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Abstract

Linear degeneracy of a PDE is a concept that is related to a number of interesting

geometric constructions. We first take a quadratic line complex, which is a three-

parameter family of lines in projective space P3 specified by a single quadratic relation

in the Plücker coordinates. This complex supplies us with a conformal structure in P3.

With this conformal structure, we associate a three-dimensional second order quasilin-

ear wave equation. We show that any PDE arising in this way is linearly degenerate,

furthermore, any linearly degenerate PDE can be obtained by this construction. We

classify Segre types of quadratic complexes for which the structure is conformally flat,

as well as Segre types for which the corresponding PDE is integrable. These results

were published in [1]. We then introduce the notion of characteristic integrals, discuss

characteristic integrals in 3D and show that, for certain classes of second-order linearly

degenerate dispersionless integrable PDEs, the corresponding characteristic integrals

are parameterised by points on the Veronese variety. These results were published in

[2].
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Chapter 1

Introduction

The theory of nonlinear differential equations which can be, in some sense, solved ex-

actly, is often referred to as the theory of integrable systems. This subject has developed

rapidly over the last half a century, partly due to its applicability to a wide range of

physical situations. The concept of a ‘completely integrable system’ first appeared in

the 19th century in the context of finite-dimensional classical mechanics. It began when

Hamilton reformulated Newton’s equations by introducing the so-called canonical co-

ordinates x1, ..., xn to describe general positions, and p1, ..., pn to describe their general

momenta. The Hamiltonian formalism of the Kepler problem is one of the earliest

examples of an integrable system.

Later, the soliton phenomenon was discovered by Zabusky and Kruskal in 1965. These

results were a progression of work that was done over one hundred years previous. The

solitary wave, so-called because it often occurs as a single entity and is localised, was

first observed by J. Scott Russell on the Edinburgh-Glasgow canal in 1834. He called it

the ‘great wave of translation’. The KdV equation was later derived by Korteweg and

de Vries in 1895. Its dimensionless form is

φt + 6φφx + φxxx = 0, (1.1)

where φ = φ(x, t). Computer calculations by Zabusky and Kruskal showed that the

solitary waves are very robust objects. Collide two together and they both emerge

unchanged, with the same shapes and velocities as before the collision, which is un-

expected as the KdV equation is nonlinear. These properties led to the term soliton.

Kruskal and his coworkers had shown that the KdV equation has an infinite number of

conservation laws, and continuing work by Zakharov and Faddeev (1971) showed that
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the KdV equation can be viewed as an infinite-dimensional classical integrable system.

More recently the number of nonlinear partial differential equations in two space-time

variables known to admit soliton solutions has increased, and there are now many other

examples other than the KdV. In all of these equations, additional structural features

have been found. There is in fact no universally accepted definition of ‘integrability’

for classical systems with infinitely many degrees of freedom. The term is instead used

whenever certain structural properties are present. For example, the KdV equation

has what is known as a ‘Lax pair’, named after Peter Lax who studied solitons in

continuous media. A Lax pair is a pair of linear operators L and A associated with a

partial differential equation which can be used to solve the equation. The KdV equation

ut = 6uux − uxxx can be reformulated as

Lt = [P,L].

Here [P,L] = PL− LP is the operator commutator and

L = −∂2x + u, P = −4∂3x + 3(u∂x + ∂xu).

As another example, take the 3-dimensional dKP equation

uxt − uxuxx − uyy = 0,

where u = u(x, y, t). The dKP equation has what is known as a dispersionless Lax pair

vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0,

with v = v(x, y, t) and u = u(x, y, t). The dKP equation results from the above

on elimination of v, that is, via the compatibility condition vyt = vty. Similarly, the

elimination of u leads to the modified dKP (mdKP) equation vxt−(vy− 1
2
v2x)vxx−vyy =

0. This is an example of a Bäcklund transformation between the dKP and mdKP

equations, another remarkable structural property.

Chapter 2 of this thesis focuses on a number of general concepts. Systems of the type

uit +
n∑
j=1

vij(u)ujx = 0,

are known as 1 + 1 dimensional systems of hydrodynamic type. Here

u = (u1(t, x), u2(t, x), ..., un(t, x)) is an n-component vector of dependent variables.
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The functions vij(u), which could also be considered as matrix elements of an n × n

matrix V, are assumed to be smooth and, in general, non-constant. Systems of this

type arise in applications in differential geometry, general relativity and fluid dynamics.

We say that this system possesses Riemann invariants if we can find suitable variables

R1(u), ..., Rn(u) such that the system becomes diagonal,

Ri
t = λi(R)Ri

x.

These new variables R = (R1, ..., Rn) are called Riemann invariants. Note that for 2×2

systems Riemann invariants always exist, whereas for higher dimensional systems they

do not necessarily exist. This diagonal system is said to be semi-Hamiltonian if,

∂k

(
∂jλ

i

λj − λi

)
= ∂j

(
∂kλ

i

λk − λi

)
, i 6= j 6= k.

The generalised hodograph method [12] can be used to find a general solution to semi-

Hamiltonian systems of the form shown above. As an example, consider a simple scalar

equation, the so-called Hopf equation,

Rt = RRx.

The general solution of this equation is given by the implicit formula f(R) = x + Rt,

where f is an arbitrary function of one variable. The generalised hodograph method

extends this formula to multi-component hydrodynamic type systems.

The method of hydrodynamic reductions was developed in [7] (see also references

therein). Consider the case of (2 + 1)−dimensional quasilinear systems of the form

A(u)ux +B(u)uy + C(u)ut = 0,

where u = (u1, ..., ul)T is an l-component column vector of dependent variables, and A,

B, C are m × l matrices, where m is the number of equations. The key construction

in the method of hydrodynamic reductions is to seek multi-phase solutions in the form

u(R1, ..., Rn) where the ‘phases’ Ri(x, y, t) are the Riemann invariants satisfying a pair

of commuting diagonal (1 + 1)-dimensional systems of hydrodynamic type,

Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x.

We then say that a (2 + 1)-dimensional quasilinear system is said to be integrable if, for

any number of phases n, it possesses infinitely many n-phase solutions parameterised

by 2n arbitrary functions of a single variable.
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Chapter 2 focuses on quasilinear wave equations of the form

f11ux1x1 + f22ux2x2 + f33ux3x3 + 2f12ux1x2 + 2f13ux1x3 + 2f23ux2x3 = 0

where u(x1, x2, x3) is a function of three independent variables, and the coefficients

fij depend on the first order derivatives ux1 , ux2 , ux3 only, we also assume the non-

degeneracy condition det fij 6= 0. Equations of this type were studied in [4], it was

shown that this class is invariant under the equivalence group SL(4). Furthermore, it

was demonstrated that it is natural to associate with this PDE the conformal structure

fij(P )dpidpj, where fij are taken as the coefficients of the equation shown above and

pi = xi, p
j = xj. To define the concept of linear degeneracy for these types of equations,

we first consider quasilinear equations of the form

ut − A(u)ux = 0,

where u = (u1, ..., un)T is an n−component column vector of dependent variables,

ui = ui(x, t) are functions of two independent variables and A is an n× n matrix. We

call this PDE linearly degenerate if the directional derivative of the eigenvalues of A

along their corresponding right eigenvectors is zero. In general, this can be verified by

introducing the characteristic polynomial of A and imposing a constraint which, in the

2 component case, simplifies to

∇(trA)A = ∇(detA),

where ∇ is the operator of the gradient, ∇f = ( ∂f
∂u1
, ∂f
∂u2

). Linear degeneracy is known

to prevent breakdown of smooth initial data, leading to global solvability of the Cauchy

problem [10]. In the 1-component case, this can be seen by considering the 2 systems

ut + uux = 0, ut + cux = 0,

where u = u(x, t) and c is a constant.

Figure 1.1: Time evolution of ut = uux with a Gaussian initial profile. The profile

becomes steeper, and breaks down in finite time.
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Figure 1.2: Time evolution of ut = cux with a Gaussian initial profile. The initial profile

translates with finite speed c without changing its shape.

The two figures above illustrate what is meant by global solvability of the Cauchy

problem. For the equation ut = uux which is clearly not linearly degenerate, we see

that the solution to the Cauchy problem breaks down after sufficient time. The equation

ut = cux clearly is linearly degenerate and the image above illustrates that the wave

form does not change it’s shape.

Similarly, a 2D second order quasilinear wave equation of the form

a(ux, ut)uxx + 2b(ux, ut)uxt + c(ux, ut)utt = 0

is linearly degenerate if this is the case for the corresponding first order system (obtained

by setting u1 = ux, u
2 = ut).

Finally, in order to define linear degeneracy for 3D quasilinear wave equations, one

must first take traveling wave reductions by setting u(x1, x2, x3) = u(ξ1, ξ2), where

ξ1 = x1 + αx3, ξ2 = x2 + βx3, we then get a 2D equation for u(ξ1, ξ2)

(f11+2αf13+α
2f33)uξ1ξ1+2(f12+αf23+βf13+αβf33)uξ1ξ2+(f22+2βf23+β

2f33)uξ2ξ2 = 0.

We require that the above is linearly degenerate for all α, β in the sense of the 2D case,

this second order quasilinear equation takes first order quasilinear form in the variables

u1 = uξ1 , u
2 = uξ2 . The requirement of linear degeneracy for any α, β imposes strong

constraints on the coefficients fij. This is in fact our first main result:

Theorem 1 A quasilinear wave equation is linearly degenerate if and only if the cor-

responding conformal structure fijdp
idpj satisfies the constraint

∂(kfij) = φ(kfij),

here ∂k = ∂pk , φk is a covector, and brackets denote a complete symmetrisation in the

indices i, j, k which take values 1, 2, 3. Here fij(p
1, p2, p3) coincide with the coefficients

fij(ux1 , ux2 , ux3) upon setting p1 = ux1 , p
2 = ux2 , p

3 = ux3.
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Remarkably, the above constraint for fij arises in the theory of quadratic complexes of

lines in projective space. Let us begin with the simplest non-trivial case of P3. Consider

a line r in P3 passing through the points p = (p1 : p2 : p3 : p4) and q = (q1 : q2 : q3 : q4).

The so-called Plücker coordinates pij are given by the six 2× 2 minors of the matrix p1 p2 p3 p4

q1 q2 q3 q4

 .

Explicitly, pij = piqj − pjqi. The pij are not arbitrary, rather they satisfy a quadratic

relation, p12p34 + p13p42 + p14p23 = 0. It can be shown that there exists a bijection

between the Plücker coordinates and lines in P3. In the space P5 we can now define a

point as (p12 : p13 : p14 : p23 : p24 : p34), where the quadratic relation represents a four

dimensional subset of P5, called the Plücker quadric. The lines in P3 whose coordinates

pij satisfy an extra equation Q(pij) = 0, where Q is a homogeneous polynomial of degree

n, give an algebraic complex (that is, a 3-parameter family of lines) of degree n. For

a quadratic complex, fixing a point p in P3 and taking the lines of the complex which

pass through p, one obtains a quadratic cone with vertex at p. The family of these

cones supplies P3 with a conformal structure. Its equation can be obtained by setting

qi = pi + dpi and passing to a system of affine coordinates, say, p4 = 1, dp4 = 0. The

expressions for the Plücker coordinates take the form p4i = dpi, pij = pidpj − pjdpi,

i, j = 1, 2, 3 and the equation of the complex takes the so-called Monge form,

Q(dpi, pidpj − pjdpi) = fijdp
idpj = 0.

We can now associate a PDE to the given Monge form of quadratic complex in the

following way; make the substitution uxi = pi and uxixj = dpidpj, so that we obtain a

PDE of our required form [4],

f11u11 + f22u22 + f33u33 + 2f12u12 + 2f13u13 + 2f23u23 = 0, uij = uxixj .

Thus, there is a correspondence between linearly degenerate wave equations and quadratic

line complexes. In [9], it was shown that the general equation for the quadratic complex

can be reduced to eleven different canonical forms. This was done in the following way:

First take the Plücker quadric in matrix form, call this matrix Ω. Next take the matrix

of the equation of the complex, call this Q. Now calculate QΩ−1 and bring to Jordan

normal form. From the Jordan normal form we can extract the so-called Segre symbol,

10



given by the number of Jordan blocks of the matrix. For example, one 2× 2 block and

one 4 × 4 block gives Segre symbol [24]. If it so happens that the eigenvalues of the

different blocks coincide we then use round brackets as well [(24)]. This leads us to our

second main result.

Theorem 2 Any linearly degenerate 3D quasilinear wave equation can be brought by

an equivalence transformation to one of the eleven canonical forms, labeled by Segre

symbols of the associated quadratic complexes.

The first three are presented here, the rest can be found in the text.

Case 1: Segre symbol [111111]

(a1 + a2u
2
3 + a3u

2
2)u11 + (a2 + a1u

2
3 + a3u

2
1)u22 + (a3 + a1u

2
2 + a2u

2
1)u33+

2(αu3 − a3u1u2)u12 + 2(βu2 − a2u1u3)u13 + 2(γu1 − a1u2u3)u23 = 0,

α + β + γ = 0.

Case 2: Segre symbol [11112]

(λu22 + µu23 + 1)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+

2(αu3 − λu1u2)u12 + 2(βu2 − µu1u3)u13 + 2γu1u23 = 0,

α + β + γ = 0.

Case 3: Segre symbol [1113]

(λu22 + µu23 + 2u3)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+

2(µu3 − λu1u2 − 1)u12 + 2(βu2 − µu1u3 − u1)u13 + 2γu1u23 = 0,

µ+ β + γ = 0.

An additional property of interest is the conformal flatness of the metric fijdp
idpj.

We say that fijdp
idpj is ‘conformally flat’ if, after multiplication by some function,

an appropriate change of variables can be made such that the coefficients are made

constant. There is a classical result from differential geometry which states that, for

any metric on a 3-manifold, the vanishing of the Cotton tensor is equivalent to the

metric being conformally flat. This leads to our third main result:
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Theorem 3 A quadratic complex defines a flat conformal structure if and only if its

Segre symbol is one of the following:

[111(111)]∗, [(111)(111)], [(11)(11)(11)],

[(11)(112)], [(11)(22)], [(114)], [(123)], [(222)], [(24)], [(33)].

Here the asterisk denotes a particular sub-case of [111(111)] where the matrix QΩ−1 has

eigenvalues (1, ε, ε2, 0, 0, 0), ε3 = 1.

Modulo equivalence transformations this gives a complete list of normal forms of the

associated PDEs, which are shown in the text.

Finally, we present our fourth and last main result of this section:

Theorem 4 A linearly degenerate 3D quasilinear wave equation is integrable if and

only if the corresponding complex has one of the following Segre types:

[(11)(11)(11)], [(11)(112)], [(11)(22)], [(123)], [(222)], [(33)].

Modulo equivalence transformations, this leads to the five canonical forms of linearly

degenerate integrable PDEs (we exclude the linearisable case with Segre symbol [(222)]).

Each integrable equation is presented with its Lax pair in the form [X, Y ] = 0 where X

and Y are parameter-dependent vector fields which commute modulo the corresponding

equation:

Segre symbol [(11)(11)(11)]

αu3u12 + βu2u13 + γu1u23 = 0,

α + β + γ = 0. Setting α = a − b, β = b − c, γ = c − a we obtain the Lax pair:

X = ∂x3 − λ−b
λ−c

u3
u1
∂x1 , Y = ∂x2 − λ−b

λ−a
u2
u1
∂x1.

Segre symbol [(11)(112)]

u11 + u1u23 − u2u13 = 0,

Lax pair: X = ∂x1 − λu1∂x3 , Y = ∂x2 + (λ2u1 − λu2)∂x3.

Segre symbol [(11)(22)]

u12 + u2u13 − u1u23 = 0,

Lax pair: X = λ∂x1 − u1∂x3 , Y = (λ− 1)∂x2 − u2∂x3.
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Segre symbol [(123)]

u22 + u13 + u2u33 − u3u23 = 0,

Lax pair: X = ∂x2 + (λ− u3)∂x3 , Y = ∂x1 + (λ2 − λu3 + u2)∂x3.

Segre symbol [(33)]

u13 + u1u22 − u2u12 = 0,

Lax pair: X = λ∂x1 − u1∂x2 , Y = ∂x3 + (λ− u2)∂x2 .

In equivalent forms, these PDEs have appeared before in literature, although the Lax

pairs presented are new. The results of this chapter were published in [1].

Chapter 4 of this thesis focuses on linear degeneracy and characteristic integrals. Let

Σ be a partial differential equation (PDE) in n independent variables x1, . . . , xn. A

conservation law is an (n − 1)-form Ω which is closed on the solutions of Σ: dΩ =

0 mod Σ. Since any (n−1)-form in n variables possesses a unique annihilating direction,

there exists a vector field F such that Ω(F ) = 0. We say that Ω is a characteristic

integral (conservation law) if F is a characteristic direction of Σ. For a conservation

law represented as ∂x1F1 + ...+ ∂xnFn = 0, we have F = (F1, ..., Fn).

For systems of hydrodynamic type,

uit = vij(u)uix,

this goes as follows. Let λi be the eigenvalues (characteristic speeds) of V , and let ξi

be the corresponding eigenvectors, so that V ξi = λiξi. Characteristic directions are

defined as dx + λidt = 0, and the characteristic integral in i-th direction is a 1-form

h(u)(dx+ λidt) which is closed on solutions. The i-th characteristic direction is called

linearly degenerate if the Lie derivative of λi in the direction of the corresponding

eigenvector ξi vanishes, Lξiλ
i = 0. It is well known that if there exists a characteristic

integral in the i-th direction, then the corresponding characteristic speed λi must be

linearly degenerate.

In chapter 4 we primarily concentrate on characteristic integrals of quasilinear wave

equations discussed earlier. It has been shown in [4] that any integrable quasilinear

wave equation must admit exactly four non-trivial conservation laws. Taking the linear

combination of these conservation laws with constant coefficients, adding the trivial

conservation laws and imposing the characteristic condition Fg−1F t = 0, where g = fij

13



is the 3× 3 symmetric matrix of the corresponding principal symbol, we obtain our 5th

main result,

Theorem 5

(i) If a 3D quasilinear PDE of the form discussed above possesses ‘sufficiently many’

characteristic integrals, then it must be linearly degenerate. Here ‘sufficiently many’

means that the corresponding vector F satisfies no extra algebraic constraints other

than the characteristic condition itself, Fg−1F t = 0.

(ii) Any linearly degenerate integrable 3D quasilinear wave equation possesses a V 3-

worth of characteristic integrals.

The V 3 above refers to a Veronese variety. A Veronese variety is an algebraic manifold

that is realised by the Veronese embedding of projective space given by the complete

linear system of quadrics. For a mapping P2 → P5 we have a Veronese surface V 2, the

embedding is given by,

P2 → P5 : [x : y : z]→ [x2 : y2 : z2 : yz : xz : xy].

Let us give an example.

Equation 1

µutuxy + νuyuxt + ηuxuyt = 0.

The general conservation law is

F 1
x + F 2

y + F 3
t = 0,

where

F 1 = J1(ηuyut) + J2ν

(
uy
ut

)
+ J3µ

(
ut
uy

)
− J5uy + J6ut + J8,

F 2 = J1ν(uxut) + J2η

(
ux
ut

)
+ J4µ

(
ut
ux

)
+ J5ux − J7ut + J9,

F 3 = J1µ(uxuy) + J3η

(
ux
uy

)
+ J4ν

(
uy
ux

)
− J6ux + J7uy + J10.

Here, J1, ..., J10 are arbitrary constants. Imposing the characteristic condition, we get:

J1 = α2, J2 =
1

4νη
β2, J3 =

1

4ηµ
δ2, J4 =

1

4νµ
γ2, J5 = αβ,

J6 = αδ, J7 = αγ, J8 = − 1

2η
βδ, J9 = − 1

2/nu
βγ, J10 = − 1

2µ
δγ.

14



These equations define the Veronese embedding of P3(α : β : γ : δ) in P9(J1 : J2 : ... :

J10). The results of this characterisation were published in [2].

We also consider characteristic integrals of linearly degenerate systems of hydrodynamic

type

A(u)ux +B(u)uy + C(u)ut = 0,

where u(x, y, t) is a function of three independent variables. We conjecture that char-

acteristic integrals of linearly degenerate, integrable 2-component systems of hydrody-

namic type can be parameterised by the Veronese surface V 2.

Finally, we give an example of a first order system of the form

F(ux, uy, ut, vx, vy, vt) = 0, G(ux, uy, ut, vx, vy, vt) = 0,

and see that the same principle holds, this time characteristic integrals are parame-

terised by a Veronese variety V 4.

Characteristic integrals are considered an important concept in 2D, as they are used in

defining Darboux integrability. However, Darboux integrability currently has no mean-

ing in 3D, and it is thought that this work could form a basis for further investigations

into how Darboux integrability could be defined in higher dimensions.
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Chapter 2

Hydrodynamic type systems and

other general concepts

2.1 What are integrable systems?

The concept of a ”completely integrable system” arose in the 19th century in the

context of finite-dimensional classical mechanics. It began when Hamilton reformulated

Newton’s equations. He introduced the so-called canonical coordinates x1, ..., xn to

describe general positions, and p1, ..., pn to describe their general momenta. Together,

these coordinates describe a mechanical system with n degrees of freedom. The time-

evolution of an initial state (x0, p0) ∈ R2n is then governed by Hamilton’s equations

of motion ẋ = ∇pH, ṗ = −∇xH (where the dot denotes the time derivative). The

Hamiltonian H(x, p) then describes the total energy of the system.

