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This paper investigates the problem of ground vehicle tracking
with ground-moving target indicator (GMTI) radar. In practice, the
movement of ground vehicles may involve several different
maneuvering types (acceleration, deceleration, standstill, etc.).
Consequently, the GMTI radar may lose measurements when the
radial velocity of the ground vehicle is below a threshold, i.e., falling
into the Doppler blind region. In this paper, to incorporate the
information gathered from normal measurements and knowledge on
the Doppler blindness constraint, we develop an enhanced particle
filtering method for which the importance distributions are inspired
by a recent noise-related Doppler blind (NRDB) filtering algorithm
for GMTI tracking. Specifically, when constructing the importance
distributions, the proposed particle filter takes the advantages of the
efficient NRDB algorithm by applying the extended Kalman filter
and its generalization for interval-censored measurements. In
addition, the linearization and Gaussian approximations in the
NRDB algorithm are corrected by the weighting process of the
developed filtering method to achieve a more accurate GMTI
tracking performance. The simulation results show that the
proposed method substantially outperforms the existing methods for
the GMTI tracking problem.
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I. INTRODUCTION

In this paper, we consider the problem of ground
vehicle tracking using a ground-moving target indicator
(GMTI) radar that discriminates a moving target against
the static background based on the Doppler effect [1].
GMTI radar is well suited for detecting targets moving on
ground due to its wide-area, all-weather, day/night, and
real-time capabilities [2]. Therefore, GMTI-based tracking
has received a wide range of applications in continuously
tracking of vehicles to support surveillance in different
environments (e.g., battlefield and urban).

Due to its practical importance, there have been a
number of methods developed in recent years to address
various research issues associated with GMTI tracking.
Kirubarajan et al. [3] proposed a variable structure
interacting multiple model (VS-IMM) algorithm for
GMTI tracking, considering there may be more than one
state model to describe the target object’s movement and
the number of state models may change as well. In order
to overcome the nonlinearity in the measurement model of
the GMTI radar and the non-Gaussian posterior
distribution of the state vector, a particle filtering approach
was proposed in [4] and the simulation results showed an
improved performance with reduced root mean square
error (RMSE) than [3]. In addition, a new approach was
proposed in [5] to improve on the performance of [4] in
which the traditional particle filter was replaced with a
more advanced unscented particle filter developed in [6].

The major limitation of the methods in [3–5] is that the
GMTI measurements were assumed to be recorded at
every time step in these studies, which is not the case in the
real-world problems. In practice, no GMTI measurements
are received if the magnitude of a target object’s radial
velocity drops below the minimum detectable velocity.

In order to address this GMTI tracking problem, the
researchers in [7] incorporated a separate stop model into
the VS-IMM framework as a complement to the existing
maneuvering models. The incorporation of the stop model
in the VS-IMM framework improves the tracking
performance when no measurements are recorded due to
vehicle stoppage. On the other hand, there are other
studies such as [2, 8, 9] that applied Gaussian mixture
tracking algorithms by propagating the Gaussian mixture
approximation to the conditional distribution of the target
state. In addition, a suitable state-dependent detection
probability was introduced, which helps to determine the
conditional distribution of the target state when no
measurements are recorded. To solve the problem that
negative weights may possibly arise in the Gaussian
mixture approximation, an extra approximation stage was
introduced in [10] to replace the resulting negative
Gaussian mixture with one having strictly positive mixture
weights, and thus improving on algorithmic stability. The
algorithm in [11] applied the particle filtering method and
treated each nondetection case as evidence. The
corresponding likelihood function of the nondetection
evidence was formulated and incorporated into the particle
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filtering procedure to update the target state probability
distribution when no measurements are recorded.

Recently, Clark et al. [12] have developed a new
Gaussian mixture model (GMM)-based noise-related
Doppler blind (NRDB) filtering algorithm for GMTI
tracking in which a GMM is used to approximate the
posterior probability distribution of the state vector. This
algorithm was carefully designed so that the Doppler
blindness constraint of the GMTI radar can be efficiently
dealt with under the Gaussian distribution assumption.
The simulation results in [12] showed that this new
approach outperformed some existing methods (such as
[8]), especially when dealing with the scenario of no
measurement. However, to ensure that the filter in [12]
retains an analytically tractable form and to process
signals efficiently, the following approximations have
been made at each time step in this algorithm.

1) Approximation A: a standard mixture reduction
technique (see, e.g., [13]) is used to avoid the exponential
growth of the number of the Gaussian mixture
components.

2) Approximation B: the posterior probability
distribution of the state vector for each mode is
approximated by a Gaussian distribution.

3) Approximation C: the measurement equation
associated with the GMTI radar is linearized based on the
first-order Taylor expansion, and a Gaussian distribution
assumption is made when dealing with the Doppler
blindness constraint.

While approximation A is the most commonly used
approach to ensure the number of components is
manageable in practice, approximations B and C are
adopted in [12] to form a generalized extended Kalman
filter (EKF) for the situation where a certain measurement
is an interval-censored value, i.e., it falls into a known
interval (the Doppler blind region). More specifically,
when the radial velocity of the target is within the Doppler
blind region, Clark et al. [12] have made use of the results
in [14] to compute conditional mathematical expectations
and covariance matrices so that knowledge on the Doppler
blindness constraint can be efficiently utilized to update
the state estimate.

The aim of this paper is to address the limitations of
the algorithm in [12] and remove approximations A–C as
much as possible. Because GMTI tracking is a nonlinear,
non-Gaussian filtering problem, we will use a particle
filtering approach, rather than the GMM-based algorithm
with EKF-like filtering in [12], to estimate the state vector.

