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Abstract

We present a method for tracking human activity using observations from
a moving narrow-baseline stereo camera. Range data are computed from
the disparity between stereo image pairs. We propose a novel technique for
calculating weighting scores from range data given body configuration hy-
potheses. We use a modified Annealed Particle Filter to recover the opti-
mal tracking candidate from a low dimensional latent space computed from
motion capture data and constrained by an activity model. We evaluate the
method on synthetic data and on a walking sequence recorded using a moving
hand-held stereo camera.

1 Introduction
Annealed Particle Filtering (APF) has been shown to recover 3D human motion con-
sistently using observations from 3 or more cameras [5, 7]. Silhouettes are used in the
calculation of agreement between image evidence and body configuration hypotheses, or
weighting function. Background subtraction is difficult to achieve without a well con-
trolled experimental environment where backgrounds and sensor position are stationary.
Using fewer than 3 cameras, where standard APF tracking fails rapidly [5], statistical
models of human activity have been successfully used to constrain the search problem
[14, 15, 17]. Offline estimation of joint locations using a 2D image-based tracker [16, 17]
or assumptions about known backgrounds for silhouette extraction [11, 15] are common
and the robustness to changing illumination, backgrounds, subject appearance and sensor
position is limited.

A narrow-baseline stereo camera provides synchronised image pairs of a scene from
2 close-mounted parallel cameras. Processed as part of a multi-camera wide-baseline
tracking scheme [7] the observations are so similar that their combination offers negligible
benefit over monocular tracking performance. However, by calculation of the disparity
between the paired images, range information for objects in the scene can be estimated at
video frame rates [10]. In general, stereo range data provides a noisy image cue. Range
accuracy is affected by errors in camera alignment and calibration while range resolution
– the minimum discernable change in distance – increases as the square of the range. The
issue of accuracy has led some approaches to human motion tracking to exclude stereo
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range data from their calculation of hypothesis weightings [4]. We propose an activity-
supervised APF method, summarised in Figure 1, to achieve robust tracking from range
data. We will argue that when incorporated with an activity model, the stereo range data
alone is sufficiently rich for tracking using a particle filtering approach.

Motivated by the use of chamfer images to calculate weightings from edge features
in the APF algorithm [7], we introduce a chamfer volume method to compute weightings
from surface features. We discretise 2.5D surface range data before smoothing it with a
3D Gaussian kernel (Section 3.3). The result is a chamfer volume where each voxel’s
magnitude is proportional to its distance to a surface. We use a modified APF scheme to
search for the optimum body configuration at each frame, based on comparisons between
the visible surfaces of a simple body model and the chamfer volume (Section 3.2). Body
configuration hypotheses are drawn from a low dimensional activity subspace recovered
from motion capture (MoCap) data by Principal Components Analysis (PCA). The activ-
ity space is constrained by training a hidden Markov model (Sections 3.1) which provides
a model of activity dynamics and prohibits the sampling of illegal pose regions. The
approach retains the reduced computational expense of PCA over nonlinear techniques
(Section 2) and we hope to extend it to consider multiple activity models in multiple
activity spaces in future work (Section 5). We test the proposed tracking approach using
synthetic data and a sequence featuring a walking subject recorded by a moving hand-held
stereo camera (Section 4).

2 Related Work
In the general case – tracking human motion where sensor evidence is weak – there have
been many contributions based on the use of prior models of human behaviour. A common
application is human motion tracking from monocular sequences where available image
evidence is particularly ambiguous. Linear dimensionality reduction techniques such as
PCA have been applied to activity training data to impose feature space constraints in the
search for an optimum tracking candidate [14, 18]. Invertible nonlinear dimensionality
reduction techniques such as Locally Linear Coordination (LLC) and the Gaussian Pro-
cess Latent Variable Model (GPLVM) have been shown to recover rich low dimensional
pose spaces from which a mapping back to the original feature space is available [11, 17].
None of PCA, LLC or GPLVM are dynamical models, and further steps must be taken to
model temporal relationships in the data. For example, Hou et al. capture dynamics at
different temporal scales by learning a Variable Length Markov Model from clusters in
the latent space [8]. The Gaussian Process Dynamical Model [19] represents a combined
approach, recovering a nonlinear low dimensional latent space and model of temporal
dynamics within a single learning algorithm [16, 13].

