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ABSTRACT 

Isotropic conductive adhesives (ICAs) have a growing range of applications in 

electronics packaging and have recently emerged as an important material in photo-

voltaic module interconnections, particularly for thin-film and other non-silicon 

technologies where soldering processes are often unsuitable due to the nature of the 

metallisation or the limited maximum temperature the assembly can be exposed to. 

ICAs typically comprise of a high volume fraction of solid metallic flakes, usually 

silver, in an adhesive matrix because of its highly conductive oxide however, this thesis 

will focus on adhesives containing a large volume fraction of silver coated/metalised 

mono-sized polymer spheres (Ag-MPS). Incorporating silver coated mono-sized 

polymer spheres is anticipated to deliver specific advantages such as a significant 

reduction in the required silver content, improvement of the overall mechanical 

properties and flexibility to tune the properties of the filler according to the application 

compared with conventional flake filled adhesives. 

In this research advancements in the understanding of Ag-MPS filled ICAs, both 

through theory and experiments, have been made. Analytical models to predict an 

individual Ag-MPS resistance and Ag-MPS filled ICA resistance have been developed. 

The experiments based on the flat punch nanoindentation technique have been 

conducted to determine individual Ag-MPS resistances. The theoretical and 

experimental studies establish Ag-MPS diameter, coating resistivity, coating thickness, 

contact radius, and contact geometry as the main contributors towards the resistance of 

an Ag-MPS filled ICAs. These studies showed that Ag-MPS resistance decreases with 

increasing coating thickness and contact radius but increases with increasing coating 

resistivity. The experiments have also been conducted to investigate the effect of Ag-

MPS volume fraction, diameter, coating thickness, curing conditions and shrinkage 

(affecting contact radius) on ICA conductivity and comparisons are made with flake 

filled and commercial ICAs. The results showed that ICA conductivity increases with 

increasing volume fraction and coating thickness but decreases with diameter. More 

importantly the results showed that conductivities similar to those of flake filled ICAs, 

including those commercially available, can be obtained using 70% less silver. The 

results show that, Ag content can be reduced further to just 7% with use of larger 30µm 

Ag-MPS but with a lower resulting conductivity. Thus for applications where very high 
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conductivity is not required larger Ag-MPS may offer even greater potential cost 

benefits, which is something flake filled ICAs cannot offer. This is a significant 

achievement which can allow tuning of ICA formulations according to the demands of 

the application, which is not possible with the use of silver flakes as there is only a 

limited range of silver flake volume fractions that will yield useful levels of 

conductivity.  
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CHAPTER 1 

RESEARCH AIMS AND OBJECTIVES 

This chapter identifies general problems related to interconnection materials in 

electronics and photovoltaic (PV) applications. Based on the identified problems, the 

research aims and objectives are defined. An overview of the thesis is also presented in 

this chapter. 

1.1 Identification of Problems Related to the Interconnections in Electronics 

and Photovoltaic (PV) Applications 

1.1.1 Interconnections in Electronics 

Microelectronic devices such as Integrated Circuits (ICs) form the basis of all modern 

electronic products. ICs are integrated with other active or passive devices/components 

to make a complete electronic product. A typical electronic product life cycle starts with 

designing a circuit diagram integrating ICs and other electronic devices/components. 

After designing the circuit, the components are physically laid out and interconnected 

using an interconnection material such as copper on a printed circuit board. Such 

methods of interconnecting ICs and components to form an electronic product are 

described as electronic packaging. Electronic packaging converts the topology of a 

circuit diagram into a physical product that can be produced at an acceptable cost. The 

selection of an optimal packaging technology to produce an electronic product is guided 

by a multitude of factors, such as, its (Halbo et al. 1995): 

 Performance specifications;  

 Operating environment;  

 Required reliability and life-time; 

 Required Size;  
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 Production volume;  

 Need for reparability; and 

 Cost. 

Typically electronic systems are made up of several layers or levels of packaging, and 

each level of packaging has distinctive types of interconnection associated with it 

(Halbo et al. 1995; Tummala 2000 a; Gilleo 2002; Greig 2007). A three-level packaging 

hierarchy is illustrated in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A three-level packaging hierarchy after (Tummala 2000 a) 

i) Level I: In this level the Input/Output (I/O) pads on the IC are connected to the 

lead frame, which has been fabricated to a specific shape in order to make it 

ready for interconnection to the next level of packaging. In this level the 

interconnections are generally accomplished by wire bonding, flip-chip bonding, 

or tape automated bonding (TAB). In wire bonding and standard TAB, the 

die/chip is mounted face up i.e. the chip’s un-patterned rear surface is directly 

bonded to the package lead frame face up using wires. In flip chip packaging, 

conductive bumps are formed on the die/chip surface and the bumped die/chip is 

then flipped over and placed face down, with the bumps connecting to the lead 
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frame. Figure 1.2 illustrates wire bonding, TAB and flip chip technology used in 

making level I interconnections. Flip chip bonding has become widely adopted 

by the industry due to the technology’s advantage in size, performance, 

flexibility, reliability and cost over other packaging methods. In the case 

illustrated a silicon wafer is diced and the individual dies are assembled onto 

either a lead frame or a multichip module. 

 

 

 

 

 

Figure 1.2 Illustrating wire bonding, TAB and flip chip interconnection techniques 

(Tummala 2000) 

ii) Level II: In this level packaged components are assembled onto an 

interconnecting substrate such as Printed Circuit Board (PCB). 

iii) Level III: In this level the printed circuit boards are connected to a backplane to 

form a module. At this level, connections are usually separable as opposed to the 

normally permanent connections at earlier levels. 

Some levels may be skipped and there may be more levels depending on the system 

complexity and the types of packaging used (Whalley 1988; Tummala 2000 a).  To 

connect different electronic components within a level and different levels of packaging 

for power, ground, and signal transmission suitable interconnection materials are 

required. The selection of such interconnection materials is based on the type of 

packaging technology used and the properties of the material in relation to expected 

operating conditions. The important properties identified include (Halbo et al. 1995; 

Gilleo 2002): 

 Electrical properties, such as conductivity and contact resistance; 

 Mechanical properties, such as flexural strength and hardness;  
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 Thermal properties, such as coefficient of thermal expansion and thermal 

conductivity; 

 Adhesion properties, such as adhesive strength; and 

 Rheological properties, such as viscosity and flow behaviour. 

Apart from these properties, compatibility with components and surface finishes, ability 

to be produced in different shapes, ease of rework, reliability during the lifetime of the 

product, availability, cost and (more recently) their environmental impact also play a 

considerable role in the selection of an interconnection material. 

