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Abstract

Tracking human pose using observations from less than

three cameras is a challenging task due to ambiguity in the

available image evidence. This work presents a method

for tracking using a pre-trained model of activity to guide

sampling within an Annealed Particle Filtering framework.

The approach is an example of model-based analysis-by-

synthesis and is capable of robust tracking from less than

3 cameras with reduced numbers of samples. We test the

scheme on a common dataset containing ground truth mo-

tion capture data and compare against quantitative results

for standard Annealed Particle Filtering. We find lower ab-

solute and relative error scores for both monocular and 2-

camera sequences using 80% fewer particles.

1. Introduction

Research into the markerless tracking of human motion

has recently benefitted from the introduction of common

data sets that include ground truth motion capture (MoCap)

data [3, 10]. These have allowed for the quantitative eval-

uation and cross-comparison of tracking approaches. An-

nealed Particle Filtering (APF) [4] and Sampling Impor-

tance Resampling (SIR) [1] have been shown to recover

pose from multiple cameras using silhouette and edge cues

[3]. However, both approaches fail when limited to observa-

tions from only 1 or 2 cameras. Many distinct pose hypothe-

ses may agree well with available image evidence. Despite

large particle numbers, ambiguous evidence causes tracking

to fail.

Even simple models of human pose possess a relatively

high number of degrees of freedom (DOF). The resulting

feature space is computationally prohibitive to explore, re-

quiring large numbers of particles. We therefore appeal

to the idea that human motion is well described by a low-

dimensional subspace of the original feature space. We use

Principal Components Analysis (PCA) to reduce the dimen-

sionality of joint angle vectors recovered from MoCap train-

ing data. However, PCA recovers a space that is both linear

and continuous, containing many illegal configurations and

making it unsuitable for direct sampling.

The dimensionally reduced data constitutes a set of noisy

observations of a stochastic process. We learn a temporal

model and set of continuous observation density functions

by training a hidden Markov model (HMM) from the dis-

tribution of data in the PCA space. Sampling guided by

such an activity model produces poses close to the train-

ing data, with the recovered observation densities preclud-

ing the sampling of illegal regions. Sample propagation also

benefits from a first order Markov model of dynamics rather

than the addition of noise [2, 4]. Only small but pertinent

portions of the original feature space are explored, which

can be achieved with low particle numbers. In summary we

make the following contributions:

• Use of an HMM to model a walking activity and sim-

ulate a nonlinear activity axis within a linear subspace

recovered using PCA.

• Integration of the HMM into an Annealed Particle Fil-

tering framework for particle propagation.

• Introduction of a temperature parameter into the HMM

synthesis process, allowing the tracker to escape incor-

rect interpretations during ambiguous image evidence.

• Modification of the APF weighting function to allow

for better estimation of global position in monocular

sequences, thus aiding accurate pose recovery.

We test the HMM-guided APF (HMM-APF) approach on

the walking dataset presented in [3] and evaluate against

ground truth MoCap data. Known and unknown subject

tracking is demonstrated from 2 cameras using 200 parti-

cles. Known subject tracking is also shown for a monocular

sequence with 200 particles by using a modified weighting

function. Both results represent a considerable improve-

ment in accuracy over standard APF using 80% fewer par-

ticles.
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2. Related Work

Balan et al. [3] made a quantitative study of APF perfor-

mance, finding an average lower bound on absolute joint lo-

cation error of 41mm for a walking subject using 1000 par-

ticles and 3 cameras. However, tracking was found to fail

for the 2-camera and monocular cases after approximately 1

second, despite equivalent particle numbers. Model-based

analysis-by-synthesis approaches have proven successful in

constraining the tracking problem given limited image evi-

dence [6, 9, 11–13].

Sidenbladh et al. [9] used PCA to build a database of

low dimensional walking, running, dancing, skipping and

lifting models in order to propagate particles in a SIR track-

ing scheme. The authors showed how the database may be

efficiently searched using the recently estimated pose his-

tory in order to obtain relevant future predictions over the

range of activities. Successful tracking was demonstrated

on a 30 frame monocular walking sequence.

Urtasun et al. [13] built separate models of walking and

running activities by performing PCA on joint angles ob-

tained from MoCap data. Tracking was achieved by min-

imising a differential objective function with respect to

the first 5 coefficients of the principal components. They

demonstrated tracking on a sequence of stereo data contain-

ing a transition from walking to running.