Several approaches have incorporated stereo range data into the human motion track-
ing problem. The Iterative Closest Point algorithm (ICP) was used by Demirdjian to find
the transformation between a set of 3D points on a body model and a set of range data co-
ordinates [6]. Articulated body model constraints were modelled by the projection of the
unconstrained body model transformation onto a linear articulated motion space. Azad
et al. [3] considered other image cues in addition to range data, segmenting the hands
and head of the subject by colour and locating their corresponding 3D positions in range
evidence. The result was used to constrain the feature space explored by a particle filter



which incorporated edge and region information into its weighting calculation. Both ap-
proaches used relatively simple body models composed of rigid primitives for limbs and
were shown to track sequences of upper body movement featuring some self occlusion.

Jojic et al. [9] used a body model described by an articulated set of 3D Gaussian
‘blobs’. Tracking was performed using Expectation-Maximisation and articulated con-
straints enforced by an Extended Kalman Filter. Real time tracking of head and arm
movements was demonstrated on a sequence featuring some self-occlusion. Plänkers and
Fua employed a sophisticated deformable body model to track using range and silhouette
data estimated from a trinocular video sequence [12]. A set of Gaussian density distribu-
tions, or ‘metaballs’ were used to form an Articulated Soft Object Model (ASOM). The
form of the ASOM allows for the definition of a distance function to range data that is
differentiable and so the weighting function may be maximised using deterministic op-
timisation methods. The parameters of the ASOM were estimated in a frame-to-frame
tracking stage by minimisation of the objective function given range data, before being
refined by a global optimisation over all frames. Remarkable upper body tracking results
were demonstrated on sequences of a bare-skinned subject performing abrupt arm waving
and featuring self occlusion. ASOMs were later used for comparison with stereo range
data featuring walking and running [18]. Full body tracking was achieved by minimising
the objective function with respect to the first 5 coefficients of a pre-computed activity
space recovered from MoCap training data using PCA.

3 Formulation
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Figure 1: Activity-supervised APF for range image tracking.

3.1 Modelling Activity
Our body model comprises a kinematic tree with 10 truncated cones described by a 31-
parameters body vector representing the torso position and orientation and the pose via
relative joint angles between limbs. These body parameters can be recovered from accu-
rate MoCap and we use m = 1, ...,M walking body vectors [5] to construct our activity
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Figure 2: Activity model, chamfer volume and body model. (a) Latent walking data and
resulting HMM observation densities; (b) Chamfer volume and body model hypothesis;
(c) Rotated body model showing the extracted sample coordinates and effects of intra-
and inter-cone occlusion.

model. We downsample to 30fps and remove the 9 parameters of each body vector de-
scribing the torso and head, ε′m, as we do not want a subject’s route or line of sight to
form part of the generic activity class. PCA is performed on the sequence of remaining
22D limb parameter vectorsE = {ε1, ..., εM}. By retaining the eigenvectors correspond-
ing to the 4 largest eigenvalues Φ = (φ1|...|φ4), we preserve 93% of the variance. The
data can then be approximated by the sequence of weighting vectors F = {f1, ..., fM}
using εm ≈ ε̄ + Φfm. Figure 2(a) shows the body configuration trajectory projected onto
the 3 highest variance eigenvectors. The full feature vector is 13D, comprising the 9 torso
and head parameters and the approximation of the remaining limb parameters given by
the 4D weighting vector, xm = (ε′m, fm).