1.1.2 Interconnections in Photovoltaic Modules 

Photovoltaics are a growing sector among the various renewable energy sources 

(Gelman 2012). To become a viable option in the market PV modules have to be 

reliable and closer in price to consumer electricity without government subsidies 

(Szlufcik et al. 2005). Individual photovoltaic cells generate limited power and must be 

tied together electrically, to form modules and arrays, in order to produce electricity for 

most applications. For this, cells are joined to one another in series until their individual 

power contributions add to the required value. Therefore connecting cells to form 

modules and modules to form arrays is an extremely important aspect of PV technology 

(Hersch et al. 1982). Photovoltaic modules can be subdivided into three principle 

categories i.e. crystalline - silicon (Si) wafer based modules, thin film modules and 

organic photovoltaic modules. The vast majority of today’s commercially available 

photovoltaic modules are based on crystalline-Si solar cells although thin film and 

organic photovoltaic modules are also growing their market share particularly in niche 

applications (Wiese et al. 2010). The two main assembly techniques currently used for 

the interconnection of crystalline Si solar cells into modules are (Wiese et al. 2012): 

1) Tab String Assembly. This is the traditional interconnection technique used to 

connect PV cells. The cells connected using this assembly are called H-Pattern 

cells. In tab string assembly the cells are usually interconnected to each other by 

copper ribbons (called strings), which connect the front side of one cell to the 

back side contact of the next cell (Klengel et al. 2011) as shown in Figure 1.3 

(a). Most currently produced photovoltaic modules are manufactured using this 
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traditional tab string process, however it has some disadvantages. To reduce 

material costs the cells have been made thinner and bigger but for increased 

efficiency cells requires thicker and/or wider tabs for interconnection (Spath et 

al. 2008). These wider tabs result in more shadowing of Si and thicker tabs 

result in a stiffer interconnection, leading to more thermo-mechanical damage 

during module manufacture and operation (Kerschaver et al. 2006); and 

2) Back Contact Assembly: In order to avoid shadowing effects on the front side, 

and reduce thermo-mechanical damage during module manufacture and 

operation, different concepts for putting most of the interconnect structure on 

the backside of the solar cells have been developed (Jong et al. 2005; 

Kerschaver et al. 2006). The two main types of cell developed with all the 

contacts at the back are metallisation-wrap-through (MWT) cells and the emitter 

wrap through (EWT) cells, both of which can use a flexible printed circuit board 

to interconnect individual solar cells (Gee et al. 1997; Eikelboom et al. 2001). 

Figure 1.3 (b) illustrates the concept of back contact assembly using MWT cells. 

These back contact cells offer several benefits over conventional cells H-pattern 

cells such as (Gee et al. 1997; Spath et al. 2008): compatible processing with 

thin and long cells; lower shading losses as less metal is needed on the cell side 

facing the sun; lower series resistance as the contact can be expanded over the 

complete cell area; a higher module packing density as there are no tabs passing 

between the cells meaning that the cells can be placed closer together in the 

module thereby increasing the effective module area which helps improve 

efficiency; and reduced silver consumption as less metallisation to carry current 

is required on the front surface of these cells. 

In both of the assembly techniques mentioned above the connections have to provide 

good conductivity and reliability for long periods (normally 20–25 years) despite seeing 

large temperature variations and other climatic stresses (Hersch et al. 1982; Eikelboom 

et al. 2002). This indicates that the performance and reliability of PV modules depends 

significantly on the quality and reliability of the interconnections that are used in the 

assembly of PV modules. This is also evident from a study conducted on PV module 

warranty claims made by the customers of a major PV module manufacturing company, 

BP Solar. The study was carried out on conventional polycrystalline silicon PV 
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modules. The study showed that over the period from 1994 to 2002, 0.13% 

(approximately 2600) of their PV modules failed and were returned under warranty 

from a total of two million modules in the field. Failure analysis of the PV modules 

returned under warranty showed a high percentage (40.7%) of the field failures were 

due to breaking of cells or interconnections (Wohlgemuth 2003). A summary of the 

various causes of failure for these PV modules is shown in Table 1.1.  

The above sections discussed the importance of the interconnections, and the 

prerequisites of the interconnection material. The next section will discuss the primary 

interconnection materials used in electronics and PV applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Interconnection in (a) traditional tab string assembly (Henkel 2013) (b) back 

contact assembly with MWT cell 
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Table 1.1 Types of field failures observed in PV modules (Wohlgemuth 2003) 

Types of Failure % of Total Failures 

Corrosion 45.3 

Cell or Interconnect Break 40.7 

Output Lead Problem 3.9  

Junction Box Problem 3.6  

Delamination 3.4 

Overheated wires, diodes or terminal strip 1.5 

Mechanical Damage 1.4 

Defective Bypass Diodes 0.2 

1.1.3 Tin Lead Solder (Sn-Pb): A Primary Interconnection Material in Electronic and 

PV Applications 

Within the scope of microelectronics and electronics applications and PV modules 

made using crystalline Si, Sn-Pb eutectic solder has historically been used as a primary 

interconnection material for making permanent interconnections (Ulrich et al. 2006; 

Schwertheim et al. 2008). The main advantages of Sn-Pb solders are (Gilleo 2002): 

 Their low volume resistivity (~10-5 Ωcm) and high mechanical strength (28-40 

MPa); 

 Their good wetting and compatibility with most of the surface finishes; 

 Their malleability i.e. ease to be produced into various shapes such as wires, 

powder or spheres; 

 Their availability in paste form; 

 Their self-alignment and easily reworkable property; 

 The abundance of both the constituent materials, tin and lead; and  

 Their low cost. 

Despite these advantages of Sn-Pb, it has several disadvantages including: 

 High Temperature Processing: It has a melting point of 183°C. Thermally 

sensitive components and substrates such as glass or polyester flex, which are 
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used in low cost consumer electronic products are not able to withstand this high 

reflow temperatures (Li et al. 2006). In PV, high temperature processing induces 

large thermal stresses in the cells (Wiese et al. 2010). Further, as crystalline 

silicon PV cells reduce in thickness the residual stresses due to soldering 

processes become more significant. During the lifecycle of a PV module, 

stresses induced in the cells and the interconnections at the time of manufacture 

can result in micro-cracking of the PV cell. This decreases PV module 

efficiency and ultimately results in a failure (Schwertheim et al. 2008; Spath et 

al. 2008). Therefore, it is important to keep the process temperature for 

interconnection as low as possible to reduce the induced residual stresses and 

hence increase the reliability of PV modules. Further, high processing 

temperatures make solders incompatible with the plastic substrates used in PV 

modules containing thin film and organic solar cells (Matsunaga et al. 2009); 

 Complex Processing: It generally requires use of flux and often flux cleaning 

solvents (Morris et al. 2007); 

 Thermal Fatigue Failure: It is susceptible to thermo-mechanical fatigue under 

temperature cycling conditions, which eventually leads to the solder joint 

cracking (Gilleo 2002); and 

 Environmental Impact: The lead used in Sn-Pb solder is a toxic substance. 