First, we will use the resampling method developed in
[15] to replace the mixture reduction technique adopted in
approximation A to ensure that the approximation errors
are kept at a minimum level. In addition, we note that by
applying the EKF and its generalized version, the
GMM-based NRDB algorithm in [12] works very well in
many scenarios. A distinguished feature of the method
proposed in this paper is to fully take the advantages of the
NRDB algorithm by treating the EKF and its generalized

version as the importance distributions to generate
particles in the proposed particle filter. The errors caused
by the linearization and Gaussian approximations
associated with the importance distributions (i.e.,
approximations B and C outlined above) are then
corrected in the later stage of the particle filter via a
suitable weighting process.

This paper is divided into the following sections.
Section II considers problem formulation of GMTI
tracking and briefly introduces the Bayesian inference
framework developed in [15]. The details of the proposed
novel particle filtering algorithm for GMTI tracking are
provided in Section III. A simulation study is given in
Section IV that evaluates the numerical performance of
the proposed method and compares its performance with
other state-of-the-art methods. Finally, we close this paper
with some concluding remarks in Section V.

II. PROBLEM FORMULATION AND BAYESIAN
FILTERING

A. State and Measurement Models

In a standard tracking problem, the system model
includes a state equation of the target object and a
measurement model for the sensor observations. The state
equation is used to describe the dynamics of the
movement of the target vehicle and the measurements
provide the information for state filtering. The movement
of the ground target vehicle may involve several different
maneuvering types (acceleration, deceleration, standstill,
etc.), and its dynamics are usually described using a
Markov jump multiple model:

xt = F(mt )xt−1 + wt−1(mt ) (1)

where xt = [xt , yt , ẋt , ẏt ] is the state vector consisting of
the positions (xt, yt) and velocities (ẋt , ẏt ) in x and y
directions (here we assume that the vehicle moves on
ground with zt ≡ 0 and żt ≡ 0). Note that more than one
movement mode are normally involved in the tracking
problem with mt ∈ M, where M is the set of mode
indexes. The transitions among different modes are
described by the transition probabilities. In this paper, we
consider a Markov-jump system in [16] where the
transition probability p(mt = i|mt–1 = j) from mode j to i is
assumed to be constant. In addition, F(mt) and wt–1 (mt)
represent the state transition matrix and process noise that
could depend on a particular movement mode mt.

The standard GMTI radar measures the range, azimuth
angle, and range rate (denoted as yr, yθ , and yṙ at time step
t, respectively) of the ground vehicle relative to the
position of the GMTI radar. Following [12], we assume
that these measurements are noise-corrupted from actual
values:

yt =

⎡
⎢⎣

yr

yθ

yṙ

⎤
⎥⎦= h(xt ) + nt =

⎡
⎢⎣

rt

θt

ṙt

⎤
⎥⎦ +

⎡
⎢⎣

nrt

nθt

nṙt

⎤
⎥⎦
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=

⎡
⎢⎢⎢⎣

√
(xt − xo,t )2 + (yt − yo,t )2 + (zt − zo,t )2

arctan2(yt − yo,t , xt − xo,t )
(xt − xo,t ) · (ẋt − ẋo,t ) + (yt − yo,t ) · (ẏt − ẏo,t ) + (zt−zo,t ) · (żt − żo,t )√

(xt − xo,t )2 + (yt − yo,t )2 + (zt − zo,t )2

⎤
⎥⎥⎥⎦

+
⎡
⎣ nrt

nθt

nṙt

⎤
⎦ , (2)

where arctan2 denotes the four quadrant inverse tangent
function, (xo,t, yo,t, zo,t) and (ẋo,t , ẏo,t , żo,t ) represent the
position and velocity of the observer (GMTI radar) at
time t, respectively, h(xt ) = [rt , θt , ṙt ]T is the ideal
measurement vector without the measurement noises, and
nt = [nrt

, nθt
, nṙt

]T represents the measurement noise
vector that is assumed to be Gaussian with zero-mean
vector and a diagonal covariance matrix diag{σ 2

r , σ 2
θ , σ 2

ṙ }.
To reduce the nonlinearity of (2), we adopt the unbiased
measurement transformation method (see, e.g., [17, 18]
for details) to convert the nonlinear measurement
components rt and θ t into the Cartesian measurements.

To deal with the Doppler blindness region, let κ denote
the minimum detectable velocity of the GMTI radar and
let vr

t denote the radial velocity of the target that is defined
to be the target’s velocity projected along the range
direction. According to the properties of GMTI radars, no
measurements will be detected if the target radial velocity
is within the Doppler blind region. In addition, even when
the target radial velocity vr

t is outside the Doppler blind
region, the target is not always detected but has a detection
probability PD (see, e.g., [11]). The actual measurement zt

takes the values in the set Z = {R3 ⋃
0/}, where 0/ denotes

a missing measurement, i.e.,

zt =
{

0/
∣∣vr

t

∣∣ ≤ κ or
∣∣vr

t

∣∣ > κwith probability 1 − PD

yt

∣∣vr
t

∣∣ > κwith probability PD.

(3)

B. Bayesian Inference for Recursive Filtering

Let Xt = {x1, . . ., xt} and Zt = {z1, . . ., zt} denote the
sequences of the state vectors and measurement vectors up
to time step t. With the state space model (1)–(3),
Bayesian inference can be drawn to derive the posterior
distribution p(Xt, mt|Zt) at each time step t, which in turn
can be used to determine both the mode probability
p(mt|Zt) and the mode-conditioned probability
p(Xt|mt, Zt). In this subsection, we briefly summarize the
general recursive Bayesian filtering for the formulated
estimation problem; see [15] for a detailed description.

