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We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated

density of states of the quantum-mechanical Schr€odinger operator associated with the

Korteweg–de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of

sound in the soliton gas with Gaussian spectral distribution function. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941372]

Recent observations of shallow water wind waves in the

ocean revealed the presence of a dense soliton gas

described by the Korteweg–de Vries (KdV) equation.1

The density parameter appears to play crucial role in the

establishment of the low frequency power-law Fourier

spectra of the associated random nonlinear wave field

(integrable soliton turbulence). However, in contrast to

the notion of a rarefied soliton gas introduced by

Zakharov in 1971, the notion of a dense soliton gas has

not been quantified so far. In this paper, we derive an

upper bound for the soliton gas density by considering

the properties of the integrated density of states of the

quantum-mechanical Schr€odinger operator associated

with the KdV dynamics in the framework of the inverse

scattering theory. The existence of the critical density

opens a perspective for an analytical determination of

statistical characteristics of soliton gases in the state close

to criticality.

I. INTRODUCTION

Dynamics of incoherent nonlinear dispersive waves

have recently become the subject of a very active research in

nonlinear physics, most notably in oceanography, nonlinear

optics, and condensed matter physics. In some cases, such

dynamics can be viewed as a natural counterpart of turbulent

motion in traditional dissipative fluid systems (see, e.g.,

Ref. 2). In the context of dispersive wave motion, turbulence

is usually associated with a complex, spatio-temporal wave

dynamics that requires a statistical description, the prominent

example being the wave turbulence theory pioneered by

Zakharov.3 The extension of the notion of turbulence to dis-

persive wave systems is particularly compelling when the

governing system of equations is integrable, which provides

one with the principal availability of the full analytical

description.4 The emerging theory of integrable turbulence5

encompasses both weak (wave) and strong (soliton) turbu-

lence. The description of integrable wave turbulence has

found recent development in Refs. 6 and 7 where the theoret-

ical findings were confirmed in the fibre optics experiments.

The “opposite” case of integrable soliton turbulence has a

much longer history dating back to 1971 Zakharov’s paper

on the kinetic equation for solitons,8 but the experimental

observation of soliton gas/soliton turbulence in shallow

water ocean waves has been reported only very recently1 and

revealed striking low frequency power law Fourier spectra of

the measured random nonlinear wave field.

To be clear from the very beginning, the notions of soli-

ton gas and (integrable) soliton turbulence, at least the way

they are used in this paper, represent two complementary

aspects of the same physical object. These two aspects are

the natural counterparts of the particle-wave duality of a

single soliton. In the soliton-gas description, the focus is on

the collective dynamics of solitons as interacting particles

characterised by a certain amplitude (velocity) distribution

function, while the soliton turbulence description emphasises

the properties of the random nonlinear wave field associated

with the soliton gas. In this paper, we consider certain prop-

erties of the soliton gas/soliton turbulence for the KdV

equation

ut � 6uux þ uxxx ¼ 0 : (1)

Despite the deceptively “old-fashioned” nature of this object,

there still are a number of open fundamental questions per-

taining to the behaviour of random solutions to Equation (1)

(see, e.g., Refs. 9 and 10).

The inverse scattering theory associates each KdV soli-

ton with a point of discrete spectrum kn ¼ �g2
n of the

Schr€odinger operator

L ¼ �@2
xx þ uðx; tÞ : (2)

Along with the spectral parameter gj > 0, each soliton is

characterised by the “phase” xj 2 ð�1;þ1Þ determining

its spatial location (not necessarily coinciding with the posi-

tion of the local maximum of u(x, t)). In a soliton gas, the

spectral parameter gn is distributed on a finite interval S �
R (which without loss of generality can be assumed to be

½0; 1�) with some density /ðgÞ, while the individual soliton

locations xj have the Poisson distribution on the line with

some density parameter j.11 Thus, mathematically, soliton

gas can be viewed as a compound Poisson process.12 The

spectral distribution function f ðgÞ of solitons in the gas is

then introduced such that f ðg0Þdgdx is the number of solitons

with the spectral parameter gn 2 ðg0; g0 þ dgÞ found in the

space interval ðx; xþ dxÞ at the moment of time t, i.e., f ðgÞ isa)Electronic mail: g.el@lboro.ac.uk
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the density of states per unit length. The integral density j of

the soliton gas is found as

j ¼
ð
S

f ðgÞdg : (3)

