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1 Introduction

Diffusion tensor imaging (DTI) is a specific MRI modality which provides a unique insight
into tissue structure and organisation in vivo. In DTI, displacement of water molecules over
time is modelled by a zero-mean trivariate Gaussian distribution (Alexander, 2005) with covari-
ance matrix evolving linearly with time and determined by the diffusion tensor (DT), a 3 × 3
symmetric positive-definite matrix. DT inference from observed diffusion MRI data has been
commonly carried out using least squares (Koay et al., 2006) and Bayesian (Behrens et al.,
2007, Zhou et al., 2008) methods. At each location (voxel) of interest, the principal eigenvector
of the tensor estimates the dominant fibre orientation whereas various tensor-derived diffusion
anisotropy indices measure local anisotropy. White matter tractography attempts to integrate
local estimates into brain connectivity maps which are of interest in neuroscience. In particular,
DTI has been used to study stroke (Le Bihan et al., 2001) and a wide range of neurological
disorders such as multiple sclerosis, Alzheimer’s and Parkinson’s disease, and schizophrenia
(Lenglet et al., 2009).

Since diffusion MRI is a relatively low resolution modality, advanced tensor processing
methods such as non-Euclidean interpolation, have been considered. Yet, reliable and accurate
estimation of the highly complex white matter architecture of the brain remains a challenge de-
spite the many advances in modelling, processing, and analysis of diffusion MRI data (Lenglet
et al., 2009). Moreover, further inference, e.g. analysis of variance across groups, depends
critically on tensor processing methods such as interpolation (Chao et al., 2008). At the same
time, the recently introduced DT processing methods based on Procrustes analysis (Dryden et
al., 2009) have shown promising performance and deserve further investigation. Thus, this pa-
per explores weighted generalized Procrustes analysis (WGPA) in which an arbitrary number of
tensors can be interpolated or smoothed efficiently with the additional flexibility of controlling
their individual contributions. The approach is illustrated through synthetic examples as well as
white matter tractography of a healthy human brain.

2 Weighted Generalised Procrustes Analysis

Now consider a sample of N DT’s D1, ..., DN . To ensure the positive definiteness of DT’s, a
reparameterization is used, i.e., Di = QiQ

T
i , where Qi ∈ R

3×3. For example, Qi = chol(Di)
is the Cholesky decomposition, where Qi is lower triangular with positive diagonal elements.
Note that Qi and any rotation and reflection of it QiRi (Ri ∈ O(3)) can result in the same Di,
i.e. Di = QiQ

T
i = QiRi(QiRi)

T , i = 1, ..., N .
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The weighted Fréchet sample mean of D1, ..., DN at N voxels with a certain distance
function dist is defined by:

D̄ = arg inf
D

N∑

i=1

widist(Di,D)2, (1)

where the weights wi are proportional to a function of the Euclidean distance between locations
of the tensors (voxels), 0 ≤ wi ≤ 1 and

∑N

i=1
wi = 1.

Weighted generalized Procrustes analysis (WGPA) is proposed to obtain the weighted mean
of D1, ..., DN . The objective of WGPA under rotation and reflection is to minimise a sum of
weighted squared Euclidean norms SWGPA which is given by

SWGPA(D1, ...,DN) = inf
R1,...,RN

N∑

i=1

wi ‖ QiRi −
n∑

j=1

wjQjRj ‖
2

= inf
R1,...,RN

N∑

i=1

wi ‖ (1− wi)QiRi −
∑

j 6=i

wjQjRj ‖
2

= inf
R1,...,RN

n∑

i=1

wi

(1− wi)2
‖ QiRi −

1

(1− wi)

∑

j 6=i

wjQjRj ‖
2 . (2)

Let R̂i, i = 1, ..., N be the estimates of the rotation matrices. Then, the WGPA mean tensor is
given by

D̄WGPA = Q̄WGPAQ̄T
WGPA, (3)

where Q̄WGPA =
N∑

i=1

wiQiR̂i. We give Algorithm 1 for estimating R̂i, i = 1, ..., N .

Algorithm 1 Weighted Generalised Procrustes Method
1: Initial setting: QP

i ← chol(Di), i = 1, ..., N
2: SWGPA from previous iteration: Sp ← 0

3: SWGPA from current iteration: Sc ←
N∑

i=1

wi ‖ QP
i −

N∑
j=1

wjQ
P
j ‖

2

4: while |Sp − Sc| > tolerance do
5: for i = 1 to N do
6: Q̄i = 1

1−wi

∑
j 6=i

wjQ
P
j

7: Calculate the rotation matrix Ri which minimises ‖ Q̄i−QP
i Ri ‖ with partial ordinary

Procrustes analysis
8: QP

i ← QP
i Ri

9: end for
10: Sp ← Sc

11: Sc ←
N∑

i=1

wi ‖ QP
i −

N∑
j=1

wjQ
P
j ‖

2

12: end while

13: Q̄WGPA ←
N∑

i=1

wiQ
P
i

14: return Q̄WGPA



3 Results

3.1 Geodesic interpolation

Figure 1 presents geodesic interpolations of two synthetic DT’s (in red) with Euclidean (dE),
Procrustes (dS), Log-Euclidean (dL) and Riemannian (dR) metrics repectively. There is a clear
swelling effect in Euclidean case. However, Procrustes, Log-Euclidean and Riemannian means
provide more reasonable interpolations.

Figure 1: Geodesic interpolations between two anisotropic diffusion tensors (in red) with Eu-
clidean dE, Procrustes dS, Log-Euclidean dL and Riemannian dR methods from top to bottom.

3.2 Applications to real data

A tensor field from a healthy human brain has been smoothed and interpolated (with 2 interpo-
lations between each pair of original voxels). The Fractional Anisotropy (FA) maps from the
processed tensors are shown in Figure 2. Obviously, the FA map from the processed tensor data
is much smoother than the one without processing. The feature that the cingulum is distinct
from the corpus callosum is clearer in the anisotropy map from the processed data than those
without processing in Figure 2.

Figure 2: Smoothing and interpolation of the diffusion tensor data from human brain. a: FA
map from Bayesian tensor field. c: FA map from processed tensor field. b and d: Zoomed inset
regions. Green arrows: the cingulum. Light blue arrows: the corpus callosum.

Figure 3: Fibre tractograhpies using the Bayesian estimates (a), Euclidean smoothing (b) and
WGPA smoothing (c). Black arrows point out some obvious differences of the WGPA tracts
compared with other methods.



Initial results of fibre tractographies of the brain stem in a healthy human brain have been
shown in Figure 3. Tractography from WGPA processed tensor field is different from the other
methods, and work is currently underway to assess whether WGPA is preferable.
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