Given the measurement sequence Zt = {z1, . . ., zt},
the recursive Bayesian filtering obtains the probability
distribution p(Xt, mt|Zt) at each time step t using the
previous distribution p(Xt–1, mt–1|Zt–1) at t – 1. First, we
note that given p(Xt–1, mt–1|Zt–1), p(Xt–1, mt|Zt–1) can be
obtained by law of total probability (termed mode

interaction in [15]):

p(Xt−1, mt |Zt−1 )

=
∑

mt−1∈M
p(mt |mt−1 )p(Xt−1, mt−1|Zt−1 ). (4)

On the basis of the mode interaction in (4) and the
state transition probability distribution p(xt|Xt–1, mt, Zt–1)
defined in (1), the predicted distribution p(Xt, mt|Zt–1) can
be obtained:

p(Xt , mt |Zt−1 )

= p(xt |Xt−1, mt , Zt−1 )p(Xt−1, mt |Zt−1 ). (5)

Finally, following the Bayesian theorem, the posterior
distribution of the state vector can be derived from the
predicted distribution by taking into account the current
measurement zt:

p(Xt , mt |Zt ) ∝ p(zt |xt )p(Xt , mt |Zt−1), (6)

where p(zt|xt) is the likelihood function that is the
probability of zt conditional on the state vector xt. Its
definitions are given by the corresponding measurement
model, (2) and (3).

Hence, following the general Bayesian statistical
inference procedure, the distribution p(Xt–1, mt–1|Zt–1) at
time step t – 1 can be updated to form the posterior
distribution p(Xt, mt|Zt) at time step t. Furthermore, the
marginal distribution p(xt, mt|Zt) can be obtained from
p(Xt, mt|Zt), upon which the state and mode estimations at
time instance t can be worked out.

III. THE PROPOSED ALGORITHM

A. The General Structure

Overall, the enhanced particle filtering algorithm
developed in this paper is based on (4)–(6), and the filtered
state vector at each time step t is derived by the
corresponding marginal posterior distribution p(xt, mt|Zt).
First, we focus on (6). When there is a measurement
recorded at t, p(zt|xt) in (6) is given by (2). However, when
there is no measurement (i.e., zt = 0/), the likelihood
function p(zt = 0/|xt) is given by, according to (3):

p(zt = 0/ |xt ) = p(−κ ≤ vr
t ≤ κ |xt ) + (1 − PD)

· (1 − p(−κ ≤ vr
t ≤ κ |xt ))

= (1 − PD) + PDp(−κ ≤ vr
t ≤ κ |xt ). (7)

In general, there is no exact analytical solution for the
posterior distribution p(Xt, mt|Zt) for state and mode
estimation. Recently, Clark et al. [12] have proposed an
efficient GMM-based NRDB algorithm to approximate
p(Xt, mt|Zt) on the basis of approximations A–C as
outlined in the previous section. In order to address the
limitations of the algorithm in [12] and to obtain more
accurate state estimation, a novel particle filtering
approach is developed as follows.

It is well-known that the quality and efficiency of any
particle filters depend on the quality of the chosen
importance distribution. Ideally, the importance
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distribution should be 1) close to the posterior distribution
of the state vector and the mode, i.e., p(Xt, mt| Zt),
and 2) easy to sample from. The standard choice of
importance distribution is the state transition distribution
p(xt|Xt–1, mt, Zt–1) given in (1). The main drawback of
such a choice is that it does not take into account the
current measurement zt (see, e.g., [16]) that reveals the
state information.

Essentially the new filter to be developed
in this paper includes two key elements. First, the EKF
and its generalization for interval-censored measurements
in [12] are used to construct the importance distributions.
In comparison with the standard choice of importance
distribution, i.e., the state transition distribution at each
state mode, the sampling efficiency is improved for each
mode of the multiple models where the information about
the current measurement zt has been incorporated. Second,
all three approximations in the NRDB algorithm are
addressed by utilizing the advantages of particle filtering.
This includes 1) the standard mixture reduction technique is
avoided by the resampling method and 2) the linearization
and Gaussian approximations are corrected through
the weighting process in the proposed particle filter.

Specifically, at time t – 1, suppose that for each
mode s ∈ M, N weighted particles are allocated
to the corresponding mode-matched filter
{Xs,k

t−1, w
s,k
t−1; k = 1, . . . , N} that are used to approximate

the joint distribution p(Xt–1, mt–1 = s|Zt–1) as:

p(Xt−1, mt−1 = s|Zt−1) ≈
N∑

k=1

w
s,k
t−1δ(Xt−1 − Xs,k

t−1), (8)

where δ (·) is a Dirac delta function. From (4), the mode
interaction is given by:

p(Xt−1, mt = r |Zt−1 )

≈
∑
s∈M

N∑
k=1

p(mt = r |mt−1 = s)ws,k
t−1δ(Xt−1 − Xs,k

t−1).

(9)

Assuming the number of the state modes to be M, from
(9), we can see that N × M particles are required to
represent p(Xt–1, mt = r|Zt–1). The increasing number of
particles from N to N × M for probability representation
at each time step will make the number of particles grow
in an exponential way as time t becomes large.

Blom and Bloem [15] developed a resampling method
to address this problem, where the particles are resampled
from the above distribution, conditional on the model mt:

p(Xt−1|mt = r, Zt−1)

≈
∑
s∈M

N∑
k=1

p(mt = r |mt−1 = s)ws,k
t−1δ(Xt−1 − Xs,k

t−1)/

p(mt = r |Zt−1 ), (10)

such that N new particles X
r,k

t−1 ∼ p(Xt−1|mt = r, Zt−1)
(k = 1, ..., N) are generated for each mode r, where p(mt

= r|Zt–1) is the distribution of mt for given Zt–1.