When ingested, even small quantities of Pb can lead to damage to the brain, 

nervous system, liver and kidneys. A large proportion of electronic products 

have historically not been recycled and ended up in landfills which can led to 

lead accumulation in water sources and can affect the biosphere. For this reason 

WEEE & Restrictions of Hazardous Substances (RoHS) directives of the 

European Union (EU) have forced the elimination of lead from most of the 

electronic products (RoHS 2008). Therefore, great efforts have been made to 

develop lead-free and environmentally sound interconnect bonding technologies 

as an alternative to conventional Sn-Pb solders.  
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1.1.4 Alternative to Lead Based Solder for Electronic and PV Interconnections 

One alternative to lead based solders is isotropically conductive adhesives (ICAs). ICA 

mainly consists of adhesive matrix (usually epoxy resin) and metallic filler. ICAs have 

high metallic loading usually 25 – 35 vol% of silver flakes. This high metal loading is 

to provide better electric conduction (Morris 1999; Yi. Li et al. 2010). ICAs conduct 

electricity equally in all directions like solder. ICAs are already used in various niche 

applications e.g. die-attach, flip-chip bonding (Li et al. 2006; Yi. Li et al. 2010). 

Recently, silver flake based ICAs have also been examined as an interconnection 

material in PV modules (Eikelboom et al. 2002; Schonecker et al. 2002; Bultman et al. 

2003; Jong et al. 2005; Schwertheim et al. 2008; Spath et al. 2008; Bremaud 2009). 

ICAs offer several advantages over solder. These include: 

 Less Environmental Impact: Use of ICA eliminate Pb and the flux associated 

with normal soldering processes. Silver (Ag) and the epoxies used in ICAs are 

less toxic than Pb, but they are not completely environmentally friendly. Silver, 

particularly in its nano form, is harmful to lower aquatic and marine life i.e. the 

base of the aquatic food chain (Luoma 2008) and unreacted epoxies when in 

direct contact with skin can cause skin allergies (Christensen et al. 2000); 

 Low Temperature Processing: ICAs have low processing temperatures, 

typically in the range of 100-150°C or sometimes less. Such low process 

temperatures induce low stresses in the components and substrates and enable 

the use of heat-sensitive and low-cost components and flexible substrates such 

as plastics (Kang et al. 1998; F.M.Coughlan 2006). For PV applications the ICA 

processing temperature can be matched well with the temperature required for 

module lamination, thus providing the possibility of accomplishing lamination 

and interconnection in a single step (Bultman et al. 2003; Spath et al. 2008). 

This makes the module assembly easier and faster, and reduces the thermal 

stresses a PV cells has to undergo (Eikelboom et al. 2002); and 

 Simpler Processing: ICAs do not require flux or cleaning, unlike normal 

soldering processes, thereby offering simple processing with fewer processing 

steps and reduces processing cost (Morris et al. 2007). 
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However, ICAs are still in their infancy in comparison with the mature soldering 

technology and have some limitations. These include: 

 Low Electrical Conductivity: ICAs have lower electrical conductivity than lead 

based solders, with typical volume resistivities a factor of two higher than 

solders (Puttlitz et al. 2004; Li et al. 2010). To obtain high electrical 

conductivity, conductive adhesives typically require a high metallic loading 

(usually of silver) of around 25 - 35 vol%. Apart from cost, a major drawback of 

this high loading is poor mechanical strength (Morris et al. 2007). High loadings 

also result in high viscosity of the adhesive which affects their processability (Li 

et al. 1998); 

 Application: Unlike solders ICAs do not self-align and high accuracy is 

therefore required to mount small components (Boyle et al. 1992a; Morris et al. 

2005); 

 Rework: ICAs are difficult to rework; 

 Short Pot Life: ICAs typically have a short pot life, and once fully formulated 

they therefore require very low temperature storage; 

 Lower Reliability: Another limitation of ICAs is that they may exhibit poor 

electrical and mechanical reliability i.e. an unstable contact resistance and poor 

impact performance after high humidity exposure and/or temperature and 

mechanical cycling/shock cycling (Kudtarkar et al. 2002); and 

 High Cost: The cost of silver flake filled ICAs is high i.e. £5780/kg (Epotek 

2012) compared to £100 - £190/kg for solder paste (Farnell 2014). Further, less 

noble metallisations such as Sn or Sn/Pb, Cu, Ni or Al used with Sn-Pb are 

cheap and abundant and are widely used in electronic and in PV module 

interconnections. ICAs show poor reliability on these metallisations (Jagt 1998; 

Eikelboom et al. 2002), and replacing them with expensive Ag, Au, Ag/Pt, 

Au/Ni or Ag/Pd metallisations to enable reliable ICA interconnections makes 

the use of ICAs even less favourable in these applications.  
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Thus it shows that for ICAs to gain widespread acceptance as a solder replacement in 

electronics and  PV applications, there is a need to both reduce their cost and improve 

electrical and mechanical reliability after high humidity exposure, temperature and 

mechanical cycling/shock cycling (Mir et al. 2008; Spath et al. 2008; Nguyen 2012). 

Such ICAs would also be applicable in other products, such as heated windscreens for 

motor vehicles and body area network (BAN) applications.  

1.2 One Approach to Simultaneously Improve Reliability and Reduce Cost of 

an ICA 

One of the causes of poor ICA reliability is the thermo-mechanical mismatch between 

the metal particles and the adhesive matrix. During thermal or mechanical loading of 

the silver-epoxy composite, this will cause significant internal stress and potentially 

micro-cracking at the interface between the two materials. To improve the reliability 

and at the same time reduce the cost of an ICA Gakkestad et al. (2010), Nguyen (2012) 

and Kristiansen et al. (2013) have recently proposed the use of mono-sized silver coated 

polymer spheres instead of solid silver flakes/particles as a conductive filler. A cross-

section view of silver coated polymer sphere is shown in Figure 1.4. 

 

 

 

 

 

  

Figure 1.4 A cross-sectional view of a silver coated polymer sphere 

The following benefits of this approach were anticipated: 

 With a thin silver coating compared to the size of the polymer spheres the 

mechanical properties of the more flexible polymer core will dominate, 

providing better absorption of mechanical stresses; 

 With the elastic modulus and thermal expansion coefficient of the polymer core 

better matching the surrounding adhesive matrix, the stresses under cyclic 
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thermal and mechanical loads will be reduced, improving adhesive reliability 

under thermal and mechanical stresses; 

 The density of the filler will be close to that of the polymer matrix helping 

reduce filler sedimentation;  

 Due to the symmetric filler particle shape it may offer better conductivity in the 

direction (z-axis) perpendicular to the plane (x-y plane) of printing; 

 Substantial reduction in metal content in the ICA as compared with traditional 

silver flaked filled ICAs, thus reducing the usage of precious metal and 

potentially resulting in a significant cost reduction; 

 The spherical shape and deformable nature of the Metalised Polymer Sphere 

(MPS) will help reduce the viscosity compared to the same volume fraction of 

solid flakes/particles; and 

 The use of a mono-sized and symmetric filler shape, will allow the effect of 

various parameters such as MPS core material, size and coating thickness on 

the conductivity of an ICA to be readily investigated. Such investigation will 

give more opportunity to tune the size and properties of the core (to control 

mechanical properties) and the thickness of coating (to control electrical 

conductivity) according to the application requirement. 