A hidden Markov model (HMM) can be used to model a time series of observations
such as F = {f1, ..., fM} where the sequence of observations is the result of a doubly
stochastic process. An HMM λ is specified by the parameters S,Aij ,Ai,pi(f), where
S = {s1, ..., sN} is the set of states; the N × N matrix Aij gives the probability of a
transition from state i to state j; Ai gives the probability of a sequence starting in state i
and pi(f) is the probability of observing feature vector f while in state i. We model each
observation density by a single multivariate Gaussian pi(f) = N (f |µi,Σi) with mean
µi and covariance Σi. HMM training is performed using the Baum-Welch algorithm
with initial estimates for µi and Σi found by k-means clustering, Aij randomised and Ai
held constant as a flat distribution. Figure 2(a) shows a visualisation of the observation
densities recovered by training a 15 state HMM on walking data F .

3.2 Temporal Dynamics for APF
If human motion is recorded using a stereo camera then by assuming that the set of obser-
vations Zm = (z1, ..., zm) are independent and that the evolution of the body’s configu-
ration is a first order Markov process, the state density may propagated using

p(xm|Zm) ∝ p(zm|xm)
∫
xm−1

p(xm|xm−1)p(xm−1|Zm−1). (1)

SIR [2] allows for the representation of a multimodal posterior, p(xm|Zm), with a set of
normalised, weighted particles,{(x(1)

m , π
(1)
m ), ..., (x(B)

m , π
(B)
m )}. Dispersion by a model of



Initialisation:{(x(b)
1 , 1/B)}Bb=1.

for m = 1 to M do
for r = R downto 1 do

1. Calculate weights π(b)
m = wrm(zm,x

(b)
m ).

2. Resample B particles with likelihood ∝ π(b)
m and with replacement.

3. Find most likely parent state of limb parameters: arg maxi(pi(f
(b)
m )).

4. Rescale dispersion parameters Pr,Σr
i and ρrT by αr.

5. Make Kr
i =

⌈
ln(1−ρr

T )
ln(Aii)

⌉
state transitions via Aij and emit an observable:

if j 6= i then
f (b)
m = pj(f) = N (f |µj ,Σr

j).
else

f (b)
m = p′i(f) = N (f |µ = f (b)

m ,Σr
i ).

end if
6. Disperse head and torso parameters ε′m = N (ε′|ε′(b)m ,Pr).
7. Concatenate to give new particle location x(b)

m = (ε′(b)m , f (b)
m ).

end for
Calculate expected configuration for visualisation E(xm) =

∑B
b=1 π

(b)
m x(b)

m .
end for

Figure 3: Pseudocode for particle dispersion.

temporal dynamics (usually drift-and-spread), evaluation by a weighting function
w(zm,x

(b)
m ) ≈ p(zm|x(b)

m ) and resampling with probability proportional to weighting
score π(b)

m , propagates the posterior approximation over time.
APF [7] has been shown to give increased tracking accuracy [5] by cooling the weight-

ing distribution and then gradually introducing sharp peaks over r = R,R− 1, ..., 1 sep-
arate resampling layers at each time step m:

wrm(zm,xm) = w(zm,xm)β
r
m , β1

m > β2
m > ... > βRm. (2)

The value of βrm is chosen to control the particle survival rate αr, the proportion of parti-
cles that will be resampled. The aim of APF is to recover the hypothesis that maximises
the weighting function, generally leading to a concentration of particles into a particular
mode of the distribution. The posterior distribution is not fully represented, leading to a
reduction in weighting function evaluations at the expense of a departure from the formal
Bayesian framework.

Rather than using drift-and-spread dynamics [4] or adding noise [15] we appeal to the
pre-trained activity HMM to disperse the weighting vector parameters, finding fm|fm−1

and therefore the limb parameters εm. The annealing process can cause APF to recover
the wrong interpretation when faced with multiple maxima of approximately equal mag-
nitude in the posterior [5]. Similarly, high densities of samples in a relatively flat posterior
may cause the particle set to ‘stall’. Where there are considerably fewer HMM states than
training data per activity cycle, each state has a high probability of undergoing a self-
transition. This is a concern during periods of particularly ambiguous image evidence,
with samples likely to build up around an HMM state-mean. In anticipation we introduce
a temperature parameter into the synthesis process, requiring a non-self state transition



from state i with some minimum probability ρT by making Ki state transitions. In gen-
eral, hypotheses that extend too far along the activity cycle die out during annealing, dis-
counted by comparison with image evidence in the evaluation of w(zm,xm). However,
where image evidence becomes weak, the approach is able to maintain a wider distribu-
tion of activity pose samples and escape becoming ‘stuck’ in an incorrect interpretation.