Because N is usually taken as a large number, the error
caused by the above resampling process is small. In
contrast, the number of modes in the NRDB algorithm is
usually small or medium, and hence the standard mixture
reduction technique used in [12] may not be able to
approximate well a multimodal posterior distribution.

Equations (5), (6), and (10) can be applied to derive
the posterior distribution. See [15] for details. As
mentioned earlier, this posterior is analytically intractable,
and hence Monte Carlo methods are usually used and new
particles need to be drawn. In the particle filtering, this
step is undertaken using an importance distribution.

Specifically, for each mode r, importance sampling is
used to estimate the desired posterior distribution. Now
suppose that a new sample xr,k

t of the current state
vector xt is drawn from the importance distribution

qr (xt |Xr,k

t−1, Zt ). The obtained new state vector samples for

time step t and the corresponding X
r,k

t−1 form the particles

at time step t, i.e., Xr,k
t = [X

r,k

t−1, xr,k
t , ] (k = 1, . . ., N).

Xr,k
t , together with the corresponding weights w

r,k
t , are

used to represent the posterior distribution at time step t:

p(Xt , mt = r|Zt ) ≈
N∑

k=1

wr,k
t δ(Xt − Xr,k

t ), (11)

upon which the marginal distribution p(xt, mt = r|Zt) for
the current state vector can be obtained. According to
whether GMTI measurements are recorded or not,
different importance distributions qr (xt |Xr,k

t−1, Zt ) will be
used in the proposed method. This will be investigated in
detail below.

B. Particle Filtering with Measurements Recorded

When the measurement at time step t is recorded, we
have zt = yt given by (2). The EKF is applied to construct

the importance distribution for every X
r,k

t−1. As in [6], we
assume that in the local region near the state vector x̄r,k

t−1,

the mode-conditioned distribution p(xt–1|mt = r, Zt–1)
is approximated as a Gaussian distribution
N (xt−1|x̂r,k

t−1|t−1, Pr,k
t−1|t−1) with mean x̂r,k

t−1|t−1 and

covariance matrix Pr,k
t−1|t−1. The EKF estimates the

Gaussian approximation of p(xt|mt = r, Zt) in a local
region, which is taken as the importance distribution
qr (xt |X̄r,k

t−1, Zt ) for the new particle generation.
The EKF scheme follows the standard Kalman filtering

procedure by approximating the nonlinear measurement
model via its first-order Taylor expansion. It is divided
into the following prediction and correction steps:

PREDICTION

x̂r,k
t |t−1 = Fr

t x̂r,k
t−1|t−1 , (12)

Pr,k
t |t−1 = Fr

t Pr
t−1|t−1 (Fr

t )T + Qr
t , (13)
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CORRECTION

ỹr,k
t = zt − h(x̂r,k

t |t−1), (14)

Sr,k
t = Hr,k

t Pr,k
t |t−1 (Hr,k

t )T + Rt , (15)

Kr,k
t = Pr,k

t |t−1 (Hr,k
t )T (Sr,k

t )−1, (16)

x̂r,k
t |t = x̂r,k

t |t−1 + Kr,k
t ỹr,k

t , (17)

Pr,k
t |t = (I − Kr,k

t Hr,k
t )Pr,k

t |t−1, (18)

where x̂r,k
t−1|t−1 and Pr,k

t−1|t−1 represent the initial mean and

covariance matrix associated with the particle X̄r,k
t−1. Qr

t−1
and Rt are the covariance matrices of the process noise
wt–1 (mt) with mt = r in (1) and the measurement noise nt

in (2), respectively. Fr
t is F (mt) evaluated at mt = r. Hr,k

t

is the gradients of h(xt) evaluated at the point of
x̂r,k

t |t−1:

Hr,k
t = ∂h(xt )

∂xt

∣∣∣
x̂r,k

t |t−1

. (19)

The obtained Gaussian distribution N (xt |x̂r,k
t |t , Pr,k

t |t ) is

taken as the importance distribution qr (xt |X̄r,k
t−1, Zt ) for

generating new state particles. Clearly, the measurement
information is incorporated for constructing
N (xt |x̂r,k

t |t , Pr,k
t |t ) so that the generated particles are more

likely in the high measurement likelihood region.
It should be noted that (16) involves the inverse of a

matrix for every particle X̄r,k
t−1, and thus potentially it

requires a substantial amount of computational time. In
order to reduce the computation cost, we set every initial
covariance Pr,k

t−1|t−1 (k = 1, . . ., N) to be equal to a preset
matrix τ diag{1, 1,τ 0, τ 0} with τ and τ 0 being two tuning
parameters. In addition, the gradient of h(xt) is evaluated
at a common value, 1

N

∑N
k=1 x̂r,k

t |t−1,which are in turn used

to approximate Hr,k
t for each k. In doing so, only one

matrix inverse is needed for estimating the importance
distribution for each particle.

C. Particle Filtering Without Measurements

When there is no measurement recorded at a time step
t, i.e., zt = 0/, either the target radial velocity is within the
Doppler blindness constraint region (|vr

t | ≤ κ) or the
target is not detected (with probability 1 – PD). For each
mode mt = r, the mode-conditioned probability of the
state vector xt follows:

p(xt |mt = r, Zt ) ∝ (1 − PD)p(xt |mt = r, Zt−1 )

+ PDp(xt |mt = r, Zt−1,
∣∣vr

t

∣∣ ≤ κ)

× p(
∣∣vr

t

∣∣ ≤ κ |mt = r, Zt−1 ). (20)

Similar to the scenario that the measurements are
recorded, we use a mixture of two Gaussian distributions
to approximate the local distribution of p(xt|mt = r, Zt).
This Gaussian mixture distribution is taken as the

importance distribution for generating a new state particle.
This will be discussed in detail below.

