
Requirement Engineering Education in the UK,
an Empirical Study

Russell Lock

Department of Computer Science, Loughborough University, Loughborough,
United Kingdom

r.lock@lboro.ac.uk

Abstract

The quality of software is critically dependent on the quality of
Requirements Engineering activities undertaken during software
development. This paper outlines a survey of Higher Education (HE)
institutions in the UK undertaken to determine the nature of the
topics covered relating to Requirement Engineering, and the extent
to which such topics are practically taught and assessed. Very few
surveys of Requirement Engineering within HE have been conducted,
and, to the authors knowledge this will be the first significant one
published which focussing on HE in the UK. The paper concludes
that a number of key issues exist in the UK provision for teaching in
this area, which impact on the ability of industry to leverage the
skills gained by students whilst studying at university.

Keywords: Requirement Engineering, Survey, Higher Education

1.0 Introduction
Within Software Engineering the concept of Requirements Engineering (RE)
encompasses topics relating to the elicitation, analysis, documentation and ongoing
management of software requirements, as well as its integration within software
development methodologies. The effectiveness of RE as an activity is undoubtedly
a major factor in the eventual cost of an IT systems [1], and a major cause of

mailto:r.lock@lboro.ac.uk

system failures [2, 3]. Indeed, Brooks famously stated that “The hardest single part
of building a software platform is deciding precisely what to build” [4]. It is also
clear that organisations are becoming considerably more cost conscious, with
increased trending towards cost reduction measures in software development since
the global recession started in 2008 [5]. The relevancy of the skillset of on-
boarders graduating from Computer Science related degrees is therefore of
increasing importance to industry.

The principle objective of the research is to investigate the state of Requirement
Engineering within Higher Education (HE) for Computer Science in the UK, in
order to determine to what extent it supports the needs of graduate employers
engaged in in RE activities. In order to achieve this, a survey was developed for
HE to determine whether RE was explicitly taught as a topic and, if so, the subjects
it included, the depth of coverage, how it was taught, and how it was assessed.

The structure of the paper is as follows. Previous research relating to HE surveys
and curriculum design will be explored, along with an examination of current best
practice for the teaching of Requirements Engineering in Higher Education, from a
pedagogical perspective, and in terms of expected content and depth. The
methodology for the survey will then be discussed. The key results from the survey
are then examined, followed by discussion on the limitations of the research.
Finally, conclusions are drawn on the research conducted.

2.0 Background
Theory on the Diffusion of Innovations [6] emphasises the importance of five key
characteristics in relation to the rate of uptake for technology: relative advantage,
compatibility, complexity, trialability and observability. While HE cannot ensure
comprehensive understanding of the five characteristics outlined by Rogers in
relation to techniques in every industry, it can cover generic usage. It is also
arguable that the strategic alignment of an organisation to the benefits of new
approaches is an important consideration [7]. Through the material taught to
undergraduate students, the skillset of graduate on-boarders can impact on the
uptake of new techniques by industry. Further, beyond mainstream commercially
accepted techniques the introduction of students to cutting edge processes /
techniques can be achieved from a pedagogical viewpoint through the use of
approaches such as Research Informed Teaching, which is explored later on.

The work of Boyle [8] concluded that Computer Science as a discipline is currently
in a pre-paradigmatic state, a concept developed by Kuhn [9] , which may partially
explain the opposing views held by academics on the content of the Computer
Science Syllabus for HE. The differing opinions on Computer Science Syllabus
design certainly cannot be considered a recent one, with Denning [10] reporting in
1985 similar conclusions relating to the lack of taught material on (then) new
topics such as relational databases and the needs of industry. In terms of the overall
syllabus for CS the comparative analysis of curriculum developments composed by

Glass [11] in 1992 indicated recognition of the importance of both SE and RE as
topic areas for CS from a relatively early point in the disciplines development.
However, the majority of studies on CS syllabus design continue to place the most
emphasis on programming language provision rather than on aspects of the
syllabus relating to RE or SE in general.

