
graph by a grey vertical line. All of the peaks that 
deviate more than +1oC from the measured 
temperature have been excluded from the calibration. 
The model fit is significantly improved when 
compared to the initial fit of Figure 3. By excluding 
all the unnecessary peaks the model achieves a much 
better fit during the time-periods included in the 
calibration procedure. 
Figure 9 presents the model output, Tr,pred, the 
measured surface temperature, Tr,meas, and the 
excluded time-stamps for the same day as Figure 4 
(the 19th of February 2014). Four time-stamps have 
been excluded from the calibration for this day. The 
model fit has improved significantly during the time-
periods when the heating is on. The model is still 
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over-predicting during the 11:00 to 14:00 time-period 
due to the gas consumption for purposes other than 
space heating. To remove these peaks the gas 
consumption data would need to be disaggregated 
and the gas consumption for other purposes removed. 
Similarly, Figure 10 presents the model output, Tr,pred, 
the measured surface temperature, Tr,meas, and the 
excluded time-stamps for the same day as Figure 5 
(the 19th of March 2014). Again, four time -stamps 
have been removed from the model calibration, two 
instances related to gas usage when heating is off (at 
11:30 and 15:30) and the remaining two related to 
gas consumption used for other purposes when 
heating is on (at 19:30 and 20:00).  The model fit is 
improved from the initial model fit during the hours 

 
Figure 9 Tr,meas (oC), Tr,pred (oC) excluding selected 

time-stamps for the 19th of February. 

18:00-19:00 and 20:30-22:00 when the heating is on 
and gas is not being used for other purposes other 
than space heating.  
Finally, Figure 11 is a scatter plot of the model 
output, Tr,pred, against the measured surface 
temperature, Tr,meas, which can be used to assess how 
well the model predicts across the whole 8-week 
time-period, same as Figure 6. This scatter plot uses 
only the selected time-stamps for calibration. The 
model fit for the selected data points is significantly 
improved, with the majority of the data along the 
black line indicating a stronger linear association. 
This was also reflected in the respective RMSE value 
of Table 3 of 2.08oC, an improvement of 2.64oC from 
the initial model. 

 
Figure 10 Tr,meas (oC), Tr,pred (oC) excluding selected 

time-stamps for the 19th of March.  
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Figure 8 Radiator surface temperature as measured Tr,meas (oC) and as predicted Tr,pred (oC) excluding selected 
time-stamps (Tr,pred-Tr,meas>1oC) for the 8-week period of the 2014 heating season. 

 



 
Figure 11 Tr,meas (oC) against Tr,pred (oC)  indicating 
how well the model fits for selected time-stamps.  

Application of the model 
Once the linear model is calibrated and the parameter 
values calculated, the model can be used to select the 
gas consumption data that are linked to space heating 
only. To achieve that, the first step is to replace the 
predicted values of radiator surface temperature for 
the time-stamps that were previously excluded from 
the calibration procedure with the measured 
temperature data. This creates a new time series of 
radiator surface data, Tr,gas. The second step is to 
reverse the modelling procedure. Using Tr,gas and the 
parameter values α and β as input data the gas 
consumption related to space heating can be 
calculated. 
Figure 12 shows how the gas consumption data have 
been corrected and the time-stamps of correction for 
one example day (the 19th of February 2014). Four  

 
Figure 12 The original gas consumption data, Qh, the 
corrected gas consumption data and the time-stamps 

for which corrections occurred for one day. 

gas data points have been corrected and the peak of 
gas consumption between 11:00 and 13:30 which is 
not related to space heating has been removed. The 
gas consumption data during the time-periods that the 
heating is on remain the same as the original gas data 
as there was no indication of mixed gas usage. 
Figure 13 shows another example of gas data 
correction for a different day (the 19th of March 
2014). In this case there are four instances of gas data 
correction, two of which during the time-period that 
the heating is on. The gas data at this point is 
calculated to match the need for space heating 
reducing the gas consumption peak from 13.18kW 
down to 4.89kW. This implies that 8.29kW of gas 
consumption served for purposes other than space 
heating. 

 
Figure 13 The original gas consumption data, Qh, the 
corrected gas consumption data and the time-stamps 

for which corrections occurred for one day. 
Finally, Figure 14 shows the original gas 
consumption data (x axis) against the corrected gas 
consumption data for space heating (y axis). All 
values across the diagonal of the graph are gas 
consumption data that maintained their original 
values. All points beneath the diagonal relate to data 
that had to be completely removed (data falling along 
the x axis) or data that needed to be reduced. 

 
Figure 14 Original and corrected for space heating 

gas consumption data as calculated using the 
calibrated linear model 
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CONCLUSIONS 
A simple data-driven Lumped Parameter thermal 
model has been developed linking the radiator 
surface temperature to the whole house gas 
consumption using operational data collected from a 
real house. The whole house gas consumption data, 
consisting of gas used for space heating as well as 
other purposes, has been used to drive the model. 
Due to the end uses for gas consumption, the model 
fit was inadequate, under-predicting when space 
heating was on and over-predicting when gas was 
used for other purposes.  A critical examination of 
different thresholds to remove the time-stamps for 
which the model over-predicted during calibration 
showed that a threshold of 1oC could provide the best 
model fit (RMSE of 2.08oC, of 2.64oC lower than the 
initial model fit). Finally, the model was used to 
select the gas consumption data that are linked to 
space heating only, by correcting the original whole 
house gas consumption at the time-stamps where gas 
usage for other purposes was identified.  
This work is of significant interest to the building 
physics community for identifying models for 
domestic buildings with in-home sensors based on 
real-time data and to the UK government for 
promoting smart metering as an energy efficiency 
strategy and for bridging the performance gap. 
Further work will expand the findings of this paper in 
a study of 12 UK homes. 

NOMENCLATURE 
Tr,pred is the radiator surface temperature as 

predicted by the model ( 𝐶𝐶𝑜𝑜 ) 
Tr,meas is the radiator surface temperature as 

measured ( 𝐶𝐶𝑜𝑜 ) 
Ti,meas is the indoor air temperature ( 𝐶𝐶𝑜𝑜 ) 

Qh is the gas consumption (W) 
Cr is the heat capacitance of the radiator 

(W/oC) 
Rir is the thermal resistance between the 

radiator and the air (oC/W) 
a is a factor of boiler efficiency and pipe 

heat losses 
α is the convective heat transfer coefficient 
β is the gas consumption coefficient 
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