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Abstract 25 

An increase in subjective feelings of thirst and ad libitum drinking caused by an increase in 26 

serum osmolality have been observed following high intensity intermittent exercise (HIIE) 27 

compared to continuous exercise. The increase in serum osmolality is closely linked to the 28 

rise in blood lactate and serum sodium concentrations.  However, during an ensuing recovery 29 

period after HIIE when serum osmolality will decrease, the resultant effect on sensations of 30 

thirst and subsequent water intake is unclear. Therefore the aim of the study was to assess the 31 

sensations of thirst and subsequent effect on ad libitum water consumption when water intake 32 

was immediately allowed, delayed or prevented following a period of HIIE. 33 

 34 

Methods Twelve males (26 ± 4 years, 80.1 ± 9.3 kg, 1.81 ± 0.05 m, V̇O2peak 60.1 ± 8.9 ml.kg-35 
1.min-1) participated in three randomised trials undertaken 7–14 days apart.  Participants 36 

rested for 30 min then completed a 60 min HIIE exercise period (20 x 1 min at 100%  V̇O2peak 37 

with 2 min rest) followed by 60 min of recovery, during which ad libitum water intake was 38 

provided immediately (W), delayed until the final 30 min (W30) or not permitted (NW).  39 

Body mass was measured at the start and end of the trial.  Blood lactate and serum sodium 40 

concentrations serum osmolality and sensation of thirst were measured at baseline, 41 

immediately post-exercise and during the recovery.   42 

 43 

Results Body mass loss was different between all trials (W: 0.25 ± 0.45, W30: 0.49 ± 0.37, 44 

NW: 1.29 ± 0.37%; p<0.05).  Sensations of thirst peaked post-exercise and decreased in W 45 

and W30 following water ingestion (p<0.05). Total voluntary water intake was greater in W 46 

trial (0.846 ± 0.417 v 0.630 ± 0.277 l; p<0.05) but was similar during the first 30 min period 47 

of allowed drinking (0.618 ± 0.297 vs. 0.630 ± 0.277 l; p>0.05).  Serum osmolality (299 ± 6 48 

v 298 ± 5 vs. 298 ± 3 mOsmol.kg-1), blood lactate (7.1 ± 1.1 vs. 7.2 ± 1.1 v 7.1 ± 1.2 mmol.l-49 
1) and serum sodium concentrations (142 ± 2 vs. 145 ± 2 v 145 ± 2 mmol.l-1) peaked post-50 

exercise (W vs. W30 vs. NW; p<0.05) but were not different between trials (p>0.05).   51 

 52 

Conclusions Sensations of thirst were increased following HIIE and remained until satiated 53 

by water intake. This was despite the likely primary stimulus, serum osmolality, decreasing 54 

during the recovery period following a post-exercise peak. A combined effect of reduction in 55 

blood lactate and serum sodium concentrations, restoration of plasma volume and water 56 

intake contributed to the similar decrease in serum osmolality observed throughout the trials.   57 
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Highlights 58 

• HIIE caused an increase in blood lactate concentrations, raising serum osmolality 59 

• Despite decreased serum osmolality during recovery, thirst remained until satiated 60 

• Delaying drinking 30min resulted in a similar volume consumed immediately post 61 

HIIE 62 

 63 

Key words:  64 

Blood lactate; serum osmolality; thirst; water intake; satiation 65 

  66 
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1. Introduction 67 

Thirst is an innate behaviour that drives an episodic desire to drink and is normally an 68 

adequate stimulus to maintain a state of euhydration under resting conditions [1]. However, 69 

when the body is placed under physiological stress, the thirst response often results in 70 

sufficient water consumed to satiate sensations of thirst but not to completely replace fluid 71 

losses (involuntary dehydration). Stricker and Verbalis [2] proposed two mechanisms relating 72 

to the generation of thirst sensations and desire to drink: hyperosmolality and hypovolaemia, 73 

whilst sensations of dry mouth have also been proposed as a mechanism of thirst [3,4,5].  74 

 75 

In relation to hyperosmolality, serum osmolality thresholds at rest have been identified that 76 

drive arginine vasopressin (AVP) release (approximately 285 mOsmol.kg-1; [6]) and 77 

sensations of thirst (approximately 290mOsmol.kg-1; [7]), whilst it has also been suggested 78 

that changes in serum osmolality of approximately 5mOsmol.kg-1 will stimulate sensations of 79 

thirst [8].  Elevations in serum osmolality are detected by osmoreceptors in the organum 80 

vasculosum of the lamina terminalis and the subfornical region within the brain.  Both of 81 

these circumventricular organs lack a blood-brain barrier, therefore allowing hormonal and 82 

osmotic stimuli to act [9].  Serum osmolality levels above the threshold for thirst will usually 83 

occur due to changes in cell tonicity, but can also arise due to the influence of blood lactate 84 

concentrations caused by a period of high intensity intermittent exercise (HIIE) [10].  85 