Gakkestad et al. (2010) have also shown that MEMS (Micro-Electro-Mechanical 

Systems) test structures directly mounted to the fuse of medium caliber ammunition 

using conductive adhesives based on uniformly sized silver coated polymer spheres 

performed well (with less than 15% change in the contact resistance for their test 

structures) after being subjecting to rapid temperature cycling (according to MIL-STD 

883G method 1010.8 test condition B (-55°C to 125°C)). Further, they have shown that 

these test structures successfully passed a 60,000g acceleration firing test (with 31 out 

of 36 contact resistances changing less than 15%). In addition, the collaborating 

partners, have carried out rheological and mechanical studies on ICAs filled with mono-

sized silver coated polymer spheres. They have shown that the mechanical shear 

strength of ICAs filled with silver coated polymer spheres (29 MPa) is similar to that of 
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lead based solders (28–40 MPa) and have a rheology suitable for screen and stencil 

printing up to 50 vol% of filler (Nguyen et al. 2010). 

The mono-sized silver coated polymer spheres are referred to Ag-MPS or MPS and 

corresponding ICAs are referred to as novel ICAs in the context of this thesis. 

1.3 Research Aims  

The above discussion shows that reliable ICAs with a rheology suitable for stencil and 

screen printing and with greatly reduced metal content can be obtained using Ag-MPS 

as the conductive filler, however based an earlier theoretical study by Morris (1999) 

anticipated some concerns related to the use of metallised polymer spheres in an ICA 

that warranted further investigation. These are, the anticipated higher percolation 

threshold and lower system conductance compared to traditional ICAs loaded with 

flakes/particles. Kristiansen et al. (2013) have investigated the bulk conductivity of 

such novel ICAs using 6, 10, 15 and 20µm Ag-MPS with different coating thicknesses. 

However, details of the conduction mechanisms in the MPS filled ICAs have not been 

thoroughly studied yet. The effect of MPS volume fraction, MPS size/size distribution 

and metal coating thickness on the electrical performance of ICAs is less well 

understood. Additionally, where solid metallic particles/flakes are used as the filler, the 

resistances of the individual particles are a very small part of the overall material 

resistance (Li et al. 1997; Lu et al. 1999). However, for metal-coated polymer spheres 

the thickness and morphology of the metallisation could be expected to have a 

significant influence on the conductivity of an individual MPS as the bulk of the 

conductor particle is comprised of a highly insulating polymer. These limits and the 

effects of the coating thickness and morphology on the electrical performance of the 

MPS, and hence on an ICA, are still to be investigated. Thus in the wake of the 

mentioned concerns and their being no available data on the electrical performance of 

MPS and MPS filled ICAs, it is concluded that there is a need for a detailed study to 

investigate the electrical performance of these novel ICAs. Based on this conclusion the 

main aims of this research are defined as being: 

 to develop a low cost and highly reliable ICA using mono-sized Ag-MPS as the 

conductive filler; and 
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 to investigate the underlying conduction mechanisms which will mainly govern 

the electrical performance of an Ag-MPS and the Ag-MPS filled ICAs. 

1.4 Research Objectives 

To achieve the above-defined aims the following objectives have been established: 

 To critically review the literature to gain an understanding of the factors that 

can affect the performance of an ICA and identify the merits and demerits of 

using mono-sized metal coated polymer spheres in an ICA in place of silver 

flakes; 

 To establish the feasibility of using mono-sized metal coated polymer spheres 

in ICAs in place of silver flakes by benchmarking novel ICAs against a 

traditional silver flake filled ICA; 

 To develop a theoretical model to gain an understanding of the effect of 

different factors such as MPS diameter (Ø), coating thickness and morphology, 

on the electrical performance of an MPS; 

 To develop a theoretical model to gain an understanding of the effect of 

different factors such as MPS volume fraction, diameter (Ø), coating thickness 

and morphology, curing conditions, and curing shrinkage of the epoxy resin on 

the electrical performance of an ICA filled with MPS; 

 To experimentally verify the findings of the theoretical models on the electrical 

performance of MPS and the novel ICAs; and  

 Based on the theoretical model and the experimental findings to establish a link 

between the electrical properties and different factors such as MPS volume 

fraction, size, coating thickness and morphology, curing conditions, epoxy 

shrinkage, which will help design MPS and ICAs with tailored properties for 

specific applications. 

In summary, the focus of the research reported in this thesis is to gain knowledge of the 

parameters affecting the electrical performance of MPS and MPS based ICAs to allow 

the design of MPS and ICAs with properties tailored for specific applications. This 
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research was supported by Mosaic Solutions AS, Norway, who were also supporting 

parallel research activities at Vestfold University College, Norway and NTNU, 

Trondheim, Norway, with whom collaboration has taken place as part of this thesis 

work. The mechanical strength and the rheology of the Ag-MPS based ICAs have been 

studied by the collaborating partners at Vestfold (Nguyen et al. 2010; 2011; 2012; 

2013). 

1.5 Thesis Structure 

Based on the research objectives, the structure of the thesis was established and is 

presented in Figure 1.5. A brief summary of the chapters is provided below.   

 

 

 

 

 

 

 

 

 

   

 

 

 

  

Figure 1.5   Overview of the research reported in the thesis 

Chapter 1: Define need, research aims and objectives 
Proposes the use of Ag-MPS as a conductive filler in ICA 

 

Chapter 2: Presents literature review 
 Justifies the use of Ag-MPS as a conductive filler in ICA 

 

Chapter 3: Presents the feasibility studies conducted 
Support the use of Ag-MPS as a conductive filler in ICA 

 

Chapter 5: Presents experimental investigation of electrical conductivity of Ag-
MPS 

Validates electrical conduction model for Ag coated MPS  

Chapter 4: Presents electrical conduction models for Ag-MPS and novel ICA 
       Identifies factors affecting electrical conductivity of Ag-MPS and novel ICA  

Chapter 7: Presents experimental investigation of contact resistance and the 
temperature dependence of novel ICA 

Chapter 8: Presents conclusion and scope for future research 

Chapter 6: Presents experimental investigation of electrical conductivity of 
novel ICA 

Validates electrical conduction model for novel ICA  



Chapter 1: Research Aims and Objectives 

 16  

 Chapter 1:  Research Aims and Objectives 

This chapter presents the aims and objectives of the research. This includes 

problems which have been identified in interconnections for electronics and the 

photovoltaic applications. A solution to the identified problems is presented and 

based on that, the aims and objectives of this research are defined. This chapter 

proposes the use of silver-coated polymer spheres as a conductive filler to 

formulate novel ICAs. 

 Chapter 2:  Literature Review  

This chapter introduces electrically conductive adhesives (ECAs) in general and 

then concentrates on ICAs with a focus on the properties of their constituents, 

their benefits and limitations. To support the use of mono-sized silver-coated 

polymer spheres as conductive fillers in novel ICAs, a literature review of the 

presently employed fillers and their properties is also presented in this chapter. 