Lethbridge [12] surveyed 168 software professionals to determine whether the
university curriculum they were taught covered the materials needed for their
current software engineering jobs. The study highlighted key areas of shortfall for
teaching in Computer Science, namely: testing, quality assurance, requirements
gathering and analysis, project management, user interface design and
configuration management. All of these topics relate to Software Engineering, and
many of them to Requirement Engineering. This paper highlights that many of
these gaps in topic coverage still appear to exist within UK Higher Education
nearly two decades later.

With regard to industry needs the work of Shaw [13] provides a fitting summary of
one of the key dilemmas which face Computer Science Departments in teaching
for the 21st century, that:

“Universities have long felt the tension between an internal value system that
emphasizes education in enduring principles and the demands of employers who
want focussed training in current technology”

Although very little research exists which focusses primarily on RE education the
work by Macaulay [14] is particularly interesting as it combined small scale data
collection from both academic representatives and industry. While the research
itself was limited in scope, the depth of skillset expected by industry proved
considerably more than that provided by the participating universities with the
authors noting that in future “the education of a requirements engineer will require
something considerably greater than a standard twenty hour lecture course”.
However, in order to understand how and why topics are taught in RE it is
necessary to look beyond the limited academic literature to the role of accreditation
and standards bodies.

2.1 Accreditation and Guidance for Higher Education
Whether discretionary or mandated within a given country universities worldwide
are encouraged to abide by the requirements placed on them by accreditation
bodies, and to follow the guidelines put in place by standards bodies. The
following sections explore firstly the influences on curriculum design from within
the UK, then at the international influence on curriculum design.

2.1.1 The UK
Within the United Kingdom while HE institutions have freedom to develop and
deliver the course material they wish, however, in reality they are guided by a

number of organisations, including the QAA, and for Computer Science, largely
national organisations such as the BCS (British Computer Society). One aspect of
the QAA’s work is to publish subject specific benchmarks which are used as a
source of information for curriculum development in HE institutions. The
benchmarks indicate the core topics to be covered by UK HE institutions teaching
in 59 subject areas, with compliance checked through periodic inspection by the
QAA at an institutional level. The QAA benchmark for Computing [15] was last
revised in 2007, and is currently in the process of being updated. Designed to
provide a high level overview of topics expected to be covered, rather than a low
level prescriptive one, the benchmark documentation as it stands has some notable
issues, including:

• The fact they represent single honours Computer Science but only very
briefly address the concept of joint honours programmes (ie programmes
which combine multiple disciplines).

• The limited recognition of different types of single honours degree within
the computing domain, such as specialisms in Software Engineering,
Games development etc. (it is understood that these distinctions will be
made in the revised version).

• The fact they are updated infrequently. For example, within the 2007
benchmark for Computing Grid Computing is listed as a developing
technology, which has now been largely subsumed into the newer more
advanced Cloud Computing paradigm.

The concept of Requirements arises nine times within the 2007 Benchmark
Statement largely in terms of the concept, with specific mention of, elicitation,
specification, constraints, types (functional & non-functional) and evaluation. The
benchmark is entirely technique agnostic, for example, making repeated references
to the importance of modelling as a concept without mandating the use a specific
approach such as the Unified Modelling Language (UML). In summary, the
Computing Benchmark is not designed to give guidance on specifics, and has
relatively little content to guide the preparation of materials in this area. Unlike the
ACM guidance which will be explored later, the benchmarks do not give guidance
on the time spent on different topics, and as such raise significant questions
relating to the balance between topics in a Computer Science degree.

The BCS accredit Computer Science related degrees, largely in the UK but also
overseas. Accreditation is optional for HE institutions, with periodic inspections by
nominated panels of BCS members. Unlike the QAA the BCS update their
documentation, which outline subject areas and procedures [16] on a more regular
basis, with the most recent version being June 2015. However, the core subject
areas are aligned with the QAA subject benchmarks, and as such do not add
additional guidance on suitable Requirements Engineering topics.