The remaining torso and head parameters are dispersed by the addition of Gaus-
sian noise with diagonal covariance matrix P estimated from the training data to give
ε′m|ε′m−1. The covariance matrix is multiplied by the particle survival rate αr at each
annealing layer to give Pr, the application of noise decreasing at the same rate as the reso-
lution of the particle set increases [7]. We extend the scaling procedure to the observation
densities at each HMM state pi(f) = N (f |µi,Σi) and to the transition temperature ρT ,
rescaling by αr at each annealing layer to give Σr

i and ρrT (or Kr
i transitions).

As the state means µi are constant, the effect of rescaling the observation densi-
ties during annealing is to force samples closer to the training data. For parameter re-
estimation in later annealing layers, self state transitions are more common as Kr

i be-
comes small. Where sj = si we uncouple the dispersion from µi and draw noise using
a scaled version of the parent state’s covariance matrix, Σr

i but replace µj with the par-
ticle’s current estimate of f (b)

m . This stops the training data from dominating the choice
of new pose hypotheses, allowing the weighting function scores to guide refinement. The
particle dispersion process is summarised by the pseudocode listing in Figure 3.

3.3 Range Surface Weighting
The weighting function w(zm,xm) provides an approximation of p(zm|xm) by compar-
ing the current observation and the geometric body model specified by x(b)

m . In standard
APF [7], an evaluation of edge weighting is made by projecting the body model into
the image and extracting a set of sample points {ξ} from the edges of the component
cones. The recovered coordinates are then used to compute a sum-squared difference
(SSD) function,

− log p(zm|xm) ∝ 1
|{ξ}|

∑
ξ

(1− V (ξ))2, (3)

where V is a smoothed edge image calculated from the current image data, zm. The edge
image is calculated using a gradient based edge detection mask, smoothed by convolution
with a 2D Gaussian kernel and rescaled to the range [0, 1]. The result is a chamfer image
where each pixel’s value is proportional to its proximity to an edge.

We extend this approach to range data, discretising the (x, y, z) point cloud calculated
by the stereo camera onto a 3D grid. The data describes 2.5D surfaces calculated from the
disparity between the image pairs. We smooth the data by convolution with a 3D Gaus-
sian kernel and rescale the values to the range [0, 1]. The result is a chamfer volume where
each voxel’s value is proportional to its proximity to a surface. The chamfer volume is
substituted for the chamfer image V in the calculation of the SSD. A hypothesis x(b)

m is
projected into the chamfer volume and sample points {ξ} extracted from the visible sur-
faces of the body model’s component cones are used in Eq. (3). Portions of the cones with
surface normals pointing away from the stereo camera are omitted from the calculation as
are sample points occluded by other nearer cones (denoted by empty circular markers in
Figure 2(c)).



4 Experiments

4.1 Simulation
In order to investigate the effectiveness of parameters chosen for the training and tracking
process we carried out a series of simulation experiments on synthetic walking trials.
Test data from the same walking subject as the activity training data [5] was animated
using a body model with dimensions estimated from their MoCap markers. The model’s
root position was held constant throughout to produce a pose recovery problem and we
set torso location noise to zero in the estimation of P. Range data relative to a fixed
observation point was sampled from the visible surfaces of the cones at 30fps and used
to create a set of chamfer volumes from which we attempted tracking. The particle set
was initialised with ground truth and the weighted relative error computed at each frame
using the average distance between the joint centres of each hypothesis and those of the
true pose, weighted by π(b)

m . Results using a range of state numbers to build the HMM
and transition temperatures to traverse it are shown in Figure 4.

