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Abstract—The majority of current facial age estimation meth-
ods are based on appearance based features. However, wrinkle-
based research has not been widely addressed. In this paper,
we propose a novel method based on multi-scale aging patterns
(MAP). These directly extract the features from local patches
without extensive geometric modelling. First, we locate facial
landmarks by using the Face++ detector and then normalize
the face by using a linear transformation. We define a face
template which consists of ten predefined wrinkle regions. Then,
for each region, we detect wrinkles and construct aging patterns
by using the proposed methods. Finally, the age is estimated
by implementing the support vector machine for regression.
The performance of the algorithms is assessed by using mean
absolute error (MAE) on the benchmark database - FERET. We
observe that MAP produces the lowest MAE of 4.87 on FERET
compared to the benchmark algorithms. Therefore, we conclude
that wrinkle could be used as a feature on face age estimation.
Future work would involve improvements of the algorithm by
combining other descriptors such as non-wrinkle descriptor and
appearance parameters.

Keywords-Age estimation, wrinkle detection, multi-scale filter,
support vector regression, FERET.

I. INTRODUCTION

Automatic facial age estimation is an important, yet largely

unsolved, challenging problem. This challenge can be at-

tributed to (i) large intra-subject variations and (ii) large inter-

subject similarity. Major intra-subject variations include cran-

iofacial growth and skin texture, meanwhile, the inter-subject

similarities are gender and race. In addition, 2D facial images

contain huge variations in expression, pose and illumination

in the uncontrolled environment. From these variations, local-

based aging features such as wrinkles, pores and spots are now

beginning to receive increasing attention in the facial aging

community [1], [2].

The process of age estimation attempts to label a facial

image automatically with the exact age (year) or the age group

(year range) of the individual face. By deriving significant

features from faces of known ages, the age of an individual

face can be estimated by solving the inverse problem using the

same feature-extraction technique. Although many algorithms

have been proposed since 1994 [3], age estimation is still

a challenging problem due to three reasons [4]. First, facial

age progression is uncontrolled and personalized. Such special

characteristics of aging variation cannot be captured easily

due to the large variations conveyed by human faces. Second,

there is no complete facial aging dataset with chronological

ages. It is hard to collect a large facial image set of people

throughout their life which are sufficient to present detailed

aging progression. Third, it is difficult to define an absolute

aging pattern which can be used to quantify one particular

age. For example, these are weak arguments if we say two

wrinkles at the eye corner is classified as age 20, three wrinkles

as 30 years old and so on. Such vague arguments will cause

ambiguity if the person’s age is between 20 and 30. Thus, a

robust wrinkle-based representation is needed to cope with the

identified problem.

The paper is organised into the following sections: Section

II discusses the related work on age estimation; Section III,

IV, V outline the proposed framework and methods; Section

VI presents the results and discussion; finally, the conclusion

is summarized in Section VII.

II. RELATED WORK

Conventionally, methods in age estimation are based on

global features. Global features are computed or modelled

for an entire object or scene with a large matrix or vector

[5]. For facial aging research, many algorithms [4], [6]–

[8] deal with appearance parameters produced by the active

appearance model (AAM) [9]. AAM is a generative model

which constructs the target subject’s face by a set of hidden

parameters [10]. Geng et al. [4] proposed an idea which is

called aging pattern subspace (AGES) which makes use of

AAM parameters as well. The main idea of AGES is to find

the missing pattern in the aging subspace by using PCA and

Expectation Maximization (EM) method. They argued that the

concepts of identity and time are naturally integrated into the

facial aging subspace. However, the AGES method is less

representative due to the appearance model only encoding the

image intensities without considering any aging characteristics

such as wrinkles. Moreover, the use of PCA on appearance

parameters might lose significant features because the least

important variance could be either noise or aging information.

As mentioned in [11], wrinkle-based features such as skin

texture are more effective for face representation because they

inherently contains spatial locality and orientation selectivity.

These properties allow for simplicity of feature extraction and

avoid the extensive modelling of AAM. Published approaches

to age estimation based on wrinkle features are limited [12]–
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Fig. 1. Result of the Face++ detector [20]. Note that this image was redrawn
from the FERET dataset [21]. White landmarks are detected by the Face++
detector and the red labels represent the center of the eyes and mouth.