2.1.2 The wider world
ABET [17] are one a key provider of accreditation for Engineering related topics
within North America, with over 300 accredited courses in the Computer Science
domain. ABET accreditation places emphasis on the process of Higher Education
effectively delegating decisions relating to the applicability of different topics to
discussions between the assessor and university in question. ABET curriculum
specifications are therefore brief, with an emphasis on ‘design’ and ‘modelling’
skills.

While there are a number of initiatives within Europe aimed at ensuring equivalent
standards for HE these are predominantly designed to provide quality assurance
rather than prescriptive subject specifications, including the Bologna Process [18],
ECTS (European Credit Transfer and Accumulation project) [19] etc, which are
outside the scope of this piece of research.

In terms of guidance the main sources internationally are the combined ACM/IEEE
Computer Science Curricula, last updated in 2013. The curricula decomposes
topics into Tier 1 (core), Tier 2 (important) and Tier 3 (elective) categories in terms
of the number of hours recommended tuition. While the topic of Requirements
Engineering is mentioned within the curricula the number of hours associated with
it would only support a small number of lectures rather than an entire module on
the subject. Much of the material listed is elective in nature, with only one hour
outlined at the core Tier 1 level, and three hours at Tier 2. The quote below
provides the descriptor for the core Tier 1 material expected to be covered as part
of a computer science degree.

“Describing functional requirements using, for example, use cases or users stories.
Properties of requirements including consistency, validity, completeness, and
feasibility” - IEEE/ACM Curricula Computer Science 2013

While the descriptor above may be considered very limited, it can however be
noted that many of the topics which this survey has considered broadly part of
Requirements Engineering have been listed under other headings within the
curricula. For example UML, which has been classed under the separate heading of
data modelling.

2.1.3 Summary on Accreditation and Guidance
Given the breadth of abstract high level guidance, and the lack of detailed guidance
available to universities within the UK, HE institutions are reliant on the skillset of
their individual staff members, limited industry input, and that of the content of
current HE oriented textbooks to determine appropriate topics. It is therefore
beneficial to gather data regarding how RE material is currently taught at
universities to determine the effectiveness of the approach taken by the HE sector
to teaching in this area.

2.2 Requirement Topics
In order to determine which topics were being taught relating to RE, and in what
way they were being assessed, a list of common RE topics had to be compiled.
This was achieved by analysing the sources of accreditation and guidance in the
previous section, and through examination of the major topics covered by current
RE/SE textbooks. The RE specific textbooks examined included the Volere
technique oriented work by Robertson [20], Laplante’s text [21] and the older text
by Sommerville [22]. In order to determine which topics were most likely to be
covered the authors did make an assumption that the majority of institutions were
more likely to teach RE within combination modules that also covered SE and/or
software development (an assumption which was supported by the results of the
survey). As such the author would argue that lecturers would also be likely to use
general SE texts. Therefore the list was supplemented by the RE topics covered by
two longstanding SE textbooks, Sommerville [23] and Pressman [24].

3.0 Survey Methodology
The survey data (the questions for which can be found in Appendix A), was
gathered electronically, and was distributed by the CPHC (College Professors and
Heads of Computing). The survey had a return rate of 43 respondents from a total
of 104 potential universities. In all cases the departments represented were either
Computer Science, Computing, Informatics or departments combining these with
allied disciplines such as Engineering, Mathematics etc. In several instances,
individuals from the same institution responded to the survey. Recipients were
requested to direct the survey to the most appropriate member of staff in their
department for completion. The most appropriate was deemed to be the member of
staff with greatest responsibility towards assessment of Requirement Engineering
within their department. Of the responses that represented multiple responses from
a given institution:

• In twelve cases responses were discarded as clearly partially completed.
The vast majority of these involved the completion of initial demographic
question data but no further involvement (including both of the two
responses from one institution).

• Contact details were available for two respondents from the same
institution allowing resolution of the official response by email.