This review leads to the conclusion that there is an opportunity to replace silver 

flakes in ICAs to improve their mechanical properties while reducing the silver 

content and hence the cost. This therefore, justifies the reason to use the mono-

sized silver-coated spherical polymer particles as a conductive filler to formulate 

improved novel ICAs. 

 Chapter 3: Feasibility Study – Use of Silver Metalised Polymer Spheres as 

Conductive Filler in ICA  

This chapter presents initial studies to investigate the feasibility of using Ag-

MPS as a conductive filler in an ICA addressing the concerns mentioned earlier 

in Section 1.3. This chapter also benchmarks the Ag-MPS filled ICAs against a 

traditional flake filled ICA highlighting the relative benefits of using the Ag-

MPS filled ICA. However, a case study on the use of Ag-MPS filled ICAs in a 

novel PV module assembly application is presented in Appendix D. 

 Chapter 4: Theoretical Model of Electrical Conductivity of ICAs Filled with Silver 

Metalised Polymer Spheres 

This chapter gives a detailed insight into the conduction mechanisms within the 

novel ICAs. The chapter reviews models for conduction in traditional ICAs and 
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in single metal-coated polymer spheres and identifies a need for a conduction 

model for the novel ICAs. The chapter identifies the important factors which 

would be expected to affect the electrical resistance of novel ICAs. The chapter 

then proposed a novel model to predict both the resistance of the individual Ag-

MPS and of the novel ICAs containing them. 

 Chapter 5: Experimental Investigation of the Conductivity of Individual Silver 

Metalised Polymer Spheres 

To validate the model developed in Chapter 4, this chapter presents an 

experimental investigation of single Ag-MPS resistance. This has been achieved 

by use of a special configuration of nanoindentation instrument to 

simultaneously measure both the resistance and deformation of single Ag-MPS. 

Comparing the theoretical and experimental results this chapter summaries the 

main factors which can affect the resistance of an Ag-MPS.  

 Chapter 6: Factors Affecting Conductivity of ICAs Filled with Silver Metalised 

Polymer Spheres 

This chapter investigates the effect of MPS volume fraction, diameter, Ag 

coating thickness and morphology, polymer matrix type, curing conditions and 

adhesive shrinkage on the resistance of novel ICA. This chapters also links the 

experimental results with the theoretical models.   

 Chapter 7: Other Electrical  Measurements 

This chapter presents an investigation of the effect of the MPS volume fraction, 

size and coating thickness on the contact resistance of Ag-MPS filled ICAs and 

compares it with those for silver flake filled ICAs. This chapter also presents an 

investigation of the temperature dependence of resistance in order to gain an 

insight into the conduction mechanisms occurring within Ag-MPS filled ICAs.  

 Chapter 8: Conclusions and Recommendations for Future Work 

This chapter summarises the major conclusions and outlines potential areas of 

future work. 
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A case study showing suitability of MPS filled ICAs for a PV application is 

presented in Appendix D. 

1.6 Concluding Remarks 

Various problems related to the interconnection materials used in electronics and in 

photovoltaic industry have been presented in this chapter. For the identified problems, a 

solution is proposed and, based on this proposed solution the thesis aims are identified. 

The main aim of this research is to use mono-sized silver-coated polymer spheres as a 

conductive filler to formulate novel ICAs. Based on the identified research aims, the 

objectives of this research have been presented in this chapter. The next chapter 

presents an introduction to the use of ICAs in interconnections. 
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CHAPTER 2 

LITERATURE REVIEW 

Chapter 1 proposes the use of mono-sized Ag coated polymer spheres as a conductive 

filler within isotropically conductive adhesives. The proposed concept is believed to 

overcome some of the limitations of traditional flake filled adhesives. Isotropically 

conductive adhesives are a class of electrically conductive adhesive.  This chapter 

firstly presents a brief literature review on the various types of electrically conductive 

adhesives and then reviews in more detail isotropically conductive adhesives. 

2.1 Electrically Conductive Adhesives 

Electrically conductive adhesives (ECAs) are composed of a polymeric binder or matrix 

(such as, an epoxy, a silicone, or a polyimide) and a conductive filler material (usually a 

metal such as silver, gold, nickel or copper, or carbon may be used where high 

conductivity is not required). The polymeric binder mainly provides mechanical 

properties such as adhesion, mechanical strength and impact strength, whereas the 

conductive filler provides electrical conductivity (Boyle et al. 1992a; Morris et al. 2005; 

Morris et al. 2007; Yi. Li et al. 2010). The use of ECAs in electronic applications 

commenced in 1966 (Epotek n.d.) however their use has been limited to niche 

applications such as in die attach, liquid crystal displays (LCDs), smart card 

applications, flip–chip assembly, chip scale packaging (Licari et al. 2005; Rabilloud et 

al. 2005). Recently the possibility of using ECAs for other interconnection applications 

has been explored increasingly because of (i) the environmental issues surrounding the 

use of lead in solders; and (ii) the requirements for ultra-fine pitch connections 

(Zwolinski et al. 1996; Kang et al. 1998; Morris et al. 2005; Morris et al. 2007). 
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ECAs can be classified into two types. These are: 

 Anisotropic conductive adhesives (ACAs), which conduct only through the 

thickness of a thin layer (often described as being along the z-axis where the x 

and y axes are in the plane of the film); and 

 Isotropic conductive adhesives (ICAs), which conduct approximately equally in 

all the three orthogonal directions. 

There is another class of adhesives called non-conductive adhesives (NCAs), which do 

not contain any metallic filler for conductivity, but can provide a method for holding 

two conductive surfaces in electrical contact. 

A brief description of these three types of adhesive is presented in the following 

sections. 

2.2 Anisotropic Conductive Adhesive (ACA) 

ACA are typically used in applications where it is difficult to apply adhesives 

separately to features with very small dimensions e.g. the ultra-fine pitch 

interconnections of LCD displays. Conductivity only through the film thickness is 

achieved by inclusion of a low volume fraction loading of conductive filler particles 

within a polymer matrix. The loading is usually maintained between 5 to 10 vol% 

(Williams et al. 1993). ACAs are generally spread over the whole interconnection area 

as shown in Figure 2.1, and the electrical connections are formed where the conductive 

particles are locked in between the component and the substrate bond pads during the 

simultaneous application of heat and pressure (Dou et al. 2004; Chen et al. 2011). 
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Figure 2.1 Schematic illustration of traditional ACA interconnection 

ACAs typically use spherical shaped filler particles instead of the flakes which are 

generally used in isotropic conductive adhesives as they provide a lower percolation 

probability for the same metal content (Williams et al. 1993). The spherical filler can be 

hard solid spheres such as nickel, silver, or gold spheres or with a deformable core such 

as a metal-coated polymer microsphere. Solid spheres can have advantage e.g. 

penetrating oxide films however, in many applications metal-coated polymer 

microspheres have been preferred over solid conducting fillers, as hard solid spheres do 

not deform to an adequate degree and only touch component and substrate at a small 

number of points whereas metal-coated polymer microspheres can be flattened during 

bonding (Yim et al. 2006). The flattening increases the effective contact area at the joint 

interface enhancing the electrical conductivity of the bond. In addition, use of metal-

coated polymer microspheres also help to reduce problems due to poor coplanarity of 

bond pads and thermal expansion mismatches (Dou 2007). The most popular 

conductive fillers for ACA applications are polymer microspheres (3μm to 10μm) 

plated with nickel and then a thin layer of gold (Gilleo et al. 2002; Dou et al. 2004; Li et 

al. 2010). Nowadays, ACAs are widely used in both LCD displays and for chip scale 

package and flip chip attachment for a wide range of products (Morris et al. 1999; 

Morris et al. 2007; Li et al. 2010). 

