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Abstract 

Knowledge of the hydrodynamic character of micro-packed beds (µPBs) is critical to 

understanding pumping power requirements and their performance in various applications, 

including those where heat and mass transfer are involved. The report here details use of 

smoothed particle hydrodynamics (SPH) based simulation of fluid flow on models of µPBs 

derived from X-ray microtomography to predict the hydrodynamic character of the beds as a 

function of the bed-to-particle diameter ratio over the range 5.2 ≤ 𝐷𝐷 𝑑𝑑𝑝𝑝 ≤ 15.1⁄ . It is shown 

that the permeability of the µPBs decreases in a non-linear but monotonic manner with this 

ratio to a plateau beyond 𝐷𝐷 𝑑𝑑𝑝𝑝⁄ ≈ 10 that corresponded to the value predicted by the Ergun 

equation. This permeability variation was best represented by the model of Reichelt (Chem. 

Ing. Technik, 44, 1068, 1972) and also reasonably well-represented by that of Foumeny (Intnl. 

J. Heat Mass Transfer, 36, 536, 1993), both of which were developed using macroscale 

packed beds of varying bed-to-particle diameter ratios. Four other similarly determined 

correlations did not match well the permeability variation predicted by SPH. The flow field 

within the µPBs varied in an oscillatory manner with radial position (i.e. channelling occurred 

at multiple radial positions) due to a similar variation in the porosity. This suggests that use of 

performance models (e.g. for heat and mass transfer) derived for macroscale beds may not be 

suitable for µPBs. The SPH-based approach here may well form a suitable basis for predicting 

such behaviour, however. 
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1. Introduction 

Microfluidics, the science and technology utilised in the processing and manipulation of small 

amounts of fluids in conduits having dimensions of the order of tens to hundreds of 

micrometres [1-3], is a fast growing research field with a wide range of potential applications. 

Its genesis in the early 1990s [4] was in the form of what is now widely termed ‘Micro Total-

Analysis-System’ (µTAS) [5, 6], which has since been employed in a range of applications in 

chemical and biological analysis, including in clinical chemistry [7, 8], medical diagnostics 

[9, 10], cell biology (e.g. chemotaxis studies) and immunology [11, 12]. Microfluidics is also 

of relevance beyond µTAS, including in colloid science [13, 14], plant biology [15, 16], and 

process intensification [17-19]. In the latter, specific applications include micro-chemical 

engineering technology [20-23], which leads to higher product yields and new reaction 

pathways not possible in larger scale systems [1, 2, 24, 25], and control of extreme reactions 

[20, 26-29].  

Despite the many potential benefits of microfluidics, the laminar flow that arises from the 

small dimensions and often simple geometries involved [30, 31] means mixing and, hence, 

mass and heat transfer are poor [32, 33]; for example: the mixing length, which is the distance 

that a liquid must travel to become fully intermixed, can be of the order of centimetres or even 

meters, much greater than is available in typical microfluidic configurations where 

miniaturization is clearly the desired end-point. One way of addressing the mixing challenge 

is to use a packed bed, also termed a micro-packed bed (µPB) [34-36]. This approach also 

facilitates an increase in the surface area-to-volume ratio, which is useful if the particles 

within the bed are to act as an adsorbent or catalyst [37-40]. 

Whilst µPBs take many shapes and sizes – see for example the simple, long and narrow T-

shaped bed of Jensen and co-workers [41] vs. their more complex, wide but shallow bed 

elsewhere [36] – they are generally characterised by small bed-to-particle diameter ratios. 

This small ratio leads to the bed walls having a significant influence on the µPB behaviour 

compared to the typical macroscale counterparts. The higher porosity near the walls [42, 43] 

combined with the fact that the wall region constitutes a significant volume of µPBs means 

significant fluid flow may tend to channel along the walls [44, 45]. Further flow 

inhomogeneities may also arise in beds constituted from particles of regular shape and size 

due to confined packing-induced oscillations in the porosity [46, 47]. These factors open up 

the possibility that the performance of the µPBs (e.g. in mixing) may be less than hoped for. 

They may also lead to the character of the pressure drop differing from that of typical 
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macroscale packed beds, although opinion appears mixed on this point (see [46, 48] vs. [49, 

50] vs. [51]). Given the pumping power required to overcome pressure drop is a significant 

issue in the microfluidic context, as is its performance under any circumstances, it is clearly 

desirable to be able to predict the hydrodynamic character of µPBs. 