Each point plotted represents an average score from 10 separate tracks of the test
sequence, with 4(b) also showing the best and worst tracking results. Figure 4(a) used
a 75 frame sequence of straight-line walking to investigate the quality of pose recovery
using different numbers of HMM states. Figures 4(b) and 4(c) used a 150 frame sequence
featuring a more challenging change of direction. Using 40 particles, 5 annealing layers
and αR = ... = α1 = 0.5 we found no significant improvement in performance using
greater than 10 HMM states. Failures were observed when using only the HMM transition
matrix Aij (low ρT , Figure 4(b)) or Gaussian noise (SIR, Figure 4(c)) to track the longer
sequence. Figure 4(c) shows the results of the proposed method with N = 15 states and
ρT = 0.6 versus SIR performed in the latent space. The increase in SIR tracking error
at around frame 60 is due to tracking failures during a relatively sharp turn in the test
sequence. The proposed method maintains tracking throughout each of the 10 tests.

4.2 Range Tracking
We recorded a 5 second sequence of an unknown walking subject at 30fps using a Videre
MDCS2-VAR stereo camera [1]. The camera was held by hand and continually adjusted
to ensure the subject remained fully in shot. Range data was calculated using the commer-
cially available Small Vision System software [1, 10] and discretised onto a 3D grid with
a resolution of 4cm in each dimension before being smoothed with a 7× 7× 7 Gaussian
kernel. The torso location (not orientation) noise was halved in the estimation of P to rep-
resent the fact that the camera follows the subject. The body model was hand-initialised
and tracking attempted using 100 particles, 5 annealing layers, αR = ... = α1 = 0.5
and ρT = 0.6, results are shown in Figure 5 and demonstrate qualitatively satisfactory
tracking of unknown subject walking from stereo range data.

5 Discussion and Future Work
The use of an activity model is consistent with recent approaches to monocular tracking
[11, 15, 16, 17] and in future we intend to capture stereo data simultaneously with MoCap
data for quantitative evaluation and comparison. We anticipate the method will give an
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Figure 4: Simulation results. (a) Mean tracking error versus number of states; (b) Track-
ing error versus transition temperature ρT ; (c) SIR versus proposed method.

advantage over monocular approaches in terms of absolute tracking error as it is able
to estimate the true 3D position of the subject relative to the sensor, rather than their
pose alone. It should also perform well outdoors and in other more natural scenes where
backgrounds are changing and lighting and shadows are not controlled.

As anticipated the depth cue is noisy and ambiguous but although some mis-tracking
is seen, for example the right leg in Figure 5, tracking is each time recovered within a few
frames. Although it is the use of an activity model that facilitates the recovery of errors,
the constraints it places on the feature space also serve to restrict the ability to track new
activity. Stylistic intra-activity differences between the training and test subjects are also
visible, in the bend of the arms as they swing forward for example. The addition of more
subjects to the activity training set might help to recover such variations but a more ef-
fective approach may be to further perturb the recovered particle set in a final annealing
layer by applying low level noise in the original 31D feature space [13]. Projecting these
candidates back into a space recovered by PCA at the next frame is computationally in-
expensive in contrast to nonlinear alternatives such as the GPLVM. We aim to pursue the
projection of particles into multiple pre-computed activity spaces for dispersal by distinct
activity HMMs. In this way we hope to track and classify multiple activities, as samples
concentrate in a particular activity space during the annealing process.

6 Conclusions
We have demonstrated a method for tracking known human activity from stereo data.
The subject tracked is not featured in the training set and is filmed performing a relatively
sharp turn against a cluttered background by a moving hand-held stereo camera. Although
resulting range data are noisy, they are relatively insensitive to experimental conditions
and the calculation of chamfer volumes offers a method for hypothesis evaluation using
the recovered surfaces. We are able to achieve robust tracking by sampling candidates
from a simulated activity axis defined by HMM states in a low dimensional latent space
recovered from MoCap training data. Results suggest that a relatively noisy estimate of
2.5D surface data is a sufficient cue for human motion tracking where the activity class
is known. The method can be easily applied to data captured using other range sensors,
such as time-of-flight cameras.



Figure 5: Stereo tracking results: B = 100 particles, R = 5 layers, every 15th frame.
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