Hypovolaemia is a common consequence of most exercise intensities, and will primarily 86 

occur due to ongoing sweat losses resulting from an effort to maintain body temperature.  87 

However, the relatively short duration of HIIE bouts may prevent water losses from reaching 88 

a sufficient level to stimulate sensations of thirst (approximately 0.8% body mass loss; [11]), 89 

therefore any change in blood volume following HIIE is likely to arise from changes in blood 90 

pressure and subsequent movement of water to the interstitial space [12]. 91 

 92 

Following HIIE, water moves from the vascular to the interstitial and intracellular spaces 93 

[12,13, 14].  Serum osmolality and subsequent arginine vasopressin release will increase in 94 

relation to the increase in blood lactate concentration [12,14, 15,16].  It has been 95 

hypothesised that the negatively charged lactate ions reduce sodium release from the vascular 96 

space thus increasing serum sodium concentrations and subsequent osmolality levels [14]. 97 

Therefore HIIE may in fact elevate serum osmolality above the threshold for thirst, and 98 

consequently influence drinking behaviour independent of associated water losses.  99 

 100 
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An increase in ad libitum drinking (total volume consumed) has been observed following a 101 

period of HIIE compared to continuous exercise [10].  The observed increase in water intake 102 

was associated with an increase in blood lactate, serum sodium and vasopressin 103 

concentrations, an increase in serum osmolality and a tendency for greater subjective feelings 104 

of thirst.  During the recovery period access to water intake was allowed immediately after 105 

exercise. It was therefore difficult to determine if thirst and subsequent drinking behaviour 106 

was influenced by the reduction of factors that stimulated sensations of thirst (i.e. serum 107 

osmolality and associated variables), the satiation of thirst sensations or a combination.  108 

Although not measured, it was also possible that the increased respiration rate during the 109 

HIIE may have contributed to the increases in mouth dryness and thirst observed by Mears & 110 

Shirreffs [10].  By delaying and also preventing access to ad libitum water intake it is 111 

possible the mechanisms relating to thirst and serum osmolality can be better understood and 112 

a clearer insight into role played by HIIE on drinking behaviour can be established.  113 

 114 

The aim of the study was to assess the sensations of thirst and the subsequent effect on ad 115 

libitum water intake during a recovery period following HIIE, when access to water was 116 

allowed immediately, delayed or prevented. It was hypothesised that sensations of thirst 117 

would increase, due to an increase in serum osmolality and that this would drive drinking 118 

behaviours. Delaying or preventing drinking would not satiate sensations of thirst.  119 
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2. Methods 120 

 121 

2.1 Participants 122 

Twelve healthy male participants (age 26 ± 4 years, mass 80.1 ± 9.3 kg, height 1.81 ± 0.05 123 

m, V̇O2peak 60.1 ± 8.9 ml.kg-1.min-1) took part in three experimental trials, in a randomised 124 

order. The experimental protocol was explained to all participants verbally and in writing and 125 

written informed consent was provided.  The experiment was approved by the Loughborough 126 

University Ethical Advisory Committee.  127 

 128 

2.2 Experimental protocol 129 

Participants visited the laboratory on five separate occasions for a peak oxygen uptake (V̇130 

O2peak) test, a familiarisation trial and three experimental trials differing in the time period 131 

during which ad libitum water intake was allowed following exercise; water permitted 132 

throughout the entire recovery period (W), water delayed until 30 minutes after exercise until 133 

the end of the recovery period (W30) and no water permitted at all during the recovery period 134 

(NW). 135 

 136 

The first visit involved a discontinuous incremental test to volitional fatigue undertaken on an 137 

electrically braked cycle ergometer (Lode Corival; Lode BV, Groningen, Netherlands) was 138 

used to determine peak power and V̇O2peak. Expired gas was collected for 1 min at the end of 139 

each four minute stage. The familiarisation trial was identical to the W trial, and intended to 140 

inform the participants of the experimental procedures employed throughout the study.   141 

Participants were asked to record their dietary intake in the 24 hours prior to the first 142 

experimental trial (food and drink consumed, amount and method of preparation) and refrain 143 

from strenuous physical activity and consumption of alcohol.  For each subsequent trial they 144 

were asked to repeat this.  Participants were asked to arrive at the laboratory after an 145 

overnight fast with the exception of consumption of 500 ml of water ingested two hours 146 

before arrival at the laboratory to ensure they were in a euhydrated state.          147 

 148 

Experimental trials began in the morning at the same time for each participant and were 149 

separated by a period of 7-14 days. A schematic outline of the trial is shown in Figure 1.  150 