Given the flow in microfluidic devices is in general laminar, it is anticipated that the 

relationship between the flow rate through a µPB and the pressure drop, ∆𝑝𝑝, along its length, 

L, will be described by Darcy’s Law, which may be expressed as 

𝑣𝑣 = −𝑘𝑘
𝜇𝜇
∆𝑝𝑝
𝐿𝐿

 (1) 

where 𝑣𝑣 is the flow rate per unit cross-sectional area, often termed the superficial velocity, µ 

is the fluid viscosity, and k is the bed permeability, a characteristic related to the nature of the 

packing. One of the earliest permeability models is due to Ergun [52] 

𝑘𝑘 = 𝜀𝜀3𝑑𝑑𝑝𝑝2

150(1−𝜀𝜀)2
 (2) 

where ε is the bed porosity and 𝑑𝑑𝑝𝑝 the diameter of the particles that it is made up of. There are 

many other expressions that have also been developed for the permeability of macroscale 

packed beds [53, 54], but many will probably not be valid for µPBs because their much 

smaller bed-to-particle diameter ratio [55], 𝐷𝐷 𝑑𝑑𝑝𝑝⁄ , means wall effects are likely to have 

greater influence. Expressions have, however, been developed for macroscale beds of smaller 

bed-to-particle diameter ratios. One of the earliest such permeability models is that of Mehta 

& Hawley [56], who derived the modified-Ergun equation 

𝑘𝑘 = 𝜀𝜀3𝑑𝑑𝑝𝑝2

150𝑀𝑀2(1−𝜀𝜀)2
  (3) 

where M is a factor that accounts for the bed-to-particle diameter ratio  

𝑀𝑀 = 1 + 2
3(1−𝜀𝜀)

𝑑𝑑𝑝𝑝
𝐷𝐷

 (4) 

As an alternative, Reichelt [57] proposed the expression 

𝑘𝑘 = 𝜀𝜀3𝑑𝑑𝑝𝑝2

𝐴𝐴𝑤𝑤𝑀𝑀2(1−𝜀𝜀)2
 (5) 

where Aw is a parameter obtained from fitting the model to experimental data. Others have 

also used this expression more recently with other experimental data [58, 59], including 

Eisfeld & Schnitzlein [45], who used 2300 data points from a large number of sources. 

Foumeny et al. [46] used Eq. (5) with the following expression 

𝐴𝐴𝑤𝑤 = 130
𝑀𝑀2    (6) 
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combined with the diameter ratio-dependent porosity expression  

𝜀𝜀 = 0.383 + 0.25 � 𝐷𝐷
𝑑𝑑𝑝𝑝
�
−0.923

. 1

�0.723 𝐷𝐷
𝑑𝑑𝑝𝑝
−1

                                                                            (7) 

whilst Raichura [60] obtained the following via use of other experimental data 

𝐴𝐴𝑤𝑤 = 103
𝑀𝑀2 ( 𝜀𝜀

1−𝜀𝜀
)2 �6(1 − 𝜀𝜀) + 80

𝐷𝐷 𝑑𝑑𝑝𝑝⁄ �      (8) 

Cheng [58] proposed the following expression based on a capillary type model  

𝐴𝐴𝑤𝑤 = 1
𝑀𝑀2 �185 + 17( 𝜀𝜀

1−𝜀𝜀
)( 𝐷𝐷
𝐷𝐷−𝑑𝑑𝑝𝑝

)2� (8) 

Finally, Di Felice and Gibilaro [61] proposed a model based on a sub-division of a packed 

bed into two zones to yield 

𝑘𝑘 =
𝑑𝑑𝑝𝑝2𝜀𝜀3(2.06−1.06�

𝐷𝐷 𝑑𝑑𝑝𝑝⁄ −1
𝐷𝐷 𝑑𝑑𝑝𝑝⁄ �

2
)

150(1−𝜀𝜀)2
 (10) 

Whilst all the above expressions attempt to capture the effect of the bed-to-particle diameter 

ratio, they have all been determined using macroscale data; it is not known how relevant these 

are for µPBs.  

Assessing the validity of the Eqs. (2)-(10) for µPBs could be undertaken through experimental 

means. However, determination of pressure drop in such systems is challenging due to the 

relatively small pressure drops and the intricacies of their measurement arising out of the 

miniaturisation. An alternative is to simulate the flow in models of the pore space of real 

µPBs. This is done here using smoothed particle hydrodynamics (SPH) [62] on models of 

µPBs derived from application of a method recently developed by the authors [42, 43] to X-

ray tomographic images of real beds of varying bed-to-particle diameter ratios. SPH has been 

used as it obviates the difficult task of building meshes in the complex three-dimensional (3D) 

geometry of the µPB pore spaces. 