The Poisson bracket is defined as {A,B} = ∇xA · ∇pB −∇pA · ∇xB for functions A,

B on the phase space Ω (the domain of the canonical coordinates (x, p)). Hamilton’s

equations can now be re-written as ẋj = {xj, H}, ṗj = {pj, H}, j = 1, ..., n. A conserved

quantity I, called a ”first integral”, can then be characterised by it’s zero Poisson

bracket with H, {I,H} = 0. Clearly, {H,H} = 0, which is the law of conservation

of energy. Transformations of the phase space Ω → Ω′, (x, p) 7→ (x′, p′) that preserve

Hamilton’s equations are called canonical. The formalism of Hamilton is invariant

under such canonical maps. In particular, we have {xj, xk} = 0, {pj, pk} = 0 and

{xj, pk} = δjk for j, k = 1, ..., n. A dynamical system defined by a given Hamiltonian H

on a 2n-dimensional phase space Ω is called integrable if there exists additional functions
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H1, ..., Hn on Ω such that H1, ..., Hn are independent and in involution, i.e. all Poisson

brackets {Hj, Hk} vanish.

Example 1 Consider the system of n independent harmonic oscillators. In the phase

space R2n(q, p) = R2n(q1, ..., qn, p1, ..., pn), the equations of motion are

q̇i =
pi
mi

=
∂H

∂pi
, ṗi = −aiqi = −∂H

∂qi
, i = 1, ..., n,

(mi, ai > 0), where the Hamiltonian of the system H(q, p) =
∑n

i=1(p
2
i /mi + aiq

2
i )/2

represents the total mechanical energy of the system. This system has n independent

integrals:

fi(q, p) = fi(qi, pi) =
1

2mi

p2i +
ai
2
q2i , i = 1, ..., n.

These integrals are all in involution, therefore this system is integrable. Here, H =∑n
i = fi.

Example 2 (Kepler problem) In classical mechanics, the Kepler problem is a special

case of the two-body problem, in which the two bodies interact by a central force F

that varies in strength as the inverse square of the distance r between them. The

force may be either attractive or repulsive. The ”problem” to be solved is to find the

position or speed of the two bodies over time given their masses and initial positions

and velocities. In the 6 dimensional phase space R6(q, p) = R6(q1, q2, q3, p1, p2, p3), the

equations of motion are

q̇i = pi, ṗi = − kqi
|q|3

, i = 1, ..., 3.

The Hamiltonian of this system is then given as H = 1
2
|p|2 − k

|q| . From the law of

the conservation of angular momentum [27], we know that the components of angular

momentum M = p × q are integrals of the Kepler system. A remarkable fact of the

Kepler system is that the components of the Laplace’ vector l = p × M + k q
|q| are

integrals. One can verify that H, Mi and lj are in involution for any i, j = 1, ..., 3.

Therefore, the Kepler system is integrable. This result gives rise to Keplers famous

laws of planetary motion:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal

intervals of time (constant ”sectorial” velocity).
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3. The square of the orbital period of a planet is proportional to the cube of the

semi-major axis of its orbit.

Although various integrable systems were discovered in the 19th century, the subject

lay dormant during the first seventy years of the 20th century. Results by Poincare,

to the effect that integrability is a highly exceptional property for the systems usually

considered in classical mechanics, were an important factor contributing to this lack of

interest.

The situation changed dramatically after the discovery of the soliton phenomenon by

Zabusky and Kruskal (1965). These results were a progression of work that was done

over one hundred years previous. The solitary wave, so-called because it often occurs as

a single entity and is localised, was first observed by J. Scott Russell on the Edinburgh-

Glasgow canal in 1834. He called it the ’great wave of translation’. Russell reported his

observations to the British Association in his 1844 ’Report on Waves’ in the following

words: ”I believe I shall best introduce the phenomenon by describing the circumstances

of my own first acquaintance with it. I was observing the motion of a boat which

was rapidly being drawn along a narrow channel by a pair of horses, when the boats

suddenly stopped - not so the mass of water in the channel which it had put in motion; it

accumulated round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a large

solitary elevation, a rounded, smooth and well-defined heap of water, which continued

its course along the channel apparently without change of form or diminution of speed.

I followed it on horseback, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original figure some thirty feet long and a foot to a

foot and a half in height. Its height gradually diminished, and after a chase of one or

two miles I lost it in the windings of the channel.”

Russell also performed laboratory experiments, generating solitary waves by dropping a

weight at one end of a water channel. He was able to deduce empirically that the volume

of water in the wave is equal to the volume of water displaced and, further, that the

speed, c, of the solitary wave is obtained from c2 = g(h+ a), where a is the amplitude

of the wave, h the undisturbed depth of water and g the acceleration of gravity. The

solitary wave is therefore a gravity wave. There are two obvious facts from this; higher

waves travel faster, and this equation applies only to waves of elevation. Any attempt
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to generate a wave of depression results in a train of oscillatory waves, as Russell found

in his own experiments. Developing Russell’s formula, both Boussinesq (1871) and Lord

Rayleigh (1876) assumed that a solitary wave has a length scale much greater than the

depth of water. They managed to show that the wave profile z = ξ(x, t) for Russell’s

solitary wave is given by

ξ(x, t) = a sech2{β(x− ct)}, (2.1)

where β−2 = 4h2(h + a)/3a for any a > 0. These authors did not, however, write

down a simple equation for ξ(x, t) which admits (2.1) as a solution. This final step was

completed by Korteweg and de Vries in 1895. They derived what is now know as the

Korteweg de Vries (KdV) equation. Its dimensionless form is

φt + 6φφx + φxxx = 0, (2.2)

where φ = φ(x, t).

The extraordinary stability properties of these solitary waves were discovered much later

in computer calculations by Zabusky and Kruskal. They studied collisions of n solitary

waves, and found that these waves emerge unscathed, with the same velocities and

shapes as before the collision. This was unexpected as the KdV equation is nonlinear,

so solutions cannot be linearly superposed. Once the pertinent solutions were found

in explicit form, the presence of a nonlinear interaction became clear. The positions

of the solitary waves became shifted, compared to the positions arising from a linear

superposition. In fact, the shifts can be written as sums of pairwise shifts, leading

to a physical picture of individual entities scattering independently in pairs. These

particle-like properties led to the coining of the term soliton.

The connection with the concept of completely integrable system was first made by

Zakharov and Faddeev (1971). Kruskal and coworkers had shown that the KdV equa-

tion has an infinite number of conservation laws, and that there exists a linearizing

transformation, which maps the initial value u(0, x) for the KdV Cauchy problem to

spectral and scattering data of the Schrödinger operator − d2

dx2
− u(0, x). The nonlinear

evolution yielding u(t, x) then transforms into an essentially linear time evolution of

these data, so that u(t, x) can be constructed via the inverse map, the so-called Inverse

Scattering Transform (IST). Inspired by these findings, Zakharov and Faddeev showed

that the KdV equation may be viewed as an infinite-dimensional classical integrable
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system. Ever since these pioneering works, the number of nonlinear partial differen-

tial equations in two space-time variables admitting n-soliton solutions has steadily

increased, the most well-known examples being the KdV, modified KdV, sine-Gordon

and nonlinear Schrödinger equation. For all of these equations additional structural

features have been shown to be present. Examples of these additional features include

Lax pairs and Bäcklund transformations, both of which will be discussed later.

There is in fact no universally accepted definition of ’integrability’ for classical systems

with infinitely many degrees of freedom. Rather, the term is used whenever certain

structural features are present. As well as Lax pairs and Bäcklund transformations,

these include exact soliton-like solutions, infinitely many conservation laws or infinitely

many symmetries. We will see that the definition of integrability depends on the class

of equations under study. In particular, for multidimensional quasilinear systems the

integrability is understood as the existence of infinitely many hydrodynamic reductions.

This will be discussed in detail later.

2.2 Hydrodynamic type systems in 1+1 dimensions

Systems of the type

uit +
n∑
j=1

vij(u)ujx = 0, (2.3)

are known as 1 + 1 dimensional systems of hydrodynamic type. Here

u = (u1(t, x), u2(t, x), ..., un(t, x)) is an n-component vector of dependent variables. The

functions vij(u), which could also be considered as matrix elements of an n× n matrix

V, are assumed to be smooth and, in general, non-constant. Systems of this type arise

in applications in differential geometry, general relativity and fluid dynamics.

Definition The system (2.3) is called strictly hyperbolic if and only if all eigenvalues of

V are real and distinct.

Example The equations of motion for an ideal barotropic gas are given by

ρt + (ρu)x = 0,

ut + uux + γργ−2ρx = 0,
(2.4)

where ρ is the density, u the velocity and γ is a polytropic constant. The equations can

20



be expressed as (2.3) in the following way ρ

u


t

+

 u ρ

γργ−2 u

 ρ

u


x

= 0,

so that we have

u =

 ρ

u

 , V =

 u ρ

γργ−2 u

 .

The eigenvalues λ1,2 of V are

λ1 = u+
√
γργ−1, λ2 = u−

√
γργ−1,

It can be seen that the system (2.4) is strictly hyperbolic if and only if we have γργ−1 >

0.

Remark All systems that we consider in this work are assumed to be strictly hyperbolic.

2.3 Riemann invariants

We say that system (2.3) possesses Riemann invariants if we can find suitable variables

R1(u), ..., Rn(u)

such that system (2.3) becomes diagonal,

Ri
t = λi(R)Ri

x. (2.5)

These new variables R = (R1, ..., Rn) are called Riemann invariants. Note that for 2×2

systems Riemann invariants always exist, whereas for higher component systems they

do not necessarily exist. The reason for this can be seen below

There exists a standard procedure for transforming a 2×2 system to Riemann invariants:

1. Bring the system into the form (2.3) and solve the characteristic equation

det(V − λI) = 0,

to find the roots λ1(u) and λ2(u).

2. Fix λ1(u) and λ2(u) and calculate their corresponding left eigenvectors such that

(ξ1, ξ2)(V − λ1I) = 0,
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(ξ3, ξ4)(V − λ2I) = 0.

3. Choose (ξ1, ξ2) and (ξ3, ξ4), which are defined up to a scaling factor, to be the

gradients of R1(u) and R2(u) respectively. Note that whereas this is always possible

for n = 2, it is not always possible for n > 2. Next we solve the system:(
∂R1

∂u1
,
∂R1

∂u2

)
= (ξ1, ξ2),

(
∂R2

∂u1
,
∂R2

∂u2

)
= (ξ3, ξ4).

Example Let us show how to reduce the equations of motion for an ideal barotropic

gas (2.4) to a system in Riemann invariants. We have

ρt + uxρ+ uρx = 0, ut + uux + γργ−2ρx = 0. (2.6)

First we have to solve the characteristic equation γργ−1 − (u − λ)2 = 0, which has

solutions

λ1,2 = u± (γργ−1)
1
2 .

Next we require (
Ri
ρ Ri

u

) u− λi ρ

γργ−2 u− λi

 = 0,

where i = 1, 2. We can now find R1 and R2 in terms of u and ρ first by finding the

corresponding left eigenvectors of λ1 and λ2, then setting these to be the gradients of

R1(u) and R2(u) respectively. Solving this system gives the solutions for R1 and R2:

R1 = u+
2γ

1
2ρ

γ−1
2

γ − 1
, R2 = u− 2γ

1
2ρ

γ−1
2

γ − 1
.

Finally, we can substituTe back and express the eigenvalues λ1 and λ2 as functions of

R1 and R2,

λ1 =
R1 +R2

2
+

(γ − 1)(R1 −R2)

4
,

λ2 =
R1 +R2

2
+

(γ − 1)(R2 −R1)

4
.

Thus we can re-write the system in the diagonal form

R1
t +

(
R1 +R2

2
+

(γ − 1)(R1 −R2)

4

)
R1
x = 0,

R2
t +

(
R1 +R2

2
+

(γ − 1)(R2 −R1)

4

)
R2
x = 0.

(2.7)
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One can verify directly that the change of variables

R1 +R2

2
= u, R1 −R2 =

4γ
1
2ρ

γ−1
2

γ − 1

brings the system (2.7) back to the form (2.6). Note that for this method to work, we

needed the hydrodynamic type system (2.6) to be strictly hyperbolic.

2.4 Commuting flows

Consider 2 hydrodynamic type systems of the form (2.3),

ut = V (u)ux, uy = W (u)ux. (2.8)

We say that these systems commute if uty = uyt.

Theorem Consider two systems of the form (2.5),

Ri
t = λi(R)Ri

x, Ri
y = µi(R)Ri

x, i = 1, ..., n. (2.9)

Here t and y are the corresponding ”times”. For these equations to be consistent, the

following condition must be true,

∂jλ
i

(λj − λi)
=

∂jµ
i

(µj − µi)
, i 6= j. (2.10)

where ∂j = ∂
∂Rj

.

Proof For the equations to be consistent, we require

Ri
ty = Ri

yt. (2.11)

Explicitly, we have

Ri
ty = (λiRi

x)y = ∂jλ
iRj

yR
i
x + λiRi

xy = ∂jλ
iµjRj

xR
i
x + λi(µiRi

x)x

= ∂jλ
iµjRj

xR
i
x + λi∂jµ

iRj
xR

i
x + λiµiRi

xx,
(2.12)

similarly,

Ri
yt = (µiRi

x)t = ∂jµ
iRj

tR
i
x + µiRi

xt = ∂jµ
iλjRj

xR
i
x + µi(λiRi

x)x

= ∂jµ
iλjRj

xR
i
x + µi∂jλ

iRj
xR

i
x + µiλiRi

xx.
(2.13)

Substituting (2.12) and (2.13) into (2.11), we get

∂jλ
iµjRj

xR
i
x + λi∂jµ

iRj
xR

i
x + λiµiRi

xx = ∂jµ
iλjRj

xR
i
x + µi∂jλ

iRj
xR

i
x + µiλiRi

xx,
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which simplifies to

∂jλ
i(µj − µi) = ∂jµ

i(λj − λi).

(2.10) is referred to as the commutativity condition. If (2.10) is satisfied then the systems

(2.9) are said to be commuting flows.

2.5 Conservation laws

Consider a PDE of the form

ut = F(u,ux,uxx, ...). (2.14)

A relation of the form

[f(u)]t = [g(u)]x, (2.15)

which holds identically modulo (2.14) is called a conservation law of (2.14). The func-

tions f(u) and g(u) are called the conserved density and flux respectively. Note that

neither of these functions involve derivatives with respect to t. Usually, f(u) and g(u)

are polynomials in u and its higher order x-derivatives. Let us assume that u(x) tends

to zero sufficiently fast as x tends to infinity, and that both f(u) and g(u) also tend to

zero, so that the integrals are convergent. Integrating (2.15) over x we have

∂t

∫ +∞

−∞
f dx =

∫ +∞

−∞
ft dx =

∫ +∞

−∞
gx dx = g(∞)− g(−∞) = 0,

which shows that the quantity

H =

∫ +∞

−∞
f dx

is conserved. We call H an integral of motion.

Now consider a diagonal system in Riemann invariants of the form (2.5). A conservation

law is therefore a relation

[f(R)]t = [g(R)]x (2.16)

which holds modulo (2.5). A conservation law is said to be of hydrodynamic type if f

and g depend on R only, and not on any higher derivatives of R. By substituting (2.5)

into (2.16) we get

∂ifλ
iRi

x = ∂igR
i
x
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so that ∂ifλ
i = ∂ig for any i. For consistency we require that ∂j∂ig = ∂i∂jg. From this

condition we obtain

∂i∂jf =
∂jλ

i

λj − λi
∂if +

∂iλ
j

λi − λj
∂jf, i 6= j.

Example Consider the system in Riemann invariants

R1
t = R2R1

x, R2
t = R1R2

x, (2.17)

here λ1 = R2, λ2 = R1. Substituting into (2.16), the equation for conserved quantities

takes the form

∂2∂1f =
1

R1 −R2
∂1f +

1

R2 −R1
∂2f =

∂1f − ∂2f
R1 −R2

.

It’s general solution is

f =
p(R1)− q(R2)

R1 −R2
,

which can be verified by differentiation. Here p(R1) and q(R2) are arbitrary functions

of one variable.

Remark The condition (2.16) is equivalent to the 1-form fdx + gdt being closed.

Indeed, if we apply the differential to dP = fdx+ gdt,

fxdx ∧ dx+ ftdt ∧ dx+ gxdx ∧ dt+ gtdt ∧ dt = 0,

= (ft − gx)dt ∧ dx.

Thus, ft = gx.

2.6 The semi-Hamiltonian property

The diagonal system (2.5) is said to be semi-Hamiltonian if,

∂k

(
∂jλ

i

λj − λi

)
= ∂j

(
∂kλ

i

λk − λi

)
, i 6= j 6= k. (2.18)

Let aij =
∂jλ

i

λj−λi , then (2.18) becomes

∂kaij = ∂jaik. (2.19)

Tsarev [12] has shown that for semi-Hamiltonian systems, commuting flows and con-

served densities depend on n arbitrary functions of one argument. Before continuing
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with the proofs it is worth noting that calculating ∂k∂jλ
i by expanding equation (2.19)

(note that ∂j∂kλ
i = ∂k∂jλ

i) and substituting this into (2.19) we obtain

∂kaij = aijajk − aijaik + aikakj. (2.20)

Theorem (Tsarev) If (2.18) is satisfied then commuting flows depend on n arbitrary

functions of one argument.

Proof:

The proof is taken from [12]. A diagonal system (2.5) that satisfies (2.18) has commuting

flows governed by the linear system

∂jµ
i = aij(µ

j − µi), i 6= j. (2.21)

Changing j to k where k 6= j, we have

∂kµ
i = aik(µ

k − µi), i 6= k. (2.22)

We need to take partial derivatives of equtions (2.21), (2.22) and show that ∂k∂jµ
i =

∂j∂kµ
i. Using (2.20), (2.21) and (2.22) we obtain

(aijajk − aijaik + aikakj)(µ
j − µi) + aij(ajk(µ

k − µj)− aik(µk − µi)) =

(aikakj − aikaij + aijajk)(µ
k − µi) + aik(akj(µ

j − µk)− aij(µj − µi)).

Equating coefficients of µi, µj, µk we observe that everything vanishes. We have shown

that all partial derivatives of (2.21) are consistent identically in µi, µj, µk. Note that, in

equation (2.21), all derivatives ∂jµ
i are known for i 6= j. We are left with the unknown

∂iµ
i as an unknown, so we can specify µi(Ri) on the Ri axis. We can do this for all

i ∈ 1...n, so commuting flows depend on n arbitrary functions of a single argument.

Theorem (Tsarev) If (2.18) is satisfied then conserved densities depend on n arbitrary

functions of one argument.

Proof:

Recall that for a system (2.5) to possess a conservation law [f(R)]t = [g(R)]x, we must

have

∂i∂jf =
∂jλ

i

λj − λi
∂if +

∂iλ
j

λi − λj
∂jf, i 6= j.

Now let

∂j∂if = aij∂if + aji∂jf,
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∂k∂if = aik∂if + aki∂kf,

and compute ∂k∂j∂if = ∂j∂k∂if . Doing this we get

∂kaij∂if + aij(aik∂if + aki∂kf) + ∂kaji∂jf + aji(ajk∂jf + akj∂kf) =

∂jaik∂if + aik(aij∂if + aji∂jf) + ∂jaki∂kf + aki(akj∂kf + ajk∂jf).

Equating coefficients of ∂if, ∂jf, ∂kf , we observe that everything cancels. So we know

that all mixed partial derivatives of f are consistent. In order to see n functions of 1

variable, note that we can arbitrarily present the value of f on each Ri axis. Thus,

conserved densities depend on n arbitrary functions of one variable.

2.7 The generalised hodograph method

The generalised hodograph method [12] can be used to find a general solution to semi-

Hamiltonian systems of the form (2.5). As an example, consider a simple scalar equa-

tion, the so-called Hopf equation,

Rt = RRx. (2.23)

The general solution of this equation is a well known result and is given by

f(R) = x+Rt, (2.24)

where f is an arbitrary function of one variable. Calculating partial derivatives of (2.24)

with respect to x and t, we obtain

fRRx = 1 +Rxt,

fRRt = R +Rtt.

Solving for Rx and Rt we have,

Rx =
1

fR − t
,

Rt =
R

fR − t
.

It follows that Rt = RRx, so we see that the above is indeed the general solution for

(2.23).
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Theorem (Generalised hodograph method) If λi(R) satisfies (2.18) then the gen-

eral solution of the diagonal system

Ri
t = λi(R)Ri

x, (2.25)

is given by

µi(R) = λi(R)t+ x, (2.26)

where the characteristic speeds of commuting flows µi(R) satisfy the equations:

∂jµ
i

µj − µi
=

∂jλ
i

λj − λi
, i 6= j. (2.27)

Proof:

The proof is taken from [12]. First, use substitution of (2.26) into (2.27) to obtain,

∂jµ
i = ∂jλ

it. (2.28)

Next, differentiate (2.26) by x and t so that

∂jµ
iRj

x + ∂iµ
iRi

x = ∂jλ
iRj

xt+ ∂iλ
iRi

xt+ 1,

∂jµ
iRj

t + ∂iµ
iRi

t = ∂jλ
iRj

t t+ ∂iλ
iRi

tt+ λi.
(2.29)

Substituting (2.28) into (2.29) we get

Ri
x =

1

∂iµi − ∂iλit
, Ri

t =
λi

∂iµi − ∂iλit
. (2.30)

Finally, we prove that (2.26) is a general solution of (2.25) by substituting (2.30) into

(2.25). Note here that by general solution we mean that (2.26) has the same amount

of freedom as the system (2.25). Taking the data for the initial value problem of (2.25)

we have for t = 0,

Ri(x, 0) = f i(x),

thus we have the freedom of n arbitrary functions of one variable in the system being

solved. In (2.26), µi also depend on n arbitrary functions of one variable.