In an inhomogeneous soliton gas, one has f ¼ f ðg; x; tÞ. The

evolution of f is then governed by the kinetic equation first

derived by Zakharov for the case of a “rarefied” (j� 1)

soliton gas.8 Zakharov’s kinetic equation was generalised in

Refs. 13 and 14 to the case of soliton gas of arbitrary

(j ¼ Oð1Þ) density. This non-perturbative kinetic equation

for a “dense” soliton gas has the form

ft þ ðsf Þx ¼ 0 ; (4)

s gð Þ ¼ 4g2 þ 1

g

ð
S

log
gþ l
g� l

����
����f lð Þ s gð Þ � s lð Þ

� �
dl:

Here, we used the shorthand notation f ðgÞ � f ðg; x; tÞ;
sðgÞ � sðg; x; tÞ, the latter being the mean, or effective, ve-

locity of a soliton with the spectral parameter g in a soliton

gas, which differs, owing to soliton interactions, from the

free soliton velocity 4g2. The typical scales of x and t in (4)

are much larger than in the KdV Equation (1).

Equation (4) provides kinetic description of a dense (as

opposed to rarefied) soliton gas in the sense that the second

term in the integral equation in (4) describing soliton interac-

tions has generally the same order as the first term related to

the free soliton motion. At the same time, this equation does

not impose any specific limitations on the density (except for

its boundedness) and does not imply any qualitative changes

in the KdV solution behaviour due to large density values. It

appears, however, from the observational results of Ref. 1

that the density parameter plays crucial role in the formation

of the power-law Fourier spectra of the KdV soliton turbu-

lence. Indeed, the Fourier spectra of the shallow water

soliton turbulence observed in Ref. 1 exhibit the power-law

behaviour x�1, while the spectra of the rarefied soliton

gas are exponential.15 The energy shift to lower frequencies

clearly occurs due to soliton interactions whose role

increases with the increase of the gas density. Thus, an addi-

tional consideration is required in order to understand the

effect of the soliton gas density on the properties of the asso-

ciated soliton turbulence.

The main result of this paper is the establishment of an

upper bound for the density of a KdV soliton gas, so that the

notion of dense soliton gas acquires the definitive quantita-

tive criterion. As a by-product of our calculation, we show

that the evolution of the density disturbances in a soliton gas

satisfies the linear transport equation whose characteristic

velocity yields the speed of sound in a soliton gas.

II. SPECTRAL DISTRIBUTION FUNCTION AND THE
MOMENTS OF SOLITON GAS

A. Finite-gap potentials: Quasi-momentum and the
integrated density of states

The spectral distribution function f ðgÞ for the KdV soli-

ton gas is most naturally defined in terms of the integrated

density of states of the associated Schr€odinger operator (2)16

N kð Þ ¼ lim
b�a!1

� a; b; kð Þ
b� a

; (5)

where �ða; b; kÞ is the number of eigenvalues kj � k in the

Dirichlet problem ð�@2
xx þ uðx; tÞÞw ¼ kw on a � x � b:

wða; kÞ ¼ wðb; kÞ ¼ 0. It is known17 that for almost-periodic

potentials u(x) the differential dN is a measure supported on

the spectrum so one can introduce the distribution function

f ðgÞ > 0 such that dN ¼ f ðgÞdg, where g2 ¼ �k. We shall

be interested in the properties of this spectral measure for

soliton gas, which can be constructed as the thermodynamic
limit of finite-gap potentials.11

The finite-gap potentials play the prominent role in the

KdV theory (see Ref. 18 and references therein).

Remarkably, the corresponding Schr€odinger operators have

the spectrum consisting of N 2N disjoint finite bands

½k2i�1; k2i� plus one semi-infinite band ½k2Nþ1;1Þ. The bands

are separated by N finite gaps. Shrinking a finite band into a

point corresponds to the appearance of a soliton on the

(N� 1)-gap potential “background.”18 Collapsing all N
bands into points yields the N-soliton KdV solution.