PCA is only capable of learning linear subspaces, lim-

iting its effectiveness in modelling nonlinear human mo-

tion. More recent approaches to monocular tracking have

adopted invertible nonlinear dimensionality reduction tech-

niques such as the Gaussian Process Latent Variable Model

(GPLVM) [5] to improve performance [6,12]. The Gaussian

Process Dynamical Model (GPDM) due to Wang et al. [14]

allows for the simultaneous learning of activity dynamics in

addition to a nonlinear low-dimensional latent space [11].

We hope that the use of HMMs will provide a natural

framework for the consideration of multiple activity mod-

els in multiple spaces during a single sequence, which is

an aim of future work. Although an invertible nonlin-

ear dimensionality reduction method could potentially be

adopted within our framework, PCA is inexpensive versus

techniques such as the GPLVM, as is the projection of new

feature space data into subspaces previously recovered by

PCA.

3. Training Data and Ground Truth

In this work, we use the synchronised video and Mo-

Cap dataset described in [3] in order to draw direct com-

parisons with standard APF performance. The dataset con-

tains multi-camera synchronised video sequences of a walk-

ing subject taken at 60fps. Associated ground truth MoCap

data allow the measurement of absolute error at the joint lo-

cations of pose hypotheses. Training MoCap data featuring

the same subject walking is also available. We use MoCap

data for 3 other walking subjects (S1, S2 and S3 from the

HumanEva-I dataset [10]) to train the activity HMM for the

tracking of an unknown subject.

4. Dimension Reduction by PCA

All M MoCap data frames available for the activity

are converted into a set of joint angle vectors describing

the corresponding configurations of a 31-DOF body model,

Ω = {ωm|m = 1, ...,M} where ωm = (ω1
m, ..., ω31

m )T .

The body model consists of a kinematic tree containing 10

truncated cones and the model pose is fully described by

the 31 parameters in ωm, comprising the position and ori-

entation of the torso and the relative joint angles between

limbs.

The 6 global translation and rotation elements of the

body pose vector and the 3 head orientation elements,

ω
′

m = (ω1
m, ..., ω9

m)T , are removed from the training data

as we do not want a subject’s route or line of sight to form

part of the generic activity class. Each subject’s mean vector

is then subtracted from each of their activity vectors, leav-

ing a set of 22-D vectors E = {ǫ1, ..., ǫM}. PCA is used to

analyse each subject’s departure from their mean pose vec-

tor (excluding pelvis and head parameters) during a partic-

ular activity sequence. The mean ǭ and covariance matrix S

are calculated for the data and Single Value Decomposition

used to find the eigenvectors, φi and eigenvalues, χi of S.

This allows for an estimate of any datapoint in the training

set, ǫm, using

ǫm ≈ ǭ + Φfm, (1)

where Φ = (φ1|φ2|...|φη) contains the first η eigenvectors

corresponding to the largest eigenvalues, and the weighting

vector is given by

fm = (f1
m, ..., fη

m)T = Φ
T (ǫm − ǭ). (2)

In this way the training data sequence E is approximated

by the set of feature vectors F = {f1, ..., fM}, which are

plotted in Figure 1(a) for the 3 HumanEva-I subjects.

4.1. Feature Vector

The full feature vector used in this work can be viewed

as a concatenation of free and learned body parameters. It

is (9+ η)-dimensional and allows, using the approximation

in Eq. (1), for the complete specification of the body model

ωm at any time m,

xm = (ω1
m, ..., ω9

m, f1
m, ..., fη

m)T = ω
′

m||fm. (3)

5. Hidden Markov Models

A hidden Markov model can be used to model a time se-

ries of observations such as F = {f1, ..., fM}, derived in the



previous section. The approach is based upon the assump-

tion that the underlying system is a Markov process, where

the system’s state at any timestep m is assumed to depend

only on its state at m − 1. A standard Markov model is de-

scribed by a set of states and a set of transition probabilities

between these states. The state of the system is allowed to

evolve stochastically and is directly observable.
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Figure 1. Training data and corresponding HMM, projected onto

the 3 highest variance eigenvectors of the body configuration data

E. 1(a) Several walking cycles for each of 3 subjects. 1(b) 30-

state HMM trained from walking data and used to emit a synthetic

sequence 500 feature vectors in length.

This approach may be extended with the introduction

of a hidden layer between state and observer. Each state

emits an observable symbol from an alphabet common to all

states, according to some probability distribution over that

alphabet. In our own application, both the human’s perfor-

mance of an intended activity and the measurement of that

performance are stochastic processes. HMMs allow us to

describe such a doubly stochastic system.