2.8 The method of hydrodynamic reductions. Ex-

ample of dKP

The theory of integrability of one-dimensional hydrodynamic type systems provides

the framework for studying the integrability of higher dimensional hydrodynamic type
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systems. In this section, we present the method of hydrodynamic reductions for the

case of (2 + 1)−dimensional quasilinear systems of the form

A(u)ux +B(u)uy + C(u)ut = 0, (2.31)

where u = (u1, ..., ul)T is an m-component column vector of dependent variables, and

A, B, C are m× l matrices, where m is the number of equations.

The key construction in the method of hydrodynamic reductions is as follows; we seek

multi-phase solutions in the form u(R1, ..., Rn) where the ”phases” Ri(x, y, t) are the

Riemann invariants satisfying a pair of commuting diagonal (1+1)-dimensional systems

of hydrodynamic type,

Ri
y = µi(R)Ri

x, Ri
t = λi(R)Ri

x. (2.32)

The consistency condition Ri
yt = Ri

ty for these systems is equivalent to the following

linear system for the characteristic speeds λi and µi,

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j, ∂i = ∂/∂Ri . (2.33)

Specifically, we decouple a (2+1)-dimensional system of hydrodynamic type into a pair

of commuting (1 + 1)-dimensional systems (2.32). Solutions of this type are known as

nonlinear interactions of n planar waves.

Substituting (2.32) and (2.33) into (2.31), we get

(A+ µiB + λiC)∂iu = 0, i = 1, ..., n. (2.34)

In the case of square matrices A, B and C, equation (2.34) implies that both λi and µi

satisfy the dispersion relation

det(A+ µiB + λiC) = 0.

Combining equations (2.33) and (2.34), we end up with a system of equations for u,

λi(R) and µi(R) (so called Gibbons-Tsarev system).

Definition [7] A (2+1)-dimensional quasilinear system (2.31) is said to be integrable if,

for any number of phases n, it possesses infinitely many n-phase solutions parameterised

by 2n arbitrary functions of a single variable.
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Example (dKP equation) Let us derive the Gibbons-Tsarev system for the dKP

equation

uxt − uxuxx − uyy = 0,

where u = u(x, y, t). All through this example, ∂i = ∂/∂Ri . Introducing the variables

a = ux, b = uy, c = ut, we have the following system of four equations in three

unknowns,

ay = bx, at = cx, bt = cy, at − aax − by = 0. (2.35)

We look for solutions in the form a = a(R1, ..., Rn), b = b(R1, ..., Rn), c = c(R1, ..., Rn),

where the Riemann invariants Ri satisfy (2.32). Substituting this ansatz into ay = bx

we get:

ay = ∂iaR
i
y = ∂iaµ

iRi
x, bx = ∂ibR

i
x.

This simplifies to ∂ib = µi∂ia. Similarly, at = cx yields ∂ic = λi∂ia. From at−aax−by =

0 we get the dispersion relation λi − a− (µi)2 = 0. Next, computing the compatibility

conditions ∂i∂jb = ∂j∂ib and ∂i∂jc = ∂j∂ic we get the expression,

∂i∂ja =
∂jµ

i

µj − µi
∂ia−

∂iµ
j

µj − µi
∂ja. (2.36)

Differentiating the dispersion relation λi − a− (µi)2 = 0 with respect to Ri, we reduce

the system (2.33) to the form

∂jµ
i =

∂ja

µj − µi
, i 6= j.

Substitution of the last equation into (2.36) yields a consistent system for a(R) and

µi(R) (Gibbons-Tsarev system) [7],

∂jµ
i =

∂ja

µj − µi
, ∂i∂ja = 2

∂ia∂ja

(µj − µi)2
, i 6= j. (2.37)

It is clear that the consistency of this system is equivalent to existence of infinity

of hydrodynamic reductions (2.32) of the dKP. To get the general solution of this

system, we prescribe 2n functions of a single variable as the Goursat data along the

Ri-axes, precisely µi(Ri) and a(Ri). As the Gibbons-Tsarev system is invariant under

re-parameterisation Ri ← f i(Ri), where f i are arbitrary functions of their arguments,

the parametric freedom reduces to n functions of a single variable. A general solution

of the system (2.32) is then given by the generalised hodograph method. This brings

n arbitrary functions to the parametric freedom of an n-phase solution u(R1, ..., Rn)

(n-component hydrodynamic reduction) of the dKP equation.
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2.9 Lax pairs

In 1 + 1D, a Lax pair is a pair of linear operators L and A associated with a partial

differential equation which can be used to solve the equation. Lax pairs were introduced

by Peter Lax to discuss solitons in continuous media. The inverse scattering transform

makes use of Lax pairs to solve certain systems. The best way to look at Lax pairs is

through an example.

Example 1 The KdV equation

ut = 6uux − uxxx

can be reformulated as

Lt = [P,L].

Here [P,L] = PL− LP is the operator commutator and,

L = −∂2x + u,

P = −4∂3x + 3(u∂x + ∂xu).

In 2 + 1D, dispersionless Lax pairs are quite different objects. For instance, the dKP

equation

(ut − uux)x = uyy,

has the Lax pair

Sy =
1

2
S2
x + u,

St =
1

3
S3
x + uSx + w.

(2.38)

Here, the dKP equation can be recovered by first calculating the compatibility condi-

tions Syt = Sty to get

ut − uux = wy, uy = wx. (2.39)

Eliminating w, we get (ut − uux)x = uyy as required. The equations (2.38) are known

as a pair of nonlinear Hamilton-Jacobi type equations [24].

Later, it will be explained what is meant by linearly degenerate systems in 2 + 1D.

For these systems, Lax pairs are given by commuting λ-dependent vector fields. For

example, the linearly degenerate (integrable) quasilinear wave equation

uxt + uxuyy − uyuxy, (2.40)
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where u = u(x, y, t) is representable as [X, Y ] = 0. Here

X = λ∂x − ux∂y,

Y = ∂t + (λ− uy)∂y.

Indeed calculating XY −Y X, where all derivatives act on all objects to the right, yields

equation (2.40). Equivalently, the Lax pair can be written as a system,

Xφ = λφx − uxφy = 0,

Y φ = φt + (λ− uy)φy = 0.

The existence of dispersionless Lax pairs is closely related to integrability by the method

of hydrodynamic reductions [7].

2.10 Bäcklund transformations

Bäcklund transformations (named after the Swedish mathematician Albert Victor Bäck-

lund) first appeared in 1880 when they were used in differential geometry and the

theory of differential equations. A Bäcklund transformation is a system of equations

(generally nonlinear) that relates a solution of a given differential equation either with

another solution of the same equation (auto-Bäcklund) or with a solution of a different

differential equation. In general, it is not always known when a PDE possesses a

Bäcklund transformation. There are however a limited number of cases where it is

known. Every evolution equation that can be solved through the inverse scattering

transform possesses a corresponding Bäcklund transformation.

Example: Auto-Bäcklund transformation. Consider the pair of equations

1

2
(u+ v)x = a sin

(
u− v

2

)
,

1

2
(u− v)t =

1

a
sin

(
u+ v

2

)
, (2.41)

where a 6= 0 and u = u(x, t), v = v(x, t). Differentiating the first equation with respect

to t and the second with respect to x, we get

1

2
(u+ v)xt = sin

(
u+ v

2

)
cos

(
u− v

2

)
1

2
(u− v)tx = sin

(
u− v

2

)
cos

(
u+ v

2

)
.

(2.42)
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From (2.42) and using the fact that uxt = utx and vxt = vtx, we have

uxt = sin

(
u+ v

2

)
cos

(
u− v

2

)
+ sin

(
u− v

2

)
cos

(
u+ v

2

)
= sin

(
u+ v

2
+
u− v

2

)
= sinu,

(2.43)

vxt = sin

(
u+ v

2

)
cos

(
u− v

2

)
− sin

(
u− v

2

)
cos

(
u+ v

2

)
= sin

(
u+ v

2
− u− v

2

)
= sin v,

(2.44)

which means that u and v independently satisfy the sine-Gordon equation

uxt = sinu, vxt = sin v.

Hence, equations (2.41) are an auto-Bäcklund transformation for the sine-Gordon equa-

tion. Putting ξ = x− t and η = x+ t gives the more familiar form of the sine-Gordon

equation uηη − uξξ = sinu.

We will now use a Bäcklund transformation to find a solution of the sine-Gordon equa-

tion uxt = sinu, starting from a known solution. The sine-Gordon equation has the

trivial solution u(x, t) = 0. From (2.41) in the last example with v = 0, we have

ux = 2a sin
u

2
, ut =

2

a
sin

u

2
. (2.45)

Integrating the first equation in (2.45) we get

du

sin u
2

= 2adx ⇒ 2ax = 2 ln | tan
u

4
|+ f(t). (2.46)

Integrating the second equation in (2.45) we get

du

sin u
2

=
2

a
dt ⇒ 2

a
t = 2 ln | tan

u

4
|+ g(x) (2.47)

Differentiating (2.46) and (2.47) with respect to t and x respectively, we get

f ′(t) = −2

a
⇒ f(t) = −2

a
t+ c1

g′(x) = −2a ⇒ g(x) = −2ax+ c2.
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Substituting f(t) and g(x) in equations (2.46), (2.47) and adding them we obtain

2ax+
2

a
t = 4 ln | tan

u

4
| − 2ax− 2

a
t+ c1 + c2,

so that

tan
u

4
= ±e−

c1+c2
4 eax+

t
a = Ceax+

t
a , C ∈ R.

Thus u(x, t) = 4 arctan
(
Ceax+

t
a

)
, and we have found a solution of the sine-Gordon

equation starting from the trivial solution u = 0.

Example 1 Here we take an example from the classification of linearly degenerate

quasilinear PDEs in the next section. Let α, β, γ and α̃, β̃, γ̃ be two triplets of numbers

such that α + β + γ = 0 and α̃ + β̃ + γ̃=0. Consider the system of two first order

relations for the functions u(x, y, t) and v(x, y, t),

αγ̃vxut − γα̃vtux = 0, αβ̃vyut − βα̃vtuy = 0.

Eliminating v (that is, solving the above relations for vx and vy and imposing the

compatibility condition vxy = vyx), we obtain the second order equation αutuxy +

βuyuxt + γuxuyt = 0. Similarly, eliminating u we obtain the analogous equation for

v, α̃vtvxy + β̃vyvxt + γ̃vxvyt = 0. We will see later that this example illustrates that

any two integrable equations of the Segre type [(11)(11)(11)] are related by a Bäcklund

transformation.

Example 2 (dKP equation) The dKP equation has a dispersionless Lax pair con-

sisting of two first-order relations,

vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0,

with v = v(x, y, t) and u = u(x, y, t). The dKP equation results from the above

on elimination of v, that is, via the compatibility condition vyt = vty. Similarly, the

elimination of u leads to the modified dKP (mdKP) equation vxt−(vy− 1
2
v2x)vxx−vyy = 0.

Thus, the relations above provide a Bäcklund-type transformation connecting dKP and

mdKP equations.
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2.11 Linearly degenerate systems

Let us first consider the two dimensional case, that is, first order quasilinear equations

of the form

ut − A(u)ux = 0, (2.48)

where u = (u1, ..., un)T is an n−component column vector of dependent variables,

ui = ui(x, t) are functions of two independent variables and A is an n× n matrix. We

call the PDE (2.48) linearly degenerate if the directional derivative of the eigenvalues

of A along their corresponding right eigenvectors is zero. In general, this can be verified

by introducing the characteristic polynomial of A [6],

det(λI − A(u)) = λn + f1(u)λn−1 + f2(u)λn−2 + . . .+ fn(u),

and imposing the constraint

∇f1An−1 +∇f2An−2 + . . .+∇fn = 0,

where ∇ is the operator of the gradient, ∇f = ( ∂f
∂u1
, . . . , ∂f

∂un
), and Ak denotes k-th

power of the matrix A. In the 2−component case this condition simplifies to

∇(trA)A = ∇(detA). (2.49)

Example Consider the simple 2-component system

vt = wvx, wt = vwx.

We can see straight away that the directional derivative of the eigenvalues of A along

their corresponding right eigenvectors is zero, and equivalently the constraint∇(trA)A =

∇(detA) is satisfied.

Linear degeneracy is known to prevent breakdown of smooth initial data, leading to

global solvability of the Cauchy problem. Later, this notion of linear degeneracy will

be extended to quasilinear wave equations in 2 + 1D.

As an illustrative example, consider the two systems

ut = uux, ut = cux,

where u = u(x, t) and c is a constant.
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Figure 2.1: Time evolution of ut = uux with a Gaussian initial profile.

Figure 2.2: Time evolution of ut = cux with a Gaussian initial profile.

The two figures above illustrate what is meant by global solvability of the Cauchy

problem. For the equation ut = uux which is clearly not linearly degenerate, we see

that the solution to the Cauchy problem breaks down after sufficient time. This can be

seen by the waveform ’breaking’ and the function becoming multi-valued. The equation

ut = cux clearly is linearly degenerate and the image above illustrates that the wave

form does not ’break’ for all time.

2.12 Characteristics and the symbol of a PDE

In the study of linear partial differential equations a measure of the ”strength” of a

differential operator in a certain direction is given by the notion of characteristics. If

L =
∑
|α|≤k aα(x)∂α is a linear differential operator of order k on Ω in Rn, then its

characteristic form (or principal symbol) at x ∈ Ω is the homogeneous polynomial of

degree k on Rn defined by

χL(x, ξ) =
∑
|α|=k

aα(x)ξα,

A vector ξ is characteristic for L at x if

χL(x, ξ) = 0.

The characteristic variety is the set of all characteristic covectors xi, i.e.

Charx(L) = {ξ 6= 0 : χL(x, ξ) = 0}.

A hypersurface S is called characteristic for L at x if the normal vector ν(x) is in

Charx(L) and S is called non-characteristic otherwise. An important property of the

characteristic variety is contained in the following:
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Let F be a smooth one-to-one mapping of Ω onto Ω′ ⊂ Rn and set y = F (x). Assume

that the Jacobian matrix

Jx =

[
∂yi
∂xj

]
(x)

is nonsingular for x ∈ Ω, so that {y1, y2, ..., yn} is a coordinate system on Ω′. We have

∂

∂xj
=

n∑
i=1

∂yi
∂xj

∂

∂yi

which we can write symbolically as ∂x = JTx ∂y, where JTx is the transpose of Jx. The

operator L is then transformed into

L′ =
∑
|α|≤k

aα(F−1(y))
(
JTF−1(y)∂y

)
α

on Ω′.

When this expression is expanded out, there will be some differentiations of JTF−1(y),

but such derivatives are only formed by ’using up’ some of the ∂y on JTF−1(y), so they

do not enter in the computation of the principal symbol in the y coordinates, i.e. they

do not enter the highest order terms. We find that

χL(x, ξ) =
∑
|α|=k

aα(F−1(y))
(
JTF−1(y)ξ

)
α
.

Now since F−1(y) = x, on comparing with the expression

χL(x, ξ) =
∑
|α|=k

aα(x)ξα

we see that Charx(L) is the image of Chary(L
′) under the linear map JTF−1(y).

Note that if ξ 6= 0 is a vector in the xj-direction (i.e. ξi = 0 for i 6= j), then ξ ∈ Charx(L)

if and only if the coefficient of ∂kj in L vanishes at x. Now, given any ξ 6= 0, by a rotation

of coordinates we can arrange for ξ to lie in a coordinate direction. Thus the condition

ξ ∈ Charx(L) means that, in some sense, L fails to be ”genuinely kth order” in the ξ

direction at x. L is said to be elliptic at x if Charx(L) = ∅ and elliptic on Ω if it is

elliptic at each x ∈ Ω. Elliptic operators exert control on all derivatives of all order.

Examples.

1. L = ∂1 : Charx(L) = {ξ 6= 0 : ξ1 = 0}.

2. L = ∂1∂2 : Charx(L) = {ξ 6= 0 : ξ1 = 0 or ξ2 = 0}.

3. L = 1
2
(∂1 + i∂2): L is elliptic on R2.
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4. L = ∂1 −
∑n

j=2 ∂
2
j (Heat Operator): Charx(L) = {ξ 6= 0 : ξj = 0, for j ≥ 2}.

5. L = ∂21 −
∑n

j=2 ∂
2
j (Wave Operator): Charx(L) = {ξ 6= 0 : ξ21 =

∑n
j=2 ξ

2
j }.

Note that the principal symbol only exists for a linear PDE. Consider the following

example which utilizes the formal linearisation of PDEs to find the principle symbol of

the dKP equation.

Example Recall that the dKP equation is defined as

uxt − uxuxx − uyy = 0,

where u = u(x, y, t). First we set u = u + εv and substitute into the above. Keeping

only linear terms in ε, we get

vxt − uxvxx − vyy − uxxvx = 0.

Only the higher order derivatives of v contribute to the symbol. Following the definition

outlined earlier in this section, the principal symbol of the dKP equation is

ξ1ξ3 − ux(ξ1)2 − (ξ2)2.

Later, we will see how the notion of a characteristic integral can be defined by using

the principal symbol of a PDE. We will draw a parallel between linear degeneracy and

characteristic integrals, and see how this can lead to a notion of Darboux integrability

in higher dimensions.

Remark Throughout this section, the dKP equation has been given in 2 different forms

which are equivalent. Taking the following form of the dKP equation

(ut − uux)x = uyy,

and setting u = Ux, we get the equivalent form,

Uxt − UxUxx = Uyy.

So both forms are in fact equivalent.
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Chapter 3

Quasilinear wave equations

3.1 Summary of main results

In this section we study second order quasilinear equations of the form

f11ux1x1 + f22ux2x2 + f33ux3x3 + 2f12ux1x2 + 2f13ux1x3 + 2f23ux2x3 = 0, (3.1)

where u(x1, x2, x3) is a function of three independent variables, and the coefficients

fij depend on the first order derivatives ux1 , ux2 , ux3 only. Throughout this section we

assume the non-degeneracy condition det fij 6= 0. PDEs of this type, which can be

called quasilinear wave equations, arise in a wide range of applications in mechanics,

general relativity, differential geometry and the theory of integrable systems. One of

the most familiar examples is the dispersionless Kadomtsev-Petviashvilli equation,

uxt − uxuxx − uyy = 0,

which arises in non-linear acoustics. Another example is the Boyer-Finley equation,

uxx + uyy − eututt = 0,

which has been discussed in the field of general relativity. The integrability of equations

of the form (3.1) was extensively investigated in [4] where the method of hydrodynamic

reductions [7] was used to create a classification of all integrable types of equation (3.1).

Details of this classification are given later.

The class of equations (3.1) is invariant under the group SL(4) of linear transforma-

tions of the dependent and independent variables xi, u, which constitute the natural

equivalence group of the problem. Transformations from the equivalence group act
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projectively on the space P3 of first order derivatives pi = uxi , and preserve conformal

class of the quadratic form

fij(p)dpidpj. (3.2)

Here we concentrate on the particular class of equations (3.1) which are associated with

quadratic complexes of lines in projective space P3. Recall that the Plücker coordinates

of a line through the points p = (p1 : p2 : p3 : p4) and q = (q1 : q2 : q3 : q4)

are defined as pij = piqj − pjqi. They satisfy the quadratic Plücker relation, Ω =

p23p14 + p31p24 + p12p34 = 0. A quadratic line complex is a three-parameter family

of lines in P3 specified by an additional homogeneous quadratic relation among the

Plücker coordinates,

Q(pij) = 0.

Quadratic line complexes can be classified according to their associated Segre symbol.

The details of how this is done are given later, where we show how Jessop classified

quadratic complexes into eleven canonical forms [9]. Fixing a point p in P3 and taking

the lines of the complex which pass through p one obtains a quadratic cone with vertex

at p. This family of cones supplies P3 with a conformal structure. Its equation can

be obtained by setting qi = pi + dpi and passing to a system of affine coordinates, say,

p4 = 1, dp4 = 0. Expressions for the Plücker coordinates take the form p4i = dpi, pij =

pidpj − pjdpi, i, j = 1, 2, 3, and the equation of the complex takes the so-called Monge

form,

Q(dpi, pidpj − pjdpi) = fij(p)dpidpj = 0.

This provides the required conformal structure (3.2), and the associated equation (3.1)

by putting uxi = pi, uxixj = dpidpj. The singular surface of the complex is defined as

the locus of points in P3 where the conformal structure (3.2) degenerates, det fij = 0.

This is also known as Kummer’s quartic with 16 double points. It can be viewed as

the locus where equation (3.1) changes its type. Notice that taking two different affine

projections of the same complex will lead to two seemingly different PDEs, but they will

be related by a change of variables or equivalence transformation, and are in fact the

same equation. Later we use [4] to check the integrability of these PDEs and thus come

up with a complete classification of PDEs associated with quadratic line complexes.

Quadratic line complexes have been extensively investigated in the classical works by

Plücker, Kummer, Klein and many other prominent geometers of 19-20th centuries.
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Lie studied certain classes of PDEs associated with line complexes. These included

first order PDEs governing surfaces which are tangential to the cones of the associated

conformal structure, and second order PDEs for surfaces whose asymptotic tangents

belong to a given line complex (as well as surfaces conjugate to a given complex).

Large part of this theory has nowadays become textbook material. We point out that

the correspondence between quadratic complexes and three-dimensional nonlinear wave

equations described above has not been discussed in the literature. Our first result gives

a characterisation of PDEs (3.1) associated with quadratic complexes.