For the first term in (20), the probability p(xt|mt = r,
Zt–1) represents the predicted distribution based on the
previous measurements Zt–1. From the approximated
initial Gaussian distribution N (xt−1|x̂r,k

t−1|t−1, Pr,k
t−1|t−1)

near the particle x̄r,k
t−1 (as in the previous subsection), the

predicted distribution can be approximated as a Gaussian
distribution with the mean x̂r,k

t |t−1 and covariancePr,k
t |t−1. The

recursive formulae are identical to the ones given
previously.

We now turn to consider the second term of (20). Note
that now the only information we know is that the target
radial velocity vr

t falls into a given interval, i.e., |vr
t | ≤ κ .

This is termed an interval-censored problem in the
literature. To deal with this interval-censored problem, we
follow [12] and use the results in [14] to work out the
mathematical expectation and variance conditional on the
interval-censored measurement vr

t (see Appendix A for
the detailed results) as follows.

First, we approximate the target radial velocity by the
first-order Taylor expansion around the predicted state
x̂r,k

t |t−1 as:

vr
t (xt ) = vr

t (x̂r,k
t |t−1 ) + ∂vr

t (xt )

∂xt

∣∣∣∣∣
x̂r,k

t |t−1

(xt − x̂r,k
t |t−1 ). (21)

From (21), the conditional mean x̂r,k
t |t and covariance

Pr,k
t |t of p(xt |mt = r, Zt−1, |vr

t | ≤ κ) can be calculated
using the formulae in Appendix A:

x̂r,k
t |t = x̂r,k

t |t−1 + Kr,k
t (mr,k

A − vr
t (x̂r,k

t |t−1 )), (22)

Kr,k
t = Pr,k

t |t−1 (Hr,k
t )T (Hr,k

t Pr,k
t |t−1 (Hr,k

t )T , (23)

Pr,k
t |t = Pr,k

t |t−1 − Kr,k
t Hr,k

t Pr,k
t |t−1 + Kr,k

t V
r,k
A (Kr,k

t )T , (24)

where Hr,k
t = ∂vr

t (xt )
∂xt

∣∣
x̂r,k

t |t−1
and

m
r,k
A = (γ r,k

t )−1(σ̄ r,k)2[N (−κ|vr
t (x̂r,k

t |t−1 ), (σ̄ r,k)2)

−N (κ|vr
t (x̂r,k

t |t−1 ), (σ̄ r,k)2)] + vr
t (x̂r,k

t |t−1 ), (25)

V
r,k
A = (γ r,k

t )−1(σ̄ r,k)2

× [(−κ + vr
t (x̂r,k

t |t−1 ))N (−κ|vr
t (x̂r,k

t |t−1 )(σ̄ r,k)2)

− (κ + vr
t (x̂r,k

t |t−1 ))N (κ|vr
t (x̂r,k

t |t−1 ), (σ̄ r,k)2)]

+ ((vr
t (x̂r,k

t |t−1 ))2 + (σ̄ r,k)2) − (mr,k
A )2, (26)

σ̄ r,k = (Hr,k
t Pr,k

t |t−1 (Hr,k
t )T )1/2. (27)

This procedure is a generalization of the EKF to the
problem of state estimation based on an interval-censored
measurement. On the basis of this generalized EKF, the
distribution p(xt |mt = r, Zt−1, |vr

t | ≤ κ) can be
approximated as N(xt |x̂r,k

t |t , Pr,k
t |t ). In addition, based on

(21), the probability that the measured range rate is within
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the Doppler blind zone, i.e., p(|vr
t |≤ κ|mt = r, Zt−1), is

approximated by

γ r,k
t =

∫ κ

−κ

N (x
∣∣vr

t (x̂r,k
t |t−1 ), (σ̄ r,k)2)dx. (28)

Finally, on the basis of the above analysis, we choose the
importance distribution for each particle X̂r,k

t−1 as:

qr (xt |X̄r,k
t−1, Zt ) ∝ (1 − PD)N (x|x̂r,k

t |t−1, Pr,k
t |t−1)

+PDγ r,k
t N (x|x̂r,k

t |t , Pr,k
t |t ). (29)

REMARKS

1) The above importance distribution is a Gaussian
mixture distribution, and thus it is straightforward to draw
particles from this distribution.

2) It can be seen from the construction of the
importance distribution (29) that, when no measurement is
recorded, the relevant information is incorporated by
taking into account the Doppler blindness constraint
|vr

t | ≤ κ. The constructed importance distribution is a
local approximation of the desired distribution
p(xt|mt = r, Zt) so that the particles of p(xt|mt = r, Zt)
can be generated from the importance distribution.

3) Similar to the scenario that the measurements
are recorded, we set the initial covariance Pr,k

t−1|t−1

(k = 1, ..., N) to be equal and each Hr,k
t is approximated

by the first-order gradient of the radial velocity evaluated
at the averaged predicted means. In doing so, only one σ̄ r,k

and one Kr,k
t are needed to calculate for all the particles,

and hence the computational cost is reduced.

D. Correcting the Approximation Errors

It can be seen from the previous subsections that
several approximations were made when deriving the
importance distributions. The corresponding
approximation errors can be corrected in the proposed
particle filtering algorithm through a weighting operation.