2.3 Isotropic Conductive Adhesive (ICA)  

ICAs consist of a conductive filler (usually silver flakes) in a polymer matrix at a 

loading of 25 to 35 vol%. This high loading ensures conductivity in all directions. The 

flakes tend to orient parallel to the horizontal plane and hence lower the percolation 

threshold in the x and y directions (Lu et al. 1998; Morris 1999; Su 2006). Figure 2.2 
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illustrates a typical ICA assembly. A more detailed review of ICAs is presented in 

Section 2.6 

 

 

 

 

 

Figure 2.2 Schematic illustration of traditional ICA interconnection 

2.4 Non Conductive Adhesive (NCA) 

NCAs consists of a polymer matrix without any conductive filler particles. Without the 

presence of any conductive filler particles, the electrical connection or conductivity is 

achieved by sealing the nanoscale rough structures of the component and substrate bond 

pads together under both heat and pressure (Suhir et al. 2007; Yi. Li et al. 2010), as 

shown in Figure 2.3, which results in only a small number of contact spots forming. 

This allows the electric current to flow between the two pads. Conductive joints made 

with non-conductive adhesives avoid short circuiting and the pitch of NCA joints is 

limited only by the pitch pattern of the bond pad, providing a solution for ultra-fine 

pitch interconnections (Ito et al. 1998; Usui et al. 1999; Lohokare et al. 2006; Chuang et 

al. 2009; Yi Li et al. 2010). 

 

 

 

 

 

 

 

Figure 2.3: Schematic illustration of NCA interconnection  
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Recently NCAs have found applications in the manufacturing of LCDs, LED (light 

emitting diode) array modules, smart cards and RFIDs (radio frequency identification 

devices) (Yi Li et al. 2010). Since electrical conductivity is achieved through 

physical/mechanical contact and no metallurgical joints are formed, they requires high 

bonding pressures. It also has limited electrical conductance and current-carrying 

capability as well as electrical instability at high temperatures (Li et al. 2007; Yu et al. 

2007; Finkenzeller 2010). 

2.5 Adhesive/Polymer Matrix  

The adhesive matrix for an ECA is required to have: 

 Good adhesion to different surfaces and ability to withstand mechanical stresses; 

  Suitable rheology to accommodate the required amount of filler while retaining 

processability; 

  Low temperature curing; 

  High thermal stability; 

  High purity i.e. contains low levels of ionic contaminants; 

  Low moisture absorption; 

  Low outgassing during cure; and 

  No environmentally or occupationally harmful ingredients. 

The adhesive matrices used for ECA formulations are commonly classified as either 

thermoplastic or thermosetting depending on whether their molecular structures after 

the bonding process are linear or cross-linked (Rabilloud et al. 2005). Thermoplastic 

polymers are typically linear long chain molecules made up of smaller repeating units. 

The linear chains may be straight or branched but they do not have inter-chain cross-

links, as shown in Figure 2.4. Thermoplastic adhesives soften, melt and flow when 

heated above their operating temperature which limits their in service performance 

(Licari et al. 2005; Petrie 2006).  
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Figure 2.4 Illustration of thermoplastic polymer (after Epotek (2011)) 

On the other hand thermosetting polymers contain cross-linked polymer chains. This 

crosslinking locks the chains together restricting their chain movement, as shown in 

Figure 2.5. Thermosets are usually preferred over thermoplastics because (i) the cross-

linked structure resists deformation and gives greater mechanical stability at high 

temperature (Gilleo et al. 2002; Petrie 2006); (ii) they have excellent adhesive strength, 

good chemical and corrosion resistance; and have low cost. The main disadvantages 

with the use of thermosetting polymers are that (i) they do not offer easy rework as they 

have cross-linked structures and therefore do not melt on reheating once cured; (ii) they 

have a moderate-to-high tendency to absorb moisture which has been shown to reduce 

their long-term reliability (Gilleo et al. 2002).  

 

 

 

 

 

 

 

 

 

Figure 2. 5 Illustration of thermosetting polymer (after Epotek (2011)) 
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The common adhesive/polymer matrices with their advantages and disadvantages are 

described below (Cognard 2005; Licari et al. 2005; Petrie 2006): 

 Elastomers: cure at room temperature; have excellent adhesion to many 

substrates; are extremely flexible; and have superior thermal resistance. 

However, they have poor cohesive strength and some may be swelled by non-

polar solvents. 

 Polyurethanes: are extremely tough; have high impact and cohesive strength; 

good resistance to solvents and abrasion, however have limited high temperature 

use and primer may be needed for adhesion to some substrates. 

 Cyanoacrylates: cure rapidly at room temperature, have excellent adhesion to 

most substrates and are available in wide range of viscosities. However they 

have poor peel strength, poor durability on glass, poor solvent resistance, low 

temperature resistance, and may stress crack some plastics. 

 Hot melts: have high adhesion to plastics, and are available in a wide variety of 

formulations such as polyamide, polyolefin and reactive polyurethanes. 

However, they require a heated dispensing point, have poor adhesion on metals 

and are sensitive to moisture. 

 Acrylics and acrylates: have room temperature cure that can be accelerated with 

heat, high peel and impact strength, and good environmental resistance. 

However, activator may contain solvents and requires controlled dispensing 

process, and may have strong odor. Mainly used to bond heat-sensitive 

electronic devices in 5-30 seconds at room temperature in niche optoelectronics 

and medical applications.  

 Epoxies: have high adhesion to many substrates, good toughness, superior 

environmental resistance, low temperature cure schedules that can be 

accelerated with heat, and are available in wide variety of formulations. 

However, they have long cure and fixture times, can absorb water, have high 

amounts of chloride and other ions if not purified well, and present a risk of 

outgassing if not cured fully. 
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Among these mentioned adhesive matrices the most commonly used matrix for ICA 

formulation are epoxies because of their adhesion to most of the substrates, superior 

adhesive strength and good mechanical performance under high thermo-mechanical 

stresses (Licari et al. 2005). Usually commercially available epoxy resins used for ICA 

formulations are based on the diglycidylethers of bisphenol-A, bisphenol-F or other 

phenolic compounds such as epoxy phenol novolac, whose properties can be altered 

and tailored for specific applications through the choice of different hardeners, 

catalysts, fillers, and other additives (Petrie 2006). 