The following conditions are equivalent:

(1) Equation (3.1)/conformal structure (3.2) is associated with a quadratic line complex.

(2) Equation (3.1) is linearly degenerate.

(3) Conformal structure (3.2) satisfies the condition

∂(kfij) = ϕ(kfij), (3.3)

here ∂k = ∂pk , ϕk is a covector, and brackets denote complete symmetrization in i, j, k ∈

{1, 2, 3}. The above equivalence holds in any dimension ≥ 3.

The equivalence of (1) and (3) is a well-known result [3]. Indeed, (3.3) means that the

conformal structure possesses a quadratic complex of null lines. The equivalence of (2)

and (3) is the statement of Theorem 1.

Based on the projective classification of quadratic complexes by their Segre types [9], we

obtain a complete list of eleven normal forms of linearly degenerate PDEs of the form

(3.1) (Theorem 2). For example, the most general linearly degenerate PDE corresponds

to the Segre symbol [111111]:

(a1 + a2u
2
x3

+ a3u
2
x2

)ux1x1 + (a2 + a1u
2
x3

+ a3u
2
x1

)ux2x2 + (a3 + a1u
2
x2

+ a2u
2
x1

)ux3x3+

2(αux3 − a3ux1ux2)ux1x2 + 2(βux2 − a2ux1ux3)ux1x3 + 2(γux1 − a1ux2ux3)ux2x3 = 0,

here ai, α, β, γ are constants such that α+β+γ = 0. The particular choice α = β = γ =

0, a1 = a2 = a3 = 1, leads to the equation for minimal hypersurfaces in the Euclidean

space E4,

(1 + u2x3 + u2x2)ux1x1 + (1 + u2x3 + u2x1)ux2x2 + (1 + u2x2 + u2x1)ux3x3+

−2ux1ux2ux1x2 − 2ux1ux3ux1x3 − 2ux2ux3ux2x3 = 0,
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while the choice a1 = a2 = a3 = 0 results in the nonlinear wave equation,

αux3ux1x2 + βux2ux1x3 + γux1ux2x3 = 0,

α + β + γ = 0.

From this list of eleven normal forms of linearly degenerate PDEs, we can look at the

geometry of the associated conformal structures. In our case, a conformal structure

is an example of a metric in P3, considered up to a scalar factor. We call this metric

conformally flat if it can be brought to constant coefficients by a change of variables,

modulo multiplication by a function. Details of how to calculate whether a metric

is conformally flat are given later, where we investigate the flatness of the conformal

structures and establish the following result. Although the subject is fairly classical, to

the best of our knowledge this is new information.

A quadratic complex defines a flat conformal structure if and only if its Segre symbol is

one of the following:

[111(111)]∗, [(111)(111)], [(11)(11)(11)],

[(11)(112)], [(11)(22)], [(114)], [(123)], [(222)], [(24)], [(33)].

Here the asterisk denotes a particular sub-case of [111(111)] where the matrix QΩ−1 has

eigenvalues (1, ε, ε2, 0, 0, 0), ε3 = 1.

This is our second main result (Theorem 3). Later we give a complete list of normal

forms of linearly degenerate integrable equations of the form (3.1). In general, the

integrability aspects of quasilinear wave equations (3.1) (not necessarily linearly degen-

erate) were investigated in [4], based on the method of hydrodynamic reductions [7]. It

was shown that the moduli space of integrable equations is 20-dimensional. For linearly

degenerate PDEs, the integrability is equivalent to the existence of a linear Lax pair of

the form

ψx2 = f(ux1 , ux2 , ux3 , λ)ψx1 , ψx3 = g(ux1 , ux2 , ux3 , λ)ψx1 ,

where λ is an auxiliary spectral parameter, so that (3.1) follows from the compatibility

condition ψx2x3 = ψx3x2 . It was pointed out in [4] that the flatness of the conformal

structure (3.2) is a necessary condition for integrability.
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A quadratic complex corresponds to an integrable PDE if and only if its Segre symbol

is one of the following:

[(11)(11)(11)], [(11)(112)], [(11)(22)], [(123)], [(222)], [(33)].

Modulo equivalence transformations (which are allowed to be complex-valued) this leads

to a complete list of normal forms of linearly degenerate integrable PDEs:

Segre symbol [(11)(11)(11)]

αux3ux1x2 + βux2ux1x3 + γux1ux2x3 = 0, α + β + γ = 0,

Segre symbol [(11)(112)]

ux1x1 + ux1ux2x3 − ux2ux1x3 = 0,

Segre symbol [(11)(22)]

ux1x2 + ux2ux1x3 − ux1ux2x3 = 0,

Segre symbol [(123)]

ux2x2 + ux1x3 + ux2ux3x3 − ux3ux2x3 = 0,

Segre symbol [(222)]

ux1x1 + ux2x2 + ux3x3 = 0,

Segre symbol [(33)]

ux1x3 + ux1ux2x2 − ux2ux1x2 = 0.

The canonical forms listed here are a statement of our third main result; Theorem

4. They are not new: in different contexts, they have appeared before in literature.

In particular, the same normal forms appeared in [11] in the alternative approach to

linear degeneracy based on the requirement of ‘non-singular’ structure of generalised

Gibbons-Tsarev systems which govern hydrodynamic reductions of PDEs in question.

The final section contains remarks about the Cauchy problem for linearly degenerate

PDEs. We observe that for some linearly degenerate PDEs (3.1), the coefficients fij

can be represented in the form fij = ηij + ϕij where η is a constant-coefficient matrix

with diagonal entries 1,−1,−1, while ϕij vanish at the ‘origin’ ux1 = ux2 = ux3 = 0.

PDEs of this type can be viewed as nonlinear perturbations of the linear wave equation.
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Under the so-called ‘null conditions’ of Klainerman, the paper [10] establishes global

existence of smooth solutions with small initial data for multi-dimensional nonlinear

wave equations. It remains to point out that both null conditions are automatically

satisfied for linearly degenerate PDEs: they follow from the condition (3.3) satisfied in

the vicinity of the origin. Our numerical simulations clearly demonstrate that solutions

with small initial data do not break down, and behave essentially like solutions to

the linear wave equation. For larger initial conditions we point out that there is no

breakdown of solutions, although this is not fully understood and would be an area for

further work. The results of this section were published in [1].

3.2 Integrability of quasilinear wave equations

Recall that the method of hydrodynamic reductions is a technique used to check the

integrability of differential equations and was first derived in [7], where it was applied

to the problem of integrability of (2+1)-dimensional quasilinear systems

ux3 + A(u)ux1 + B(u)ux2 = 0, (3.4)

where x1, x2, x3 are independant variables, u is an m-component column vector and

A(u), B(u) are m×m matrices. We now reproduce a result from [4], where integrability

conditions for the general equations of interest were first derived. Recall our equations

of interest; second order quasilinear PDEs in (2 + 1) dimensions of the form (3.1),

f11ux1x1 + f22ux2x2 + f33ux3x3 + 2f12ux1x2 + 2f13ux1x3 + 2f23ux2x3 = 0,

where u = u(x1, x2, x3) and fij = fij(ux1 , ux2 , ux3). We now apply the method of

hydrodynamic reductions to this general case. Putting a = ux1 , b = ux2 , c = ux3

transforms equation (3.4) into the required quasilinear form;

ax2 = bx1 , ax3 = cx1 , bx3 = cx2 ,

f11ax1 + f22bx2 + f33cx3 + 2f12ax2 + 2f13ax3 + 2f23bx3 = 0.

Now look for solutions of the form a = a(R1, .., Rn), b = b(R1, .., Rn), c = c(R1, .., Rn),

where Ri(x1, x2, x3) are arbitrary solutions of a pair of commuting equations of the form

(2.5). Substituting this ansatz into (3.4) and using (2.5) we get

bi = µiai, ci = λiai,
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together with the dispersion relation

D(λi, µi) = f11 + f22(µ
i)2 + f33(λ

i)2 + 2f12µ
i + 2f13λ

i + 2f23µ
iλi = 0,

where the lower indices denote derivative with respect to Ri (i.e. ai is equivalent to

aRi). Applying consistency conditions, that is, bij = bji and cij = cji we get

aij =
λij

λj − λi
ai +

λji
λi − λj

aj.

Differentiating the dispersion relation with respect to Rj and using the above we obtain

λij = (λi − λj)Bijaj, µij = (µi − µj)Bijaj,

where Bij are rational functions of λi, λj, µi, µj, the coefficients depend on fij and their

first order derivatives. We then have

aij = −(Bij +Bji)aiaj.

It now remains to calculate the consistency conditions λijk = λikj, µ
i
jk = µikj and

aij,k = aik,j. Notice that these conditions involve triples of indices only, thus prov-

ing that integrability is equivalent to the existence of 3−component reductions. These

relations are manifestly conformally invariant, and without any loss of generality one

can set, say, f22 = 1. The calculation of these conditions for the remaining coefficients

f11, f12, f13, f23, f33 is a very lengthy calculation and the result is 30 differential relations

for the coefficients fij which are linear in the second order derivatives. They can be

represented as

d2fij =
1

F
G(fkl, dfkl),

with F = det[fij], and G is a quadratic polynomial in both fkl and their first or-

der derivatives. Thus, we can see that these 30 equations depend only on fij and

their first order derivatives. One can show that these equations are in involution;

all consistency conditions are satisfied identically. Since the values of the five func-

tions f11, f12, f13, f23, f33 and their first order derivatives are not restricted by any ad-

ditional constraints, we can conclude that the moduli space of integrable equations is

5 + 3× 5 = 20-dimensional. Programming these equations into Maple, we are now able

to verify the integrability of any non-degenerate equation of the form (3.1).
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3.3 Linearly degenerate quasilinear wave equations

Here we explain what is meant by linear degeneracy for quasilinear wave equations.

First, consider the 2D case of our equations of interest,

f11(u1, u2)u11 + 2f12(u1, u2)u12 + f22(u1, u2)u22 = 0, ui = uxi . (3.5)

Setting u1 = p1, u2 = p2 we obtain the equivalent first order quasilinear representation

p12 = p21, f11(p
1, p2)p11 + 2f12(p

1, p2)p12 + f22(p
1, p2)p22 = 0. (3.6)

We call the second order PDE (3.5) linearly degenerate if this is the case for the cor-

responding quasilinear system (3.6). Recall the condition of linear degeneracy for a

general quasilinear system,

v2 + A(v)v1 = 0,

where v = (v1, ..., vn) is the vector of dependent variables, and A is an n × n matrix.

We call the system linearly degenerate if the directional derivative of the eigenvalues of

A along their corresponding eigenvectors is zero. In our 2-component case this can be

expressed as the condition

∇(trA)A = ∇(detA). (3.7)

Lemma. Applying the condition (3.7) to the system (3.6) with v = (p1, p2) we obtain

the conditions for linear degeneracy in the form

2∂1

(
f12
f11

)
+ ∂2

(
ln
f11
f22

)
= 0, 2∂2

(
f12
f22

)
+ ∂1

(
ln
f22
f11

)
= 0, ∂k = ∂pk . (3.8)

Proof:

From (3.6) we obtain our matrix A

A =

 0 −1

a
c

2b
c

 .

Where a = f11, b = f12, c = f22. Now imposing (3.7) we get two equations for a, b, c;

a

c
∂2

(
−2b

c

)
+ ∂1

(a
c

)
= 0,

∂1

(
2b

c

)
−
(

2b

c

)
∂2

(
2b

c

)
+ ∂2

(a
c

)
= 0.
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The result 2∂2
(
b
c

)
+ ∂1

(
ln c

a

)
= 0 follows directly from multiplying the first equation

by c
a
. Multiplication of the second equation by c

a
gives

2∂1

(
b

c

)
c

a
− 4

(
b

a

)
∂2

(
b

c

)
+ ∂2 ln

(a
c

)
= 0.

Substitution of the first equation for ∂2
(
b
c

)
gives the required result; 2∂1

(
b
a

)
+∂2

(
ln a

c

)
=

0. These equations can be integrated implicitly leading to the following form of linearly

degenerate second order PDEs:

Proposition. The general linearly degenerate PDE of the form (3.5) can be represented

in the form

r1u11 − (1 + r1r2)u12 + r2u22 = 0.

Here the functions r1(u1, u2) and r2(u1, u2) are defined by implicit relations

f(r1) = u2 − r1u1, g(r2) = u1 − r2u2,

where f, g are two arbitrary functions.

Proof:

Setting
f11
f12

= −2
r1

1 + r1r2
,
f22
f12

= −2
r2

1 + r1r2
,

and substituting into (3.8) we get, after simplification

− r11
(r1)2

− r21 +
r12
r1
− r22
r2

= 0, − r22
(r2)2

− r12 +
r21
r2
− r11
r1

= 0, rij = ∂jr
i.

This leads to a pair of uncoupled Hopf equations for r1 and r2, ∂1r
1 +r1∂2r

1 = 0, ∂2r
2 +

r2∂1r
2 = 0. Their implicit solutions lead to the required result.

Remark 1. The choice f =
√
r1, g =

√
r2 leads to the so-called Born-Infeld equation,

u22u11 − (1 + 2u1u2)u12 + u21u22 = 0,

while the complex choice f = i
√

1 + (r1)2, g = i
√

1 + (r2)2 leads to the (elliptic)

equation for minimal surfaces,

(1 + u22)u11 − 2u1u2u12 + (1 + u21)u22 = 0.

Remark 2. The conditions (3.8) can be represented in tensorial form,

∂(kfij) = φ(kfij), (3.9)
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here ∂k = ∂pk , φk is a covector, and brackets denote a complete symmetrization in the

indices i, j, k which take values 1, 2. Explicitly, this gives

∂1f11 = φ1f11, ∂2f22 = φ2f22,

∂2f11 + 2∂1f12 = φ2f11 + 2φ1f12, ∂1f22 + 2∂2f12 = φ1f22 + 2φ2f12,

and the elimination of φ1, φ2 from the first two relations lead to the conditions of linear

degeneracy (3.8).

Now consider our 3D case, we say that a PDE of the form (3.1),

f11ux1x1 + f22ux2x2 + f33ux3x3 + 2f12ux1x2 + 2f13ux1x3 + 2f23ux2x3 = 0,

is linearly degenerate if all its traveling wave reductions to two dimensions are linearly

degenerate in the 2D sense as described above. More precisely, setting u(x1, x2, x3) =

u(ξ1, ξ2), where ξ1 = x1 + αx3, ξ2 = x2 + βx3, and substituting into (3.1) we get

(f11+2αf13+α
2f33)uξ1ξ1+2(f12+αf23+βf13+αβf33)uξ1ξ2+(f22+2βf23+β

2f33)uξ2ξ2 = 0.

(3.10)

We require that (3.10) is linearly degenerate for all α, β in the sense of the 2D case.

The requirement of linear degeneracy for any α, β imposes strong constraints on the

coefficients fij. They are, in tensorial form;

∂1f11 = φ1f11, ∂2f22 = φ2f22, ∂3f33 = φ3f33,

∂2f11 + 2∂1f12 = φ2f11 + 2φ1f12, ∂1f22 + 2∂2f12 = φ1f22 + 2φ2f12,

∂3f11 + 2∂1f13 = φ3f11 + 2φ1f13, ∂1f33 + 2∂3f13 = φ1f33 + 2φ3f13,

∂2f33 + 2∂3f23 = φ2f33 + 2φ3f23, ∂3f22 + 2∂2f23 = φ3f22 + 2φ2f23

∂1f23 + ∂2f13 + ∂3f12 = φ1f23 + φ2f13 + φ3f12.

This is in fact the first main result of this study, and shows how linearly degenerate

PDEs in 3D are related to quadratic line complexes.

3.4 Quadratic line complexes

In this section we introduce a notion from projective geometry, allowing us to look at

the integrability of linearly degenerate PDEs. This section is based on [18].
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To begin with, recall the concept of projective space;

Definition. In projective geometry, real projective space Pn(R) is defined as

Pn(R) := (Rn+1\{0}),∼

with the equivalence relation (x0, ..., xn) ∼ (λx0, ..., λxn) where xi ∈ R and λ is any

non-zero real number. In other words, projective space Pn is the set of all real n + 1

tuples defined up to a common multiple, excluding the zero tuple. Equivalently, it can

be thought of as the set of all lines in Rn+1 passing through the origin (0, ..., 0).

Consider a line r in P3 passing through the points p = (p1 : p2 : p3 : p4) and q = (q1 :

q2 : q3 : q4). The so called Plücker coordinates pij are given by the six 2× 2 minors of

the matrix  p1 p2 p3 p4

q1 q2 q3 q4

 .

Explicitly, pij = piqj − pjqi. From linear algebra we know that the determinant of a

matrix with at least two common rows or columns is zero. We use this fact to see that

the pij are not arbitrary, rather they satisfy a quadratic relation∣∣∣∣∣∣∣∣∣∣∣∣

p1 p2 p3 p4

q1 q2 q3 q4

p1 p2 p3 p4

q1 q2 q3 q4

∣∣∣∣∣∣∣∣∣∣∣∣
= 2(p12p34 + p13p42 + p14p23) = 0.

From the previous result, we see that the Plücker coordinates satisfy the relation

F (pij) = p12p34 + p13p42 + p14p23 = 0. (3.11)

Proposition. There exists a bijection between the Plücker coordinates and lines in P3.

Proof:

We begin by showing that the ratios of the pij depend only on the line r, not the points

p, q taken on r. Indeed, if we take two other distinct points p′, q′ on r where

(p′)i = λpi + µqi, (q′)i = λ′pi + µ′qi, i = 1, 2, 3, 4, λµ′ − λ′µ 6= 0,

then we find that

(p′)ij =

∣∣∣∣∣∣ λp
i + µqi λpj + µqj

λ′pi + µ′qi λ′pj + µ′qj

∣∣∣∣∣∣ = (λµ′ − λ′µ)pij.
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So we have shown that to each line in P3 there are associated six numbers pij defined

up to a common factor that are not all zero. We can then associate each line in P3 to

a point in P5.

Now, let p12, p13, p14, p23, p24, p34 be arbitrary Plücker coordinates, satisfying (3.11) and

consider the points p and q in P3

p = (0 : p12 : p13 : p14), q = (p12 : 0 : p23 : p24).

Suppose that p12 6= 0 so that p 6= q and consider the line rpq formed by p and q. The

Plücker coordinates (pij)′ of this line are given by the second order minors of the matrix 0 p12 p13 p14

p21 0 p23 p24

 .

Using the fact that pij = −pji and bearing in mind equation (3.11), we find that

(p12)′ = −p12p21 = (p12)2,

(p13)′ = −p21p13 = p12p13,

(p14)′ = −p21p14 = p12p14,

(p23)′ = p12p23,

(p24)′ = p12p24,

(p34)′ = p13p24 − p14p23 = p13p24 + p14p32 = p12p34.

Notice that p12 is a common factor and so the (pij)′ are proportional to pij. This shows

that the line rpq is determined by the numbers pij. Thus we have shown that there

exists a bijection between lines in P3 and the Plücker coordinates pij.

In P5 we can now define a point as (p12 : p13 : p14 : p23 : p24 : p34), where the equation

(3.11) represents a four dimensional subset of P5, called the Plücker quadric. All the

points of this quadric are in bijective correspondence with lines in P3. The lines in P3

whose coordinates pij satisfy an extra equation

G(pij) = 0, (3.12)

where G is a homogeneous polynomial of degree n, gives an algebraic complex of degree

n. We say that (3.12) is the equation of the complex. In P5 it can be thought of as the
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intersection of the Plücker quadric by the surface given by equation (3.12). For n = 1

we have a linear complex, for n = 2 we have a quadratic complex.

Remark. The lines of an algebraic complex of order n that pass through a point p ∈ P3

form an algebraic cone of order n having vertex at p.

For a quadratic complex, fixing a point p in P3 and taking the lines of the complex

which pass through p, one obtains a quadratic cone with vertex at p. The family of

these cones supplies P3 with a conformal structure. Its equation can be obtained by

setting qi = pi + dpi and passing to a system of affine coordinates, say, p4 = 1, dp4 = 0.

The expressions for the Plücker coordinates take the form p4i = dpi, pij = pidpj−pjdpi,

i, j = 1, 2, 3 and the equation of the complex takes the so-called Monge form,

Q(dpi, pidpj − pjdpi) = fijdp
idpj = 0.

It is important to notice that, when passing to a system of affine coordinates, any

projection can be used, i.e. setting p1 = 1, dp1 = 0 is equivalent. We now make the

most of a useful result from projective geometry.

Lemma. Let Q = fijdp
idpj be the Monge form of a quadratic complex defined as before.

The following are equivalent.

(a) ∂(kfij) = φ(kfij).

(b) A manifold of cones is generated by a quadratic complex in P3.

This is a known result and the proof is omitted here. Those interested in the proof can

find it in [3], page 282. What this Lemma is basically saying is that if you take a line

in P3, then all the quadratic cones with a vertex on this line in fact lie tangential to

this line.

We now associate a PDE to the given Monge form of quadratic complex in the following

way; make the substitution uxi = pi and uxixj = dpidpj, so that we obtain a PDE of

our required form,

f11u11 + f22u22 + f33u33 + 2f12u12 + 2f13u13 + 2f23u23 = 0, uij = uxixj .

Notice here that two different affine projections of the complex will give two different

PDEs, but they will be equal via a change of variables or equivalence transformation. In

other words, in the world of the quadratic complexes we have different projections, in the
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world of PDEs we have the equivalence relation. From the Monge form of the complex

we can also find the associated Kummer surface. In algebraic geometry, a Kummer

quartic surface, first studied by Kummer (1864), is an irreducible algebraic surface of

degree 4 in P3. In the context of quadratic complexes, it is defined as det(fij) = 0.