Experimental trial order was randomised and participants were not aware of which trial they 151 
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152 

were participating in when arriving at the laboratory for the first and second experimental 153 

trials.   154 

 155 

On arrival at the laboratory, participants voided and asked to empty their bladder; total urine 156 

volume was measured and a 5 ml aliquot retained for analysis. Nude body mass was 157 

measured.  Participants were asked to insert a rectal thermistor 10 cm past the anal sphincter, 158 

and a heart rate monitor (Polar Vantage; Kempele, Finland) was positioned. Throughout the 159 

trials, core (Tc) and skin (Tsk) temperature were measured continuously, and data were 160 

averaged every 10 min (BIOPAC MP100 System; BIOPAC, Santa Barbara, CA, USA).  161 

Mean weighted skin temperature was calculated using the formula outlined by Ramanathan 162 

[17]. Participants rested in a seated position for 30 minutes in a comfortable environment 163 

(22.3 ± 0.4°C and 47 ± 9% relative humidity; RH).  Every 10 minutes during rest, exercise 164 

and recovery heart rate was recorded.  Following the 30 minutes seated rest, participants 165 

completed two 100 mm visual analogue subjective feeling questionnaires relating to 166 

symptoms of thirst and dry mouth (0 mm = not at all thirsty/mouth not at all dry, 100 mm = 167 

very thirsty/mouth very dry).  During the baseline period a 21 g cannula (Surflo, Terumo, 168 

Leuven, Belgium) was inserted into a superficial vein on the forearm to allow venous blood 169 

sampling.  At the end of the rest period a baseline blood sample (7.5 ml) was collected.   170 

 

0 30 150 -120 
Time (min) 

120 90 

Exercise Rest Recovery 

Ad libitum water intake (W) 
Ad libitum water 
intake (W30) 

Water intake 
measured 

Body mass, urine 
Blood, thirst, dry mouth 

Arrival at 
lab 

500ml 
water 

Figure 1. Schematic diagram indicating the testing protocol. Arrows represent sampling points. 
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 171 

Participants then completed 60 minutes of HIIE, comprising of repeated cycles of 1 min of 172 

cycle exercise at a power output equal to the maximum power achieved during the V̇O2peak 173 

test, followed by 2 min rest. This was undertaken in 23.0 ± 0.4°C and 48 ± 10% RH.  During 174 

the 60 minute period this pattern of activity was repeated 20 times.  A blood sample (7.5 ml) 175 

was collected immediately following the completion of exercise and the two subjective 176 

feelings questionnaire were repeated.  Participants were then seated at rest for 60 minutes in 177 

22.7 ± 0.3°C and 47 ± 10% RH.   178 

 179 

In the W trial ad libitum water intake (10 ± 3°C) was allowed for the whole duration of the 180 

recovery period, with the volume of water ingested recorded between 0-5 minutes, 5-30 181 

minutes, 30-35 minutes and 35-60 minutes.  In the W30 trial, ad libitum water intake was 182 

delayed until 30 minutes of the recovery period had passed.  Water intake was then measured 183 

between 30-35 minutes and 35-60 minutes.  In the NW trial no water was permitted during 184 

the 60 min recovery period. The participant was not made aware of the volume consumed, or 185 

that the volume was being measured.  Participants were informed at the start that they could 186 

drink as they wanted, that the bottle would be refilled if necessary and were provided with no 187 

external cues to drink.  Blood samples were collected at 5, 15, 30, 35 and 60 minutes and 188 

thirst and dry mouth subjective feelings questionnaires were completed.  At the end of the 189 

recovery period following the final blood sample, participants voided, the urine volume was 190 

measured and a 5 ml sample was retained for later analysis. Nude body mass was then 191 

measured, after which, participants were allowed to leave the laboratory.  Ambient 192 

temperature and relative humidity was measured at 10 minute intervals (RH85 Digital 193 

Thermo-Hygrometer; Omega, Manchester, UK).     194 

  195 

2.3 Sample analysis 196 

For each 7.5 ml venous blood sample, a 1.0 ml aliquot was mixed with an anticoagulant (K+ 197 

EDTA; 1.5 mg.ml-1) for analysis of haemoglobin concentration (Cyanmethaemoglobin 198 

method; Sigma, St Louis, MO, USA), haematocrit (micro-centrifugation; Hawksley, 199 

Worthing, UK) and glucose concentration.  A further 5.0ml was mixed with anticoagulant 200 

(K+ EDTA; 1.5 mg.ml-1) and from this, plasma was separated and frozen at -80°C for later 201 

analysis of hormone concentrations.  The remaining blood (~2.0 ml) was allowed to clot at 202 

room temperature before being centrifuged at 3000 rpm for 15 min at 4°C to yield serum.  203 
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This was later analysed for sodium concentration by flame photometry (Corning Clinical 204 

Flame Photometer 410C; Corning Ltd., Halstead, Essex, UK) and osmolality by freezing 205 

point depression (Gonotec Osmomat auto Cryoscopic Osmometer; Gonotec, Berlin, 206 

Germany).  Blood and plasma volume changes were calculated from haemoglobin 207 

concentrations and haematocrit values using the method of Dill and Costill [18].  208 