[17]. Most of them were focused on age group classification

instead of specific age estimation. Therefore, the capabilities

of wrinkle in age estimation is not yet explored.

The current state-of-the-art method for local-based age

estimation is proposed by Juha et al. [18] and Nguyen et al.

[19]. The method is based on the local binary patterns (LBP)

and generates feature representation through face patches. LBP

is a unique pattern representation by thresholding the pixels of

an image within a certain neighborhood. However, we found

that the significant aging patterns such as wrinkles and spots

cannot be highlighted by the LBP. Instead, the aging-like

patterns will be weakened and hard to discriminate from other

patterns. Our work is improving the weaknesses of LBP by

highlighting the facial wrinkles which are very important for

estimating age.

The skin changes associated with aging are the focus of

many surgical and non-surgical procedures aimed to improve

the appearance of skin [22]. Knowledge of skin histology will

deepen the understanding of cutaneous changes associated with

aging and will promote optimal cosmetic and functional patient

outcomes. Due to these reasons, research into age estimation

by using local features has gained increasing attention. Aznar-

Casanova et al. [23] investigated the influence of wrinkles on

facial age judgements. Their experiments were based on the

types of wrinkles and quantitative contribution of wrinkles.

They found that the amount of wrinkles on the perceived facial

age had more influence than the types of wrinkles. Although

their works sounds interesting, the whole experiment is done

manually. Günay and Nabiyev [24] proposed age estimation

based on local Radon features. The idea is to transform an

image pixel into an equivalent geometric Radon vector. The

authors stated the proposed method achieved good results on

the FG-NET dataset, but we noticed that the MAE of FERET

(6.98) is worse than FG-NET (6.18). A better result should

Fig. 2. Face template with ten predefined wrinkle regions and fixed
coordinates of eyes and mouth. The wrinkle regions are forehead (1), glabella
(2), upper eyelids (3), crow’s feet (4), lower eyelids (5), cheeks (6), nasolabial
grooves (7), upper lips (8), marionette (9) and lower lips (10). Symbols A, B
and C are fixed coordinates used for face normalization.

be achieved on the FERET dataset because image resolution

of FERET is higher than FG-NET. In summary, existing

methods required user intervention, were not effective or had

undesirable features.

In this paper, we propose a novel method for age estimation,

namely multi-scale aging patterns (MAP). This work extends

the wrinkle detection research by Ng et al. [2]. They proposed

a hybrid Hessian filter (HHF) to detect wrinkles on forehead

images. We expand the multi-scale second order local structure

of a facial image into the context of age estimation by

proposing a novel aging pattern. In other words, a multi-scale

filter is applied to the whole face and transforms wrinkles into

useful aging patterns where MAP is generated. Once the aging

patterns are constructed, a sequential minimal optimization

(SMO) [25] is utilized to learn and predict the age of the

patterns. We tested the proposed methods on FERET dataset

by using 5-folds cross validation. Both training and testing sets

are disjoint.

III. AGE ESTIMATION FRAMEWORK

Facial wrinkles are created by repeated facial muscular

movements and expressions [26]. Consequently, facial wrinkles

have unique characteristics depending upon the frequency of

movements and the effect of gravity. Many argue that facial

wrinkles are highly correlated with age [23], [26]. Therefore, in

this work, we explore the uniqueness of wrinkle characteristics

by localizing and presenting it in a meaningful way for

age estimation. A multi-scale filter is applied for assessing

the geometrical structures of skin. Since wrinkles appear in

different sizes, it is important to present a dynamic scale which

varies within a certain range. Based on multi-level analysis

of Hessian eigenvalues, the local behaviour of an image is

emphasized and thus wrinkles are identified. Then, extracted



Fig. 3. Multi-scale aging patterns.

wrinkles are presented as multi-scale aging patterns and the age

of a facial image is estimated through supervised learning.

A. Face Detection

First, a face image is detected by the Face++ detector [20]

and a total of 83 landmarks is obtained as shown in Fig. 1.

Only six landmarks are used for estimating the center of left

eye, right eye and mouth, others are discarded. The center of

left eye is averaged from the landmarks 21 and 25, the center

of right eye is averaged from the landmarks of 67 and 71, the

center of mouth is averaged from the landmarks 46 and 48.