It can be described as the boundary when the associated PDE passes from hyperbolic

to being elliptic, or vice versa. It turns out that looking at the Kummer surface can

give interesting insights into the integrability of the associated PDE, in fact, in all

integrable cases the associated Kummer surface degenerates into a collection of planes

in P3. However, we see that the converse is not true. Looking at the Kummer surface

is also a good way of finding out if two PDEs are equivalent or not; if the conformal

structures of the respective PDEs admit different Kummer surfaces, then they are not

related via an equivalence relation. The process of deriving a PDE from a quadratic

complex is best illustrated through looking at some examples.

Example 1. The so-called tetrahedral complex, see [9], chapter 7, is defined by the

equation Q = b1p
41p23 + b2p

42p31 + b3p
43p12 = 0. Its Monge form is

b1dp
1(p2dp3 − p3dp2) + b2dp

2(p3dp1 − p1dp3) + b3dp
3(p1dp2 − p2dp1) = 0,

or, equivalently,

(b3 − b2)p1dp2dp3 + (b1 − b3)p2dp1dp3 + (b2 − b1)p3dp1dp2 = 0,

which corresponds to the integrable dispersionless Hirota equation,

(b3 − b2)u1u23 + (b1 − b3)u2u13 + (b2 − b1)u3u12 = 0.

The associated Kummer surface is

det


0 (b1 − b2)u3 (b3 − b1)u2

(b1 − b2)u3 0 (b2 − b3)u1
(b3 − b1)u2 (b2 − b3)u1 0

 = −2(b1−b2)u3(b2−b3)u1(−b3+b1)u2 = 0.

We can see that this is a product of four planes: u1 = 0, u2 = 0, u3 = 0, plus the plane

at infinity.

Example 2. The so-called special complex, see [9], chapter 7, is defined by the equation

Q = (p12)2 + (p13)2 + (p23)2 − (p14)2 − (p24)2 − (p34)2 = 0. Its Monge form is

(p1dp2 − p2dp1)2 + (p1dp3 − p3dp1)2 + (p2dp3 − p3dp2)2 − (dp1)2 − (dp2)2 − (dp3)2 = 0,
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or, equivalently,

((p2)2 + (p3)2 − 1)(dp1)2 + ((p1)2 + (p3)2 − 1)(dp2)2 + ((p1)2 + (p2)2 − 1)(dp3)2

−2p1p2dp1dp2 − 2p1p3dp1dp3 − 2p2p3dp2dp3 = 0.

It corresponds to the equation

(u22+u23−1)u11+(u21+u23−1)u22+(u21+u22−1)u33−2u1u2u12−2u1u3u13−2u2u3u23 = 0.

The associated Kummer surface is the sphere (p1)2 + (p2)2 + (p3)2 = 1 (taken with

multiplicity two). The external part of the sphere is the domain of hyperbolicity of our

equation: quadratic cones of the complex are tangential to the sphere. We point out

that the equation for minimal surfaces is not integrable in dimensions higher than two.

We now present our first main result of this study.

Theorem 1 A PDE (3.1) is linearly degenerate if and only if the corresponding con-

formal structure fijdp
idpj satisfies the constraint

∂(kfij) = φ(kfij), (3.13)

here ∂k = ∂pk , φk is a covector, and brackets denote a complete symmetrisation in the

indices i, j, k which take values 1, 2, 3.

Proof:

Let us seek traveling wave reductions in the form u(x1, x2, x3) = u(ξ, η)+αx1+βx2+γx3

where ξ = x1 + λx3, η = x2 + µx3, and α, β, γ, λ, µ are arbitrary constants. We have

ux1 = uξ + α, ux2 = uη + β, ux3 = λuξ + µuη + γ,

as well as

ux1x1 = uξξ, ux1x2 = uξη, ux2x2 = uηη,

ux1x3 = λuξξ + µuξη, ux2x3 = λuξη + µuηη, ux3x3 = λ2uξξ + 2λµuξη + µ2uηη.

The reduced equation (3.1) takes the form

auξξ + 2buξη + cuηη = 0,

where

a = f11 + 2λf13 + λ2f33, b = f12 + λf23 + µf13 + λµf33, c = f22 + 2µf23 + µ2f33,

53



we point out that the coefficients a, b, c are now viewed as functions of uξ and uη. For

the reduced equation, the conditions of linear degeneracy take the form

∂uξa = ϕ1a, ∂uηc = ϕ2c, ∂uηa+ 2∂uξb = ϕ2a+ 2ϕ1b, ∂uξc+ 2∂uηb = ϕ1c+ 2ϕ2b.

Let us take the first condition, ∂uξa = ϕ1a. The calculation of ∂uξa gives

∂uξa = ∂1f11 + λ∂3f11 + 2λ(∂1f13 + λ∂3f13) + λ2(∂1f33 + λ∂3f33),

which is polynomial in λ of degree three. We point out that, due to the presence of

arbitrary constants α, β, γ in the expressions for ux1 , ux2 , ux3 , the coefficients of this

polynomial can be viewed as independent of λ, µ. Thus, ϕ1 must be linear in λ, so that

we can set ϕ1 → ϕ1+λϕ3 (keeping the same notation ϕ1 for the first term). Ultimately,

the relation ∂uξa = ϕ1a takes the form

∂1f11 + λ∂3f11 + 2λ(∂1f13 + λ∂3f13) + λ2(∂1f33 + λ∂3f33) =

(ϕ1 + λϕ3)(f11 + 2λf13 + λ2f33).

Equating terms at different powers of λ we obtain four relations,

∂1f11 = ϕ1f11, ∂3f33 = ϕ3f33,

∂3f11 + 2∂1f13 = ϕ3f11 + 2ϕ1f13, ∂1f33 + 2∂3f13 = ϕ1f33 + 2ϕ3f13.

Similar analysis of the three remaining conditions of linear degeneracy of the reduced

equation (where one should set ϕ2 → ϕ2 + µϕ3) leads to the full set (3.3) of conditions

of linear degeneracy in 3D:

∂1f11 = ϕ1f11, ∂2f22 = ϕ2f22, ∂3f33 = ϕ3f33,

∂2f11 + 2∂1f12 = ϕ2f11 + 2ϕ1f12, ∂1f22 + 2∂2f12 = ϕ1f22 + 2ϕ2f12,

∂3f11 + 2∂1f13 = ϕ3f11 + 2ϕ1f13, ∂1f33 + 2∂3f13 = ϕ1f33 + 2ϕ3f13,

∂2f33 + 2∂3f23 = ϕ2f33 + 2ϕ3f23, ∂3f22 + 2∂2f23 = ϕ3f22 + 2ϕ2f23,

∂1f23 + ∂2f13 + ∂3f12 = ϕ1f23 + ϕ2f13 + ϕ3f12.

On elimination of ϕ’s, these conditions give rise to seven first order differential con-

straints for fij. This finishes the proof of Theorem 1.
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This theorem provides a link between the world of the quadratic complex and our

linearly degenerate PDEs. It directly follows from this theorem that there is a bijection

between quadratic line complexes and linearly degenerate PDEs of our type. Now, [9]

provides a systematic classification of these complexes, so using this we are able to come

up with a classification of integrable linearly degenerate PDEs of our type.

Side note 1: Classification of quadratic line complexes, Jessop 1903

In this section we go into some detail of how Jessop categorised quadratic complexes

and see that the general equation for the complex can be reduced to eleven different

canonical forms. Recall that a quadratic line complex is defined as the intersection of

the Plücker quadric by the hyperquadric Q, where Q is a quadratic relation between

the Plücker coordinates pij. The general form of a quadratic complex is then given as

α(p12)2 + β(p13)2 + ... = 0

where, including all mixed terms, there are 21 terms in total. Now, we associate sym-

metric 6×6 matrices to the equations for the Plücker quadric and the quadratic complex.

The equation for the Plücker quadric, 2(p12p34 + p13p42 + p14p23) = 0, is represented as

p12 p13 p14 p23 p42 p34

p12 1

p13 1

p14 1

p23 1

p42 1

p34 1

We now take the 6× 6 matrix of entries and put 0 for a blank space. For the Plücker

quadric we call this matrix Ω. Now take the equation of the complex and proceed in

the same way, call the associated matrix Q. Now calculate QΩ−1 and bring it to Jordan

normal form. From the Jordan normal form we extract the so-called Segre symbol of

the complex, this is given by the number of Jordan blocks of the matrix. For example,

two 3 × 3 Jordan blocks gives Segre symbol [33], one 2 × 2 block and one 4 × 4 block

gives Segre symbol [24]. A single 2 × 2 block and four single 1 × 1 blocks gives Segre

symbol [21111]. In addition, if the eigenvalues of different blocks are the same, then

we use the rounded brackets notation (refined Segre symbol). So, again if we have a
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lone 2 × 2 block and four single blocks, with two of the single blocks equal, then this

has Segre symbol [211(11)]. The derivation of the Segre symbol from a given quadratic

complex is best seen through an example.

Example. Recall from earlier, the so-called special complex, see [9], chapter 7, is

defined by the equation Q = (p12)2 + (p13)2 + (p23)2 − (p14)2 − (p24)2 − (p34)2 = 0. The

matrix Q is therefore 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


.

Calculating QΩ−1 and bringing to Jordan normal form we get

1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


.

We can see that the Segre symbol in this case is [(111)(111)]. Jessop used a similar

system and classified the general equation for the quadratic complex. He found that

there were eleven canonical forms given by eleven different Segre symbols. Some of the

forms have sub-cases that occur when certain Jordan blocks have the same eigenvalues,

for more details see [9]. We can now take these eleven canonical forms, derive the

corresponding linearly degenerate PDEs and thus come up with a complete list of

linearly degenerate equations of our type.

Side note 2: Conformal flatness of a metric

Here we go into some detail of how to check whether a metric is conformally flat. Recall

that the family of quadratic cones generated by a given quadratic complex endows P3

with a conformal structure fijdp
idpj.

Definition We call the metric fijdp
idpj conformally flat if, after multiplication by some
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function, an appropriate change of variables can be made such that the coefficients are

made constant.

Example. Take the metric

αp1dp2dp3 + βp2dp1dp3 + γp3dp1dp2.

If we multiply through by 1
p1p2p3

we get

α
dp2dp3

p2p3
+ β

dp1dp3

p1p3
+ γ

dp1dp2

p1p2
.

We can now use the fact that dpi

pi
= d ln pi, and make the change of variables p̃i = ln pi

so that we get

αdp̃2dp̃3 + βdp̃1dp̃3 + γdp̃1dp̃2.

So we have been able to bring this metric to constant coefficients. Therefore, it is

conformally flat.

Lemma. If a PDE of the form (3.1) is integrable, then the corresponding conformal

structure is conformally flat.

The proof to this Lemma is not presented here, but can be found in [4]. This result

highlights the links between conformal geometry and integrable systems. Before this

study, we conjectured that there is a one-to-one correspondence between integrable,

linearly degenerate PDEs and conformally flat metrics. In other words, if the conformal

structure of a given quadratic complex is conformally flat, then the associated PDE is

integrable. However, as we see later, this is not universally the case.

We need a systematic way of working out whether a metric is conformally flat or not, we

can then apply this method to each of the eleven cases and come up with a classification.

We do this by calculating the Cotton tensor of the metric. There is a classical result

from differential geometry that states that, for any metric in P3, the vanishing of the

Cotton tensor is equivalent to the metric being conformally flat. The Cotton tensor is

calculated in the following way [25].

Take the symmetric matrix of coefficients fij from the conformal structure. We denote

fkl the entries of the matrix inverse (fij)
−1 and calculate the Levi-Civita connection,

Γijk =
1

2

∑
r

f ir[∂jfrk + ∂kfjr − ∂rfjk].
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Next calculate the Riemann curvature tensor

Ri
jkl = Γijl,k − Γijk,l + ΓmjlΓ

i
mk − ΓmjkΓ

i
ml.

Next we sum over i to get the Ricci tensor

Rjl = Ri
jil.

Finally, we calculate the scalar curvature

R = f ikRki,

and form the result Rij − 1
4
Rfij. We can now calculate the Cotton tensor, and the

requirement that is equals zero is equivalent to

∇k(Rij −
1

4
Rfij) = ∇j(Rik −

1

4
Rfik), ∀i, j, k.

In reality, it is impossible to calculate this by hand, we used the computer program

Maple to calculate the Cotton tensor for all eleven cases of the quadratic complex.

3.5 Normal forms of quadratic complexes and lin-

early degenerate PDEs

In this section we utilise the projective classification of quadratic line complexes fol-

lowing [9]. Recall that quadratic complexes are characterised by the so-called Segre

symbols which can be derived from their Monge form. The corresponding conformal

structures result from the equation of the complex upon setting pij = pidpj − pjdpi,

p4 = 1, dp4 = 0, as explained in the previous section (in some cases it will be more

convenient to use different affine projections, say, p1 = 1, dp1 = 0: this will be indicated

explicitly where appropriate). Here is the summary of our results. Theorem 2 gives

a complete list of normal forms of linearly degenerate PDEs based on the classifica-

tion of quadratic complexes (for simplicity, we use the notation uxi = ui, uxixj = uij,

etc). Theorem 3 provides a classification of complexes with the flat conformal structure

fijdp
idpj, and Theorem 4 characterises complexes corresponding to integrable PDEs.

Theorems 2-4 will be proved simultaneously by going through the list of normal forms

of quadratic complexes.
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Theorem 2 Any linearly degenerate PDE of the form (3.1) can be brought by an equiv-

alence transformation to one of the eleven canonical forms, labeled by Segre symbols of

the associated quadratic complexes.

Case 1: Segre symbol [111111]

(a1 + a2u
2
3 + a3u

2
2)u11 + (a2 + a1u

2
3 + a3u

2
1)u22 + (a3 + a1u

2
2 + a2u

2
1)u33+

2(αu3 − a3u1u2)u12 + 2(βu2 − a2u1u3)u13 + 2(γu1 − a1u2u3)u23 = 0,

α + β + γ = 0.

Case 2: Segre symbol [11112]

(λu22 + µu23 + 1)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+

2(αu3 − λu1u2)u12 + 2(βu2 − µu1u3)u13 + 2γu1u23 = 0,

α + β + γ = 0.

Case 3: Segre symbol [1113]

(λu22 + µu23 + 2u3)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+

2(µu3 − λu1u2 − 1)u12 + 2(βu2 − µu1u3 − u1)u13 + 2γu1u23 = 0,

µ+ β + γ = 0.

Case 4: Segre symbol [1122]

(λu22 + 1)u11 + (λu21 + 4)u22 + λu33 + 2(αu3 − λu1u2)u12 + 2βu2u13 + 2γu1u23 = 0,

α + β + γ = 0.

Case 5: Segre symbol [114]

λu11 + (λu23 + 4)u22 + (λu22 − 2u1)u33 + 2αu3u12 + 2(u3 − αu2)u13 − 2λu2u3u23 = 0.

Case 6: Segre symbol [123]

λu11+(λu23+4)u22+[λu22+2u2]u33+2αu3u12+2(1−λu2)u13+2(γu1−λu2u3−u3)u23 = 0,

α− λ+ γ = 0.

Case 7: Segre symbol [222]
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Subcase 1:

u11 + u22 + u33 + 2αu3u12 + 2βu2u13 + 2γu1u23 = 0,

Subcase 2:

(u22 + u23)u11 + (u21 + u23)u22 + (u21 + u22)u33

+2(αu3 − u1u2)u12 + 2(βu2 − u1u3)u13 + 2(γu1 − u2u3)u23 = 0,

α + β + γ = 0.

Case 8: Segre symbol [15]

λu11 + (λu23 − 2u3)u22 + (λu22 − 4u1)u33 + 2(λu3 + 1)u12 + 2(2u3 − λu2)u13

+2(u2 − λu2u3)u23 = 0.

Case 9: Segre symbol [24]

Subcase 1:

u11 + u22 − 2u1u33 + 2λu3u12 + 2(u3 − λu2)u13 = 0.

Subcase 2:

u23u22 + (1 + u22)u33 + 2u12 + 2λu2u13 − 2(λu1 + u2u3)u23 = 0.

Case 10: Segre symbol [33]

λu11 + (λu23 − 2u3)u22 + (λu22 − 2u2)u33 + 2(λu3 + 1)u12

+2(λu2 + 1)u13 − 2(2λu1 + λu2u3 − u2 − u3)u23 = 0.

Case 11: Segre symbol [6]

Subcase 1:

2u3u11 + u22 + 2u2u33 − 2u1u13 − 2u3u23 = 0.

Subcase 2:

(u23 − 2u2)u11 − 2u3u22 + u21u33 + 2u1u12 − 2u1u3u13 + 2u2u23 = 0.

Calculating the Cotton tensor (whose vanishing is responsible for conformal flatness

in three dimensions) we obtain a complete list of quadratic complexes with the flat

conformal structure. Recall that the flatness of fijdp
idpj is a necessary condition for
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integrability of the corresponding PDE [4]. We observe that the requirement of confor-

mal flatness imposes further constraints on the parameters appearing in cases 1-11 of

Theorem 2, which are characterised by certain coincidences among eigenvalues of the

corresponding Jordan normal forms of QΩ−1 (some Segre types do not possess confor-

mally flat specialisations at all). In what follows we label conformally flat sub-cases

by their ‘refined’ Segre symbols, e.g., the symbol [(11)(11)(11)] denotes the sub-case of

[111111] with three pairs of coinciding eigenvalues, the symbol [(111)(111)] denotes the

sub-case with two triples of coinciding eigenvalues, etc, see [9]. Although the subject

sounds very classical, we were not able to find a reference to the following result.

Theorem 3 A quadratic complex defines a flat conformal structure if and only if its

Segre symbol is one of the following:

[111(111)]∗, [(111)(111)], [(11)(11)(11)],

[(11)(112)], [(11)(22)], [(114)], [(123)], [(222)], [(24)], [(33)].

Here the asterisk denotes a particular sub-case of [111(111)] where the matrix QΩ−1 has

eigenvalues (1, ε, ε2, 0, 0, 0), ε3 = 1. Modulo equivalence transformations this gives the

following list of normal forms of the associated PDEs:

Segre symbol [111(111)]∗

(1− 2u2u3)u11 + (1− 2u1u3)u22 + 2(u1 − u2)u33+

2(1 + u1u3 + u2u3)u12 + 2(u1u2 − u3 − u22)u13 + 2(u1u2 + u3 − u21)u23 = 0,

Segre symbol [(111)(111)]

(u22+u23−1)u11+(u21+u23−1)u22+(u21+u22−1)u33−2u1u2u12−2u1u3u13−2u2u3u23 = 0,

Segre symbol [(11)(11)(11)]

αu3u12 + βu2u13 + γu1u23 = 0, α + β + γ = 0,

Segre symbol [(11)(112)]

u11 + u1u23 − u2u13 = 0,
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Segre symbol [(11)(22)]

u12 + u2u13 − u1u23 = 0,

Segre symbol [(114)]

u22 + u1u33 − u3u13 = 0,

Segre symbol [(123)]

u22 + u13 + u2u33 − u3u23 = 0,

Segre symbol [(222)]

u11 + u22 + u33 = 0,

Segre symbol [(24)]

u23u22 + (1 + u22)u33 + 2u12 − 2u2u3u23 = 0,

Segre symbol [(33)]

u13 + u1u22 − u2u12 = 0.

Since conformal flatness is a necessary condition for integrability, a complete list of

linearly degenerate integrable PDEs can be obtained by going through the list of The-

orem 3 and either calculating the integrability conditions as derived in [4], or verifying

the existence of a Lax pair. A direct computation shows that the requirement of inte-

grability eliminates Segre types [111(111)]∗, [(111)(111)], [(114)], [(24)], leading to the

following result:

Theorem 4 A linearly degenerate PDE of the form (3.1) is integrable if and only if

the corresponding complex has one of the following Segre types:

[(11)(11)(11)], [(11)(112)], [(11)(22)], [(123)], [(222)], [(33)].

Modulo equivalence transformations, this leads to the five canonical forms of linearly

degenerate integrable PDEs (we exclude the linearisable case with Segre symbol [(222)]).

For each integrable equation we calculated its Lax pair in the form [X, Y ] = 0 where X

and Y are parameter-dependent vector fields which commute modulo the corresponding

equation:
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Segre symbol [(11)(11)(11)]

αu3u12 + βu2u13 + γu1u23 = 0,

α + β + γ = 0. Setting α = a − b, β = b − c, γ = c − a we obtain the Lax pair:

X = ∂x3 − λ−b
λ−c

u3
u1
∂x1 , Y = ∂x2 − λ−b

λ−a
u2
u1
∂x1.

Segre symbol [(11)(112)]

u11 + u1u23 − u2u13 = 0,

Lax pair: X = ∂x1 − λu1∂x3 , Y = ∂x2 + (λ2u1 − λu2)∂x3.

Segre symbol [(11)(22)]

u12 + u2u13 − u1u23 = 0,

Lax pair: X = λ∂x1 − u1∂x3 , Y = (λ− 1)∂x2 − u2∂x3.

Segre symbol [(123)]

u22 + u13 + u2u33 − u3u23 = 0,

Lax pair: X = ∂x2 + (λ− u3)∂x3 , Y = ∂x1 + (λ2 − λu3 + u2)∂x3.

Segre symbol [(33)]

u13 + u1u22 − u2u12 = 0,

Lax pair: X = λ∂x1 − u1∂x2 , Y = ∂x3 + (λ− u2)∂x2 .