The remainder of the paper is structured as follows. We first detail the governing flow 

equations and SPH formulation based on these along with the solution algorithm. The model 

is then benchmarked against the results for flow around a single sphere, which is prototypical 

of µPBs. Results are then presented for the µPBs and compared with expressions (2)-(10). 

Consideration of the correlation between the inhomogeneities in the bed porosity and 

localised flow profiles are also discussed before conclusions are drawn. 
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2. Model 

Governing equations 

Smoothed particle hydrodynamics (SPH) is based on the Navier–Stokes equations in the 
Lagrangian frame. For isothermal fluid flow, these equations take the form 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜌𝜌 ∇.𝐯𝐯  (11) 

and 

𝜌𝜌 𝑑𝑑𝐯𝐯
𝑑𝑑𝑑𝑑

= ∇.𝛔𝛔 +  𝜌𝜌𝐠𝐠 (12) 

where 𝜌𝜌, v and 𝛔𝛔 are the fluid density, velocity and stress tensor, respectively, and g is the 

acceleration due to body forces at play such as, for example, gravity. The stress tensor for a 

Newtonian fluid may be expressed as 

𝛔𝛔 = −𝑃𝑃𝐈𝐈 + 𝛕𝛕 (13) 

where, P is the hydrostatic pressure, 𝐈𝐈 the unit tensor, and 𝛕𝛕 the shear stress tensor that may be 

expressed as 

𝛕𝛕 = −𝜇𝜇 [ ∇𝐯𝐯+ (∇𝐯𝐯)𝑇𝑇 ] (14) 

where µ is the dynamic viscosity of the fluid. 

SPH formulation 

In SPH [63], the fluid is represented by a discrete set of particles of fixed mass, mi, that move 

with the local fluid velocity, vi. The velocity and other quantities associated with any particle-

i are interpolated at a position r through a summation of contributions from all neighbouring 

particles weighted by a function, 𝑊𝑊(𝐫𝐫,ℎ), with a compact support, h, as illustrated in Figure 

1. 

 

h

Kernel W(r)

i
rij

j
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Figure1. An illustration of an SPH weighting function with compact support that is used to 
evaluate quantities at a point r such as, for example, the density as shown in Eq. 15. 

For example, the density of a particle-i is given by [64] 

𝜌𝜌𝑖𝑖 = ∑ 𝑚𝑚𝑗𝑗𝑗𝑗 𝑊𝑊�𝑟𝑟𝑖𝑖𝑗𝑗,ℎ� (15) 

where 𝑟𝑟𝑖𝑖𝑗𝑗 is the distance between particles i and j. 

The pressure gradient associated with particle-i is given by [64, 65] 

(∇𝑃𝑃)𝑖𝑖 = 𝜌𝜌𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗  � 𝑃𝑃𝑗𝑗
𝑑𝑑𝑗𝑗2

+ 𝑃𝑃𝑖𝑖
𝑑𝑑𝑖𝑖2
�𝑗𝑗 ∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 (16) 

where Pi is the pressure associated with particle-i.  

Finally, the divergence of the shear stress tensor attached to a particle-i is given by [66] 

(∇. 𝛕𝛕)𝑖𝑖 = 𝜌𝜌𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗  � 𝛕𝛕𝑗𝑗
𝑑𝑑𝑗𝑗2

+ 𝛕𝛕𝑖𝑖
𝑑𝑑𝑖𝑖2
�𝑗𝑗 .∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 (17) 

where the components of the shear stress tensor, which are derived from Eq. 14, are given by 

𝜏𝜏𝑖𝑖𝛼𝛼𝛼𝛼 = −𝜇𝜇 �∑ 𝑚𝑚𝑗𝑗

𝑑𝑑𝑗𝑗
 𝑣𝑣𝑖𝑖𝑗𝑗

𝛼𝛼
𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖
𝛼𝛼 + ∑ 𝑚𝑚𝑗𝑗

𝑑𝑑𝑗𝑗
 𝑣𝑣𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗

𝜕𝜕𝜕𝜕𝑖𝑖
𝛽𝛽 � (18) 

where 𝐯𝐯𝑖𝑖𝑗𝑗 = 𝐯𝐯𝑖𝑖 − 𝐯𝐯𝑗𝑗. 