• In one case the same individual responded twice, in which case the later
time-stamped response was counted.

• In three cases where the university was known, but contact details were
not available the later time-stamped entry was counted.

This therefore left 26 institutions with responses that could be analysed
further. Seventeen of the responding institutions reported information for their
Computer Science/Computing degree scheme. A further seven reported their
responses for a specialised Software Engineering degree. Of the remaining two one

was Games related, the other Business related but taught by a Computing
department.

The responding institutions were ranked to determine their distribution amongst
Computer Science Departments in the UK, in order to check a suitable spread of
responses had been received. Institutions were ranked using the Guardian 2016
subject league tables, one of the key league tables for universities within the UK.
The presentation of the results shown in Figure 1 is deliberately coarse grained in
order to ensure the anonymity of the universities who responded, in line with the
nature of the survey. The results showed a slight skew, with the higher ranking
quartiles being slightly better represented than the lower two quartiles. However,
two responding institutions were unranked by the Guardian, and one was submitted
anonymously.

Figure 1: Responses by League Position as determined by the Guardian 2016
subject rankings

In terms of teaching approach within HE, the survey was designed to determine the
mode of delivery for topics so, for example whether a given topic was being
practiced within lectures, through coursework etc, or simply summatively assessed
through assessment mechanisms such as exams. The survey results were processed
through the IBM SPSS analytics suite, and, due to the monotonic, ordinal nature of
the questions Spearman correlations were used for the correlations reported in the
following section.

4.0 Key Survey Results
The following subsections explore the results of the data analysis relating to five
key themes which emerged from the results.

4.1 Dedicated Requirement Engineering Modules
Respondents were asked whether their degree scheme had a dedicated Requirement
Engineering Module rather than teaching the subject within Software Engineering
content, or taught in a decentralised manner throughout their programmes. 15 (58%)
of the respondents reported dedicated modules for this topic. It is possible that the
dedicated RE modules are more likely to be used within Software Engineering
degree schemes (given their bias towards material in that sub-discipline), however
a test for correlation between degree scheme and the use of dedicated RE modules
showed a significant unexpected negative correlation between them (-0.52) in the

data set. Information was collected within the survey relating to module titles
under which RE material was taught, and while not complete in reporting (this
question was optional), this showed that RE is more commonly taught under the
module heading of Development, implying the bundling of Requirements-Design-
Implementation within Software Engineering degree schemes rather than isolated
standalone modules.

4.2 Hours of Tuition
Respondents were also asked how many hours of tuition were given for RE topics.
The results showed significantly varying amounts of tuition ranging from 3 hours
to 120 hours during a degree scheme with an average of 35 hours, which appears to
be a slight improvement on the evidence gathered by the 1995 study by Macaulay
[14].

While the number of hours used to teach RE related topics varies greatly between
institutions, this arguably indicates discrepancies in determining the scope of RE
activities within university teaching. The research by Macaulay indicates that some
institutions consider transferable soft skills as part of their RE material.

4.3 Use of Computer Based Tools
All responding institutions required students to be able to write requirements.
However, only 16 institutions (61%) expected students to be able to write
requirements by hand, implying nearly 40% were unable to ask exam questions
which required students to write software requirements. 18 (69%) used generic
office software such as Excel & Word in documentation of requirements. Only 1
respondent had developed software especially for this purpose (a Volere template
based electronic tool for requirement specification). 7 (26%) used industry
standard tools such as IBM DOORS, Objectiver etc.

Schumann et al [25] showed that some segments of industry persist with generic
tools such as Excel to document requirements. However, it is arguable that the
ongoing dominance of such tools in teaching the new generation of Software
Engineers is reinforcing this, rather than acting as a force for change within
organisations.