Remark 1 The five canonical forms from Theorem 4 are not new: in different contexts,

they have appeared before [11]. The non-equivalence of the above PDEs can also be

seen by calculating the Kummer surfaces of the corresponding line complexes. In all

cases the Rummer surfaces degenerate into a collection of planes:

– case 1: four planes in general position, one of them at infinity.

– case 2: two double planes, one of them at infinity.

– case 3: three planes, one of them double, with the double plane at infinity.

– case 4: one quadruple plane at infinity.

– case 5: two planes, one of them triple, with the triple plane at infinity.

Remark 2 Although all equations from Theorem 3 are not related via the equivalence

group SL(4), there may exist more complicated Bäcklund-type links between them.
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Thus, let α, β, γ and α̃, β̃, γ̃ be two triplets of numbers such that α + β + γ = 0 and

α̃+ β̃+ γ̃=0. Consider the system of two first order relations for the functions u and v,

αγ̃v1u3 − γα̃v3u1 = 0, αβ̃v2u3 − βα̃v3u2 = 0.

Eliminating v (that is, solving the above relations for v1 and v2 and imposing the

compatibility condition v12 = v21), we obtain the second order equation αu3u12 +

βu2u13 + γu1u23 = 0. Similarly, eliminating u we obtain the analogous equation for v,

α̃v3v12 + β̃v2v13 + γ̃v1v23 = 0. This construction first appeared in [19] in the context

of Veronese webs in 3D. It shows that any two integrable equations of the Segre type

[(11)(11)(11)] are related by a Bäcklund transformation. Similarly, the relations

(λ− 1)v2 − u2v3 = 0, λv1 − u1v3 = 0

provide a Bäcklund transformation between the equation for u, u12 +u2u13−u1u23 = 0,

and the equation for v, v3v12+(λ−1)v2v13−λv1v23 = 0, thus establishing the equivalence

of integrable equations of the types [(11)(22)] and [(11)(11)(11)].

Proof of Theorems 2–4:

We follow the classification of quadratic complexes as presented in [9], p. 206-232. This

constitutes eleven canonical forms which are analysed case-by-case below. In each case

we calculate the conditions of vanishing of the Cotton tensor (responsible for conformal

flatness in three dimensions), as well as the integrability conditions as derived in [4].

Recall that conformal flatness is a necessary condition for integrability: this requirement

already leads to a compact list of conformally flat sub-cases which can be checked for

integrability by calculating the Lax pair. Our results are summarised as follows.

Case 1 (generic): Segre symbol [111111]. The equation of the complex is

λ1(p
12+p34)2−λ2(p12−p34)2+λ3(p13+p42)2−λ4(p13−p42)2+λ5(p14+p23)2−λ6(p14−p23)2 = 0,

here λi are the eigenvalues of QΩ−1. Its Monge form is

[a1+a2(p
3)2+a3(p

2)2](dp1)2+[a2+a1(p
3)2+a3(p

1)2](dp2)2+[a3+a1(p
2)2+a2(p

1)2](dp3)2+

2[αp3 − a3p1p2]dp1dp2 + 2[βp2 − a2p1p3]dp1dp3 + 2[γp1 − a1p2p3]dp2dp3 = 0,

where a1 = λ5 − λ6, a2 = λ3 − λ4, a3 = λ1 − λ2, α = λ5 + λ6 − λ3 − λ4, β =

λ1 +λ2−λ5−λ6, γ = λ3 +λ4−λ1−λ2, notice that α+ β+ γ = 0. The corresponding
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PDE takes the form

(a1 + a2u
2
3 + a3u

2
2)u11 + (a2 + a1u

2
3 + a3u

2
1)u22 + (a3 + a1u

2
2 + a2u

2
1)u33+

2(αu3 − a3u1u2)u12 + 2(βu2 − a2u1u3)u13 + 2(γu1 − a1u2u3)u23 = 0,

which is the 1st case of Theorem 2. The analysis of integrability/conformal flatness

leads to the four subcases, depending on how many a’s equal zero.

Sub-case 1: a1 = a2 = a3 = 0. This sub-case, which corresponds to the so-called

tetrahedral complex, is integrable and conformally flat, leading to the nonlinear wave

equation [19],

αu3u12 + βu2u13 + γu1u23 = 0.

The Kummer surface of this complex consists of four planes in P3 in general position.

The lines of the complex intersect these planes at four points with constant cross-ratio

(depending on α, β, γ). The corresponding affinor QΩ−1 has three pairs of coinciding

eigenvalues. The notation for such complexes is [(11)(11)(11)].

Sub-case 2: a1 = a2 = 0. This sub-case possesses no non-degenerate integrable spe-

cialisations. The conditions of conformal flatness imply α = −2β, a3 = ±β. For any

choice of the sign the corresponding affinor QΩ−1 has two triples of coinciding eigen-

values. Complexes of this type are denoted [(111)(111)], and are known as ‘special’:

they consist of tangent lines to a non-degenerate quadric surface in P 3. A particular

example of this type is the PDE for minimal surfaces in Minkowski space.

Sub-case 3: a1 = 0. The further analysis splits into two essentially different branches.

The first branch corresponds to γ = 0, a3 = ±a2, in this case we have both conformal

flatness and integrability. The corresponding complexes are the same as in sub-case

1, with Segre symbols [(11)(11)(11)]. The second branch corresponds to β = α, a2 =

±α, a23 + 3α2 = 0 or β = α, a3 = ±α, a22 + 3α2 = 0. All these sub-cases are

conformally flat, but not integrable. They are projectively equivalent to each other,

with the same Segre symbol [111(111)]∗ where the asterisk indicates that the eigenvalues

of the (traceless) operator QΩ−1 are proportional to (1, ε, ε2, 0, 0, 0), here ε is a cubic

root of unity, ε3 = 1. There exists an equivalent real normal form of complexes of this

type, the simplest one we found is

(p24 + p14)2 + 2(p12 + p34)(p23 + p31) = 0.
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The corresponding Monge form is

[1− 2p2p3](dp1)2 + [1− 2p1p3](dp2)2 + 2(p1 − p2)(dp3)2+

2[1 + p1p3 + p2p3]dp1dp2 + 2[p1p2 − p3 − (p2)2]dp1dp3 + 2[p1p2 + p3 − (p1)2]dp2dp3 = 0,

with the associated PDE

(1− 2u2u3)u11 + (1− 2u1u3)u22 + 2(u1 − u2)u33+

2(1 + u1u3 + u2u3)u12 + 2(u1u2 − u3 − u22)u13 + 2(u1u2 + u3 − u21)u23 = 0,

which is not integrable, although the corresponding conformal structure is flat. The

associated Kummer surface is a double quadric, 2p3 + (p1)2 − (p2)2. This is the first

case of Theorem 3.

Sub-case 4: All a′s are nonzero. Here we have three essentially different branches

which, however, give no new examples. Thus, the first branch corresponds to a1 =

ε1γ, a2 = ε2β, a3 = ε3α, εi = ±1, in all these cases we have both conformal flatness

and integrability. The corresponding complexes are the same as in sub-case 1, with

Segre symbols [(11)(11)(11)]. The second branch is α = β = γ = 0, a2 = ε2a1, a3 =

ε3a1, εi = ±1. This coincides with sub-case 2, with Segre symbol [(111)(111)]. The

third branch is a1 = ε1
γ2

α−β , a2 = ε2
β2

γ−α , a3 = ε3
α2

β−γ , εi = ±1, where α, β, γ ∈ {1, ε, ε2}

are three distinct cubic roots of unity. This is the same as sub-case 3, with Segre symbol

[111(111)]∗.

Case 2: Segre symbol [11112]. The equation of the complex is

λ1(p
12 + p34)2− λ2(p12− p34)2 + λ3(p

13 + p42)2− λ4(p13− p42)2 + 4λ5p
14p23 + (p14)2 = 0.

Its Monge form is

[λ(p2)2 + µ(p3)2 + 1](dp1)2 + [λ(p1)2 + µ](dp2)2 + [µ(p1)2 + λ](dp3)2+

2[αp3 − λp1p2]dp1dp2 + 2[βp2 − µp1p3]dp1dp3 + 2γp1dp2dp3 = 0,

where λ = λ1 − λ2, µ = λ3 − λ4, α = −λ3 − λ4 + 2λ5, β = λ1 + λ2 − 2λ5, γ = −α− β,

so that the corresponding PDE is

(λu22 + µu23 + 1)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+
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2(αu3 − λu1u2)u12 + 2(βu2 − µu1u3)u13 + 2γu1u23 = 0.

This is the 2nd case of Theorem 2. We verified that in this case conditions of integra-

bility are equivalent to conformal flatness, leading to the following subcases.

Subcase 1: λ = µ = 0, α = 0 (the possibility λ = µ = 0, β = 0 is equivalent to α = 0

via the interchange of indices 2 and 3), which simplifies to

u11 + 2β(u2u13 − u1u23) = 0.

Modulo a rescaling this gives the corresponding sub-cases of Theorems 3-4.

Sub-case 2: β = −α, λ = ε1α, µ = ε2α, εi = ±1. One can show that sub-case 2 is

equivalent to sub-case 1: all such complexes have the same Segre type [(11)(112)].

Case 3: Segre symbol [1113]. The equation of the complex is

λ1(p
12+p34)2−λ2(p12−p34)2−λ3(p13−p42)2+λ4(p13+p42)2+4λ4p

14p23+2p14(p13+p42) = 0.

Its Monge form is

[λ(p2)2 + µ(p3)2 + 2p3](dp1)2 + [λ(p1)2 + µ](dp2)2 + [µ(p1)2 + λ](dp3)2+

2[µp3 − λp1p2 − 1]dp1dp2 + 2[βp2 − µp1p3 − p1]dp1dp3 + 2γp1dp2dp3 = 0,

where λ = λ1−λ2, µ = λ4−λ3, β = λ1+λ2−2λ4, γ = −µ−β, so that the corresponding

PDE is

(λu22 + µu23 + 2u3)u11 + (λu21 + µ)u22 + (µu21 + λ)u33+

2(µu3 − λu1u2 − 1)u12 + 2(βu2 − µu1u3 − u1)u13 + 2γu1u23 = 0.

This is the 3rd case of Theorem 2. One can show that it possesses no non-degenerate

integrable/conformally flat sub-cases.

Case 4: Segre symbol [1122]. The equation of the complex is

λ1(p
12 + p34)2 − λ2(p12 − p34)2 + 4λ3p

13p42 + 4λ4p
14p23 + (p13)2 + 4(p23)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p3 = 1, dp3 = 0 we obtain

the associated Monge equation,

[λ(p2)2 + 1](dp1)2 + [λ(p1)2 + 4](dp2)2 + λ(dp4)2

+2[αp4 − λp1p2]dp1dp2 + 2βp2dp1dp4 + 2γp1dp2dp4,
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where λ = λ1 − λ2, α = 2λ4 − 2λ3, β = 2λ3 − λ1 − λ2, γ = −α − β, so that the

corresponding PDE is

(λu22 + 1)u11 + (λu21 + 4)u22 + λu44 + 2(αu4 − λu1u2)u12 + 2βu2u14 + 2γu1u24 = 0.

Relabelling independent variables gives the 4th case of Theorem 2. In this case condi-

tions of conformal flatness are equivalent to the integrability, leading to λ = α = 0,

u11 + 4u22 + 2β(u2u14 − u1u24) = 0.

Modulo elementary changes of variables this gives the corresponding sub-cases of The-

orems 3-4, with Segre symbol [(11)(22)].

Case 5: Segre symbol [114]. The equation of the complex is

λ1(p
12 + p34)2 − λ2(p12 − p34)2 + 4λ3(p

14p23 + p42p13) + 2p14p42 + 4(p13)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

λ(dp2)2 + [λ(p4)2 + 4](dp3)2 + [λ(p3)2 − 2p2](dp4)2+

2αp4dp2dp3 + 2[p4 − αp3]dp2dp4 − 2λp3p4dp3dp4 = 0,

where λ = λ1 − λ2, α = 2λ3 − λ1 − λ2, so that the corresponding PDE is

λu22 + (λu24 + 4)u33 + (λu23 − 2u2)u44 + 2αu4u23 + 2(u4 − αu3)u24 − 2λu3u4u34 = 0.

Relabeling independent variables gives the 5th case of Theorem 2. One can show that

this equation is not integrable. The condition of conformal flatness gives λ = α = 0,

4u33 − 2u2u44 + 2u4u24 = 0.

Such complexes are denoted [(114)]. Modulo elementary changes of variables this gives

the corresponding sub-case of Theorem 3.

Case 6: Segre symbol [123]. The equation of the complex is

−λ1(p12 − p34)2 + 4λ2p
13p42 + 4(p13)2 + λ3(4p

14p23 + (p12 + p34)2) + 2p14(p12 + p34) = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

λ(dp2)2 + [λ(p4)2 + 4](dp3)2 + [λ(p3)2 + 2p3](dp4)2+
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2αp4dp2dp3 + 2[1− λp3]dp2dp4 + 2[γp2 − λp3p4 − p4]dp3dp4 = 0,

where λ = λ3 − λ1, α = 2λ2 − λ1 − λ3, γ = λ− α, so that the corresponding PDE is

λu22+(λu24+4)u33+(λu23+2u3)u44+2αu4u23+2(1−λu3)u24+2(γu2−λu3u4−u4)u34 = 0.

Relabelling independent variables gives the 6th case of Theorem 2. In this case condi-

tions of conformal flatness are equivalent to the integrability. One can show that both

require λ = α = γ = 0, which gives

2u33 + u24 + u3u44 − u4u34 = 0.

Appropriate relabeling and rescaling give the corresponding sub-cases of Theorems 3-4,

denoted [(123)].

Case 7: Segre symbol [222]. Here we have two (projectively dual) sub-cases. In

sub-case 1 the equation of the complex is

2λ1p
12p34 + 2λ2p

13p42 + 2λ3p
14p23 + (p12)2 + (p13)2 + (p14)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

(dp2)2 + (dp3)2 + (dp4)2 + 2αp4dp2dp3 + 2βp3dp2dp4 + 2γp2dp3dp4 = 0,

where α = λ2 − λ1, β = λ1 − λ3, γ = λ3 − λ2, so that the corresponding PDE is

u22 + u33 + u44 + 2αu4u23 + 2βu3u24 + 2γu2u34 = 0.

Setting α = β = γ = 0 we obtain the linear equation. The corresponding Segre symbol

is [(222)]. One can show that the above PDE is not integrable/conformally flat for

nonzero values of constants. This is the linearisable sub-case of Theorems 3-4.

In sub-case 2 the equation of the complex is

2λ1p
12p34 + 2λ2p

13p42 + 2λ3p
14p23 + (p23)2 + (p24)2 + (p34)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

((p3)2 + (p4)2)(dp2)2 + ((p2)2 + (p4)2)(dp3)2 + ((p2)2 + (p3)2)(dp4)2+
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2(αp4 − p2p3)dp2dp3 + 2(βp3 − p2p4)dp2dp4 + 2(γp2 − p3p4)dp3dp4 = 0,

so that the corresponding PDE is

(u23 + u24)u22 + (u22 + u24)u33 + (u22 + u23)u44 + 2(αu4 − u2u3)u23

+2(βu3 − u2u4)u24 + 2(γu2 − u3u4)u34 = 0.

One can show that this sub-case possesses no non-degenerate integrable/conformally

flat specialisations (notice that for α = β = γ = 0 this PDE becomes degenerate).

Relabeling independent variables gives the 7th case of Theorem 2.

Case 8: Segre symbol [15]. The equation of the complex is

−λ1(p12 − p34)2 + λ2(4p
14p23 + 4p13p42 + (p12 + p34)2) + 4p14p42 + 2p13(p12 + p34) = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

λ(dp2)2 + [λ(p4)2 − 2p4](dp3)2 + [λ(p3)2 − 4p2](dp4)2+

2[λp4 + 1]dp2dp3 + 2[2p4 − λp3]dp2dp4 + 2[p3 − λp3p4]dp3dp4 = 0,

where λ = λ2 − λ1, so that the corresponding PDE is

λu22+(λu24−2u4)u33+(λu23−4u2)u44+2(λu4+1)u23+2(2u4−λu3)u24+2(u3−λu3u4)u34 = 0.

One can show that this PDE possesses no integrable/conformally flat specialisations.

Relabeling independent variables gives the 8th case of Theorem 2.

Case 9: Segre symbol [24]. Here we have two (projectively dual) sub-cases. In

sub-case 1 the equation of the complex is

2λ1p
12p34 + (p12)2 + 2λ2(p

14p23 + p13p42) + 2p14p42 + (p13)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

(dp2)2 + (dp3)2 − 2p2(dp4)2 + 2λp4dp2dp3 + 2[p4 − λp3]dp2dp4 = 0,

where λ = λ2 − λ1, so that the corresponding PDE is

u22 + u33 − 2u2u44 + 2λu4u23 + 2(u4 − λu3)u24 = 0.
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One can show that this sub-case possesses no integrable/conformally flat specialisations.

In sub-case 2 the equation of the complex is

2λ1p
12p34 + (p34)2 + 2λ2(p

14p23 + p13p42) + 2p13p23 + (p42)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p3 = 1, dp3 = 0 we obtain

the associated Monge equation,

(p4)2(dp2)2 + (1 + (p2)2)(dp4)2 + 2dp1dp2 + 2λp2dp1dp4 − 2[λp1 + p2p4]dp2dp4 = 0,

where λ = λ2 − λ1, so that the corresponding PDE is

u24u22 + (1 + u22)u44 + 2u12 + 2λu2u14 − 2(λu1 + u2u4)u24 = 0.

One can show that this PDE is not integrable, however, the corresponding conformal

structure is flat for λ = 0. This Segre type is known as [(24)], giving the corresponding

sub-case of Theorem 3. The associated Kummer surface consists of three planes, with

a double plane at infinity. We point out that in sub-case 1 the Kummer surface of the

complex [(24)] consists of a quadratic cone and a double plane at infinity. This gives

an invariant characterisation of sub-case 2 of the complex [(24)].

Relabeling independent variables gives the 9th case of Theorem 2.

Case 10: Segre symbol [33]. The equation of the complex is

λ1(4p
31p24 + (p12 + p34)2) + 2p13(p12 + p34)

+λ2(4p
23p14 − (p12 − p34)2) + 2p14(p12 − p34) = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

λ(dp2)2 + [λ(p4)2 − 2p4](dp3)2 + [λ(p3)2 − 2p3](dp4)2+

2[λp4 + 1]dp2dp3 + 2[λp3 + 1]dp2dp4 − 2[2λp2 + λp3p4 − p3 − p4]dp3dp4 = 0,

where λ = λ1 − λ2, so that the corresponding PDE is

λu22 + (λu24 − 2u4)u33 + (λu23 − 2u3)u44

+2(λu4 + 1)u23 + 2(λu3 + 1)u24 − 2(2λu2 + λu3u4 − u3 − u4)u34 = 0.
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Relabeling independent variables gives the 10th case of Theorem 2. One can show that

the conditions of integrability are equivalent to conformal flatness, leading to λ = 0,

u4u33 + u3u44 − u23 − u24 − (u3 + u4)u34 = 0.

The corresponding complex is denoted [(33)]. Introducing the new independent vari-

ables x, y, t such that ∂3 = ∂x + ∂y, ∂4 = ∂x − ∂y, ∂2 = −2∂t one can reduce the above

PDE to the canonical form

uxt + uxuyy − uyuxy = 0.

This is the last case of Theorems 3-4.

Case 11: Segre symbol [6]. Here we have two (projectively dual) sub-cases. In

sub-case 1 the equation of the complex is

2λ(p23p14 + p31p24 + p12p34) + 2p14p34 + 2p12p42 + (p13)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

2p4(dp
2)2 + (dp3)2 + 2p3(dp4)2 − 2p2dp2dp4 − 2p4dp3dp4 = 0,

so that the corresponding PDE is

2u4u22 + u33 + 2u3u44 − 2u2u24 − 2u4u34 = 0.

In the second sub-case the equation of the complex is

2λ(p23p14 + p31p24 + p12p34) + 2p23p12 + 2p34p13 + (p42)2 = 0.

Setting pij = pidpj − pjdpi and using the affine projection p1 = 1, dp1 = 0 we obtain

the associated Monge equation,

((p4)2−2p3)(dp
2)2−2p4(dp3)2 +(p2)2(dp4)2 +2p2dp2dp3−2p2p4dp2dp4 +2p3dp3dp4 = 0,

so that the corresponding PDE is

(u24 − 2u3)u22 − 2u4u33 + u22u44 + 2u2u23 − 2u2u4u24 + 2u3u34 = 0.

One can show that both sub-cases are not integrable/conformally flat. Relabeling

independent variables gives the last case of Theorem 2. This finishes the proof of

Theorems 2-4.
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3.6 Conservation laws of linearly degenerate inte-

grable equations

According to [4], any integrable equation of the form (3.1) possesses exactly four first

order conservation laws. In the previous section we identified that there are exactly

five integrable, linearly degenerate quasilinear wave equations. Here we present their

conservation laws (they will be used in section 4 in the discussion of characteristic

integrals):

Segre symbol [(11)(11)(11)]

αu3u12 + βu2u13 + γu1u23 = 0.

Conservation laws are:

γ(u2u3)1 + β(u1u3)2 + α(u1u2)3 = 0,

β

(
u2
u3

)
1

+ γ

(
u1
u3

)
2

= 0,

α

(
u3
u2

)
1

+ γ

(
u1
u2

)
3

= 0,

α

(
u3
u1

)
2

+ β

(
u2
u1

)
3

= 0.

Segre symbol [(11)(112)]

u11 + u1u23 − u2u13 = 0.