Combined, these equations lead to the following SPH formulation for the momentum 

equation 

d𝐯𝐯𝑖𝑖
𝑑𝑑𝑑𝑑

= −∑ 𝑚𝑚𝑗𝑗 �
𝑃𝑃𝑗𝑗
𝑑𝑑𝑗𝑗2

+ 𝑃𝑃𝑖𝑖
𝑑𝑑𝑖𝑖2
�𝑗𝑗 ∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 + ∑ 𝑚𝑚𝑗𝑗 �

𝛕𝛕𝑗𝑗
𝑑𝑑𝑗𝑗2

+ 𝛕𝛕𝑖𝑖
𝑑𝑑𝑖𝑖2
�𝑗𝑗 .∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗 + 𝐠𝐠 (19) 

A variety of weighting functions have been used over the past three or more decades [63].  

The stability properties of SPH simulations strongly depend on the second derivative of the 

weighting function [63]. Although the cubic spline is widely employed, the piecewise-linear 

nature of its second derivative leads to instabilities in SPH simulations involving 

incompressible viscous creeping flows [63]. This can be avoided by use of higher-order 

splines [63, 67] such as the quintic spline that is employed here as a compromise between 

stability and accuracy requirements and efficiency 

𝑊𝑊(𝑞𝑞,ℎ) = 3
359𝜋𝜋ℎ3

×

⎩
⎨

⎧(3 − 𝑞𝑞)5 − 6(2 − 𝑞𝑞)5 + 15(1 − 𝑞𝑞)5              0 ≤ 𝑞𝑞 < 1   
(3 − 𝑞𝑞)5 − 6(2 − 𝑞𝑞)5                                         1 ≤ 𝑞𝑞 < 2   
(3 − 𝑞𝑞)5                                                                 2 ≤ 𝑞𝑞 < 3   
 0                                                                              𝑞𝑞 > 3           

 (20) 

where 𝑞𝑞 = 𝑟𝑟 ℎ⁄ . 
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Solution technique 

A two-step predictor-corrector scheme is used to solve the Eq. 19 based on an explicit 

projection method in which the pressure required to enforce the incompressibility is found via 

projecting an estimate of the velocity field onto a divergence-free space (i.e. where ∇. 𝐯𝐯 = 0 as 

indicated by applying the requirement of a constant density on the continuity equation) [68]. 

Here, the variables are updated from a previous time step, t, to a new time step, t+1. This is 

done firstly by estimating the particle positions and velocities using the shear stress and body 

force terms of the momentum equation in Eq. 19 only (particle indices have been dropped for 

convenience) 

𝐯𝐯∗ = 𝐯𝐯𝑑𝑑 + �1
𝑑𝑑
∇. 𝛕𝛕 + 𝐠𝐠� ∆𝑡𝑡 (21) 

𝐫𝐫∗ = 𝐫𝐫𝑑𝑑 + 𝐯𝐯∗∆𝑡𝑡 (22) 

where 𝐯𝐯𝑑𝑑 and 𝐫𝐫𝑑𝑑 are the particle velocity and position at time t, respectively, and ∆𝑡𝑡 the time 

step size. The fluid density is then updated by using the intermediate particle positions, 𝐫𝐫∗, in 

Eq. 15. 

The new particle velocities are then evaluated by applying a correction to the initial velocity 

estimates 

𝐯𝐯𝑑𝑑+1 =  𝐯𝐯∗ +  ∆𝐯𝐯∗∗ (23) 

where the velocity correction is evaluated using the pressure gradient term of the momentum 
equation only 

∆𝐯𝐯∗∗ = − 1
𝑑𝑑∗
∇𝑃𝑃𝑑𝑑+1 ∆𝑡𝑡 (24) 

The pressure gradient at the new time, ∇𝑃𝑃𝑑𝑑+1 , is obtained by enforcing incompressibility 

where ∇. 𝐯𝐯 = 0 as per the continuity equation Eq. 11. Therefore, by combining Eq. 23 and Eq. 

24 and taking the divergence, we obtain  

∇. �𝐯𝐯𝑡𝑡+1−𝐯𝐯
∗

∆t
� = −∇. � 1

𝑑𝑑∗
∇𝑃𝑃𝑑𝑑+1   � (25) 

Imposing the incompressibility condition at the new time step, ∇. 𝐯𝐯𝑑𝑑+1 = 0, leads to the 

Pressure Poisson Equation (PPE) 

∇. � 1
𝑑𝑑∗
∇𝑃𝑃𝑑𝑑+1   � = ∇.𝐯𝐯∗

∆t
 (26) 

The left hand side of this equation is discretised using Shao’s approximation for the Laplacian 

in SPH [69], which is a hybrid of a standard SPH first derivative with a finite difference 

computation [68]  
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∇. �1
𝑑𝑑
∇𝑃𝑃�

𝑖𝑖
= ∑ 𝑚𝑚𝑗𝑗  8

�𝑑𝑑𝑖𝑖+𝑑𝑑𝑗𝑗�
2
�𝑃𝑃𝑖𝑖−𝑃𝑃𝑗𝑗�.𝐫𝐫𝑖𝑖𝑗𝑗.∇𝑖𝑖𝜕𝜕𝑖𝑖𝑗𝑗

�𝐫𝐫𝑖𝑖𝑗𝑗�
2
+η2𝑗𝑗    (27) 

where, η is a small value (e.g. 0.1 × ℎ ) to ensure the denominator always remains non-zero. 