Symbols A, B and C refer to the center of left eye, center of

right eye and the center of mouth, respectively, as shown in

Fig. 2. Due to the limitations of the Face++ detector, we expect

a small number of failed detections which will be identified

manually.

B. Face Normalization

Fig. 2 illustrates the face template or mask with ten pre-

defined wrinkle regions and fixed coordinates for eyes and

mouth. It was cropped and scaled for illustration purposes and

the original size of this image is 512 x 768 pixels which is

the same size as FERET images. These regions have been

identified and created manually through the review [23], [26].

The margins of top, bottom, left and right are 70.5, 209.5, 50.5

and 56.5 pixels, respectively. The distance between A and B

is 218 pixels, A and C is 236.6 pixels, B and C is 237.49

pixels. Numbers 1 to 10 mean the wrinkle regions of forehead,

glabella, upper eyelids, crow’s feet (or eye corners), lower

eyelids (or eyebag), cheeks, nasolabial grooves (or nasolabial

folds), upper lips, marionette and lower lips; the corresponding

areas are 15745, 6437, 1475, 4169, 9417, 21759, 9216, 2298,

7376 and 7403 pixels; the corresponding notations are Z1 to

Zγ where Zi is a binary image and γ = 10. Due to the area

sizes being fixed, a standard feature vector will be produced

either in training or testing data. The center coordinates of left

eye, right eye and mouth are (145, 247), (363, 247) and (254,

457), respectively. All regions are used for constructing the

aging patterns. Based on the three points (symbols A, B and

C), each face image is normalized to the mask (as shown in

Fig. 2) by using piesewise affine warping [9].

Procrustes analysis [27] is applied in between the

input face and mask in order to determine the lin-

ear transformation. Given a set of landmarks L =
{(x1, y1) , (x2, y2) , . . . , (xn, yn)}, we compute the transfor-

mation [9] based on Procrustes analysis [27] so that sum of

distance d̂ of face shape L to the mean face L̄ is minimised

as d̂ =
∑

∣

∣L− L̄
∣

∣

2

. Procrustes Analysis is a method of

comparing two sets of shapes by fitting one data set to another

by rotation, translation, uniform scaling, and reflection. The

transformed warped image of L is then given by I = f̂ (L)
where f̂ is an affine geometric transformation function [9]. For

each face in the training set, we compute the aging patterns

F = P (I), where P (.) denotes the proposed method MAP

as described in Section IV. Finally, the age is estimated by

using the regression function age = SMO (F) as described in

Section V.

In the next step, wrinkles patterns are constructed by using

the proposed method MAP. Once the normalized face image

is filtered by the multi-scale filter [2], extracted outputs are

wrinkles. Then, ROI masks are applied on the face and the

intensity summation is applied on each region in order to

produce the aging patterns. Section IV shows these methods

in detail. Finally, the age of each aging pattern is predicted by
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Fig. 4. Gaussian kernels G1, G2 and GT

1
where σ = 7.

the SMO. Section V describes the SMO in detail.

IV. MULTI-SCALE AGING PATTERNS

Fig. 3 demonstrates the proposed multi-scale aging patterns.

It consists of four steps: image scaling, multi-scale filtering,

ROI masking and aging pattern representation.

A. Image Scaling

Given a warped image Î , it is scaled with different ratios s
and denoted as I = Î (s) where s ∈ {s1, s2, . . . , sα} and α is

the total number of scales. We set s ∈ {1.00, 0.75, 0.50, 0.25}.

Note that both the warped image and ROI mask image are the

same size, therefore they will be scaled accordingly.

B. Multi-scale Filtering

As reported in [2], the directional gradient (∂I/∂x, ∂I/∂y)
is computed from the greyscale image I . Let (∂I/∂y) be

denoted as I, therefore I emphasizes a horizontal variation

and is used as the input for calculating the Hessian matrix H.

The Hessian matrix H is the output of the second derivative at

σ ∈ {1, 3, 5, 7} [2]. Each approximates the convolution of I
by Gaussian kernels G1 and G2 where it measures the contrast

at the selective scale in the direction of the derivative. Fig. 4

shows the Gaussian kernels G1, G2 and GT
1

where σ = 7.