For a N-gap potential, the integrated density of states (5)

can be calculated as N NðkÞ ¼ 1
p Re½pNðkÞ�, where pNðkÞ is

the quasi-momentum, a fundamental quantity with the well-

defined analytic properties.18,19 For our consideration, it is

sufficient to know that the quasimomentum is the generating

function for the averaged Kruskal integrals, the densities of

the KdV conservation laws averaged over the family of N-

gap solutions, so that the expansion of pNðkÞ near k ¼ 1 has

the form18,19

pN ¼
ffiffiffi
k
p
þ
X1
k¼0

I Nð Þ
k

2
ffiffiffi
k
p� �2kþ1

; k� 1; (6)

where, in particular

I Nð Þ
0 ¼ lim

L!1

1

L

ðL

0

uN xð Þdx; I Nð Þ
1 ¼ lim

L!1

1

L

ðL

0

u2
N xð Þdx : (7)

(We note that N-gap potentials uN are quasiperiodic func-

tions, so the existence of the averages in (7) is guaranteed).

The higher order averaged Kruskal integrals do not coincide

with the higher moments of the wave field so they will not

be used in what follows.

We shall use expressions (7) and (6) to compute the

moments I0 ¼ �u; I1 ¼ u2 of the soliton gas in terms of the

spectral distribution function f ðgÞ introduced formally in

Section I. For that, we need to briefly outline the KdV soliton

gas construction proposed in Refs. 11 and 13 which provides

the connection between the quasi-momentum differential

dpNðkÞ in the limit as N !1 and the spectral distribution

f ðgÞ.

B. Soliton gas construction

Consider a sequence of N-gap solutions uNðx; tÞ; N ¼
1; 2; 3;… of the KdV Equation (1), defined in the following

way. Let the finite-band spectrum of uN be confined to some

given interval, say, ½�1; 0� (without loss of generality, we
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can set k2Nþ1 ¼ 0). The N-gap potentials are multiphase (N-

phase) KdV solutions so that uNðx; tÞ ¼ UNðh1; h2;…; hNÞ,
where hj ¼ kjx� xjtþ hð0Þj , kj being the wavenumbers, xj

the frequencies, and hð0Þj the initial phases. The quantities kj

and xj are defined in terms of the spectrum edges fkjg2Nþ1
j¼1

(see, e.g., Ref. 19) and hð0Þj are arbitrary. In particular

kj ¼ 2

ðk2j

k2j�1

dpNðkÞ; j ¼ 1;…;N: (8)

The total integrated density of states in N-gap potential can

then be found as (see Ref. 17)

N N 0ð Þ ¼ 1

p
Re

ð0

�1

dpN kð Þ ¼ 1

2p

XN

j¼1

kj; (9)

i.e., it has the physically transparent meaning of the total

“density of waves.”

The functions UNðh1;…; hNÞ are 2p-periodic with

respect to each phase hj, and therefore, uNðx; tÞ are quasi-

periodic in both x and t provided the wavenumbers kj as well

as frequencies xj are incommensurate. The soliton gas con-

struction then proceeds as follows:11 (i) assume that the ini-

tial phases hð0Þj are independent random values uniformly

distributed on ½�p; pÞ, i.e., the vector hð0Þ is uniformly dis-

tributed on the N-torus;20 (ii) consider the sequence of finite

gap potentials uNðx; tÞ such that N !1 but the total inte-

grated density of states is fixed, i.e., N Nð0Þ ¼ Oð1Þ. The cor-

responding limit of finite-gap potentials (assuming its

existence in some (weak) sense) represents thus an analog of

the thermodynamic limit in statistical mechanics.

The requirement of boundedness of the total density of

states (9) in the thermodynamic limit as N !1 implies cer-

tain asymptotic structure (scaling) of the finite-band spec-

trum. Indeed, the existence of limN!1N Nð0Þ <1 implies

kj ¼ OðN�1Þ for N � 1. The analysis of (8) then yields that

the spectral bands and gaps of uNðxÞ for N � 1 are distrib-

uted in such a way that

jgapjj ¼ k2jþ1 � k2j 	
1

/ gjð ÞN
;

jbandjj ¼ k2j � k2j�1 	 exp �c gjð ÞN
� �

; (10)

where gj ¼
k2j�1þk2j

2
is the centre of the j-th band, and

/ðgÞ; cðgÞ are some continuous functions on ½0; 1� (see Refs.

21 and 13 for details). Then, we have for the limit of the

band-gap ratio

jbandjj
jgapjj

	 N exp �cNð Þ ! 0 as N !1; (11)

for all j, which corresponds to the soliton (more precisely, in-

finite-soliton) limit.