2.6 Isotropic Conductive Adhesives - A Review 

ICAs consist of a polymeric/adhesive matrix combined with conductive fillers, as 

shown in Figure 2.2. The polymer matrix provides bond strength and withstands 

mechanical stresses whereas the conductive filler is mainly responsible for the 

conductivity although the type and amount of filler also affects mechanical strength and 

rheology and there is some evidence that the matrix may contribute to the conductivity 

(Cognard 1991). The main focus of this research is on the electrical performance of Ag-

MPS filled ICAs therefore a more detailed discussion on factors affecting conductivity 

and of the conductive fillers used in ICAs is presented below. 

2.6.1 Percolation Threshold and ICA Conductivity 

The conductive filler particles can only provide electrical conductivity through chains 

of contact between them. At a lower volume fraction of filler particles the resistivity of 

an ICA is very high i.e. the material behaves as an insulator because the conductive 

particles are isolated within the polymer matrix, as shown in Figure 2.6.  
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Figure 2.6 Change of conductivity of ICAs based on percolation theory (after Morris et al. 

(2007)) 

Conduction occurs only when the volume fraction of filler is more than a certain value, 

called the percolation threshold (ϕc). At this volume fraction sufficient particles are in 

contact to form initial conductive pathways between the electrodes i.e. at the 

percolation threshold, at least one chain, forms a conductive path between the 

measuring electrodes (Li et al. 1995; Morris et al. 2007). As formation of conductive 

path is a stochastic process, therefore for the same filler and matrix systems different 

percolation thresholds could be obtained (Ruschau et al. 1992a; Ruschau et al. 1992b). 

On further increasing the volume fraction of filler, the number of chains increases and 

the conductivity of adhesive increases (Li et al. 1997). It is believed that a point is 

reached where most of the conductive particles contact their neighbours to form a three-

dimensional network and the conductivity then increases only slightly with any further 

increase in the filler concentration. This point is called ϕsat as shown in Figure 2.6 

(Morris 1999). 

The percolation threshold (ϕc) and the conductivity of an ICA has been found to depend 

upon the filler geometry/shape, size, size distribution and on sample dimensions 

(Edward 2008). Non-spherical fillers have been found to have lower percolation 

thresholds and higher conductivities (Ruschau et al. 1992b; Li et al. 1997; Morris 1999; 

Su 2006). This is because spherical fillers tend to pack much more densely whereas 
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Fig. 4.1. Effect of filler volume fraction on the resistivity of ICA systems 

 

 

Fig. 4.2. Schematic illustration of  how electrical conduction paths are established 
by uninterrupted particle-to-particle contact between the component and the chip 
carrier terminal pads in an ICA joint 
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Fig. 4.2. Schematic illustration of  how electrical conduction paths are established 
by uninterrupted particle-to-particle contact between the component and the chip 
carrier terminal pads in an ICA joint 
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non-spherical filler normally show a greater tendency for bridging, which enables 

connectivity at lower volume fractions, leading to their lower packing densities and 

hence their lower percolation threshold and higher conductivities. The bridging become 

especially significant when fibre or flake fillers are used (Ruschau et al. 1992a; Li et al. 

1997). However, it has been found that with the use of such irregular shaped fillers, the 

viscosity of the system rises more rapidly with filler content, which can reduce the ease 

of processing (Morris 1999; Petrie 2008; Licari et al. 2011). The effect of the filler on 

viscosity of an ICA is important factor to be taken into consideration when selecting the 

filler as it can affect printing or dispensing (Edward 2008). The relative viscosity for 

suspensions of non-spherical (irregular shaped) particles was given by Krieger et al. 

(1959) as:  

 𝜼𝒓 =  
𝜼

𝜼𝒎
=  (𝟏 −  

𝝓𝒇

𝝓𝒎𝒆𝒇𝒇
)

−𝟐

                                2.1  

where     ηr is the relative viscosity of a suspension; 

η the steady-state viscosity of a suspension with particles (Pa.s); 

ηm is the viscosity of the suspending medium without particles (Pa.s); 

ϕf  is the volume fraction of filler; and  

ϕmeff is the effective maximum packing fraction of filler above which no flow 

is possible. 

For non-spherical fillers with length to diameter ratios (L/D) between 6 to 27, ϕmeff  

varies between 0.44 to 0.18, whereas for mono-sized spheres (L/D = 1), ϕmeff = ϕmax= 

0.63 (Kitano et al. 1981). Equation 2.1 shows that for a given volume fraction of filler, 

the relative viscosity increases with increasing aspect ratio (non-sphericity) of the 

particles, thus mono-sized spheres offers lower relative viscosities than flakes for 

similar volume fraction. Furthermore, deformable spheres have been found to result in 

lower relative viscosities than solid spheres (Genovese 2012). 

In addition, flakes have a tendency to become oriented parallel to the adhered surfaces 

during application processes and under the influence of gravity. This results in a better 

conductivity in the plane of the substrate compared to conductivity normal to this plane. 

This can be beneficial for printed conductors but for bonding applications, where 
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electrical conductivity is required perpendicular to the bond line, this type of orientation 

can reduce conductivity and be a disadvantage (Morris et al. 2007). 

Ruschau et al. (1992a) and Li et al. (1997) found that the percolation threshold for an 

ICA depends on the measurement geometry. They also found that the resistivity across 

thickness differed from the resistivity through the thickness. Ruschau et al. postulated 

that the important variables that determine the degree of anisotropy in conduction are 

the geometry factor, G ( = area of contact electrode / distance between electrodes) and Γ 

( = particle size / the smallest sample dimension). As G and Γ increased, the percolation 

probabilities increased/decreased from bulk samples of the same composite. Li et al. 

showed that as the sample thickness increases to ten times the particle size percolation 

become independent of the thickness (Li et al. 1997). 

 Ruschau et al. (1992a), Li et al. (1997) and (Su 2006) have shown that for the same 

filler shape, smaller filler particles offer a lower percolation threshold and lower 

resistivity as compared to larger fillers. Ruschau et al. identified the reason for this 

lower percolation threshold for smaller particles as their lower packing density. This 

decrease in packing density for smaller particles was attributed to an increase in surface 

area, lower particle mass, and therefore the greater significance of weak short-range 

forces leading to agglomeration. These short-range forces include electrostatic fields 

and surface adsorption of moisture and other wetting liquids. They have also shown that 

fillers with a larger particle size distribution offer lower percolation thresholds and 

lower resistivity compared to mono-sized fillers as particles with a larger size 

distribution pack less densely than particles with a narrow size distribution. Further, 

fillers with a wider size distribution has been found to reduce the viscosity. This is 

mainly because for a wider particle size distribution, the smaller particles may occupy 

spaces between the larger particles such that the maximum packing fraction ϕmeff 

thereby decreasing the relative viscosity (Genovese 2012). However, increasing the 

effective packing fraction will increase the amount of filler and may have an adverse 

effect on mechanical strength (Ogunjimi et al. 1992b; Morris et al. 2007). 