4.4 Research Informed Teaching
The concept of Research Informed Teaching gained traction within academic
pedagogical literature in the 1990s [26]. It promotes the use of research techniques
within the classroom, and posits that undergraduate students may benefit from
involvement in ongoing research activities, either through project work or through
module coursework. Although not one of the key focusses of the study in question
respondents were asked whether they, as the identified leader for teaching RE
materials had a research background which covered these areas. Of the 29 who
answer 12 stated they were working in this research area (Approximately 41%).
Without further data the reason for this relatively low level of research expertise is

open to interpretation, however the number of members of staff within computer
science departments, coupled to the breadth of computer science as a domain of
research is likely to be a factor. Regardless of the interpretation it does limit the
level of Research Informed Teaching that can take place for RE teaching.

4.5 Specific Topic Areas
Respondents were asked the proportion of time spent on four key topics within
Requirements Engineering, namely, Elicitation, Analysis, Specification,
Verification and Management. The results showed a near even split between these
for the respondents with approximately 20% of taught hours going to each of the
four topics.

The topic areas generally associated with RE are therefore covered, however, the
number of hours put to RE as a whole is likely to be a factor in the quality of
learning for students on a given course, as could the techniques
discussed/applied/assessed under these four headings.

In order to understand which specific techniques were being used by universities in
teaching information was requested on 22 specific techniques. Rather than rely on
a Boolean measure of taught or not taught information was gathered on the way in
which the topics were covered, applied and assessed. In order to develop these
categories some assumptions/decisions did need to be made which are outlined
below:

• Not taught: While the author expected that the majority of the topics
would be covered by the majority of institutions at some level, some of
the techniques listed represent alternative competing ways of working,
and so it is not necessarily the case that lack of coverage represents a
deficiency.

• Presented in lectures: Coverage in lectures does not preclude the
possibility of background reading, or materials covered through tutorials
etc, however these were not listed separately as categories in order to
streamline the response time for respondents.

• Practised within modules: To indicate whether the material was covered
in such a way as to promote levels of learning beyond basic recall, for
example through small group work, coursework etc.

• Assessed within modules: To determine whether coverage of a given topic
was also covered by assessment processes. While it may seem preferable
for all topics to be assessed within modules, in practice some materials
may be provided for background information, or delivered by guest
lecturers in such a way as to preclude assessment.

• Assessed by Exam: Exams are commonly used within Higher Education,
however, their nature does prevent the practical assessment of group
activities by their very nature, which are common to many Software
Engineering techniques.

The measures are discrete rather than ordered, though it would be unexpected if,
for example a topic was assessed but not taught. While it would have been valuable
to determine the amount of time spent on the different topics, especially in the case
of complex model based techniques such as UML it was not felt that respondents
would be willing to enter so much data.

The results revealed a number of interesting points, which are discussed further
below. An aggregated summary table of the results from the 26 respondents,
converted to the percentage of respondents is shown in Table 1.

Table 1: Processed survey results

On cursory inspection there may appear to be some anomalies in the data collected,
seen with some of the less popular techniques, such as SysML, which show less
than 100% if the not taught and taught columns are combined. However, there is an
assumption that in a situation where the reader did not know the answer to the
question they may have left it blank. These, non-responses have not been removed
from the table in order that the reader can see the reported result from all
respondents for any given technique. The effect of these non-responses is discussed
in more detail below.

The majority of courses were found to include observational techniques such as
ethnography (65%), however, the assessment of such techniques is noticeably
weaker (34%). Strong industrial case studies are important in order to ground the
theories put forward in HE [27], especially for approaches that rely on direct
observation of real world issues not evident from existing documentation/models.

The concepts of functional and non-functional requirements are the only topics
universally taught (these are explicitly listed in the 2007 QAA Subject Specific
Benchmark for Computing) with UML, use cases and user requirements having
near complete coverage across institutions. However, the complexity of UML
raises concerns regarding depth of coverage when considering the average number
of hours put to RE topics as a whole as discussed earlier. With the exception of
UML, the Model Based Software Engineering (MBSE) approaches coverage was
noticeably poorer, including approaches such as GORE. SysML in particular fared
badly (69% of courses had no content on this), industry take-up of SysML has also
been limited compared to UML. Further investigation into the data showed that
SysML was not being used as a substitute for UML. Unless the teaching of MBSE
broadens beyond UML the next generation of RE practitioners may have to rely on
androgogical activities, self-interest / internal / external courses etc upon
completing their on-boarding processes in order to leverage these approaches going
forward. Unfortunately the shortfall in MBSE related teaching currently coincides
with a global recession that has seen industry training budgets reduced or even
removed unless mandated by regulatory or legal bodies [28].