Likewise, ∇.𝐯𝐯∗ in Eq. 26 is discretised in SPH using the following equation 

(𝛻𝛻. 𝐯𝐯∗)𝑖𝑖 = 𝜌𝜌𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗  �
𝐯𝐯𝑗𝑗
∗

𝑑𝑑𝑗𝑗
2 + 𝐯𝐯𝑖𝑖

∗

𝑑𝑑𝑖𝑖
2� .𝛻𝛻𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗𝑗𝑗  (28) 

Discretisation of the PPE equation leads to a system of linear equations, 𝐀𝐀𝐀𝐀 = 𝐛𝐛, in which 𝐀𝐀 is 

the vector of unknown pressure gradients to be determined, and the matrix A is not 

necessarily positive definite or symmetric. In the present work, the bi-Conjugate Gradient 

algorithm [70] was used to solve this set of equations.  

The new particle positions are finally obtained using 

𝐫𝐫𝑑𝑑+1 =  𝐫𝐫𝑑𝑑 + (𝐯𝐯𝑡𝑡+𝐯𝐯𝑡𝑡+1)
2

∆𝑡𝑡   (29) 

Boundary and initial conditions 

One of the challenges in the SPH method is the implementation of proper physical conditions 

at solid boundaries. In the work here, these boundaries were modelled using two types of 

virtual SPH particles as illustrated in Figure 2. Similar to what was done in Libersky et al. 

[71], the virtual particles of the first type (show in orange in Figure 2) fill the interior of the 

solid by placing them as a mirror image to any fluid particles that fall within the smoothing 

area λhi outside the solid. These virtual particles have the same density and pressure as the 

corresponding real particles, but opposite velocities. These virtual particles are insufficient to 

prevent the real fluid particles from penetrating into the solid on occasion. To overcome this 

issue, virtual particles of a second type (shown in red in Figure 2) are located at the fluid/solid 

interface as done in Monaghan [72]. These particles, which are fixed, interact with the fluid 

particles via an expression similar to that of Lennard-Jones  

𝐅𝐅𝑟𝑟𝑟𝑟𝑝𝑝 = �𝜀𝜀 ��
𝐿𝐿0
𝑟𝑟𝑖𝑖𝑗𝑗
�
12
− �𝐿𝐿0

𝑟𝑟𝑖𝑖𝑗𝑗
�
4
�

0

𝐀𝐀𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗2

               𝑟𝑟𝑖𝑖𝑗𝑗 ≤𝐿𝐿0 
                  𝑟𝑟𝑖𝑖𝑗𝑗 >𝐿𝐿0  (30) 

where 𝜀𝜀 is a parameter chosen to be of the same scale as the square of the largest velocity, 𝐿𝐿0 

is the initial distance between the particles that was calculated using the number of  SPH 

particles and size of the domain, and 𝐀𝐀𝑖𝑖𝑗𝑗 is vector between particles i and j.  
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Figure 2. Illustration of solid particles made up of SPH particles 

 

Periodic boundary conditions were applied in all three dimensions for the benchmark 

problem, whereas they were applied only in the flow direction for the µPB work. 

The fluid particles were initially distributed on a regular grid with spacing of ℎ = 1.5𝐿𝐿0, 

where 𝐿𝐿0 is the initial distance between particles. The number of SPH particles was also 

chosen based on this initial arrangement. The fluid, which was initially at rest, was driven by 

a body force that yielded the desired flow rate. 

Benchmarking 

The accuracy of the SPH model was verified by comparing an experimental drag correlation 

[73] against that obtained by solving for the flow around a sphere in a periodic simulation cell 

with the details given in Table 1. The drag force experienced by the sphere, Fd, was computed 

by integrating the pressure and viscous stresses around the surface of the sphere to obtain the 

resultant pressure and viscous forces on the surface. Because of the symmetry of the flow, 

both of these resultant forces are directed downstream. It was found that one-third of the drag 

force could be attributed to the pressure force (pressure drag) with the remaining two-thirds 

being due to the viscous force (viscous drag), in line with literature for Re << 1 [74, 75]. 