Conservation laws are: (
u2
2u21

)
1

+

(
1

2u1

)
2

−
(
u22
2u21

)
3

= 0,

(u1 − u2u3)1 + (u1u3)2 = 0,

(2u1u3 − u2u23)1 + (u23u1)2 − (u21)3 = 0,

−
(

1

u1

)
1

+

(
u2
u1

)
3

= 0.

Segre symbol [(11)(22)]

u12 + u2u13 − u1u23 = 0.

Conservation laws are:

(u2u3)1 + (u1 − u1u3)2 = 0,
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(u2u
2
3)1 + (−u1u23 + 2u1u3 − u1)2 − (u1u2)3 = 0,(

1

u2

)
1

−
(
u1
u2

)
3

= 0,

−
(

1

u1

)
2

−
(
u2
u1

)
3

= 0.

Segre symbol [(123)]

u22 + u13 + u2u33 − u3u23 = 0.

Conservation laws are:

(u2 − u23)2 + (u1 + u2u3)3 = 0,

(
1

2
u23)1 + (u2u3 −

1

2
u33)2 + (−u2u23 −

1

2
u22 +

3

2
u23u2)3 = 0,

(u2u3 − u33)1 + (−u1u3 + u22 − 3u2u
2
3 + u43)2 + (u1u2 + 2u3u

2
2 − u2u33)3 = 0,

(u22 − 2u2u
2
3 + u43)1 + (−2u1u2 + 2u1u

2
3 − 3u22u3 + 4u2u

3
3 − u53)2

+(−2u1u2u3 − u21 − 3u22u
2
3 + u2u

4
3 + u32)3 = 0.

Segre symbol [(33)]

u13 + u1u22 − u2u12 = 0.

Conservation laws are: (
u2
u1

)
2

−
(

1

u1

)
3

= 0,

(−u22)1 + (u1u2)2 + (u1)3 = 0,

(−u23 + 2u3u
2
2 − u42)1 + (−2u1u2u3 + u1u

3
2)2 + (u1u

2
2)3 = 0,

(u3u2 − u32)1 + (−u1u3 + u1u
2
2)2 + (u1u2)3 = 0.

3.7 Remarks on the Cauchy problem for quasilinear

wave equations

In 1+1 dimensions, linearly degenerate systems are known to be quite exceptional from

the point of view of solvability of the Cauchy problem: generic smooth initial data do

not develop shocks in finite time [15]. The conjecture of Majda [16], p. 89, suggests that

the same statement should be true in higher dimensions, namely, for linearly degenerate

systems the shock formation never happens for smooth initial data. To the best of our

knowledge this conjecture is largely open, and has only been established for particular
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classes of multi-dimensional linearly degenerate PDEs, see [10, 5] and references therein.

Klainerman established global existence results for 3 + 1 dimensional nonlinear wave

equations with small initial data. In the more subtle case of 2 + 1 dimensions, the

results of Klainerman imply long time existence for sufficiently small initial conditions.

The approach of [10, 5] applies to second order quasilinear PDEs which can be viewed

as nonlinear deformations of the wave equation,

�u = gij(uk)uij, (3.14)

here � = ∂21 − ∂22 − ... − ∂2n is the wave operator, and the coefficients gij, which de-

pend on the first order derivatives of u, are required to vanish at the origin uk = 0.

Under the conditions of Klainerman imposed on gij (which are automatically satisfied

for linearly degenerate PDEs of the form (3.14), in fact, these conditions follow from

the requirement of linear degeneracy (3.3) in the vicinity of the origin), one has global

existence of classical solutions with small initial data. Since some of the linearly degen-

erate examples from Theorem 2 can be put into the form (3.14), one can automatically

guarantee global existence. For instance, the PDE for minimal hypersurfaces is

u11−u22−u33 = −(u22+u
2
3)u11+(u23−u21)u22+(u22−u21)u33+2u1u2u12+2u1u3u13−2u2u3u23,

(3.15)

take case [111111] of Theorem 2 and set a1 = −1, a2 = a3 = 1, α = β = γ =

0, u→ iu. It can be obtained as the Euler-Lagrange equation for the area functional,∫ √
1 + u22 + u23 − u21 dx. In this particular case global existence was established in [17].

Further examples of this type include the equation

u11 − u22 − u33 = 2αu3u12 + 2βu2u13 + 2γu1u23, (3.16)

take case [222] of Theorem 2 and set x2 → ix2, x3 → ix3. For PDEs of this type, solu-

tions with small initial data essentially behave like solutions of the linear wave equation.

As an illustration we present Mathematica snapshots of numerical solutions for equa-

tions (3.15) and (3.16) with hump-like initial data at x1 = 0: u = 0.8e−x
2
2−x23 , ux1 = 0.
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Figure 3.1: Numerical solution of equation (3.15) for x1 = 0, 1, 8.

Figure 3.2: Numerical solution of equation (3.16) for x1 = 0, 1, 8. α = β = 1, γ = −2.

Figure 3.1 shows how equation (3.15) develops. We see that it is very similar to the

wave equation, and there is no breakdown of solutions. Figure 3.2 shows how equation

(3.16) develops. We see that for x1 = 1 it shows behaviour quite different to that of

the wave equation, an interesting saddle like shape. However, for x1 = 8 the behaviour

looks more like that of the wave equation. These results fit with those of [17], which

imply that in the limit as x1 →∞, behaviour of linearly degenerate equations tend to

that of the wave equation. Experimenting with the initial condition shows that there

is a point where the initial condition is too large and the solution breaks down. This is

not currently understood and is an area for possible development.
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Chapter 4

Linear degeneracy and

characteristic integrals

Conservation laws that vanish along characteristic directions of a given system of PDEs

are known as characteristic conservation laws, or characteristic integrals. In 2D, they

are important in the theory of Darboux-integrable systems. In this section we introduce

the notion of a characteristic integral in 2D, before extending this to 3D. We go on to

demonstrate that for a class of second-order linearly degenerate dispersionless integrable

PDEs, the corresponding characteristic integrals are parameterised by points on a sub-

manifold in projective space, called a Veronese variety. The results of this chapter were

published in [2].

4.1 Preliminaries

We begin this topic by recapping some basic PDE theory. An n-tuple α = (α1, ..., αn)

of nonnegative integers is called a multi-index. We define

|α| =
n∑
k=1

αk, xα = xα1
1 · ... · xαnn , ∀x ∈ Rn.

For partial derivitives of a function u of x ∈ Rn we use the notation uj = ∂ju = ∂u
∂xj

.

For higher order partial derivatives we have

uα = ∂αu = (∂1)
α1 ...(∂n)αnu =

∂|α|u

∂xα1
1 ...∂x

αn
n

.

A partial differential equation of order k is an equation of the form

F (x1, x2, ..., xn, u, ∂1u, ..., ∂nu, ..., ∂
α
nu) = 0, |α| = k, (4.1)
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relating a function u of x = (x1, ..., xn) ∈ Rn and its partial derivatives of order ≤ k.

The equation (4.1) is called linear if F is an affine-linear function of the vector of

variables, ∑
|α|≤k

aα(x)∂αu = f(x),

so that the coefficients aα depend on x only. Here we can define the differential operator

L =
∑
|α|≤k aα(x)∂α and write Lu = f . More generally, we have quasi-linear equations

which have the form∑
|α|≤k

aα(x, ∂βu)∂αu = b(x, ∂βu), |β| ≤ k − 1.

The general form of a linear 2nd order partial differential equation in 2D is

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

with u = u(x, y) and all coefficients are functions of x and y. For example,

xuxx + yuxy + ux = 0

is linear and

uuxx + uyuxy + ux = 0

is nonlinear but quasi-linear. If G = 0 the equation is homogeneous.

Linear equations are often classified as being elliptic, hyperbolic, or parabolic. An

example of an elliptic partial differential equation is the Laplace equation,

∇2u = ux1x1 + ...+ uxnxn = 0, u = u(x1, ..., un).

One of the simplest examples of a hyperbolic equation is the wave equation,

utt = c2∆uxx.

Here u(x, t) represents the displacement of a point x on an infinite string at time t. The

heat equation,

ut(x, t) = ∆u(x, t),

is an example of a parabolic equation. Some general concerns in the study of partial

differential equations include the existence, uniqueness, representations and behaviour

of the solutions.
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Characteristics and Symbol of a PDE (recap)

In the study of linear partial differential equations a measure of the ”strength” of a

differential operator in a certain direction is given by the notion of characteristics. If

L =
∑
|α|≤k aα(x)∂α is a linear differential operator of order k on Ω in Rn, then its

characteristic form (or principal symbol) at x ∈ Ω is the homogeneous polynomial of

degree k on Rn defined by

χL(x, ξ) =
∑
|α|=k

aα(x)ξα,

A covector ξ is characteristic for L at x if

χL(x, ξ) = 0.

The characteristic variety is the set of all characteristic covectors ξ, i.e.

Charx(L) = {ξ 6= 0 : χL(x, ξ) = 0}.

A hypersurface S is called characteristic for L at x if the normal vector ν(x) is in

Charx(L), and S is called non-characteristic if it is not characteristic at any point. An

important property of the characteristic variety is its transformation rule:

Let F be a smooth one-to-one mapping of Ω onto Ω′ ⊂ Rn and set y = F (x). Assume

that the Jacobian matrix

Jx =

[
∂yi
∂xj

]
(x)

is nonsingular for x ∈ Ω, so that {y1, y2, ..., yn} is a coordinate system on Ω′. We have

∂

∂xj
=

n∑
i=1

∂yi
∂xj

∂

∂yi

which we can write symbolically as ∂x = JTx ∂y, where JTx is the transpose of Jx. The

operator L is then transformed into

L′ =
∑
|α|≤k

aα(F−1(y))
(
JTF−1(y)∂y

)
α

on Ω′.

When this expression is expanded out, there will be some differentiations of JTF−1(y),

but such derivatives are only formed by ”using up” some of the ∂y on JTF−1(y), so they

do not enter in the computation of the principal symbol in the y coordinates, i.e. they

do not enter the highest order terms. We find that

χL(x, ξ) =
∑
|α|=k

aα(F−1(y))
(
JTF−1(y)ξ

)
α
.
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Now since F−1(y) = x, on comparing with the expression

χ(x, ξ) =
∑
|α|=k

aα(x)ξα

we see that Charx(L) is the image of Chary(L
′) under the linear map JTF−1(y).

Note that if ξ 6= 0 is a vector in the xj-direction (i.e. ξi = 0 for i 6= j), then ξ ∈ Charx(L)

if and only if the coefficient of ∂kj in L vanishes at x. Now, given any ξ 6= 0, by a rotation

of coordinates we can arrange for ξ to lie in a coordinate direction. Thus the condition

ξ ∈ Charx(L) means that, in some sense, L fails to be ”genuinely kth order” in the ξ

direction at x. L is said to be elliptic at x if Charx(L) = ∅ and elliptic on Ω if it is

elliptic at each x ∈ Ω. Elliptic operators exert control on all derivatives of all order.

Veronese variety

Throughout this section, we will encounter the Veronese variety. A Veronese variety

is an algebraic manifold that is realised by the Veronese embedding; the embedding

of projective space given by the complete linear system of quadrics. For a mapping

P2 → P5 we have a Veronese surface, the embedding is given by,

[x : y : z]→ [x2 : y2 : z2 : yz : xz : xy],

where [x : ...] denotes homogeneous coordinates. In this section we will also consider

Veronese varieties given by the embeddings P3 → P9 and P4 → P14.

4.2 Characteristic integrals

Let Σ be a partial differential equation (PDE) in n independent variables x1, . . . , xn.

A conservation law is an (n − 1)-form Ω which is closed on the solutions of Σ: dΩ =

0 mod Σ. Since any (n−1)-form in n variables possesses a unique annihilating direction,

there exists a vector field F such that Ω(F ) = 0. We say that Ω is a characteristic

integral (conservation law) if F is a characteristic direction of Σ1. If a conservation law

is represented in conventional form,

(F1)x1 + · · ·+ (Fn)xn = 0 mod Σ,

1The set of characteristic directions is projectively dual to the more conventional variety of char-

acteristic covectors determined by the principal symbol of the equation.
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the corresponding vector field is F = (F1, . . . , Fn). The characteristic condition becomes

particularly simple for scalar second order PDEs, in which case F can be interpreted as

a null vector of the conformal structure defined by the principal symbol of the equation.

Let us begin with illustrating examples.

Example 1. Consider the 2 + 1 dimensional wave equation,

utt = uxx + uyy. (4.2)

It possesses four first order conservation laws,

(ux)x + (uy)y − (ut)t = 0,

(u2x + u2t − u2y)x + (2uxuy)y − (2uxut)t = 0,

(2uyux)x − (u2x − u2y − u2t )y − (2uyut)t = 0,

(2utux)x + (2utuy)y − (u2x + u2y + u2t )t = 0.

Let us denote them

(fi)x + (gi)y + (hi)t = 0,

i = 1, ..., 4. Taking their linear combination with constant coefficients J1, . . . , J4, and

adding trivial conservation laws, we obtain the expression (F1)x + (F2)y + (F3)t = 0

where

F1 = Jifi−J5uy+J6ut+J8, F2 = Jigi+J5ux−J7ut+J9, F3 = Jihi−J6ux+J7uy+J10,

(summation over i = 1, . . . , 4 is assumed). Here the constants J5, J6, J7 correspond

to trivial conservation laws of the form (ux)y − (uy)x = 0, etc., and J8, J9, J10 are

three extra arbitrary constants. Although the constants J5 − J10 correspond to trivial

conservation laws, they effect non-trivially the characteristic condition, Fg−1F t = 0,

where g is the 3× 3 symmetric matrix of the corresponding principal symbol,

g =


−1 0 0

0 −1 0

0 0 1

 ,

(in this particular example g coincides with g−1). The characteristic condition imposes

a system of quadratic constraints for J1, . . . , J10, which specify a Veronese threefold

V 3 ⊂ P9 with parametric equations

J1 =

√
2

2
(γα + γβ + δα− δβ), J2 = −αβ, J3 =

α2 − β2

2
, J4 = −α

2 + β2

2
,
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J5 =

√
2

2
(γα− γβ − δα− δβ), J6 = −

√
2

2
(γα + γβ − δα + δβ),

J7 =

√
2

2
(γα− γβ + δα + δβ), J8 =

δ2 − γ2

2
, J9 = δγ, J10 =

γ2 + δ2

2
.

We use α, β, γ, δ as homogeneous coordinates in P3, and J1, . . . , J10 as homogeneous

coordinates in P9. Recall that the Veronese threefold V 3 is the image of the projective

embedding of P3 into P9 defined by a complete system of quadrics. Thus, we have

a whole V 3-worth of characteristic integrals. It turns out that this example is not

isolated, and similar phenomena take place for other classes of 3D linearly degenerate

dispersionless integrable PDEs.

Example 2. Let us consider the equation

µutuxy + νuyuxt + ηuxuyt = 0, (4.3)

µ+ν+η = 0, which appeared in the context of Veronese webs in 3D [19]. This equation

possesses four first order conservation laws,

η(uyut)x + ν(uxut)y + µ(uxuy)t = 0,

ν

(
uy
ut

)
x

+ η

(
ux
ut

)
y

= 0,

µ

(
ut
uy

)
x

+ η

(
ux
uy

)
t

= 0,

µ

(
ut
ux

)
y

+ ν

(
uy
ux

)
t

= 0.

Let us denote them

(fi)x + (gi)y + (hi)t = 0,

i = 1, ..., 4. Taking their linear combination with coefficients J1, . . . , J4, and adding

trivial conservation laws, we obtain the expression (F1)x + (F2)y + (F3)t = 0 where

F1 = Jifi−J5uy+J6ut+J8, F2 = Jigi+J5ux−J7ut+J9, F3 = Jihi−J6ux+J7uy+J10,

As in Example 1, the constants J5 − J10 correspond to trivial conservation laws. The

characteristic condition takes the form Fg−1F t = 0 where g is the 3 × 3 symmetric

matrix of the corresponding principal symbol:

g =


0 µut νuy

µut 0 ηux

νuy ηux 0

 .
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The characteristic condition imposes a system of quadratic constraints for J1, . . . , J10,

which specify a Veronese threefold V 3 ⊂ P9 with parametric equations

J1 = α2, J2 =
1

4νη
β2, J3 =

1

4ηµ
δ2, J4 =

1

4νµ
γ2,

J5 = αβ, J6 = αδ, J7 = αγ, J8 = − 1

2η
βδ, J9 = − 1

2ν
βγ, J10 = − 1

2µ
δγ.

Both of these examples are quasilinear wave-type equations, a complete classification

of all linearly degenerate, integrable equations was given in section 3.

4.3 Characteristic integrals in 2D and linear degen-

eracy

For definiteness we restrict the discussion to systems of hydrodynamic type,

uit = vij(u)uix, (4.4)

where u = (u1, . . . , un) denotes dependent variables, and V = vij is an n × n matrix.

Let λi be the eigenvalues (characteristic speeds) of V , and let ξi be the corresponding

eigenvectors, so that V ξi = λiξi. Characteristic directions are defined as dx+ λidt = 0,

and the characteristic integral in i-th direction is a 1-form h(u)(dx + λidt) which is

closed on solutions of (4.4). We will assume that the density h depends on u only,

although, in principle, nontrivial dependence on higher order x-derivatives of u may

also be allowed. Recall that the i-th characteristic direction is called linearly degenerate

if the Lie derivative of λi in the direction of the corresponding eigenvector ξi vanishes,

Lξiλ
i = 0. The following result is well-known:

Proposition. If there exists a characteristic integral in the i-th direction, then the

corresponding characteristic speed λi must be linearly degenerate.

Proof:

The closedness of h(u)(dx+ λidt) is equivalent to ht = (λih)x. This implies

(∇h)v = h∇λi + λi∇h,

where ∇ = (∂u1 , . . . , ∂un) denotes the gradient. Evaluating both sides of this identity

(which are 1-forms) on the vector ξi, and using V ξi = λiξi, one can see that the left hand
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side cancels with the second term on the right hand side, leading to ξi∇λi = Lξiλ
i = 0.

This finishes the proof.

The requirement of the existence of characteristic integrals for all characteristic direc-

tions implies that all characteristic speeds must be linearly degenerate. Such systems

are known as (totally) linearly degenerate, they have been thoroughly investigated in

the literature, see e.g. [15]. For linearly degenerate systems the gradient catastrophe,

which is typical for genuinely nonlinear systems, does not occur, and one has global

existence results for an open set of initial data.

There exist systems which possess infinitely many characteristic integrals.

Example. The 2-component linearly degenerate system,

vt = wvx, wt = vwx,

possesses functionally many characteristic integrals in both characteristic directions:

φ(v)

w − v
(dx+ wdt),

ψ(w)

v − w
(dx+ vdt),

here φ and ψ are arbitrary functions of w and v respectively.

4.4 Characteristic integrals of second order PDEs

in 3D

In this section we consider quasilinear wave-type equations of the form (3.1),

f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0,

where u(x, y, t) is a function of three independent variables, and the coefficients fij

depend on the first order derivatives ux, uy, ut only. Equations of this form generalise

examples 1 and 2 from section 4.2. It was shown in [4] that any integrable equation of

the form (3.1) possesses exactly four conservation laws

(fi)x + (gi)y + (hi)t = 0,

i = 1, . . . , 4, where fi, gi, hi are functions of ux, uy, ut only. Taking their linear com-

bination with constant coefficients J1, . . . , J4, and adding trivial conservation laws, we

obtain the expression (F1)x + (F2)y + (F3)t = 0 where

F1 = Jifi−J5uy+J6ut+J8, F2 = Jigi+J5ux−J7ut+J9, F3 = Jihi−J6ux+J7uy+J10.
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Although the constants J5 − J10 give trivial contribution to conservation laws, they do

effect non-trivially the characteristic condition, Fg−1F t = 0, where g = fij is the 3× 3

symmetric matrix of the corresponding principal symbol. The characteristic condition

imposes a system of quadratic constraints for the coefficients J1, . . . , J10 which, in lin-

early degenerate integrable cases, specify a Veronese threefold V 3 ⊂ P9. Recall that

for 3D equations of the form (3.1), the concept of linear degeneracy can be defined as

follows.

Looking for travelling wave solutions in the form u(x, y, t) = u(ξ, η)+ζ where ξ, η, ζ are

arbitrary linear forms in the variables x, y, t, we obtain a second order PDE for u(ξ, η),

auξξ + 2buξη + cuηη = 0,

where the coefficients a, b, c are certain functions of uξ and uη. Setting v = uξ, w = uη,

one can rewrite this PDE as a two-component system of hydrodynamic type. We say

that Equation (3.1) is linearly degenerate if all its travelling wave reductions are linearly

degenerate in the sense of Sect. 2. The condition of linear degeneracy is equivalent to

the identity (set ux, uy, ut = p1, p2, p3 and consider fij as functions of p1, p2, p3):

f(ij,k) = c(kfij), (4.5)

here fij,k = ∂pkfij, ck is a covector, and brackets denote complete symmetrisation in

i, j, k. Linearly degenerate integrable PDEs of the form (3.1) were classified in the

previous section. The result of theorem 4 is the following:

The following examples constitute a complete list of linearly degenerate integrable PDEs

of the type (3.1):

µutuxy + νuyuxt + ηuxuyt = 0, µ+ ν + η = 0,

uxx + uxuyt − uyuxt = 0,

uxy + uyuxt − uxuyt = 0,

uyy + uxt + uyutt − utuyt = 0,

uxt + uxuyy − uyuxy = 0,

utt − uxx − uyy = 0.
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In different contexts, the canonical forms of Theorem 1 have appeared in [19, 11].

The main result of this section is the following.