Anticoagulated blood (100 µl) was added to 0.3 M perchloric acid in a ratio of 1:10 in 209 

duplicate for analysis of glucose by the GOD-PAP method (Randox Laboratories Ltd., 210 

Crumbin, UK) and lactate by fluorimetry using the method outlined by Maughan [19].   211 

Enzyme immunoassay (Enzyme Immunoassay; Enzo Life Sciences, Ann Arbor, MI, USA) 212 

was used to measure plasma arginine vasopressin and aldosterone concentrations using 100µl 213 

samples.  Samples were measured in duplicate. 214 

 215 

The volume of each urine void was measured and a 5 ml sample retained and analysed for 216 

osmolality by freezing point depression (Gonotec Osmomat auto Cryoscopic Osmometer; 217 

Gonotec, Berlin, Germany). 218 

 219 

2.4 Statistical analysis 220 

Data were checked for normality of distribution using Shapiro-Wilks tests.  Normally 221 

distributed data with one factor (overall fluid balance variables) were analysed using a one-222 

way ANOVA and data with two factors (time dependent fluid balance variables, blood 223 

variables, thirst and mouth dryness, temperatures, heart rate and RPE) were analysed using a 224 

two-way repeated measures ANOVA design. If a significant ANOVA result was found, to 225 

identify where the statistical differences occurred, paired samples t-tests with Bonferroni 226 

correction were performed.  Using Friedman’s ANOVA and Wilcoxon signed-rank tests non-227 

parametric data was examined (aldosterone concentration). On non-parametric data post-hoc 228 

tests were performed when significant and non-significant interaction effects were found.  229 

Linear regression values and Pearson’s product moment correlation coefficients and 230 

Spearmon’s ranked correlation coefficients were calculated when appropriate.  Correlation 231 

analysis was performed between variables that were deemed to be related in terms of water 232 

balance and the mechanism identified by Nose et al. [14] (serum osmolality/ serum sodium/ 233 

blood lactate).  Statistical significance was accepted when p<0.05.  When post-hoc tests were 234 

conducted, p values presented were multiplied to correct for repeated samples.  Data is 235 

expressed as mean ± SD except for aldosterone concentration, which is median (range).  236 

Error bars plotted above time points represent a group standard deviation of all samples in all 237 
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trials at that time point. This was to improve clarity of the figures and reduce potential 238 

confusion of overlapping error bars.  Statistical analysis was conducted using Statistical 239 

Package for the Social Sciences for Windows, version 18.0 (SPSS inc, Chicago, IL, USA).  240 
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3. Results 241 

 242 

3.1 Baseline measures 243 

There was no difference in body mass measured at baseline between trials (Table 1; p>0.05).  244 

Similar results between trials for serum osmolality (284 ± 3 vs. 284 ± 3 v 285 ± 3 245 

mOsmol.kg-1 for W, W30 and NW respectively) and urine osmolality (409 ± 221 vs. 434 ± 246 

256 vs. 454 ± 238 mOsmol.kg-1 for W, W30 and NW respectively; p>0.05) suggests that 247 

participants arrived in a similar state of hydration, interpreted as euhydrated [20, 21].  248 

 249 

3.2 Subjective feelings questionnaires (thirst and mouth dryness) 250 

Peak sensations of thirst were reported in all trials immediately post-exercise compared to 251 

baseline (p<0.05; Figure 2a), with no differences apparent between trials (p>0.05).  252 

Following the onset of water intake when ad libitum fluid was available, thirst sensations 253 

decreased (p<0.05). Baseline and peak values of sensations of mouth dryness reported at 254 

post-exercise were similar between all trials (p>0.05; Figure 2b). In the W and W30 trials, 255 

sensations of mouth dryness decreased following consumption of water. Thirst and mouth 256 

dryness were strongly positively correlated in all three trials (p<0.001; Table 2). 257 

 258 
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Figure 2. Subjective feeling questionnaire responses for (a) thirst and (b) mouth dryness over the 

duration of each trial. a denotes difference between W and W30 trials, b denotes difference between W 

and NW trials, c denotes difference between W30 and NW trials, d denotes difference within the trial 

compared to baseline and e denotes difference within the trial compared to post-exercise (p<0.05). 
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 259 

3.3 Body water balance 260 

Body mass decreased from the start to the end of the trial in the W30 and NW trial (p<0.05), 261 

whilst percentage decrease in body mass was greater in the NW trial compared to the W and 262 

W30 trials (p<0.05; Table 1).  Sweat losses and post-exercise urine output were similar 263 

between trials (p>0.05; Table 1). Total water intake was greater in the W trial compared to 264 

the W30 trial (p=0.009; Figure 3) with similarities observed between volumes consumed 265 

when initial drinking periods were compared (p>0.05).  The proportion of water lost through 266 

sweating that was subsequently replaced tended to be greater in the W trial compared to the 267 