One of the key roles of HE is to set the students on the path to best practice, and it
is therefore surprising that the role of standards in RE does not comprise a part of
nearly 1/3rd of the courses investigated. The results also indicated a relatively low
level of teaching (half of the courses contained none) relating to re-usability, which
is a concern given the recent studies on how likely organisations are to actively re-
use requirements for new or modified systems [29–31]

The results overall showed a role for both coursework and exams in teaching RE,
however there was a clear bias in favour of coursework. However, in cases of
practical techniques such as UML, prototyping and scenarios lecturers do make use
of lecture based exercises in addition to coursework. For subject matter where
small scale lecture based exercises cannot be constructed as easily, such as

promoting standards and requirement reviews this material was mostly presented in
lecture format.

In summary, it is clear that the basics of RE are being covered almost universally,
however emphasis on the role of standards and reuse are weak. There may be
implications for practice in terms of forming “bad habits” (ignoring standards) as
well as under-emphasising the re-use organisations commonly undertake. It is also
clear that when considering model based specifications there may be neither the
time nor the appetite to teach languages other than UML. This in turn hinders the
coverage of more recent academic advances in RE, such as the GORE based
techniques which have only seen limited industrial use so far.

5.0 Limitations and Future work
While the survey was distributed to all relevant computer science departments by
an established body within the Computer Science HE domain (the CPHC) the
return rate was still lower than expected. As a result although the results
themselves have been analysed and are valid for the responding institutions, the
return rate, combined with the limited number of UK Computer Science
departments (104) do mean that statistical confidence for the research findings in
terms of application to the wider group of computer science departments in the UK
is not ideal with a potential 16% margin of error at a 95% confidence level. One of
the steps taken to increase confidence in the results shown was to map the
responding institutions in terms of league table position, as outlined in the
methodology section.

As part of the survey response respondents were asked if they would be prepared to
take part in future communication on this issue. As a result a number of contacts
have been made which could be leveraged through the development of a suitable
focus group. The results also point to interesting issues relating to the need of
industry to retrain incoming graduate employees to use specific software, and
newer paradigms such as GORE. As such an additional survey will be created for
industry to follow up these points.

6.0 Conclusions
In conclusion, the results of the survey highlight a number of potentially interesting
issues, including the limited use of industry RE tools in use for teaching purposes,
and the ongoing dominance of UML for modelling in both HE. The results also
showed that the QAA 2007 subject benchmark for computing was adhered to, but
that it was insufficient by itself in providing outline guidance on RE topics. The
future of Research Informed Teaching in this area is also hampered by the niche
nature of this topic of research. Given the importance of RE activities in keeping
projects on time and in cost HE appears to be providing a broad but relatively

shallow depth of teaching in this area with considerable variation between
institutions.

7.0 Acknowledgments
The author would like to thank the assistance of the CPHC (Council of Professors
and Heads of Computing), and Prof Sally Fincher in particular for helping to
disseminate the RE survey.