Having defined the thermodynamic limit for the spec-

trum of finite-gap potentials, we need now to determine what

happens in this limit with the random phases hj ¼ kjx� xjt

þhð0Þj ; j ¼ 1;…;N. The scaling (10) implies that in the ther-

modynamic (infinite-soliton) limit all the wavenumbers and

frequencies vanish, kj ! 0; xj ! 0, i.e., the spatial and tem-

poral periods become infinite. The latter implies that the

phase torus in the thermodynamic limit maps onto the infi-

nite line.11 To show that, one represents the phases hj 2
½�p; pÞ in the form hj ¼ kjðx� xjÞ, where xj ¼ �hð0Þj =kj 2
½�p=kj; p=kjÞ (the temporal components xjt of the respective

phases are assumed to be absorbed in the random initial

phases hð0Þj ). Then, it is not difficult to show11 that the uni-

form distribution of hð0Þ on ½�p; pÞN transforms under the

thermodynamic limit into the Poisson distribution for the

“soliton centres” xj on ð�1;1Þ. The dynamics of the spa-

tial phases nj ¼ x� 4g2
j t� xj; j 2 Z in soliton gas are thus

equivalent to the particle dynamics in an ideal configuration

gas constructed as the thermodynamic limit of the dynamical

system of N particles moving with constant speeds on a

circle, see, e.g., Ref. 22.

C. Moments of soliton turbulence

We now express the thermodynamic limit of the

moments (7) of the nonlinear wave field u(x, t) in the soliton

gas (i.e., soliton turbulence) in terms of the averages over the

limiting spectral measure dN1 � f ðgÞdg, where f ðgÞ is the

spectral distribution function of the soliton gas. For that, we

first use the k-derivative of the expansion (6) to obtain

I Nð Þ
0 ¼ �4Resk¼1 k1=2 dpN

dk

� 	
¼ � 2

pi

þ
C1

k1=2dpN: (12)

Here, C1 is the contour surrounding the point k ¼ 1 clock-

wise. Similarly

I Nð Þ
1 ¼ �16

3
Resk¼1 k3=2 dpN

dk

� 	
¼ � 8

3pi

þ
C1

k3=2dpN kð Þ: (13)

It is not difficult to show using the properties of the quasi-

momentum (see, e.g., Ref. 19) that for the thermodynamic

scaling (11) ImðpNÞ ! 0 as N !1, and so the spectral dis-

tribution function f ðgÞ of soliton turbulence is found as13,31

f gð Þdg � lim
N!1

dN N ¼
1

p
lim

N!1
dpN : (14)

Now, applying the thermodynamic limit to (12), (13), and

making the integration contour deformation
Þ

C1
…dk

¼
Þ

a …dk, where a is the contour surrounding the spectral

interval k ¼ �g2 2 ½�1; 0� counterclockwise, we obtain on

using (14), the expressions for the two first moments in the

KdV soliton turbulence

�u ¼ �4

ð1

0

gf gð Þdg ¼ �4jhgi;

u2 ¼ 16

3

ð1

0

g3f gð Þdg ¼ 16

3
jhg3i ; (15)

where the averaging over space is defined by (7), and the

angular brackets denote the averaging over the spectral dis-

tribution function f ðgÞ

023105-3 G. A. El Chaos 26, 023105 (2016)
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hgni ¼ 1

j

ð1

0

gnf gð Þdg ; n ¼ 1; 2;…; j ¼
ð1

0

f gð Þdg:

(16)

We note that expressions (15) coincide with the expres-

sions for the moments computed for a soliton lattice,

�
P

2g2
j sech2½gjðx� 4g2

j t� xjÞ�, see Ref. 23. The results of

Ref. 23 correspond to the rarefied gas limit j� 1, while for

the dense soliton gas case studied here one generally has

j ¼ Oð1Þ. The mentioned coincidence is, however, not that

surprising as the density parameter j enters the full expres-

sions for the moments (15) as a factor so their form is

retained in the asymptotic limit j� 1.

III. CRITICAL DENSITY OF A SOLITON GAS

We consider the variance function of the KdV soliton

turbulence

A2 ¼ u2 � �u2 
 0; (17)

which is a measure of the integral intensity of fluctuations of

the nonlinear turbulent wave field relative to its mean �u. We

now use the connection (15) between the spatial and spectral

moments to see the possible restrictions imposed on the

spectral distribution function f ðgÞ by non-negativity of A2.