W30 trial (p=0.08).  Four participants ingested sufficient water during the recovery period to 268 

replace more than 100% of water lost in the W trial. 269 

 270 

 271 

3.3 Blood analysis 272 

No difference in serum osmolality was observed between trials at all sample points (p>0.05; 273 

Figure 4a).  Peak osmolality values occurred immediately post-exercise, before decreasing 274 

during the recovery period (p<0.05). Similar to serum osmolality, blood lactate (Figure 4b) 275 

and serum sodium concentrations (Figure 4c) were similar between trials (p>0.05) with peak 276 

concentrations occurring immediately post-exercise (p<0.05). Blood lactate concentrations 277 

Figure 3. Water intake (l) during each trial. Comparison between W and W30 trials. a denotes difference 

between trials, b denotes difference to 0-5 min (W) and c denotes different to 5-30 min (W) (p<0.05). 
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gradually decreased throughout the recovery period in all trials.  Serum sodium 278 
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Figure 4. (a) Serum osmolality, (b) blood lactate concentration and (c) serum sodium concentration over the 
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in W30 trial, e denotes different to previous sample in W30 and NW trials, f denotes different to previous sample 

in all trials, h denotes different to post-exercise sample in W and NW trial (p<0.05). 
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concentrations in the NW trial remained elevated above baseline throughout the recovery 279 

period, whilst in the in the W and W30 trials, serum sodium concentrations returned to 280 

baseline after 5 and 15 minutes respectively. AVP concentrations were similar between trials 281 

(p>0.05; Figure 5a) with peak concentrations found post-exercise (p<0.05).  During the W30, 282 

the onset of water intake did not appear to cause further changes in any of the blood variables 283 

measured (p>0.05).  284 

 285 

Thirst sensations were positively correlated to serum osmolality, serum sodium and blood 286 

lactate concentrations in all three trials (p<0.05; Table 2). Similar responses were observed 287 

for sensations of mouth dryness except in the NW trial for serum osmolality.  Sensations of 288 

thirst and mouth dryness were positively correlated to AVP concentrations in the W and W30 289 

trials (p<0.05). 290 

 291 

Plasma volume changes from baseline were similar between trials at all sample points 292 

(p>0.05) (Figure 6a).  In all trials there was a decrease in plasma volume from baseline values 293 

at post-exercise and after 5 minutes of the recovery period (p<0.05) before plasma volume 294 

returned to baseline (p>0.05).  Blood volume changes from baseline values were similar 295 

between trials at all sample points except at 30 min when there was a decrease in blood 296 

volume in the W30 trial compared to an increase in the NW trial (Figure 6b).  Decreases from 297 

Sample

Baseline Post-exercise 30 60

A
ld

os
te

ro
ne

 c
on

ce
nt

ra
tio

n 
(p

g.
m

l-1
)

0

1000

2000

3000

4000

5000

6000
W
W30
NW

e

d

(a) (b)

a

Sample

Baseline   Post-exercise 30 60

V
as

op
re

ss
in

 c
on

ce
nt

ra
tio

n 
(p

g.
m

l-1
)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

a

cdb

Figure 5. (a) Vasopressin (mean ± SD) and (b) aldosterone (median (range)) concentrations over the 

duration of each trial.  Error bars plotted above time points represent the standard deviation of all samples 

in all trials at that time point. a denotes different to baseline values in all trials, b denotes different to 

baseline in W, c denotes different to post-exercise in W, d denotes different to baseline in W and W30,e 

denotes different to post-exercise in all trials (p<0.05). 
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baseline values were observed in all trials at post-exercise and after 5 min of the recovery 298 

period (p<0.001) before blood volumes returned to baseline values.  Blood glucose 299 

concentrations were similar between trials and sample points (mean concentrations for W: 300 

4.20 ± 0.30, W30: 4.20 ± 0.25, NW: 4.37 ± 0.37 mmol.l-1; p>0.05). 301 

 302 

Similar concentrations of aldosterone were found between trials at all sample points (p>0.05; 303 

Figure 5b) with peak values observed post-exercise (p<0.05). Sensations of thirst and mouth 304 

dryness were not significantly correlated to aldosterone concentrations (p>0.05).   305 

 306 

3.6 Core and skin temperature 307 
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Figure 6. (a) Plasma and (b) blood volume changes compared to baseline values over the duration of 

each trial.  Error bars plotted above time points represent the standard deviation of all samples in all trials 
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Core temperature increased throughout the HIIE bout in all trials, peaking at the end of the 308 

exercise period (W; 38.24 ± 0.17, W30: 38.16 ± 0.36, NW: 38.04 ± 0.33°C).  No differences 309 

between trials were recorded (p>0.05). During each trial core temperature was elevated above 310 

baseline values after 20 minutes of the exercise period had elapsed and remained elevated 311 

above baseline values until 10 minutes into the recovery period in the W trial and 40 minutes 312 

in the W30 and NW trial (p<0.05).  No differences were observed within and between trials 313 

for skin temperature measurements (p>0.05). 314 

 315 

3.7 Heart rate 316 

Heart rate was similar between trials at all time points except between the W30 and NW trial 317 

after 50 minutes of the recovery period when a higher heart rate was recorded in the NW trial 318 