Figure 3 shows the drag coefficient obtained from SPH and the experimental correlation, 

where the coefficient is defined by  

𝐶𝐶𝑑𝑑 = 2𝐹𝐹𝑑𝑑
𝑑𝑑𝑢𝑢02𝐴𝐴

                                                                                                                              (31) 

where ρ and u0 are the fluid of density and superficial velocity, respectively, and A is the 

projected cross-sectional area of the sphere. This figure shows that the SPH predictions tend 

to fall slightly above that of the correlation until Re ∼ 0.05, with the average deviation being 

around 5%, whereupon it passes below the correlation with a similar deviation. 

Solid boundary 

Fluid’s SPH 
particles 

Virtual particles type 2 

Virtual particles type 1 
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Table 1. Details of benchmark SPH simulation  

Parameters Value 
Size of cell (L3) 200 µm × 200 µm × 200 µm 
Sphere diameter (dp) 100 µm 
Number of SPH particles (Np) 6859 
Initial distance between particles (L0) 6.25 µm 
Time step size (∆t) 2.5 × 10−5 s 
Time steps to steady state (tss) 6500 

 

 

 
Figure 3. Variation of the drag coefficient of a sphere with Reynolds number as evaluated 

using SPH (broken line) and experiment [73] (solid line). 

 

Micro-packed bed 

For simulation of flow through a µPB, the positions of the solid particles for beds of varying 

bed-to-particle diameter ratios were determined from experiment using a method developed 

by the authors [42, 43]. SPH-based simulation of flow in the µPBs was undertaken as 

explained in the following; the associated simulation parameters are given in Table 2. In order 

to allow solution of the flow problem through the µPBs using a single CPU, they were 

divided into Nn computational cells as illustrated in Figure 4. The simulation was then 

initiated by solving the flow through first cell, N1 under periodic boundary conditions in the 

flow direction until the pressure drop in the flow direction stabilised. At this point the SPH 

particles were then allowed to pass into the next cell, N2, and the process repeated. This was 
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in turn repeated for all cells until all the cells along the bed length had been considered. The 

pressure drop across the entire µPB was equated to the pressure at the outlet of this last cell, 

Pn. The number of cells considered, Nn, was dictated by the need for the pressure gradient to 

no longer vary with the number of cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The schematic geometry of µPB, computational cells and quasi-periodic boundary 
condition 

 

Table 2. Details of SPH-based simulation of flow in the µPBs 

Parameters Value 
Size of computational cell (D×D×l) 200 µm × 200 µm × 2.2 dp µm 
Number of SPH particles (Np) 10240 
Number of cells (Nn) 454/dp 
Initial distance between particles (L0) 6.25 µm 
Smoothing length (h) 1.4L0 
Time step size (∆t) 1 × 10−5 s 

N1 

Nn 

SPH liquid particles leaving computational cell 
 

SPH liquid particles entering computational cell 
 

Liquid inlet 

Liquid outlet 

P0 

P1 

Pn-1 

Pn 

l 
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4. Results and Discussion 

Figure 5, which shows the pressure drop as a function of the superficial velocity for µPBs of 

varying bed-to-particle diameter ratios, clearly indicates that Darcy’s law holds for the 

systems considered here. Linear fits to these data were excellent, with all lines passing 

through the origin with R2 being 96% or better. This figure shows that the pressure drop 

increases with increasing bed-to-particle diameter ratio, consistent with the fact that the 

surface area per unit volume of the µPB increases as the particle size diminishes relative to 

the bed size.  

 
Figure 5. Pressure drop variations against superficial fluid velocity for different bed-to-bed 

particle diameter ratios equal to: 5.2 (solid diamonds); 5.8 (solid triangles); 6.6 (solid 
squares); 7.5 (solid circles); 10.4 (open diamonds); 11.6 (open triangles); 13.1 (open squares) 

and 15.1 (open circles), with the best fit straight lines (dash lines). 

Figure 6 shows the dependence of the µPB permeabilities predicted here, which are derived 

from the slopes of the lines in Figure 5 as per Darcy’s Law in Eq. 1, with the bed-to-particle 

diameter ratio. This figure shows that the SPH-derived permeability decreases with the bed-

to-particle diameter ratio in a non-linear manner to reach what appears to be a plateau at the 

upper end of range that corresponds well to the values predicted by Ergun’s expression, Eq. 