We first consider the simplest, one-component “cold”

soliton gas characterised by the delta-function distribution

function

f ðgÞ ¼ f0dðg� g0Þ; (18)

where g0 is the dominant spectral parameter, and the soliton

gas density (3) j ¼ f0. We substitute the ansatz (18) into the

expressions for the moments (15) to obtain

�u ¼ �4g0j; u2 ¼ 16

3
g3

0j; (19)

which yields the variance function (17)

A2 ¼ 16jg2
0

g0

3
� j


 �
: (20)

Now one can see that non-negativity of the variance (20)

imposes a restriction on the possible values of the soliton gas

density

j � jcr ¼
g0

3
: (21)

At j ¼ jcr , one has A2 ¼ 0, hence u2 ¼ �u2 which implies

the absence of small-scale fluctuations. On the other hand, it

follows from (20) that for a given g0 the maximum of the in-

tensity of fluctuations is achieved when the gas density

j ¼ g0=6.

We note that the same expression (21) for the critical

density of the cold gas was obtained in Ref. 24 by the formal

computation of the condition A2 ¼ 0 for a lattice of non-

interacting solitons. Although this model is not applicable to

the description of a dense gas, where interactions between

solitons are essential, it yields the same formula due to

already mentioned factorized structure of the full expressions

for the moments (15).

One can trace an instructive analogy between the critical

parameter (21) in a one-component soliton gas and the maxi-

mum of the density of waves k0=ð2pÞ in the KdV dispersive

shock wave (DSW), where k0 is the wavenumber at the

DSW trailing edge, where the amplitude of the small-scale

oscillations vanishes and one has u2 ¼ �u2 (see Refs. 25 and

26). The analogy is supported by the well known fact21,27,28

that the process of the generation of a DSW can be described

in terms of the asymptotic evolution of a nearly reflectionless

potential approximated by a N-soliton solution of the KdV

equation with N � 1. Assuming the initial condition for the

KdV Equation (1) in the form of a wide rectangular well of a

width L� 1 and depth D ¼ Oð1Þ, the resulting DSW can be

represented as the result of a coherent interaction of a large

number of solitons having nearly the same spectral parame-

ter g0 ¼
ffiffiffiffi
D
p

, and so can be viewed as a coherent counterpart

of the single-component soliton gas with the density gradu-

ally decreasing from the value j0 ¼ k0=ð2pÞ at the trailing

edge to j¼ 0 at the leading edge. It is known that k0 ¼ 2
ffiffiffiffi
D
p

,

where D is the jump across the DSW (see Refs. 25 and 26

with the account of a different normalisation of the KdV

equation compared to (1)). The wave density at the harmonic

edge is then j0 ¼ g0=p and has a natural interpretation as the

maximum of the density of solitons. It is interesting to note

that the obtained maximum density of solitons in a DSW is

just below the value jcr ¼ g0=3 (21) in the counterpart cold

soliton gas with the distribution function (18).

We now consider the soliton gas with the Gaussian spec-

tral distribution function

f gð Þ ¼
f0ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp �

g� g0ð Þ2

2r2

� 
; (22)

where r2 is the spectral variance. Since f ðgÞ (22) is defined

for all g 
 0, one can without loss of generality use þ1 as

the upper limit in all integrals over the spectrum S. Assume

g0 ¼ Oð1Þ and r� g0, so that the contribution of the non-

physical, negative values of g can be neglected and the nor-

malisation j ¼
Ð1

0
f ðgÞdg ¼ f0 remains (approximately)

valid. The value of r2 can be interpreted as the measure of

the soliton gas “temperature,” characterising the spread of

the spectral parameter g (and hence, soliton velocity) around

the dominant value g0 (4g2
0 for velocity).

Using the well known expressions for the moments of

the Gaussian distribution, hgi ¼ g0; hg3i ¼ g3
0 þ 3g0r

2, we

obtain for the first two spatial moments of the “Gaussian”

soliton turbulence

�u ¼ �4jhgi ¼ �4jg0;

u2 ¼ 16

3
jhg3i ¼ 16

3
j g3

0 þ 3g0r
2

� �
:

(23)

Then, the turbulent wave filed variance is (cf. (20))

A2 ¼ 16jg2
0

g0

3
þ r2

g0

� j

 !
: (24)
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From the condition A2 ¼ 0, we obtain the expression for the

critical density of the Gaussian soliton gas with the mean

spectral component g0 and the spectral variance r2

jcr ¼
g0

3
þ r2

g0

: (25)