(63 ± 8 vs. 70 ± 9 beats.min-1 W30 and NW trials respectively).  Peak heart rates were 319 

observed during the exercise period of the trials (163 ± 13 vs. 163 ± 12 vs. 162 ± 13 320 

beats.min-1 for W, W30 and NW trials respectively) and were elevated from baseline values 321 

(61 ± 10 vs. 57 ± 8 vs. 63 ± 7 beats.min-1 for W, W30 and NW trials respectively; p<0.05).   322 
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4. Discussion 323 

The aim of the study was to assess the sensations of thirst and the subsequent effect on ad 324 

libitum water intake during a recovery period following HIIE, when access to water was 325 

allowed immediately, delayed by 30 min or prevented.  The main finding was that sensations 326 

of thirst remained until satiated by voluntary water intake.  Despite a delay voluntary water 327 

intake was similar between comparable time periods.  HIIE increased blood lactate and serum 328 

sodium concentrations, therefore increasing serum osmolality providing a large driver for the 329 

increases in sensations of thirst. 330 

 331 

Sensations of thirst peaked post-exercise in all three trials and remained elevated until 332 

immediately after ad libitum water intake was permitted (W and W30 trials).  Thirst is a 333 

multifactorial sensation that can be caused by a multitude of factors [1, 2], many examined 334 

within the context of this study. The main driver appeared to be the increase in serum 335 

osmolality as this was significantly raised above suggested thresholds [7]. Sensations of thirst 336 

and mouth dryness were also significantly correlated with several other physiological 337 

measurements (many interlinking and also contributing to the increase in serum osmolality) 338 

including serum sodium and blood lactate concentrations and fluid balance hormones. These 339 

factors appeared to contribute to the stimulation of thirst, but despite varying reductions in 340 

the measured variables during the recovery period, it was apparent that only through water 341 

consumption were sensations of thirst satiated.   342 

 343 

Water intake was strongly governed by sensations and the satiation of thirst.  Despite the 344 

delay in water provision, the volume of water consumed in the W and W30 trials to satiate 345 

thirst was similar during the first 30 minutes of permitted drinking. In the W30 trial, 346 

physiological responses associated with water intake at the onset of drinking (i.e. serum 347 

osmolality and plasma vasopressin concentrations) were lower than in the W trial when 348 

drinking was allowed, yet thirst remained elevated. Drinking to alleviate sensations of thirst 349 

was strongly correlated with mouth dryness (W: r=0.959, W30: r=0.921, NW: r=0.775) and 350 

probably suggests that water intake volume was likely driven primarily by oropharyngeal 351 

factors. The breakdown of each drinking period providing further indication of this.  352 

Consumption of water during the first 5 minutes and the subsequent 25 minute period was 353 

comparable in the W and W30 trials. In studies examining voluntary water intake following a 354 

period of dehydration through exercise or water restriction, water intake predominantly 355 

occurs at the onset of the drinking period to reduce sensations of mouth dryness and thirst 356 
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commonly detected by osmoreceptors in the oropharyngeal region [3, 4, 22].  Figaro and 357 

Mack [4] observed 54% of total fluid consumed during the initial 5 minute period; largely 358 

governed by oropharyngeal stimuli. By infusing fluid directly into the stomach they were able 359 

to prevent the satiation of thirst sensations and the reduction in vasopressin concentration.  360 

Despite infusion of fluid to return plasma osmolality and plasma volume levels to resting 361 

values, when ad libitum fluid intake was permitted, subjects drank to alleviate thirst as 362 

detected by dryness of the oropharyngeal region. In the current study there were significant 363 

decreases in self-reported sensations of mouth dryness and thirst after ad libitum water intake 364 

was allowed.  These differences, combined with similar water intake volumes between both 365 

0-5 and 5-30 min in the W trial and 30-35 and 35-60 min in the W30 trial, would confirm that 366 

that the osmoreceptors play an important role in governing voluntary water intake behaviour. 367 

 368 

Rather than drinking to replace fluid losses, participants appeared to consume a volume 369 

sufficient to relieve the possible unpleasantness and discomfort associated with mouth 370 

dryness and thirst.  This resulted in a fluid deficit apparent at the end of the recovery period 371 

and involuntary dehydration.  Voluntary water intake replaced only 82 ± 39% and 63 ± 27% 372 

of the water lost in the W and W30 trials respectively, similar to volumes commonly replaced 373 

in the literature [23,24].  Rapid rehydration is required if body mass losses are large (>2%) 374 

and/ or there is a need to rehydrate effectively for another bout of exercise within a short 375 

period of time [25].  Otherwise a return to a state of euhydration can be achieved gradually 376 

through normal meals, snacks and plain water intake.  In the current study body mass losses 377 

of just over 1% would not be indicative of a requirement for rapid rehydration. 378 