A HMM λ is specified by the parameters S,Aij ,Ai,pi(f),
where S = {s1, ..., sN} is the set of states; the N × N
matrix Aij gives the probability of a transition from state

i to state j; Ai gives the probability of a sequence start-

ing in state i and pi(f) is the probability of observing fea-

ture vector f while in state i. In this work the emission

probability is modelled by a single multivariate Gaussian

pi(f) = N (f ,µi,Σi) with mean µi and covariance matrix

Σi. HMM training is performed using the Baum-Welch al-

gorithm, for further detail the reader is referred to [8].

6. Annealed Particle Filtering

Human motion can be viewed as the evolution of a sys-

tem state xm over time, m = 1, 2, ...,M , described by

a Markov process and observed by some sensor provid-

ing independent observations given xm. The state density

pm(xm), given by p(xm|Zm), where Zm = (z1, ..., zm) is

the set of all observations up until time m, may be propa-

gated over time with the following rule:

p(xm|Zm) ∝ p(zm|xm)

∫

xm−1

p(xm|xm−1)p(xm−1|Zm−1).

(4)

SIR [1] allows for the representation of a multi-

modal posterior, p(xm|Zm) via a finite set of normalised,

weighted particles,

{

(x(0)
m , π(0)

m ), ..., (x(B)
m , π(B)

m )
}

. (5)

Having initialised the particle set with ground truth x0,

each with equal weight, particles are randomly sampled

and dispersed using some model of temporal dynamics,

p(xm|xm−1). Each new point in the feature space x
(b)
m is

evaluated using a weighting function w(zm,x
(b)
m ) and as-

signed a weighting π
(b)
m approximating p(zm|x

(b)
m ). Resam-

pling then takes place, with B new particles randomly sam-

pled from the existing distribution with likelihood propor-

tional to their weighting (and with replacement) and then

dispersed. In this way, the particle set may be propagated

over time to maintain a representation of p(xm|Zm).
Annealed particle filtering [4], a variation on SIR, cools

the weighting distribution and then gradually introduces

sharp peaks over r = R,R − 1, ..., 1 separate resampling

layers at each timestep m, where

wr
m(zm,xm) = w(zm,xm)βr

m , (6)

for β0
m > β1

m > ... > βR
m. The value of βr

m is chosen to

control the particle survival rate τ r
m, that is, the proportion

of particles that will be resampled. A high survival rate

results in an evenly spread probability distribution, while

a low survival rate concentrates the probability distribution

into just a few particles. We use the crossover operator and

survival rate values proposed in [4]:

τR
m = ... = τ1

m = 0.5. (7)

The effect of APF is to recover the pose that maximises

the weighting function, leading to a gradual concentration

of particles into a particular mode of the distribution. Thus

the posterior distribution is not fully represented, constitut-

ing a departure from the formal Bayesian framework.

6.1. Weighting Function

The weighting function w(zm,xm) provides an approx-

imation of p(zm|xm) using the geometric body model as

specified by xm [4].

The model is projected into the image and a set of points

{ξ} taken from each component cone, used to sample from

image evidence. We calculate w(zm,xm) for the case

where image evidence, V , is: (i) a silhouette map and (ii)

an edge map, and sum the results,

− log p(zm|xm) ∝
1

W |{ξ}|

∑

ξ

(1 − V (ξ))2. (8)



In either case, {ξ} is a set of sample points on (i) the

cone surfaces and (ii) the cone edges, respectively. The edge

data are extracted from each frame by convolution with a

gradient based edge detection mask. Results are thresh-

olded and smoothed with a Gaussian mask before being

rescaled to the interval [0, 1], giving each pixel a measure

of proximity to an edge. Silhouette data are found using

a foreground classifier trained on background only image

sequences. A Gaussian mixture model of the background

distribution is learned for each pixel over 1000 background

images [3]. Particles describing a pose requiring the inter-

section of limbs are given a zero weighting as, in the case

of known subject tracking, are those that exceed joint angle

limits learned from the training data.

For monocular tracking, we make a modification to

the weighting calculation. In the treatment of weightings

above, there is no consideration of foreground in image ev-

idence which is left unaccounted for by a pose hypothesis.