Suppose that we have drawn a new state vector particle
xr,k

t from the importance distribution qr (xt |X̄r,k
t−1, Zt ) and

hence formed a new particle Xr,k
t = [X̄r,k

t−1, xr,k
t ]. The

corresponding weight for each new particle Xr,k
t is given

by the following ratio:

wr,k
t ∝ p(mt = r |Zt−1 )

× p(zt |xr,k
t )p(xr,k

t |X̄r,k
t−1., mt = r, Zt )

qr (xr,k
t |X̄r,k

t−1, Zt )
. (30)

Each particle Xr,k
t is assigned a suitable weight w

r,k
t . This

results in an estimate of the posterior distribution, (11).
Two things are worth noting from (30).

1) In some practical problems, the state transition
probability distribution given by the state equation (1) is
rank-deficient and p(xr,k

t |X̄r,k
t−1, mt = r, Zt ) could not be

calculated directly. We apply the QR decomposition to

Fig. 1. Speed of maneuvering ground vehicle.

solve this problem (the details are presented in Appendix
B).

2) We have used a novel importance distribution that
is estimated from either the EKF or the generalized EKF
to incorporate the GMTI measurement information, and
therefore the weight in (30) is different from that used in
[15]. In [15], the importance distribution is chosen as the
system transition distribution p(xt|xt–1, mt = r) and hence
w

r,k
t ∝ p(mt = r|Zt−1)p(zt |xr,k

t ).

IV. SIMULATION STUDY

In this section, we use a simulation study to evaluate
the numerical performance of the developed filter. A
simulation study was carried out for a single
target-tracking scenario in which a GMTI sensor mounted
on an airborne platform was employed to track the motion
of a moving ground vehicle. The target moving eastbound
started at a constant speed of 10 m/s maintained for 180 s
before it accelerated at a rate of 1 m/s2 up to a speed of
25 m/s. After travelling at this constant speed for 180 s,
the target started to decelerate for 25 s until it came to a
standstill. The target remained stationary for 60 s, before
accelerating again to a speed of 15 m/s. Target speed as a
function of time is plotted in Fig. 1. The same simulation
scenario was also investigated in [12].

The sensor platform travelled northbound at a constant
speed of 120 m/s and at an altitude of 10 km. The moving
sensor platform took noisy measurements (including the
3-dimensional range, azimuth angle, and range rate) of the
ground-moving target every 5 s. The movements of the
target and sensor platform are displayed in Fig. 2.

A. The State and Measurement Models

Because the vehicle moved in several different
maneuvering styles, we applied a multiple models scheme
to describe the movement of the target. Following [12,
19], we define a low-intensity nearly constant velocity
(LINCV) model and a high-intensity nearly constant
velocity (HINCV) model. In addition, a stop model based
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Fig. 2. Trajectories of ground target and sensor platform.

on the nearly constant position model in [20] is used to
model the scenario of vehicle stopping.

To better compare the proposed algorithm with the
GMM-based NRDB algorithm in [12], we used the same
method to discretize the continuous-time model of vehicle
dynamics and assumed the following general form of the
state equation for every model (see, e.g., [21], for other
forms of the discretized state equation in the literature):

xt = F(mt )xt−1 + G(mt )wt−1(mt ), (31)

where mt = {1, 2, 3} represents the model index: mt = 1
for the LINCV model, mt = 2 for the HINCV model, and
mt = 3 for the stop mode. A Gaussian distribution is
assumed for the 2 × 1 noise vector wt–1(mt) with zero
means and mode-related covariance matrix
diag{σ 2

x (mt ), σ 2
y (mt )} with 1) σ 2

x (mt ) = σ 2
y (mt ) =

0.052(m/s2)2 for mt = 1; 2) σ 2
x (mt ) = σ 2

y (mt )
= 0.52(m/s2)2 for mt = 2; and 3) σ 2

x (mt ) = σ 2
y (mt ) =

0.0052(m/s)2 for mt = 3.
The state transition matrix F(mt) and constant matrix

G(mt) for mt = {1, 2} are defined as:

F(mt ) =

⎡
⎢⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , G(mt ) =

⎡
⎢⎢⎢⎢⎣

T 2/2 0

0 T 2/2

T 0

0 T

⎤
⎥⎥⎥⎥⎦,

(32)
where T = 5 s is the time interval between two
consecutive samplings. For the stop model with mt = 3,
F(3) and G(3) are defined as:

F(3) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , G(3) =

⎡
⎢⎢⎢⎢⎣

T 0

0 T

0 0

0 0

⎤
⎥⎥⎥⎥⎦ . (33)

Fig. 3. Target radial velocities. When vehicle stops (target radial
velocities are zero), no measurements are recorded.

where the evolution of the position is modeled by adding
nonzero process noise as in [20]. In addition, the velocity
is forced to be zero as in [22, 23].

The relevant model transition probabilities were
calculated according to the method described in [7]. The
resulting state mode transition matrix is given by:⎛

⎜⎝
0.9500 0.0495 0.0005

0.2182 0.7273 0.0545

0.0008 0.0825 0.9167

⎞
⎟⎠ . (34)

The measurement model, as discussed in Section II,
includes two scenarios: measurements recorded and not
recorded. As illustrated in Fig. 3, when a measurement is
recorded and the target’s radial velocity is outside the
Doppler blindness constraint region (–κ , + κ) (here we
followed [12] and set κ to be 3 m/s), the corresponding
likelihood function is Gaussian as given by (2). In the
simulation study, we followed [12] and set the parameters
of the measurement equation σ r and σ θ as 20 m and 0.001
rad, respectively. On the other hand, when no measurement
is recorded, the measurement model is given by (7).
Finally, throughout the simulation study, the two tuning
parameters τ and τ 0 were set as 1 and 0.1, respectively.