 379 

In addition to mouth dryness sensations of thirst were likely driven by the increase in serum 380 

osmolality post-exercise. At rest an increase in serum osmolality above ~285 mOsmol.kg-1 381 

will stimulate vasopressin release [6], whilst a further increase to above ~290 mOsmol.kg-1 382 

will lead to the sensations of thirst [7] and subsequent water intake. In addition a rise in 383 

serum osmolality of approximately 5 mOsmol.kg-1 has been deemed sufficient to induce 384 

sensations of thirst [8].  However in the model outlined by the authors, a rise in serum 385 

osmolality is usually caused by intracellular losses when total body water losses are around 386 

2% [8].  In the present study, the period of HIIE increased serum osmolality above 290 387 

mOsmol.kg-1 and the increase was greater than 5 mOsmol.kg-1 but body mass losses were 388 

approximately 1.3%.  The peak in post-exercise serum osmolality caused an increase in 389 

vasopressin concentrations and the stimulation of thirst sensation.  The rise in vasopressin 390 
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concentration was likely due to osmotically driven signals although it has been shown that 391 

high intensity exercise will drive vasopressin release through non-osmotic stimuli [15]. 392 

Release of vasopressin will increase renal water reabsorption, thereby reducing serum 393 

osmolality and as a result, sensations of thirst [2]. However, in the current study, despite an 394 

increase in vasopressin and decrease in serum osmolality, sensations of thirst remained until 395 

satiated suggesting that key driver in water intake following a delay was behavioural. 396 

Correlation analysis indicated that the decrease in serum osmolality following peak values 397 

was closely related to the decrease in blood lactate and serum sodium concentrations.  It is 398 

likely there was also contribution from restoration of plasma volume, and reduction in 399 

hydrostatic pressure in the capillary beds [13,26]. 400 

 401 

The cause of an increase in serum osmolality following HIIE has been positively related to an 402 

increase in blood lactate and serum sodium concentrations alongside haemoconcentration 403 

[13, 14, 26].  As a key contributor [10], an increase in blood lactate concentrations will 404 

prevent serum sodium release into the vascular space, resulting in an increase in osmolality 405 

levels [14].  The relative contribution of blood lactate concentrations to the increase in serum 406 

osmolality was calculated using the formula assessed by Worthley et al. [27] (Serum 407 

osmolality = 2[Na+] + [BUN] + [Glucose] + [lactate]).  The change in osmolality from 408 

baseline to post-exercise in the current study of 13-15 mmol.l-1 would have been caused by 409 

the increase in serum sodium concentration (contribution of 2 * 4 mOsmol.kg-1) and also 410 

blood lactate concentration (contribution of 5-7 mOsmol.kg-1).  It would therefore appear that 411 

increased blood lactate concentrations following HIIE contribute both directly and indirectly 412 

(through serum sodium concentrations) to the increase in serum osmolality and therefore, the 413 

subsequent desire to drink. 414 

 415 

During the recovery period serum osmolality progressively decreased in all three trials. 416 

Despite significant decreases from peak values, serum osmolality remained above 417 

approximately 290 mOsmol.kg-1 in all three trials until around the 30 minute timepoint 418 

suggesting that despite the initial decreases following cessation of exercise serum osmolality 419 

was likely still contributing to sensations of thirst.  During the recovery period, the longer 420 

that thirst remained elevated (i.e. the amount of time that water was withheld), the weaker the 421 

correlation between thirst and serum osmolality.  This suggests that serum osmolality is a key 422 

initial driver of thirst and will still contribute to sensations following a period of HIIE, but 423 



 20 

perhaps the relative influence is reduced, particularly when the rise in osmolality is not 424 

directly influenced by body water losses.   425 

 426 

The HIIE period was a prolonged period of exercise, involving 20 minutes of exercise over 427 

an hour period.  Throughout the trials, body mass losses were approximately 1.3% (based on 428 

sweat losses and negating for water intake), enough to stimulate sensations of thirst [11] but 429 

often lower than would typically be associated with a sufficient rise in serum osmolality [8]. 430 

Although it appears a large contribution to increased serum osmolality and subsequent thirst 431 

was caused by increased blood lactate concentrations, it is likely that the hypovolemia 432 

experienced would also stimulate sensations of thirst particularly as aldosterone 433 

concentrations increased [2, 8]. To determine this contribution, further work is required to 434 

assess the effect of a shorter period of HIIE when body mass losses were minimal. 435 

 436 

During a HIIE session, water intake will likely be permitted throughout the exercise period. 437 