8.0 References
1 Boehm B, Basili VR (2001) Top 10 list [software development]. Computer

(Long Beach Calif) 34:135–137
2 The STANDISH Group (2013) The CHAOS Manifesto 2013.
3 Dorsey P (2010) Top 10 Reasons Why Systems Projects Fail.
4 Brooks FP. J (1987) No Silver Bullet Essence and Accidents of Software

Engineering. Computer (Long Beach Calif) 20:10–19
5 Derksen B, Luftman J (2014) European key IT and Management Issues &

Trends for 2014.
6 Rogers EM (2010) Diffusion of innovations. Simon and Schuster
7 Rifkin S (2001) Why software process innovations are not adopted. IEEE

Softw 18:112–111
8 Boyle R, Carter J, Clark M (2002) What Makes Them Succeed? Entry,

progression and graduation in Computer Science. J Furth High Educ 26:3–
18

9 Kuhn T (2012) The Structure of Scientific Revolutions, 50th Anniv. The
University of Chicago Press

10 Denning PJ (1985) Ruminations on Education. Computer (Long Beach
Calif) 18:105–110

11 Glass RL (1992) A comparative analysis of the topic areas of computer
science, software engineering, and information systems. J Syst Softw
19:277–289

12 Lethbridge TC (1998) A survey of the relevance of computer science and
software engineering education. In: Proc. 11th Conf. Softw. Eng. Educ.
IEEE Comput. Soc, pp 56–66

13 Shaw M (2000) Software engineering education. In: Proc. Conf. Futur.
Softw. Eng. - ICSE ’00. ACM Press, New York, New York, USA, pp 371–
380

14 Macaulay L, Mylopoulos J (1995) Requirements engineering: An
educational dilemma. Autom Softw Eng 2:343–351

15 (QAA) TQAA for HE The Quality Assurance Agency for Higher
Education (QAA).

16 British Computer Society Academic accreditation | Qualifications and
Certifications | BCS - The Chartered Institute for IT.
http://www.bcs.org/category/5844. Accessed 7 Aug 2015

17 ABET (2015) ABET. In: ABET. http://www.abet.org/. Accessed 7 Aug
2015

18 EHEA Documents | Main documents | EHEA.
http://www.ehea.info/article-details.aspx?ArticleId=73. Accessed 10 Aug
2015

19 European Communities (2004) European Credit Transfer and
Accumulation System (ECTS): Key features. In: 2004.
http://ec.europa.eu/education/ects/ects_en.htm. Accessed 10 Aug 2015

20 Robertson S, Robertson J (2012) Mastering the Requirements Process:
Getting Requirements Right. Addison-Wesley

21 Laplante P (2013) Requirements Engineering for Software and Systems,
Second Edition - CRC Press Book, 2nd ed. CRC Press

22 Sommerville I, Sawyer P (1998) Wiley: Requirements Engineering:
Processes and Techniques - Gerald Kotonya, Ian Sommerville, 1st ed.
Wiley

23 Sommerville I (2015) Pearson - Software Engineering, 10/E - Ian
Sommerville, 10th ed. Pearson

24 Roger P (2014) Software Engineering: A Practitioner’s Approach: Roger
Pressman, Bruce Maxim: 9780078022128: Amazon.com: Books, 8th ed.
McGraw-Hill Education

25 Schumann H, Wendel H, Braukhane A, Berres A, Gerndt A, Schreiber A
(2010) Concurrent systems engineering in aerospace From excel-based to
model driven design. Proc. 8th Conf. Syst. Eng. Res.

26 Elton L (2010) Research and Teaching: Conditions for a positive link.
Teach. High. Educ.

27 Ramsden P (2003) Learning to Teach in Higher Education. Routledge
28 Israilidis J, Lock R, Cooke L (2012) Ignorance management: An

alternative perspective on knowledge management in multinational
organisations. In: Proc. Eur. Conf. Knowl. Manag. ECKM. pp 493–501

29 Daneva M (1999) Measuring reuse of SAP requirements. In: Proc. 1999
Symp. Softw. reusability - SSR ’99. ACM Press, New York, New York,
USA, pp 141–150

30 Nuseibeh B, Easterbrook S (2000) Requirements engineering. In: Proc.
Conf. Futur. Softw. Eng. - ICSE ’00. ACM Press, New York, New York,
USA, pp 35–46

31 Frakes WB (ed) (2000) Software Reuse: Advances in Software Reusability.
doi: 10.1007/b75206