(We recall that it was assumed that g0 ¼ Oð1Þ so the pres-

ence of g0 in the denominator is not an issue). Thus, the criti-

cal density of the “warm” gas with r > 0 is higher than that

of the “monochromatic,” cold gas, r¼ 0. This result has a

simple physical interpretation. Consider the two-soliton inter-

action, which represents the basic mechanism determining

macroscopic properties of the KdV soliton turbulence.14,29

Depending on the amplitude ratio of the interacting solitons,

there are three basic geometrical configurations characterised

by distinct sizes and shapes at the moment of peak interac-

tion.30 The closer the amplitudes of the interacting solitons

with each other the greater the minimum distance between

their centres at the peak interaction is. This immediately leads

one to the qualitative conclusion that the soliton gas consist-

ing of solitons having a significant spectral spread around

some dominant value g0 can acquire greater integral density

than a gas with a narrow spectral distribution around the

same value of g ¼ g0. We note in conclusion that the choice

of the Gaussian distribution for the spectral measure f ðgÞ was

motivated by the fact that it provides a transparent illustration

of the difference between critical densities of the cold and

warm soliton gases. The inherent restriction g 
 0 would

probably make other distributions defined only for positive

values of g (e.g., Rayleigh or log-normal) more relevant in

the considerations of concrete physical problems.

IV. SPEED OF SOUND IN A SOLITON GAS

We now consider an inhomogeneous Gaussian soliton

gas by assuming in (22) that f0 ¼ jðx; tÞ but g0 and r remain

constant to comply with the isospectrality of the KdV evolu-

tion. The kinetic properties of such a gas are fully deter-

mined by the dynamics of jðx; tÞ. Averaging the KdV

conservation law ut þ ð�3u2 þ uxxÞx ¼ 0 according to (7),

we obtain

ð�uÞt � ð3u2Þx ¼ 0; (26)

which, on substituting (23), yields the transport equation for

the density jðx; tÞ

jt þ ð4g2
0 þ 12r2Þjx ¼ 0: (27)

Since 4g2
0 is the mean velocity of the Gaussian soliton gas as

a whole, the quantity c ¼ 12r2 gets a natural interpretation as

the “speed of sound” in a soliton gas with Gaussian spectral

distribution. As expected, the “sound” does not propagate in

the “cold” soliton gas with r! 0 and f ! f0dðg� g0Þ.
Remarkably, Equation (27) is linear, so the speed of

sound in the soliton gas does not depend on its density,

which implies the principal absence of the macroscopic

wave breaking effects. This agrees with the linearly degener-

ate structure of the hydrodynamic reductions of the kinetic

Equation (4) studied in Refs.14 and 31. Now, using the gen-

eral solution of (27), we obtain the solution of the kinetic

Equation (4) in the form

f g; x; tð Þ ¼
j0 ~x � 12r2tð Þffiffiffiffiffiffiffiffiffiffi

2pr2
p exp �

g� g0ð Þ2

2r2

� 
; (28)

where j0ðxÞ is the initial density distribution in the soliton

gas, and ~x ¼ x� 4g2
0t is the transport coordinate correspond-

ing to the mean spectral component g0.

V. CONCLUSIONS AND PERSPECTIVES

We have shown that the density of KdV soliton gas is

bounded from above by the value found from the condition of

the vanishing for the variance (17) for the associated random

nonlinear wave field (integrable soliton turbulence). This

introduces the quantitative criterion for the notion of a dense

soliton gas. The existence of the critical density gives rise to

several interesting possibilities. One of them is related to the

possible phase transitions involving soliton gas generation.

The phase transition phenomena involving soliton gases are

currently under active investigation in the context of some

non-integrable dispersive systems.32,33 In the framework of

integrable systems, an example of the phase transition from a

smooth flow to the rapidly oscillating nonlinear regime con-

sisting of coherent interacting solitons is well known as the

DSW generation near the gradient catastrophe point, but the

“integrable turbulent” counterpart of this phenomenon has not

been identified yet. The second direction is related to the anal-

ysis of statistical properties of integrable soliton turbulence

(PDF, power spectrum). For a rarefied gas of KdV solitons,

there are some recent analytical and numerical results related

to the computation of skewness and kurtosis.23 The opposite

limit of a dense gas, when the density is close to the critical

value, could also prove analytically tractable. This is particu-

larly compelling in the context of the determination of the

Fourier spectra of shallow water soliton turbulence observed

in Ref. 1 as the underlying soliton gas is dense.
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