Thirst is therefore likely to occur throughout a portion of the exercise period resulting in 438 

water intake. Although water intake is likely to be small in volume, due to the time available 439 

to drink and the inference that water intake is to satiate thirst and reduce mouth dryness, it is 440 

possible that volumes similar to the first 5 minutes in the W trial could be consumed between 441 

exercise intervals.  Over prolonged periods, this could potentially lead to a gain in body mass 442 

and/ or increased frequency of urination [28], which may interfere with exercise. In addition, 443 

in many exercise settings, a reduced body mass may be advantageous, particularly in weight 444 

bearing sports [29].  Therefore any increase in body mass through water consumption, 445 

however slight, may serve to increase the metabolic cost of exercise.  446 

 447 

As shown in the study, thirst is a multi-factorial sensation arising from numerous stimuli; 448 

however it is possible that factors such as stomach distension may have influenced sensations 449 

of thirst and subsequent water intake [30]. Unfortunately this was not measured in the current 450 

study; this may have improved the determination and relative contribution of factors resulting 451 

in thirst. 452 

 453 

5. Conclusion 454 

In conclusion, sensations of thirst and mouth dryness increased following a period of HIIE 455 

and remained until satiated by voluntary fluid intake.  Sensations of thirst appeared to be 456 
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largely driven by an increase in serum osmolality, caused by an increase in blood lactate and 457 

serum sodium concentrations. 458 

459 
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 538 

Table 1. Body mass (BM) and water variables for all trials. † denotes pre to post measurement difference, * 539 
denotes different to W trial, # denotes different to W and W30 trials (p<0.05). BM = body mass. 540 

  541 

Trial 
 

Pre BM 
(kg) 

Post BM  
(kg) 

BM change 
(%) 

Water 
intake (l) 

Sweat 
loss (l) 

Urine 
Output (l) 

Water replaced 
(%) 

W 
79.9  
± 8.9 

79.7  
± 8.9 

-0.25  
± 0.54 

0.85  
± 0.42 

0.83  
± 0.18 

0.21  
± 0.10 

82  
± 39 

W30 
79.8  
± 8.9 

79.4  
± 8.9† 

-0.49  
± 0.37 

0.63  
± 0.28* 

0.82  
± 0.23 

0.21  
± 0.08 

63  
± 27* 

NW 
80.2  
± 9.0 

79.2  
± 9.0†* 

-1.29  
± 0.37# - 

0.84  
± 0.24 

0.21  
± 0.10 - 
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Table 2. Correlation coefficients (r) and significance levels (p) for measured variables in each trial. (conc. 542 
denotes concentration). *denotes significant (p<0.05). Correlations involving aldosterone are Spearmon’s rank 543 
correlations, remaining correlations are Pearson’s product moment correlations. 544 

 545 

    W W30 NW 
Variables r p r p r p 
Thirst Mouth dryness 0.959 <0.001* 0.921 <0.001* 0.775 <0.001* 

 
Serum osmolality 0.562 <0.001* 0.314 0.005* 0.292 0.01* 

 
Serum sodium conc. 0.535 <0.001* 0.554 <0.001* 0.499 <0.001* 

 
Blood lactate conc. 0.494 <0.001* 0.528 <0.001* 0.421 <0.001* 

 
AVP conc. 0.376 0.013* 0.456 0.003* 0.226 0.150 

 
Aldosterone conc. 0.268 0.079 0.173 0.261 0.099 0.524 

Mouth dryness Serum osmolality 0.567 <0.001* 0.406 <0.001* 0.119 0.301 

 
Serum sodium conc. 0.518 <0.001* 0.610 <0.001* 0.560 <0.001* 

 
Blood lactate conc. 0.466 <0.001* 0.525 <0.001* 0.373 0.001* 

 
AVP conc. 0.398 0.008* 0.328 0.037* 0.115 0.469 

 
Aldosterone conc. 0.271 0.076 0.131 0.396 0.070 0.653 

Serum  Serum sodium conc. 0.646 <0.001* 0.555 <0.001* 0.424 <0.001* 
osmolality Blood lactate conc. 0.824 <0.001* 0.773 <0.001* 0.813 <0.001* 

 
AVP conc. 0.621 <0.001* 0.218 0.170 0.443 0.003* 

 
Aldosterone conc. 0.321 0.034* 0.313 0.039* 0.416 0.005* 

Serum sodium Blood lactate conc. 0.607 <0.001* 0.648 <0.001* 0.616 <0.001* 
conc. AVP conc. 0.501 0.001* 0.218 0.171 0.183 0.247 

 
Aldosterone conc. 0.412 0.005* 0.194 0.206 0.197 0.200 

Blood lactate AVP conc. 0.720 <0.001* 0.471 0.002* 0.470 0.002* 
conc. Aldosterone conc. 0.431 0.004* 0.379 0.011* 0.446 0.002* 
AVP conc. Aldosterone conc. 0.380 0.012* 0.174 0.276 0.313 0.044* 

 

 

 


