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Abstract. Automatic segmentation of adipose tissue in thigh magnetic
resonance imaging (MRI) scans is challenging and rarely reported in
the literature. To address this problem, we propose a fully automated
unsupervised segmentation method involving the use of spatial inten-
sity constraints to guide the segmentation process. The novelty of this
method lies in two aspects: firstly, an adaptive distance classifier, incor-
porating intra-slice spatial continuity, is used for robust region growing
and segmentation estimation; secondly, polynomial based intensity in-
homogeneity maps are generated to model inter- and intra-slice inten-
sity variation of each pixel class and thus refine the initial classification.
Our experimental results have demonstrated the effectiveness of impos-
ing 3D intensity constraints to successfully classify the adipose tissue
from muscles in the presence of image noise and considerable amounts
of non-uniform MRI intensity.
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1 Introduction

During older age, humans tend to increase adipose tissue (fat mass) and decrease
muscle mass and this can impact on strength, mobility and quality of life. To
quantify these changes during the development of ageing or some diseases, more
advanced techniques, such as magnetic resonance imaging (MRI), are required.
MRI displays digitised images of different tissue types, such as connective, neu-
ral, adipose, skeletal and muscle tissue. They pose various challenges to standard
image analysis techniques designed to distinguish between and quantify the con-
tents of different tissue types [1]. This includes random image noise, spectral
artefacts and tissue contrast differentiation among trials and subjects. Apart
from these uncertainties, anatomically irrelevant intensity variation induced by
non-uniform radio-frequency fields (RF) introduces further complications for au-
tomatic MRI segmentation. Existing image processing software such as Osyrix,
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ImageJ and ITK-SNAP [2] do not possess the capability of automatic segmen-
tation of adipose tissue in MRI scans of the thigh. Such tools can be principally
used to semi-automatically analyse or manually draw around regions of inter-
est to estimate areas and distances. They could work well on one or several
connected slices if the region is well defined. However, the tracing results may
not be propagated correctly throughout the scan when regions of interest are
of irregular size, shape or suffer from various image noise. It is usually required
to retrace regions of interest many times in a scan which is very laborious and
prone to errors [3]. Thus, an automated procedure must be used instead.

To tackle the problem of intensity inhomogeneity, Chuang et. al. proposed
the use of fuzzy C-means clustering with spatial connectivity constraints to guide
segmentation [4]. This method worked under the assumptions that the pixels of
each class are well connected, and image inhomogeneity is minimal. While their
method works well for brain MRI, it is unlikely to work effectively to measure
adipose tissue infiltration in the thigh that is irregularly distributed and discon-
nected, and further affected by RF non-uniformity. Parametric functions have
been reported as a particular category for inhomogeneity correction [5]. Intensity
inhomogeneity is usually mathematically modelled as additive or multiplicative
factors. A main objective of such an approach is that the parameters need to be
determined by fitting the function using a sufficient number of classified sample
pixels. To obtain decent samples, manual selection and segmentation has been
largely involved in many works, which were trivial and less accurate [6]. The
literature is quite sparse on automatic methods to select training pixels [7].

To address the problem of intensity inhomogeneity while simultaneously re-
moving the requirement of any user interaction, we present a hybrid unsuper-
vised method. In contrast to other parametric modelling of inhomogeneity in a
2D MRI slice, we introduce a 3D polynomial-based intensity inhomogeneity map
which is capable of modelling both intra- and inter-intensity variation presented
in 3D volume of a MRI scan sequence. Taking account of spatial connectivity,
we introduce an adaptive distance classifier for robust region growing and to
effectively handle image noise. Combining the advantages of thresholding and
the robust region growing, a sufficient amount of reliable sample pixels can be
automatically generated for each class and across all MRI slices. The 3D inho-
mogeneity map of each class can then be calculated by polynomial fitting using
these identified sample pixels. Experimental results show that the 3D intensity
inhomogeneity map ultimately simplifies the classification task to a low-cost dis-
tance measurement problem, and improves the accuracy in noisy MRI. To our
knowledge, this is the first report on fully automated adipose detection from
thigh MRI in the presence of significant intensity non-uniformity and in the
absence of ground truth for training guide.

2 Methodology

In our study of ageing, a 0.2 Tesla MRI scanner was used to generate high quality
images of the mid-section of the thigh of one leg. These scans produced a total of
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Fig. 1. Adipose detection from thigh MRI using 3D intensity inhomogeneity maps: (a)
one slice in a MRI scan acquired from an elderly person; (b)histogram-based thresh-
olding image; (c) robust region growing using adaptive distance classifier; (d)intensity
inhomogeneity map; (e) segmentation result on MF.

24 serial cross-sectional slices, each representing 6.3 mm of thigh, with no inter-
slice gap. Scans were performed using a Turbo 3D T1-weighted protocol. Within
each slice the muscle, bone, marrow and fat need to be determined and within
the series of slices the special distribution of these tissues need to be tracked for
medical or research purposes.