B. Tracking Performance Analysis

Based on the state and measurement models, the
proposed algorithm was applied in the tracking of the
moving target in the set scenario and the corresponding
tracking performance was evaluated. As in [12], we
assumed the initial target state distribution followed a
single Gaussian prior density obtained by the single-point
track initialization algorithm [24, 25] for the proposed
approach and for the other algorithms used for comparison
below.

The maneuvering types of the moving target at
different time points are shown in Fig. 4a, and the
estimated model probabilities using the proposed
algorithm are given in Fig. 4b. It can be seen that in the
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Fig. 4. Movement mode transition and model probabilities: (a) actual
maneuvering type and (b) estimated model probabilities by proposed

method (with particle number being 2500 for each model, Pd = 0.8, and
σṙ = 1.0).

majority of time instances, the model that corresponded to
the actual movement type had the largest probability.
Hence, the maneuvering characteristics of the moving
target could be correctly reflected by the proposed
algorithm in the simulation study.

Next, we analyze the tracking accuracy of the
proposed method and draw a comparison with some
other state-of-the-art approaches, including the
multiple model version of the noise-related Doppler blind
mixture filter (NRDB-MM) [12] and the multiple
model particle filtering (MMPF) approach. Here the
multiple-model-based approaches were chosen for a fair
comparison because our proposed approach considers
multiple state models. In particular, the NRDB-MM
algorithm in [12] was used as the benchmark algorithm for
comparison purposes, whereas the MMPF approach is a
widely used algorithm in the literature (see, e.g., [4, 11,
26]). The parameter for the NRDB-MM was set exactly
the same as in [12]. For the two particle filtering-based
methods, i.e., the proposed method and the MMPF, the
number of particles corresponding to each state model
(denoted as N) was chosen at different levels so that we
can assess its impact on the accuracy of the estimation.

For each approach, 100 Monte-Carlo simulation
experiments were carried out and the RMSEs averaged
over the 100 simulations at different time instances were
calculated. We first focus on the average RMSE obtained

by the different methods, as displayed in Fig. 5. It can be
seen from Fig. 5 that:

1) The proposed method achieved the best
performance with the smallest errors during most of the
time instances than its counterparts, especially for the
sample indexes between 80 and 92 when the target
stopped.

2) Compared with the MMPF approach, the proposed
method was less sensitive to the number of particles.
Fig. 5 shows that the errors for the MMPF method were
substantially increased when the number of particles
reduced from N = 2500 to N = 1000. In contrast, similar
performances were obtained for the proposed method with
different particle sizes.

There are several reasons for these differences. First,
in comparison with the NRDB-MM algorithm, the
proposed approach adopts the particle filtering-based
method, and therefore it avoids the approximations made
in the GMM-based NRDB approach in [12], leading to a
performance improvement over the NRDB-MM
algorithm. Second, compared the MMPF approach, a
novel sampling method is proposed to incorporate either
the measurement information (when measurements are
recorded) or knowledge on the Doppler blindness
constraint (when no measurements are recorded) for the
construction of the importance distributions. Effective
particles can thus be sampled from the constructed
importance distributions, which leads to a more accurate
state estimation even with a relatively small particle size.

Finally, we focus on vehicle tracking when the vehicle
was standstill and hence was within the Doppler blindness
constraint region. This is a challenging scenario because
no measurements were recorded during the vehicle
stopping interval. For this end, we considered the same
parameter settings as did in [12], including different
detection probabilities PD and the standard deviations of
range rate measurement σṙ . A comprehensive evaluation
was performed under these parameter settings to compare
the different approaches.

Under each parameter setting, the RMSEs during the
time interval when the vehicle stopped for different
approaches were calculated. Tables I and II display the
average RMSEs over the 100 simulation experiments. It
can be seen from the two tables that the proposed approach
outperformed the other methods with the smallest tracking
errors. This shows that for the scenario where the vehicle
stopped and no measurements were recorded, the proposed
approach could most efficiently utilize knowledge on the
Doppler blindness constraint for vehicle tracking.

C. Computational Costs

In this subsection, we briefly evaluate the
computational cost of the different methods. The
execution was performed on a PC with 3.40 GHz
processing speed and 8.00 GB memory using Matlab
2013(a). For the scenario under investigation, the vehicle
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Fig. 5. RMSEs averaged over 100 simulation experiments for different approaches (with Pd = 0.8 and σṙ = 1.0).

TABLE I
The RMSEs (m) Averaged over 100 Experiments in x-Coordinate Without Recorded Measurements

Scenario I II III IV V VI VII VIII

Pd 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8
σṙ (m/s) 1.5 1.0 0.75 0.6 1.5 1.0 0.75 0.6

κ/σṙ 2 3 4 5 2 3 4 5
NRDB-MM [12] 55.52 51.37 57.48 50.57 28.51 29.60 26.45 27.51

MMPF (N = 1000) 51.04 52.50 55.20 48.51 37.15 29.21 29.77 28.76
MMPF (N = 2500) 46.30 37.75 46.41 37.61 27.59 26.11 27.87 27.92

Proposed method (N = 1000) 28.23 29.41 29.75 30.42 24.74 22.47 27.98 22.16
Proposed method (N = 2500) 26.89 30.40 29.32 29.46 22.02 20.01 26.14 21.45

TABLE II
The RMSEs (m) Averaged over 100 Experiments in y-Coordinate Without Recorded Measurements

Scenario I II III IV V VI VII VIII

Pd 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8
σṙ (m/s) 1.5 1.0 0.75 0.6 1.5 1.0 0.75 0.6