An XOR-type comparison of foreground regions is desir-

able. In order to address this problem, we calculate weight-

ings from silhouette evidence alone and take account of the

disparity in the ratio of foreground to background pixels in

image evidence, gz and particle pose, gx by calculating W
as follows:

W =

(

1 − abs

(

gz − gx

max(gz, gx)

))γ

. (9)

The requirement for silhouette sizes to match may be en-

forced by varying the exponent γ, with γ = 0 correspond-

ing to standard APF weightings (W = 1 in Eq. (8)).

6.2. Temporal Dynamics

A drift-and-spread model of temporal dynamics

p(xm|xm−1) is generally employed for particle prop-

agation in SIR tracking schemes e.g. [2]. Quantitative

evaluation in [3] found results using a presumption of

constant angle velocity are worse than with a presumption

of constant joint angles. Dispensing with the drift term

leaves only a spreading function: the addition of noise. In

standard APF, Gaussian noise is applied to each feature

vector element xi
m with covariance equal to half the

maximum inter frame change in xi
m, calculated from

training data. This leads to the diagonal covariance matrix

P. The covariance matrix is multiplied by the particle

survival rate τ r
m at each annealing layer, the application of

noise decreasing at the same rate as the resolution of the

particle set increases [4]. In our approach the use of Pr is

retained for the 9 free parameters (see Eq. (3)). Temporal

dynamics for the remaining η learned body parameters are

provided by the pre-trained HMM. We retain the idea of

scaling covariance, multiplying the covariance matrices

describing the Gaussian observation density at each state,

pi(f) = N (f ,µi,Σi), by τ r
m at each annealing layer.

Pr = (τ r
m)

R−r × P; Σ
r
i = (τ r

m)
R−r × Σi. (10)

We also use a temperature parameter in the synthesis pro-

cess, requiring a non-self state transition from state i with

some minimum probability ρT . In general, hypotheses that

extend too far along the activity cycle die out during anneal-

ing, discounted by comparison with image evidence in the

evaluation of w(zm,xm). However, where image evidence

is weak, the particle set is able to escape becoming ‘stuck’

in an incorrect mode of the posterior distribution during the

annealing process by sampling ‘hot’ future poses. The tem-

perature ρT is also multiplied by the particle survival rate

τ r
m at each annealing layer,

ρr
T = (τ r

m)
R−r × ρT . (11)

We require Kr
i transitions from state i at layer r before

the emission of an observable, where

Kr
i =

⌈

log(1 − ρr
T )

log(Aii)

⌉

. (12)

For learned parameter reestimation in later annealing

layers, self state transitions are more common as Kr
i be-

comes small. In the case where sj = si we draw noise

using (a weighted version of) the parent state’s covariance

matrix Σ
r
j but replace µj with the particle’s current esti-

mate of f
(b)
m . This stops the training data from dominating

the choice of new pose hypotheses, allowing the weighting

function scores to guide refinement. In summary, each par-

ticle undergoes the following steps at each time step:

1. For a sampled particle x
(b)
m−1 in the annealing layer R,

the state si most likely to have been active after the

HMM has emitted the observable f
(b)
m−1, is found.

2. The activity model is initialised in state si and allowed

to make KR
i state transitions via Aij . The final emis-

sion via pj(f) = N (f ,µj ,Σ
R
j ) forms the new esti-

mate f
(b)
m .

3. The remaining particle location parameters given by

ω
′(b)
m−1 are reestimated by drawing from the multivari-

ate Gaussian distribution with covariance matrix PR

and mean ω
′(b)
m−1.

4. The new particle location is now given by the feature

vector x
(b)
m = (f

(b)
m ||ω

′(b)
m ) and the weighting π

(b)
m may

be calculated. If resampled, the prediction is subse-

quently refined over annealing layers with all Gaus-

sians rescaled as in Eq. (10). In addition, where sj =
si after Kr

i transitions, we add noise to the learned

parameters from the distribution p′i(f) = N (f ,µ =

f
(b)
m ,Σr

i ).



7. Experiments

We added the steps detailed in the last section to the

Matlab implementation of APF made available by Balan

et al. [3] and attempted tracking on the first 150 frames

of the walking test sequence. In the case of known sub-

ject tracking, PCA was applied to walking joint angle data

Ek = {ǫ1, ..., ǫ1900} taken from a MoCap training sequence

of the subject to be tracked (data featuring the subject stand-

ing still was removed for the case of monocular tracking).