Since wrinkles are similar to the patterns of ridge and valley,

the Gaussian kernels are designed in the same way. In order

to determine the local likelihood that a wrinkle is present,

eigenvalues of the Hessian matrix is assessed. It highlights

the texture orientation and discard noisy patterns [28]. Finally,

curvilinear likeliness E of eigenvalues is calculated. It is used

for generating the initial wrinkle mask as

Bs,σ (x, y) =

{

0 if Es,σ (x, y) > 0

1 otherwise
(1)

C. ROI Masking

Assume the wrinkle image J is masked as

J (x, y) =

{

I (x, y) if B (x, y) ∩ Z (x, y) = 1

0 otherwise
(2)

where Z is the specific region of template mask as discussed

in section III.

D. Pattern Representation

Let MAP = {f1, f2, . . . , fψ}, where ψ = α × γ × ϕ. Note

that, in this work, we set total image scale α = 4, total wrinkle

regions γ = 10 and total filter scales ϕ = 4. In total, 160

features are produced for each image. The feature fi is the

wrinkle intensity and it is defined as the summation of Ji
which given by

fi =

wt
∑

x=1

ht
∑

y=1

Ji (x, y) (3)

where wt and ht are the width and height of J .

V. SUPPORT VECTOR MACHINE FOR REGRESSION

Support vector machines (SVM) were originally developed

for the classification problem by Boser et al. [29]. This tech-

nique was built on the principle of structural risk minimization

(SRM). Now, with the introduction of the insensitive loss

function, SVM has been extended to solve nonlinear regression

estimation [25]. By using kernel functions, SVM plays a role

in mapping the data to a high dimensional feature space and

then finds a linear separating hyperplane with the maximal

margin in this high dimensional space.

In this paper we used an improved sequential minimal

optimization for SMO [25] with the normalized polynomial

kernel to optimise prediction. As pointed by Graf et al. [30],

the normalization of vectors in input space is not as good

as in feature space due to the prediction data not being

normalized. Therefore, normalization in the feature space is a

better solution for both training and prediction. Unlike in linear

programming methods [31] where normalization acts on rows

and columns of a design matrix only, normalization of kernel

functions can be considered as a simultaneous rescaling of

rows and columns to obtain a matrix with all diagonal entries

set to one [30].

Let ~x, ~y ∈ ℜN denote input vectors of SMO, the normalized

polynomial kernel κ is defined by (4) and the polynomial

kernel is denoted as (5) where this kernel consists of all

monomials up to degree d. The kernel with d = 1 is the linear

kernel. The classifier’s flexibility increases when d is getting

higher. However, if this parameter is too large, overfitting will

occur [32].



Fig. 5. MAE of different exponent d on the FERET database. MAP-10 means
MAP with 10-cross validation.

TABLE I
MAE OF DIFFERENT AGE GROUPS. MAP-10 MEANS MAP WITH 10-CROSS

VALIDATION.

Algorithm 10-19 20-29 30-39 40-49 50-59 60-70

Total images 38 950 629 474 209 66

FACE++ [20] 11.08 7.13 5.92 8.05 6.94 3.47
MAP 12.11 4.89 3.54 4.87 8.33 11.39
MAP-10 9.93 3.94 4.02 4.37 5.48 8.91

κ (~x, ~y) =
℘ (~x, ~y)

√

κ (~x, ~x)κ (~y, ~y)
(4)

℘ (~x, ~y) = (〈~x, ~y〉+ 1)
d

(5)

In this work, we implemented age estimation experiments

by using the WEKA toolbox [33]. The regression algorithm

is SMO and the default parameters are as follows: c = 1.0,

‘filterType’ is ‘Normalize training data’, kernel is ‘Normalized-

PolyKernel’, ‘regOptimizer’ is ‘RegSMOImproved’, epsilon

for round-off error is 1.0e−12, the epsilon parameter of the

epsilon insensitive loss function is 0.001, seed is 1, tolerance

parameter used for checking stopping criterion is 0.001 and

‘useVariant1’ is true.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed methods is tested on the

FERET dataset [21]. FERET is a comprehensive database with

2366 images of 994 subjects that presents multiple problems

related to face recognition such as illumination variations, pose

variations, facial expressions, etc. In addition, it consists of a

few hundred age-separated face images of subjects with the age

difference of 18 months or more and the age range is between

10 and 70. Two metrics have been proposed in the literature for

quantifying the performance of age estimation methods, MAE

and cumulative score (CS) [34], [35]. The MAE is defined as

the average of the absolute errors between estimated age and

the ground truth, MAE =
∑N

k=1

(∣

∣

∣
l̂k − lk

∣

∣

∣
/N

)