κ/σṙ 2 3 4 5 2 3 4 5
NRDB-MM [12] 43.55 56.95 56.81 53.99 37.57 44.69 58.73 51.86

MMPF (N = 1000) 51.56 55.85 55.43 52.57 43.86 39.01 47.59 53.16
MMPF (N = 2500) 33.29 50.06 42.33 46.56 35.75 26.18 41.94 44.23

Proposed method (N = 1000) 28.61 30.41 30.59 33.43 28.45 22.85 28.46 32.02
Proposed method (N = 2500) 26.32 24.82 25.93 29.86 25.74 20.59 23.43 30.68
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TABLE III
The Computational Costs for Different Approaches

MMPF MMPF Proposed Method Proposed Method
NRDB-MM (N = 1000) (N = 2500) (N = 1000) (N = 2500)

Total execution time (s) 3.28 0.90 4.18 1.51 4.47
Execution time for one sample (10–2 s) 2.34 0.64 2.99 1.08 3.19

moved 700 s and the measurement was taken every
5 s, so it was required that the computation time for
processing one sample be less than 5 s. In total there were
700/5 = 140 sample time indexes (time steps).

For each method considered in the simulation study,
the execution time and the average processing time for
each sample were recorded, as displayed in Table III. We
can see that the computational costs of all the algorithms
for processing one sample are far less than 5 s and fast
enough to make the tracking algorithm run in practice.
Further reduction of the computation time can be achieved
by implementing the algorithm in a C/C++ programming
environment.

V. CONCLUSIONS

In this paper, a novel particle filtering approach for
GMTI tracking has been developed. The proposed particle
filter makes use of the EKF and its generalized version in
[12] to construct importance distributions for efficient
generation of particles. In comparison with the
GMM-based NRDB algorithm recently developed in [12],
the three approximations outlined in the Introduction
section can be satisfactorily addressed by the proposed
algorithm, so that more accurate state filtering can be
obtained. On the other hand, comparing to general-purpose
particle filters, where the importance distribution is usually
chosen as the state transition distribution, the information
on both the measurements and the Doppler blindness
constraint can be directly incorporated in the proposed
method when forming the importance distributions, as a
result, substantially enhancing the quality of the particle
filter. The numerical results in the Monte Carlo simulation
have verified that the proposed method outperformed the
existing methods with an acceptable computational cost.

APPENDIX A. MEAN AND VARIANCE CONDITIONAL
ON AN INTERVAL-CENSORED MEASUREMENT

We summarize the results on the mathematical
expectation and variance conditional on some
interval-censored measurements below; see [14] for
details. Consider a measurement m given by
m = qT x + w with w ∼ N (w|0, σ 2). Assume that the
prior distribution of the state vector x is Gaussian,
N (x|x̂0, P0). Let A denote an interval A = [a, b].

Let μ = qT x̂0. Given that m falls into A, the
conditional expectation and covariance are:

E(x|m ∈ A) = x̂0 + K[m̂A − μ], (35)

cov(x|m ∈ A) = P + KVAKT , (36)

where

K = P0q(qT P0q + σ 2)−1, (37)

P = P0 − KqT P0, (38)

m̂A = E[m|m ∈ A ] = c−1σ̄ 2[N (a
∣∣μ, σ̄ 2 )

−N (b
∣∣μ,σ̄ 2 )] + μ, (39)

VA = cov[m|m ∈ A] = c−1σ̄ 2[(a + μ)N (a|μ,σ̄ 2)

− (b + μ)N (b|μ, σ̄ 2)] + (μ2 + σ̄ 2) − m̂2
A. (40)

The parameter σ̄ 2 is estimated as σ̄ 2 = qT P0q + σ 2, and c
in (40) is a normalizing constant ensuring that the
corresponding probability density integrates to unity, i.e.,
c = ∫ b

a
N (m|μ, σ̄ 2)dm.

APPENDIX B. RANK-DEFICIENT PROCESS NOISE

In many practical problems, the state transition
probability distribution given by the state equation is
rank-deficient (see, e.g., [21]). Consider the following
state transition equation:

xt = F(mt )xt−1 + Gtwt−1(mt ) (41)

where xt is an n-dimensional state vector. Gt is an n × q
matrix with n > q and wt–1 (mt) ∈ Rq. In this case, xt is
constrained in a vector space with the deficient rank q < n.
As a consequence, if particles xi

t are sampled from an
importance distribution in Rn, they may fall outside the
required vector space and the corresponding state
transition probability then could not be calculated. Clearly,
an accept-reject method where samples xi

t outside the
given space are discarded is very inefficient.

In order to solve this rank-deficient problem, we
perform the QR decomposition for the matrix Gt as:

Gt = UtWt , (42)

where Wt = [	t, 0]T. 	t is a matrix with rank q and Ut is
an orthogonal matrix. We define:

st =
[

s1,t

s2,t

]
= UT

t xt , (43)

and let UT
t = [U1,t , U2,t ]T ,f̃1(xt−1, mt )=UT

1,tF (mt )xt−1,
and f̃2(xt−1, mt ) = UT

2,tF (mt )xt−1. Equation (41) then
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becomes: [
s1,t

s2,t

]
=

[
f̃1(xt−1,mt ) +	T

t wt−1

f̃2(xt−1,mt )

]
. (44)

From (44), we can see that by transforming xt to st, the
state transition function is split into a stochastic part s1,t

and a deterministic part s2,t. The deterministic part s2,t can
be directly worked out from the previous state value.
Therefore, we apply the developed method only to
generate particles that are related to the stochastic part s1,t.
The obtained particles for s1,t and s2,t are then transformed
back to the original scale.
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