We observe that marrow and fat have a similar high intensity value, which
is well contrasted against the low intensity of muscle and bone. In this paper,
we report a solution to a crucial step in fat segmentation, namely, robustly
classifying thigh MRI into two pixel classes: Marrow and Fat (MF), and Muscle
and Bone (MB). Based on this classification, the strongly contrasting bone can
be easily distinguished from muscle, and marrow can be identified from the MF,
as it is well encompassed by the bone. The proposed method includes three
main stages: 1) initial MF-MB estimation (Section 2.1); 2) generation of a 3D
intensity inhomogeneity map (IIM) for each class (Section 2.2); and 3) refined
classification based on intensity maps (Section 2.3). The overall flowchart of the
algorithm is shown in Fig. 1.

2.1 Initial MF-MB estimation

The initial MF-MB estimation aims to automatically produce a sufficient number
of reliable MF and MB sample pixels. These samples are used to calculate the
3D inhomogeneity map of each class. To this end, we begin by using a histogram
based method to obtain a few high confidence MF pixels in each slice; these
pixels are then used as seeds for robust region growing via an adaptive distance
classifier to obtain regions of the MF class, and therefore estimation of MB pixels
within the thigh area.
Step 1: histogram-based thresholding

The thigh MRIs used in our project are in 12bit grayscale, possessing inten-
sity values in the range [0, 4095]. A histogram is created for each slice, and the
intensity distribution is equally blocked into 16 bins, each composed of 256 val-
ues. The first bin mainly contains background pixels, so we subtract these pixels
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from the image to obtain an approximation of thigh area. We then count down
2% of the remaining pixels, starting from the highest intensity pixels in the his-
togram. The average intensity value of the bin reached by the counting is used
as MF threshold. This method succeeds in giving a number of high confidence
MF samples, while rigorously avoiding any false-positive estimations.
Step 2: robust region growing using adaptive distance classifier con-
strained by spatial continuity

In order to obtain a good number of MF samples, a robust region growing
algorithm is employed. For each seed pixel of MF class i obtained from Step 1,
its unclassified adjacent pixels are examined using an adaptive distance classi-
fier augmented with spatial connectivity. A pixel is classified into class i if the
distance of the pixel to this class is within a threshold. The added pixel then
becomes a new seed whose neighbours are continually inspected for inclusion in
the region.

The distance of the pixel di to class i is calculated based on two factors: the in-
tensity similarity of the pixel to the class mean, and the number of neighbouring
pixels in the current slice belonging to this class,

di =
(I − µi)

2

2σ2
+ α ∗ |I − µi| ∗ n (1)

where I denotes the intensity of the observed pixel, µi is the mean intensity of
the ith class in this region based on current classification, and σ is used to control
the tolerance of intensity deviation. The weight of neighbourhood constraint is
defined by a negative value of α, and n indicates the number of adjacent pixels
in the current slice belonging to the ith class.

The first term aims to recruit miss-detected pixels from the global threshold-
ing by inclusion of small, local inhomogeneity. The second term aims to include
more candidates from image noise by imposing spatial continuity. Therefore, the
proposed adaptive distance classifier helps to handle intra-slice inhomogeneity
and encompass outliers into a correct class. Using the adaptive distance classifier
iteratively until the change in number of pixels is below a threshold, enabled the
accurate development of smoothly connected MF regions, as shown in Fig. 1(c).
After most of the MF regions are determined, an initial estimation of MB is
obtained as the remaining pixels in the thigh area.

2.2 Polynomial based 3D intensity inhomogeneity modelling

Using the above described adaptive distance classifier and region-growing algo-
rithm did not always identify all of the adipose tissue, mainly due to unexpected
intra-slice intensity inhomogeneity and difficulty reaching all regions within the
image. To fully address inhomogeneity in a MRI sequence, we propose a 3D
polynomial method which is capable of simultaneously modelling both intra-
and inter-slice inhomogeneity and at a significant level. In contrast with most
previous methods, which account only for intra-slice intensity variations [5], the
proposed method produces a uniform, concise parametric representation and
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smooth estimation in 3D, which is superior to simply using a stack of separately
fitted polynomial surfaces.

To generate the mapping function between the pixel locations and intensity
values for each class, a least-square high-order polynomial fitting is employed.
We assume that the intensity of a pixel i at (xi, yi, zi) is represented by

I(xi, yi, zi) =
N∑

n=1

wnFn(xi, yi, zi) + η(xi, yi, zi) (2)

where Fn represents basis functions, N is the total number of basis functions, and
wn denotes the weights that need to be determined, η represents the intensity
error at this pixel.

The basis functions used in our study are in the form of

Fn(x, y, z) = xpyqzr (3)

where 0 ≤ p, q, r ≤ k and p+ q+r ≤ k, k is the degree of the chosen polynomial.
In our study, polynomials of degree between 4 to 6 are experimentally shown to
give the best results.

Let the segmented pixels of a particular class obtained from the initial seg-
mentation be {xi, yi, zi|1 ≤ i ≤ m}. The total squared error can be calculated
by

ϵ2 =
m∑
i=1

(I(xi, yi, zi)−
N∑

n=1

wnFn(xi, yi, zi))
2 (4)

The weighting coefficients wn can be determined by solving the least mean square
problem using standard regression techniques.