(2), which are also shown in this figure. The SPH-derived permeabilities do not, however, 

match those predicted by the Ergun equation at lower bed-to-particle diameter ratios except at 

𝐷𝐷 𝑑𝑑𝑝𝑝⁄ = 5.8, where the two crossover. The fact that the SPH-derived results approach that 

yielded by the Ergun equation at the upper end of the bed-to-particle diameter ratio strongly 

supports the validity of the SPH results. The deviations at lower bed-to-particle diameter 

Increasing D/dp 
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ratios, on the other hand, suggests that wall effects are important for µPBs whose bed-to-

particle diameter ratio is less than 10, although this limit could be located between this value 

and that associated with the next smallest ratio investigated, 𝐷𝐷 𝑑𝑑𝑝𝑝⁄ = 7.6. The decreasing 

trend to a plateau is consistent with the bed-to-particle diameter ratio dependency of the bed 

porosity shown in the insert as well as the volume-fraction of the bed over which the wall has 

a direct influence.  

 

Figure 6. Permeability change of µPBs with bed-to-particle diameter ratio as predicted here 
(open circles) and from the Ergun equation, Eq. 2, (open squares); the corresponding 

dependence of bed porosity is shown as an insert [43]. The uncertainties in the permeability 
data is less than the size of the symbols. The broken and solid lines are a guide to the eye only 

for the permeability predicted here and the porosity, respectively.  

Figure 7 compares the SPH-derived permeabilities of the µPBs with counterparts obtained 

from the correlations outlined in the Introduction of this paper; deviation of the points from 

the broken line indicate a discrepancy between the two permeability estimates. The 

corresponding bed-to-particle diameter ratios are shown in descending order on an axis on the 

right hand side of the figure to aid understanding. The SPH results compare most favourably 

to the values derived from the expression of Reichelt [57], where the average and median 

differences are 50% and 26%, respectively. The estimates yielded by the model of Foumeny 

[46] are on average around 90% out from the SPH-derived results (average of 87%, median 

91%). The remaining models derived for macroscale packed beds that include the bed-to-

particle diameter ratio all deviate substantially, 160% to 344% median differences, from the 

SPH-derived results. As the SPH-derived results appear to match well the Ergun estimate at 
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larger bed-to-particle diameter ratios, the larger deviations seen here for the Eisfeld & 

Schnitzlein [45], Raichura [60], Cheng [58], and Di Felice & Gibilaro [61] suggest these 

models are not appropriate for µPBs. 

 

Figure 7. Comparison of the µPB permeability obtained by simulation with those determined 
via existing correlations determined from macroscale beds: Eisfeld & Schnitzlein (solid 

triangles); Reichelt (open triangle); Raichura (solid circles); Cheng (open circles); Di Felice & 
Gibilaro (solid squares) and Mehta & Hawley (open squares) and Foumeny (solid diamonds). 

The variation of the porosity and axial fluid velocity with position across the radius of the 

µPBs is shown in Figure 8 for the bed-to-particle diameter ratio of 15.1; the results are similar 

for all the other µPBs considered here. It can be seen in this figure that the porosity in the 

µPB decreases from unity at the wall to the bulk value in a damped oscillatory way some 

three particle diameters in from the wall. This inhomogeneity in the bed porosity leads to 

significant radial variation in the axial fluid speed, with the speed being locally maximal 

where the porosity is also similarly maximal. The velocity non-uniformity is significant with 

the velocity close to the walls some 2.5 to 3 times greater than the average dropping to near-

zero at dp/2 from the wall before becoming constant at around 3dp from the wall in line with 

previous work of others [76, 77].in contrast to Giese and Magnico studies [76, 77], the first 

peak is higher than the second peak at one particle diameter wall distance, although this is in 
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line with model prediction of Cheng and Yuan [78] and simulation results [79, 80]. This 

clearly has performance implications for µPBs compared to their macroscale counterparts, 

suggesting that models for their performance (e.g. heat and mass transfer characteristics) may 

not be appropriate for µPBs [35, 46, 47]. 

 

 
Figure 8. The variation of µPB porosity (solid circles) and dimensionless velocity (solid 

squares) against distance from wall for dp = 26.5 µm and D/dp = 15.1. 

 

5. Conclusion  

The hydrodynamic character of micro-packed beds (µPBs) have been investigated as a 

function of bed-to-particle diameter ratio, 𝐷𝐷 𝑑𝑑𝑝𝑝⁄ , using smoothed-particle hydrodynamic 

(SPH) simulation on models of the beds derived from X-ray microtomography. The 

permeabilities obtained from this work were in line with that given by the Ergun model for 

𝐷𝐷 𝑑𝑑𝑝𝑝⁄ > 10, suggesting the SPH results are valid.  The permeability decreased with the bed-

to-particle diameter ratio in a non-linear manner from around 10−5 mm2 for the smallest ratio 

(𝐷𝐷 𝑑𝑑𝑝𝑝⁄ = 5.2), in line with a similar trend for the porosity change and volume of the ‘wall 

region’ relative to the total bed volume.  