In the case of unknown subject tracking, PCA was applied

to walking joint angle data Ek̄ = {ǫ1, ..., ǫ2100} taken from

subjects S1, S2 and S3 [10] (700 consecutive frames each).

The first η = 4 eigenvectors were retained (preserving 93%

and 92% of the walking training data in Ek and Ek̄, respec-

tively) and an N = 30 state HMM trained with the result-

ing 4-D timeseries. In order to recover the known subject’s

body pose vector at time m from an observable emission,

the relationship in Eq. (1) was used and their corresponding

mean body pose added. In the case of an unknown subject,

the average of all the training subject’s mean body poses

was added.

For HMM training, initial estimates of the state means

µi and covariance matrices Σi were found by K-means

clustering. The transition matrix Aij was initialised ran-

domly (and each row normalised) and the prior Ai fixed

with every value being 1/N . The transition probabilities,

state means and state covariances were reestimated using

no more than 50 iterations of the Baum-Welch update equa-

tions, performed using the HMM Toolbox for Matlab [7].

For tracking R = 5 annealing layers and 40 particles were

used (effectively 200 particles per frame).

Results for the HMM-APF approach are shown in Fig-

ure 2 with standard APF (using Pr for the propagation of

particles and edge-plus-silhouette weighting function, with

W = 1 in Eq. (8)) included for comparison. For each set-

ting, tracking of the sequence was attempted 10 times with

the HMM reestimated from training data each time. The

absolute error is calculated as the average distance in mil-

limetres between a set of virtual markers located at the joint

positions of the body model and 15 corresponding MoCap

markers on the joints of the subject. The optimistic abso-

lute error [3], is given by the lowest error of any particle in

the set and provides a lower bound on error suitable for the

cross-comparison of particle based tracking methods. The

average optimistic error across the 10 runs is plotted at ev-

ery 5th frame. The average optimistic error was also calcu-

lated across each run and the mean and standard deviation

of error across the 10 runs is shown in the legends. For the

relative error calculation in Figure 2(c), the global coordi-

nates of the virtual and MoCap pelvis markers are set equal

before taking the average marker error. A weighted average

over all particle errors is then calculated, with the error of

each particle weighted by π
(b)
m .
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Figure 2. Tracking results for HMM-APF versus standard APF.

8. Discussion and Future Work

For the 2-camera case HMM-APF outperforms standard

APF in the case of both known and unknown subject track-

ing with a greater than 50% reduction in optimistic absolute

error. HMM-APF also appears robust, maintaining a good

estimate of current pose throughout the sequence in each of

the 10 runs.

In the case of monocular tracking, maintaining an ac-

curate estimate of the subject’s global coordinates is very

challenging. The body model tends to ‘sit back’, ensuring

it is enveloped by image evidence and scoring well in terms

of the APF weighting function. This can be seen in Fig-

ure 2(b) for APF and for HMM-APF with γ = 0 where the

high absolute errors are due, overwhelmingly, to error in

estimating the subject’s global position. Enforcing agree-

ment between the silhouette sizes by setting γ = 5 causes

the model to move with the subject as they start to walk to-

wards the camera (around frame 90 in Figures 2(b) and 3).

Absolute error arising from inaccuracy in the global coordi-

nates is difficult to eliminate entirely, still reaching almost

300mm for γ = 5, but (with ρT = 0.6) correct pose re-

covery is now observed across all 10 runs, giving a mean

weighted relative error of 57 ± 5mm (Figure 2(c)).

We hope that modelling activity within the HMM frame-

work will allow for the simultaneous consideration of mul-

tiple activity models. Here we require an approach capable

of quantifying the probability that a pose vector has been

emitted by a set of distinct activity models, allowing for the

appropriate distribution of particles between activity sub-



Figure 3. Monocular tracking for B = 200 APF (top) and B = 40 HMM-APF (bottom), every 15th frame (video is 60fps).

spaces. We aim to track sequences featuring multiple activ-

ities in future work.

9. Conclusion

We have demonstrated a method for human motion

tracking by using a HMM for the propagation of particles

in a modified APF scheme. The PCA-based dimensionality

reduction of the feature space reduces the difficulty of both

the particle filtering task and the HMM training task. The

activity HMM simulates a nonlinear activity axis within the

reduced space. APF guided by traversal of the HMM is able

to recover pose for the walking sequence using fewer than 3

cameras and 200 particles per frame. Standard APF experi-

ences rapid failure using 5 times as many particles e.g. see

Figure 3.
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