, where lk is

the ground truth age for the k-th test image, l̂k is the estimated

age, and N is the total number of test images. The CS [36], is

defined as CS(j) = Nerror≤j/N × 100%, where Nerror≤j is

the number of test images on which the age estimation makes

an absolute error no higher than j years. CS(j) can be viewed

as the classification accuracy, which, like in face recognition,

TABLE II
COMPARISON OF MAE RESULTS ON THE FERET DATABASE. NOTE THAT

FACE++ RESULTS WERE CALCULATED BY REPLACING THE FAIL

DETECTION WITH GROUND TRUTH. MAP-10 MEANS MAP WITH

10-CROSS VALIDATION.

Algorithm MAE

Radon [24] 6.98
Face++ [20] 6.94
Proposed Method, MAP 5.13

Proposed Method, MAP-10 4.87

might be more important than the average performance MAE

for practical applications. Here, we use both CS and MAE as

metrics since different methods, databases, and systems may

be too biased or unbalanced for evaluation.

Fig. 5 shows MAE results of different degree d of polyno-

mial kernel on the FERET dataset. We noticed that MAP and

MAP-10 hit the lowest MAE of 5.13 when d = 50 and MAE

of 4.87 when d = 55. Table I presents the MAE of different

age groups. FERET consists of six age group - 10-19, 20-

29, 30-39, 40-49, 50-59, 60-70 and the total images of each

group are 38, 950, 629, 474, 209 and 66, respectively. From

the experiment, MAP achieved the lowest MAE of 3.54 on age

group of 30-39 while MAP-10 hit the lowest MAE of 3.94 on

age group of 20-29. Both groups contain the largest amount of

images in FERET. Although MAP achieved the lowest MAE

compared to MAP-10, but MAP-10 performed better in overall

result. It could be due to 10-folds cross validation used more

training images than 5–folds cross validation. Age group of

10-19 remains the high MAE in both experiments because it

is very hard to extract wrinkle-based features for children and

teenagers. FACE++ achieved the lowest MAE on age group of

60-70. It would be interesting to explore the potential features

of FACE++ on older group. Table II presents the comparison of

MAE results on the state-of-the-art methods. MAP is a superior

method in extracting the local-based aging features. Therefore,

it has the lowest MAE, at 4.87, and this outperformed the

Radon method [24] and Face++ detector [20], at 6.98 and 6.94.

Based on these results, we presented that age estimation using

wrinkle-based features is workable on high resolution images.

The idea of this work is based on the intensity distribution of

facial wrinkles on the predefined wrinkle regions. It is useful to

identify a simple yet powerful pattern from the same age group.

However, we noted four issues that affect the performance of

age estimation. First is the mask of wrinkle regions. Although

this has been set to the size of the mask, we noticed that some

of the faces cannot fit the mask very well due to large variations

in the cranial ratio and occlusions such as forehead hair and

moustaches. Second, there are false detections of landmarks in

a few images detected by the Face++ detector. Although they

were identified and corrected manually, the estimation result

was affected. Third, cosmetic treatment and facial expression

affect the wrinkle appearance on face. It would be interesting to

see such impact on face age estimation in the future. Finally, a

robust wrinkle-based features is highly depends on the wrinkle

extraction method. Although this method is limited to high

resolution images, additional fusion concerning features of



hierarchical age estimation can be added in the near future.

VII. CONCLUSION

This paper has proposed a novel method for facial age

estimation based on local-based wrinkle features. By deriving

wrinkles with the multi-scale filters across 10 face regions,

wrinkle-based aging patterns are generated. They are used

to train the aging classifier and estimate the age of faces.

A novel algorithm named MAP is proposed in this paper to

represent wrinkles into a representative pattern. They are tested

on FERET aging face databases. Experimental results show

the evidence that wrinkles is able to predict face age on high

resolution images. Further investigation of a hybrid method

which combines global and local features into an aging pattern

can be used to enhance the proposed methods. This method

can compensate for defects found in individual use of global

or local features.
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