In terms of the sample set of each class for polynomial fitting, MF-MB can-
didates have been obtained from the initial estimation. They are distributed
thoroughly across the whole MRI sequence, holding sufficient information about
spacial intensity variation. However, they may contain erroneous pixels due to
over-segmentation in largely corrupted MRI. To obtain reliable sample sets, we
generate the histograms of classified pixels for both classes separately, and exam-
ine if there is any overlap of non-zero bins between them. A bin with overlap may
contain ambiguous segmentation. To remove this ambiguity, we first determine
the midpoint value of overlapping bin(s). We then reject all the MF pixels with
intensity below this midpoint, and reject all the MB pixels with intensity above
the midpoint. This approach ensures that any segmented points with ambiguity
from initial estimation will not be used in polynomial fitting, thereby improving
accuracy on intensity inhomogeneity mapping.

2.3 Segmentation refinement

After the adaptive distance classifier based region growing, classification of most
MF pixels can be obtained. However, the segmentation is not yet complete.
A considerable number of fat pixels may remain undetected in regions with
excessive intensity variations or in regions not yet reached by region growing.
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Classified pixels residing in overlapping bins are ambiguous and may be erro-
neous. To recruit undetected MF pixels and refine the obtained classification,
inhomogeneity maps generated as described above are used.

For each unclassified or ambiguous pixel, an absolute difference between the
actual pixel intensity I(x, y, z) and the predicted value from each inhomogeneity
map at location (x, y, z) is calculated. This gives a score indicating the prob-
ability of a pixel belonging to either class, and thus classifying the pixel. The
example of complete segmentation using the 3D IIM is shown in Fig. 1(e). It is
clearly seen that MF pixels and small regions missed out by a global thresholding
or not reachable by adaptive region growing are successfully identified.

3 Experimental Results

The proposed MB-MF segmentation method has been successfully applied to
analyse a series of thigh MR images. In this section, we demonstrate the effec-
tiveness of our method through the example of a representative thigh MRI scan
obtained from an elderly man. The scan generated 24 serial-slices. The images
were corrupted by noise and exhibited a significant amount of intensity inho-
mogeneity. Ordinary automated segmentation methods cannot succeed in such
MRIs Using the proposed auto-segmentation method, the MF-MB segmentation
results are presented in Fig. 2. Good classification results have been achieved on
different tissue types, including for the first time, quantification of unconnected
and highly irregular fat tissues.

Fig. 2. MF-MB segmentation on an old person with excessive fat tissue. Results show
every odd slice from the 1st to 23rd in the thigh MRI scan.

To quantitatively evaluate the effectiveness of the method, we compared the
segmentation accuracy with professionally approved hand-labelled benchmarks.
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Figure 3 shows the accuracy of using robust region growing (RRG) augmented
with spatial continuity, and the accuracy of also employing intensity inhomo-
geneity mapping. The results show that an average accuracy of 86% over the
whole scan was achieved by robust region growing, and a further improvement
to 92% average accuracy was made by employing the 3D intensity inhomogeneity
mapping. The accuracy average was calculated based on all 24-slices, including
the beginning and the last few slices, which normally exhibit extreme image
noise and intensity inhomogeneity. As shown in Fig. 3, the average percentage
of adipose MF over the thigh area is around 38%.
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Fig. 3. MF percentage and segmentation accuracy when using robust region growing
(RRG) and RRG combined with IIM.

Intensity variation and overlap between the two classes are shown in Fig. 4.
We observe a remarkable level 25 ∼ 30% of the intensity overlapping between
the two classes in each slice. Meanwhile, the mean intensity value of each class
varies significantly throughout the scan. For example, in the 12bit grayscale MRI
of a total 4096 intensity values, there is a variation of around 2000 values for
MF and 600 values for MB.

The proposed hybrid automatic MRI segmentation method is conceptually
simple and straightforward to implement. The algorithm was implemented in
MATLAB and tested on a PC with a dual-core 2.5 GHz processor and 4GB
RAM. The time taken to process the whole 24 slices at the stage of robust region
growing was around 100 seconds, and the additional time used for generating
the 3D intensity maps and segmentation refinement was only around 25 seconds.
Compared with the many hours of time spent on manual segmentation (for
example using ITK-SNAP [2]) the proposed auto-segmentation method presents
a significant advantage.

4 Conclusion

A novel approach has been presented for segmenting a large amount of complex
adipose tissues from thigh MRIs. The proposed method is fully automatic. It
does not require any manual interaction or training examples pre-generated by
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Fig. 4. Intensity range of MF and MB class is shown by vertical red and blue lines
respectively; mean values are presented in corresponding colors using solid lines.

time-consuming hand-labelling. The accuracy and performance has been demon-
strated by the experimental results in the presence of a significant amount of
intensity inhomogeneity and image noise. Based on the MB-MF segmentation,
marrow can then be easily distinguished from fat tissues, since it is well encom-
passed by the strongly contrasting bone. The method has proven to be effective
in drastically speeding up the process of quantifying fat tissues in our research
project into ageing.
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