Theorem 5

(i) If a 3D quasilinear PDE of the form (3.1) possesses ‘sufficiently many’ charac-

teristic integrals, then it must be linearly degenerate. Here ‘sufficiently many’ means

that the corresponding vector F satisfies no extra algebraic constraints other than the

characteristic condition itself, Fg−1F t = 0.

(ii) Any linearly degenerate integrable PDE of the form (3.1) possesses a V 3-worth of

characteristic integrals.

Proof:

To demonstrate (i) we recall the result of [4] according to which the functions Fi defining

a conservation law must satisfy the identity F(i,j) = sfij, where Fi,j = ∂pjFi, brackets

denote symmetrisation in i, j, and s is a coefficient of proportionality (all entries are

viewed as functions of p’s). The characteristic constraint takes the form

(f−1)ijFiFj = 0,

which can be rewritten as fijF
iF j = 0 where we use the notation Fi = fijF

j. Differen-

tiating the characteristic condition by pk we obtain

−(f−1)ipfpq,k(f
−1)qjFiFj + 2(f−1)ijFi,kFj = 0,

which can be rewritten as

fpq,kF
pF q = 2Fi,kF

i.

Contracting this identity with F k, using the condition F(i,j) = sfij and the characteristic

constraint fijF
iF j = 0 we obtain the additional algebraic condition

fij,kF
iF jF k = 0. (4.6)

The requirement that this condition is satisfied identically modulo the characteristic

constraint, fijF
iF j = 0, is equivalent to saying that the cubic (4.6) is divisible by the

quadric fijF
iF j = 0,

fij,kF
iF jF k = (ciF

i)(fijF
iF j),
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for some linear form ciF
i. Symmetrisation of this identity implies the condition of linear

degeneracy (4.5).

The proof of (ii) is a case-by-case calculation. Details are included after the following

examples.

Note that linearly non-degenerate or non-integrable equations may also possess char-

acteristic integrals (although not ‘as many’ as linearly degenerate integrable ones).

Example 1. The integrable, linearly non-degenerate equation

utuxy + uyuxt + uxuyt = 0,

admits the following conservation laws;

(uyut)x + (uxut)y + (uxuy)t = 0,

(u2xut)y + (u2xuy)t = 0,

(u2yut)x + (u2yux)t = 0,

(u2tuy)x + (u2tux)y = 0.

It turns out here that the second, third and fourth conservation laws shown above are

independent characteristic integrals. There are no others.

Example 2. The integrable, linearly non-degenerate dKP equation

uxt − uxuxx − uyy = 0,

admits the following conservation laws;

(u2x − ut)x + (2uy)y − (ux)t = 0,(
2

3
u3x − u2y

)
x

+ (2uxuy)y − (u2x)t = 0,

(u2xuy − utuy)x + (u2y −
1

3
u2x + uxut)y − (uxuy)t = 0,

(u2xut − u2t )x + (2uyut)y −
(

1

3
u3x + u2y

)
t

= 0.

In this case, it turns out that the only characteristic integral is a trivial one, (J8)x = 0.

Example 3. The linearly degenerate, non-integrable quasilinear wave equation of Segre

type [114],

2uyy − uxutt + utuxt = 0,
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admits only trivial conservation laws, these are

(ut)x − (ux)t = 0, (J10)t = 0.

Proof of Theorem 5-(ii):

Quasilinear wave equations are equations of the form (3.1),

f11uxx + f22uyy + f33utt + 2f12uxy + 2f13uxt + 2f23uyt = 0,

where u(x, y, t) is a function of three independent variables, and the coefficients fij

depend on the first order derivatives ux, uy, ut only. The non-degeneracy condition

det fij 6= 0 is also taken as an assumption. In the previous chapter it was shown that

there are exactly five canonical forms (plus one linearisable example) of (3.1) that satisfy

both the integrability and linear degeneracy condition. We know that each equation

must have exactly four conservation laws of the form f(ux, uy, ut)x + g(ux, uy, ut)y +

h(ux, uy, ut)t = 0. The five canonical forms, together with their respective conservation

laws and Veronese variety parameterisation are listed below (the linearisable example

is omitted). Here α, β, γ, δ are homogeneous coordinates in P3.

Equation 1 (discussed earlier)

µutuxy + νuyuxt + ηuxuyt = 0.

Four conservation laws:

η(uyut)x + ν(uxut)y + µ(uxuy)t = 0,

ν

(
uy
ut

)
x

+ η

(
ux
ut

)
y

= 0,

µ

(
ut
uy

)
x

+ η

(
ux
uy

)
t

= 0,

µ

(
ut
ux

)
y

+ ν

(
uy
ux

)
t

= 0.

Coefficients of characteristic integrals:

J1 = α2, J2 =
1

4νη
β2, J3 =

1

4ηµ
δ2, J4 =

1

4νµ
γ2, J5 = αβ,

J6 = αδ, J7 = αγ, J8 = − 1

2η
βδ, J9 = − 1

2/nu
βγ, J10 = − 1

2µ
δγ.
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Equation 2

uxx + uxuyt − uyuxt = 0.

Four conservation laws: (
uy
2u2x

)
x

+

(
1

2ux

)
y

−
(
u2y
2u2x

)
t

= 0,

(ux − uyut)x + (uxut)y = 0,

(2uxut − uyu2t )x + (u2tux)y − (u2x)t = 0,

−
(

1

ux

)
x

+

(
uy
ux

)
t

= 0.

Coefficients of characteristic integrals:

J1 = α2, J2 = −δβ, J3 =
1

2
β2, J4 = αγ, J5 =

1

2
δ2,

J6 = βγ, J7 = αβ, J8 = −αβ − γδ, J9 = αδ, J10 = −1

2
γ2.

Equation 3

uxy + uyuxt − uxuyt = 0.

Four conservation laws:

(uyut)x + (ux − uxut)y = 0,

(uyu
2
t )x + (2uxut − uxu2t − ux)y − (uxuy)t = 0,(

1

uy

)
x

−
(
ux
uy

)
t

= 0,

−
(

1

ux

)
y

−
(
uy
ux

)
t

= 0.

Coefficients of characteristic integrals:

J1 = αβ, J2 = α2, J3 =
1

4
δ2, J4 =

1

4
γ2, J5 = −1

4
β2,

J6 = −αδ, J7 = αγ, J8 = −1

2
βδ, J9 = αγ − 1

2
βγ, J10 = −1

2
δγ.

Equation 4

uyy + uxt + uyutt − utuyt = 0.

Four conservation laws:

(uy − u2t )y + (ux + uyut)t = 0,
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(
1

2
u2t )x + (uyut −

1

2
u3t )y + (−uyu2t −

1

2
u2y +

3

2
u2tuy)t = 0,

(uyut − u3t )x + (−uxut + u2y − 3uyu
2
t + u4t )y + (uxuy + 2utu

2
y − uyu3t )t = 0,

(u2y − 2uyu
2
t + u4t )x + (−2uxuy + 2uxu

2
t − 3u2yut + 4uyu

3
t − u5t )y

+(−2uxuyut − u2x − 3u2yu
2
t + uyu

4
t + u3y)t = 0.

Coefficients of characteristic integrals:

J1 = −αδ − 1

2
βγ, J2 = 2αγ +

1

2
δ2, J3 =

1

2
δγ, J4 =

1

4
γ2, J5 = αγ,

J6 = −αδ, J7 = α2 +
1

2
βδ, J8 = α2, J9 = αβ, J10 = −1

4
β2.

Equation 5

uxt + uxuyy − uyuxy = 0.

Four conservation laws: (
uy
ux

)
y

−
(

1

ux

)
t

= 0,

(−u2y)x + (uxuy)y + (ux)t = 0,

(−u2t + 2utu
2
y − u4y)x + (−2uxuyut + uxu

3
y)y + (uxu

2
y)t = 0,

(utuy − u3y)x + (−uxut + uxu
2
y)y + (uxuy)t = 0.

Coefficients of characteristic integrals:

J1 = α2, J2 = −1

2
βγ − 1

4
δ2, J3 = −1

4
β2, J4 = −1

2
βδ, J5 = −1

2
γδ,

J6 = −1

2
βγ, J7 = βα, J8 =

1

4
γ2, J9 = γα, J10 = δα.

4.5 Systems of hydrodynamic type

Recall that systems of hydrodynamic type are systems of the form

A(u)ux +B(u)uy + C(u)ut = 0, (4.7)

where u(x, y, t) is a function of three independent variables, and the coefficients are

matrices that depend on u only. We shall consider only 2-component systems. We
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know that an integrable equation of this type must have exactly three conservation

laws of the form f(u1, u2)x + g(u1, u2)y + h(u1, u2)t = 0 [26].

For equations of hydrodynamic type, the notion of a characteristic conservation law

takes the following form. We take linear combinations of the three conservation laws,

Ji : (fi)x + (gi)y + (hi)t = 0, i = 1, ..., 3.

We then add three constants J4, J5 and J6 and express the general conservation law:

∂

∂x

(∑
Jifi + J4

)
︸ ︷︷ ︸

F1

+
∂

∂y

(∑
Jigi + J5

)
︸ ︷︷ ︸

F2

+
∂

∂y

(∑
Jihi + J6

)
︸ ︷︷ ︸

F3

= 0.

As before, the condition of characteristic integral means we must find J ′is such that

F (g−1)F t = 0,

where F = (F1, F2, F3) and g is a symmetric matrix found in the following way. From

(4.7) we construct,

det(Aλ+Bµ+ Cν) = g11λ2 + g22µ2 + g33ν2 + 2g12λµ+ 2g13λν + 2g23µν.

This is called the dispersion relation for (4.7), and the coefficients gij form the entries

of g.

Conjecture

(i) If a PDE of the form (4.7) possesses ‘sufficiently many’ characteristic integrals, then

it must be linearly degenerate. Here ‘sufficiently many’ means that the corresponding

vector F satisfies no extra algebraic constraints other than the characteristic condition

itself, Fg−1F t = 0.

(ii) Any linearly degenerate integrable PDE (4.7) possesses a V 2-worth of characteristic

integrals.

Due to time constraints, a proof is not presented here. The idea of a proof would be

based on that of theorem 5.

Example. The linearly degenerate, integrable hydrodynamic system

vt + wx = 0, wt + wy + vwx − wvx = 0,

possesses the following three conservation laws;

vt + wx = 0
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(v2 − w)t + (vw)x − wy = 0,(
1

w

)
t

+
( v
w

)
x

+

(
1

w

)
y

= 0.

As this system is integrable and linearly degenerate, characteristic integrals lie on a

Veronese surface V 2 ⊂ P5. The parameterisation is given by

J1 = αβ, J2 = α2 J3 = −1

4
γ2, J4 = −1

2
βγ, J5 = αγ, J6 =

1

4
β2 + αγ.

Where α, β, γ are homogeneous coordinates in P2.

4.6 Another class of first order systems

Here we consider systems of the form

F(ux, uy, ut, vx, vy, vt) = 0, G(ux, uy, ut, vx, vy, vt) = 0, (4.8)

where u(x, y, t) and v(x, y, t) are both functions of three independent variables. There

currently exists no general classification of linear degeneracy, we shall instead consider

an example. It is proposed, but not proven, that an integrable system of this form must

have exactly six non-trivial conservation laws of the form

f(ux, uy, ut, vx, vy, vt)x + g(ux, uy, ut, vx, vy, vt)y + h(ux, uy, ut, vx, vy, vt)t = 0.

The notion of a characteristic integral then takes the following form. As before, we take

linear combinations of the six conservation laws,

Ji : (fi)x + (gi)y + (hi)t = 0, i = 1, ..., 6.

We then add the six trivial conservation laws and three constants to express the general

conservation law:

∂

∂x

(∑
Jifi + J7uy + J8ut + J10vy + J11vt + J13

)
︸ ︷︷ ︸

F1

+
∂

∂y

(∑
Jigi − J7ux + J9ut − J10vx + J12vt + J14

)
︸ ︷︷ ︸

F2

+
∂

∂y

(∑
Jihi − J8ux − J9uy − J11vx − J12vy + J15

)
︸ ︷︷ ︸

F3

= 0.
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Again, the condition of characteristic integrals means we must find J ′is such that

F (g−1)F t = 0,

where g is a symmetric matrix found from the dispersion relation in the usual way.

Consider the following example of a linearly degenerate, integrable system,

(λ− ν)vy = uyvx, (λ− µ)vt = utvx. (4.9)

Using the equations (4.9), we can eliminate vy and vt. The six conservation laws are

then found to be

(ν − µ)(v2xuyut)x + (ν − λ)2(v2xut)y − (µ− λ)2(v2xuy)t = 0,

(ν − µ)(vxutuy)x − (ν − λ)(utvxux)y − (λ− µ)(uxuyvx + (ν − µ)uyvx)t = 0,(
uy
ut

)
x

+ (ν − µ)

(
1

ut

)
y

= 0,

(ν − µ)(uyut)x + (u2xut)y − ((ν − µ)2uy + 2(ν − µ)uxuy + u2xuy)t = 0,(
ut
uy

)
x

+ (µ− ν)

(
1

uy

)
t

= 0.

(uxut)y + ((µ− ν)uy − uyux)t = 0.

The characteristic integrals of the system (4.9) are found to lie on a Veronese surface

V 4 ⊂ P14, with coordinates (J1 : ... : J15). The parameterisation of this surface is given

by

J1 =
1

4
η2, J2 = αη J3 =

1

4(ν − µ)
β2, J4 = α2, J5 =

1

4(ν − µ)
γ2,

J6 = αδ, J7 = αβ, J8 = αγ, J9 =
1

4
δ2, J10 =

1

2
βη,

J11 =
1

2
γη, J12 = −1

2
δη, J13 =

1

2(ν − µ)
βγ,

J14 = −1

2
βδ, J15 = −(ν − µ)αγ − 1

2
γδ.

Where α, β, γ, δ, η are homogeneous coordinates in P4. To the best of our knowledge,

there currently exists no complete classification of all integrable, linearly degenerate

PDE systems of the form (4.8). However, we conjecture that the same theorem holds

for systems of this type. That is, the characteristic integrals for an integrable, linearly

degenerate PDE systems of the form (4.8) correspond to a Veronese surface V 4 ⊂ P14.
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Open conjecture.

Any linearly degenerate integrable PDE (4.8) possesses a V 4-worth of characteristic

integrals.

The first stage in proving this conjecture would be to show that integrable equations

of the form (4.8) admit exactly six conservation laws.

4.7 Darboux integrability

In this section we introduce the notion of Darboux integrability in 2D. We start with a

simple example.

Consider the Liouville equation

uxy = eu, (4.10)

where u = u(x, y). Characteristic directions of (4.10) are ∂x and ∂y. A characteristic

integral is a conserved quantity that vanishes along a characteristic direction. In this

example characteristic directions are simple, and a x-characteristic integral is a quantity

F = F (x, y, u, ux, uy, uxx, uxy, uyy) such that

∂xF = 0 mod (4.10).

One can immediately see the F = y is an integral. Another integral is F = uyy− 1
2
(uy)

2

which can be found after a short calculation. Similarly for characteristic integrals in

the y-direction we have F = x and F = uxx − 1
2
(ux)

2. We can then write

uyy −
1

2
(uy)

2 = f(y)

uxx −
1

2
(ux)

2 = g(x)
(4.11)

Equations (4.10) and (4.11) now define a compatible system for any functions f and g.

In general, an equation of the form

uxy = f(x, y, u, ux, uy), (4.12)

is said to be Darboux integrable if it possesses x- and y- characteristic integrals,

∂y(F ) = 0 mod (4.12),
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∂x(G) = 0 mod (4.12).

Then we can express

F = f(x), G = g(y).

where f(x) and g(y) are arbitrary.

For the most general case, a 2nd order PDE in 2D,

φ(x, y, u, ux, uy, uxx, uxy, uyy) = 0, (4.13)

is said to be Darboux integrable if each characteristic direction possesses two character-

istic integrals. If we denote the integrals from the first characteristic direction as I1, I2

and the ones from the second characteristic direction as J1, J2 then we can write

I1 = f(I2), J1 = g(J2).

where f, g are arbitrary.

Example. Consider the equation

vxvtt − (vt + vvx)vxt + vvtvxx = 0, (4.14)

where v = v(x, t). This can be re-written in the form

vt = wvx, wt = vwx, (4.15)

where w = vt
vx

. Equivalently, using the ’wedge’ notation we can write dv∧(dx+wdt) = 0,

dw∧(dx+vdt) = 0. The characteristic directions of this system are dx+wdt and dx+vdt.

In section 4.3 we showed that this system has functionally many characteristic integrals

in both directions:
φ(v)

w − v
(dx+ wdt),

ψ(w)

v − w
(dx+ vdt),

where φ and ψ are arbitrary functions of w and v respectively. This is clearly Darboux

integrable. We can now use the characteristic integrals to find the solution. First

introduce new independant variables

dx̃ =
φ(v)

w − v
(dx+ wdt), dt̃ =

ψ(w)

v − w
(dx+ vdt). (4.16)

From (4.15), we can now write

v = f(x̃), w = g(t̃),
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where f and g are arbitrary functions. From (4.16) we can find dx and dt:

dt =
dx̃

φ(v)
+

dt̃

ψ(w)
, dx = − vdx̃

φ(v)
− wdt̃

ψ(w)
.

So the general solution in parametric form is

v = f(x̃), w = g(t̃),

x = −
∫ x̃ vdx̃

φ(v)
−
∫ t̃ wdt̃

ψ(w)
,

t =

∫ x̃ dx̃

φ(v)
+

∫ t̃ dt̃

ψ(w)
,

where f , g, φ and ψ are arbitrary functions.

Remark. Darboux integrability is as yet undefined in 3D. However, we have shown

that there exists interesting structures when looking for characteristic integrals in 3D

equations. This may be a step towards defining Darboux integrability in 3D.
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Chapter 5

Concluding remarks

In this work we first studied the integrability and corresponding geometric structure of

second order quasilinear equations of the form (3.1),

f11ux1x1 + f22ux2x2 + f33ux3x3 + 2f12ux1x2 + 2f13ux1x3 + 2f23ux2x3 = 0,

where u = u(x1, x2, x3) and the coefficients fij are functions of the first order derivatives

ux1 , ux2 , ux3 only, with det fij 6= 0. A conformal structure can be associated to this

equation (3.2),

fij(p)dpidpj.

We focused on the particular class of equations (3.1) which are associated with quadratic

complexes of lines in projective space P3. Using Jessop’s classification of quadratic line

complexes, we showed that the following conditions are equivalent:

(1) Equation (3.1)/conformal structure (3.2) is associated with a quadratic line complex.

(2) Equation (3.1) is linearly degenerate.

(3) Conformal structure (3.2) satisfies the condition

∂(kfij) = ϕ(kfij),

here ∂k = ∂pk , ϕk is a covector, and brackets denote complete symmetrization in i, j, k ∈

{1, 2, 3}. Our second main result is that a quadratic complex defines a flat conformal

structure if and only if its Segre symbol is one of the following:

[111(111)]∗, [(111)(111)], [(11)(11)(11)],

[(11)(112)], [(11)(22)], [(114)], [(123)], [(222)], [(24)], [(33)].
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Here the asterisk denotes a particular sub-case of [111(111)] where the matrix QΩ−1 has

eigenvalues (1, ε, ε2, 0, 0, 0), ε3 = 1. Our third main result is that a quadratic complex

corresponds to an integrable PDE if and only if its Segre symbol is one of the following:

[(11)(11)(11)], [(11)(112)], [(11)(22)], [(123)], [(222)], [(33)].

Modulo equivalence transformations (which are allowed to be complex-valued) this

leads to a complete list of normal forms of linearly degenerate integrable PDEs, which

were given in the text. We highlighted that equations of the form (3.1) can be viewed

as nonlinear perturbations of the linear wave equation and pointed out that the ‘null

conditions’ of Klainerman, which establishes global existence of smooth solutions to the

Cauchy problem, are automatically satisfied for linearly degenerate PDEs.

We next studied linear degeneracy in the context of characteristic integrals. First we

showed that if a 3D quasilinear wave equation possesses ‘sufficiently many’ character-

istic integrals, then it must be linearly degenerate. We then showed that a linearly

degenerate, integrable quasilinear wave equation admits characteristic integrals which

can be parameterised by a Veronese variety: P3 → P9. Next, we showed that an equiv-

alent property exists for systems of hydrodynamic type (4.7),

A(u)ux +B(u)uy + C(u)ut = 0,

where u(x, y, t) is a function of three independent variables, and the coefficients are

matrices that depend on u only. For the 2-component case, we showed that if a hy-

drodynamic type system possesses ’sufficiently many’ characteristic integrals, then it

must be linearly degenerate. We then showed that a linearly degenerate, integrable

system of hydrodynamic type admits characteristic integrals which can this time be

parameterised by a lower dimensional Veronese variety: P2 → P5. Finally, we gave an

example for another class of first-order systems (4.8),

F(ux, uy, ut, vx, vy, vt) = 0, G(ux, uy, ut, vx, vy, vt) = 0,

where u(x, y, t) and v(x, y, t) are both functions of three independent variables. We

conjectured that any linearly degenerate, integrable system of this type will possess

characteristic integrals that can be parameterised by a higher dimensional Veronese

variety: P4 → P15, although much work is needed in order to first classify and identify
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linearly degeneracy and integrability in these equations. We finished by introducing

the notion of Darboux integrability, and mentioning that this work may be a first step

in defining what is meant by Darboux integrability in 3D.

The next stage in this work would definitely be to explore ideas about Darboux inte-

grability in 3D, as the entire notion would have to be re-defined. It would also be of

interest to extend our results to linearly degenerate PDEs in 4D.
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