Comparison of the SPH-derived results with a variety of models developed for accounting for 

bed-to-particle diameter ratio in macroscale packed beds suggests that the model of Reichelt 

[57] may be suitable for estimating the permeability of µPBs, although the model of Foumeny 

[46] also yielded estimates that deviated less than 100% from the SPH results on average. The 

estimates yielded by the models of Eisfeld & Schnitzlein [45], Raichura [60], Cheng [58], and 

Di Felice & Gibilaro [61] all deviated significantly from the SPH-derived results. The largely 
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empirical nature of these longer-standing macroscale-based models means it is difficult to 

discern the origins of these poor comparisons. 

Finally, it is also shown that the local axial flow velocity in the µPBs is inhomogeneous, with 

channelling being observed to occur not only at the bed wall, but also within the bed due to 

oscillatory porosity variation with radius. This suggests that performance models derived for 

macroscale beds may not be suitable for µPBs. The work here suggests that the approach 

taken here could not only form a sound basis for predicting the hydrodynamic character of 

µPBs, but also their heat and mass transfer and reaction characteristics. 
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Nomenclature 

Latin letters 
A  Area [m2] 
𝐀𝐀  Matrix of coefficients [m/kg ] 
Aw  Wall correction parameter [ - ] 
𝐛𝐛  Vector of constants [1/s2]   

CD  Drag coefficient [ - ] 
D  Bed diameter [m] 
dp  Bed particle diameter [m] 

D/dp  Bed-to-bed particle diameter ratio [-] 
Frep  Force acting between the SPH particles and solid surfaces [-] 
Fd  Drag force [kg.m/s2] 
g  Gravitational acceleration [m/s2] 
h  Characteristic of the SPH kernel smoothing length [m] 
I  Unit tensor [ - ] 
k  Permeability [m2] 
L  Bed length [m] 
L0  Initial distance between SPH particles [m] 
m  Mass of SPH particle [kg] 
M  Bed-to-bed particle diameter ratio factor [ - ] 
N  Number of computational cells along bed length [ - ] 
Np  Number of SPH particles [ - ] 
P  Pressure [Pa]    
q  Position-to-smoothing length ratio [ - ] 
r  Position [m] 
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𝑟𝑟𝑖𝑖𝑗𝑗  Distance between SPH particles i and 𝑗𝑗 [m] 
Re  Reynolds number [ - ] 
t  Time [s] 
t  Time step [s] 

tss  Time steps required to achieve steady state flow through the bed [s] 
u  Volume averaged fluid velocity [m/s] 

u0, 𝑣𝑣  Superficial velocity (flow rate per unit cross-sectional area) [m/s] 
𝐯𝐯  Velocity vector [m/s] 

u/u0  Dimensionless velocity [ - ] 
𝑊𝑊  SPH smoothing kernel [m-3] 
𝐀𝐀  Vector of pressure gradients [N/m2] 
𝒙𝒙𝑖𝑖𝑗𝑗  Distance vector between SPH particles i and j [m] 

   
Greek letters 

ε  Bed porosity [%] 
𝜀𝜀  SPH particle-solid interaction model parameter [ - ] 
𝛕𝛕  Shear stress tensor [N/m2] 
𝛔𝛔  Stress tensor [N/m2] 
𝜌𝜌  Fluid density [kg/m3] 

λ  Constant to define the smoothing area outside the solid boundaries with virtual particles 
of the first type [ - ] 

µ  Dynamic viscosity [Pa.s] 
η  Arbitrarily small quantity used to ensure pressure term in Eq. (27) is always finite [m2] 
∆𝑃𝑃  Pressure drop across bed [Pa] 
∆𝑃𝑃/𝐿𝐿  Pressure drop across bed per bed length [Pa/mm] 
∆𝑡𝑡  Time step size [s] 
∇  Gradient operator [1/m] 
   

Subscripts 
i, j  SPH particle index 
t  Quantity at time t 
   

Superscripts 
Α, β  Cartesian coordinate  

*  Intermediate state 
**  Corrected state  
   

Abbreviations 
SPH  Smoothed Particle Hydrodynamics 
µPBs  Micro-packed beds 
µTAS  Micro Total-Analysis-System 
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