2.6.2 Conductive Fillers 

The above section showed that the electrical conductivity of an ICA depends on the 

fillers’ quantity, aspect ratio and size/size distribution. The electrical conductivity and 
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chemical stability of the filler surface has also been found to be an important factor in 

choosing the type of filler (Edward 2008; Lewis et al. 2008). As adsorption of organic 

molecules and formation of oxide films on the conductive filler surface may 

impede/obstruct passage of electrons across contact points they will affect the 

conductivity of an ICA. The conductive filler that have typically been used to formulate 

ICAs are silver, gold, copper, nickel, carbon. The resistivities of metal fillers and their 

corresponding ICAs are given in Table 2.1. Though, the ICA resistivity will also 

depend on the shape and volume fraction of metal. The following sections will discuss 

these filler types (and their advantages/disadvantages).  

Table 2.1 Resistivities of bulk metal and corresponding ICA 

 
Volume Resistivity (Ω cm) 

Cu Ni Ag Au 

Bulk Metal  
(Hyperphysics) 

1.68 x 10-6 7.0 x 10-6 1.59 x 10-6 2.2 x 10-6 

ICA 
10-4 

(Qi et al. 2012) 

5 x 10-3 
(Masterbond 

2013) 

10-5 -10-4 
 (Morris et al. 2007) 

10-3 
(Henkel 2009) 

 

2.6.2.1 Silver Fillers  

Silver is the most commonly used filler in commercial ICAs because unlike most 

metals it has a highly conductive oxide and therefore offers good resistance stability 

throughout the life of an ICA. It also has the highest electrical and thermal conductivity 

at room temperature among all metals and thus produces highly conductive ICAs. It is 

highly malleable and ductile and can be formed into a wide range of filler shapes and 

sizes for boosting conductivity (Gilleo et al. 2002). However, there are some 

disadvantages associated with the use of silver as the conductive filler in an ICA. The 

most significant are that: 

(i) Silver is a precious metal, having a much higher cost compared to for example 

copper (Cu) and nickel (Ni) as can be seen in Table 2.2. This increases the cost 

of silver filled ICAs compared to copper and nickel filled ICAs; and 
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Table 2.2 Cost comparison of bulk metals (Metalprices 2012)  

Metal Cu Ni Ag Au 

Cost (£/kg) 4.8  17 347 24905 

Cost (£/m3) 42,912 151,436 3,640,030 481,164,600 

 

(ii) With prolonged exposure of ICA to heat and moisture, silver ions can leach out 

of the filled resin and redeposit elsewhere in the circuit (Morris et al. 2001; Y. 

Shirai 2001), a phenomenon called silver migration. This may cause short 

circuits in applications with very fine pitch interconnection. Alloying silver with 

Sn has also been seen to reduce the silver migration. (Shirai et al. 2001).  

(iii) Silver, particularly in its nano form, is harmful to lower aquatic and marine life 

and thus its use has environmental implications (Luoma 2008; Morris 2008). 

Thus to reduce the cost and environmental effect, there is a need to reduce the amount 

of silver used in ICAs. 

2.6.2.2 Gold Filler  

Gold (Au) has good room temperature electrical and thermal conductivity, as can be 

seen in Table 2.1 and has no issue of migration after prolonged exposure to heat and 

moisture. It is also the most non-reactive metal and does not corrode or oxidise. 

However, it is very expensive as can be seen in Table 2.2 and as a result of this it has 

only been used in limited applications. It is typically only used where silver migration 

poses a serious risks or where long-term reliability in severe thermal and aggressive 

environments is required, such as in military, aerospace and medical applications where 

its cost can be readily justified (Rabilloud et al. 2005; Liu et al. 2011).  

2.6.2.3 Nickel Filler 

Nickel, in spite of its lower cost as compared to silver (as can be seen in Table 2.2) and 

the resistance of its ions to migration under prolonged exposure to heat and moisture, is 

still not preferred as filler over silver because nickel has lower electrical conductivity 

than silver as can be seen in Table 2.1 (Lu et al. 1999; Sancaktar et al. 2011). Nickel 

forms resistive oxide, is hard and has poor malleability which makes it difficult to 

process into filler particles of optimal size and shape to boost conductivity (Gilleo et al. 
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2002). Moreover, Nickel is classified as a class 2B carcinogen (possible carcinogen for 

humans) and is related to skin sensitisation and allergies so is not a desirable choice 

although it is used in ACAs (e.g. as 3µm solid spheres or plated on polymers). 

2.6.2.4 Copper Filler 

Copper offers high electrical and thermal conductivities, comparable to silver and with 

no issue of ion migration even after prolonged exposure to heat and moisture, at a 

comparatively lower cost than silver and gold. However, oxidises rapidly to form an 

oxide which is an electrical insulator resulting in poor resistance stability (Yim et al. 

2007; Qi et al. 2012). For example, a copper-filled epoxy showed an increase in 

resistivity by a factor of 100 or more after 24 hours in air at moderate temperatures 

(Gilleo et al. 2002). This, in spite of its good properties limits the use of copper as a 

filler to applications where it is not exposed to air. Various approaches have been 

investigated for surface treatment and oxidation prevention of copper fillers. These 

approaches includes, (i) using copper-based conductive adhesives with antioxidants 

(Yim et al. 2007), (ii) coating copper powder with self-assembled monolayers (SAM) 

(Qi et al. 2012) and (iii) coating copper flakes and powder with silver (Zhang et al. 

2010). However, these coatings were found to lose their effectiveness when exposed to 

the curing condition of ICAs and still show increased volume resistivity on aging, 

especially under high-temperature and humidity conditions. 

2.6.2.5 Carbon Filler 

Carbon fillers have low conductivity and has been used as conductive fillers. Hermann 

et al. (2009) used carbon nanotubes for low temperature flip chip connections. Wu et al. 

(2007) tested ICAs filled with carbon nanotubes and silver coated carbon nano tubes 

and the electrical resistivities achieved were 3.62 x 10-3Ωcm and 2.2 x 10-4Ωcm 

respectively, and the highest shear strength achieved was 19.6 MPa. Although these 

results show low resistivity and good shear strength, no investigation of the contact 

resistance has been reported. 

2.6.2.6 Silver Coated Polymer Particles (Irregular Shaped):  

Krupa et al. (2007) used silver coated polyamide particles (irregular shaped) as filler 

and reported low electrical resistivity (~10-3Ωcm) at around 33 vol% of filler. They also 
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reported that both the shear strength and the peel strength to aluminium substrate 

increased on increasing filler content. However, the reliability of the formulated 

adhesive was not investigated after humidity and temperature cycling or mechanical 

loading.  

2.6.2.7 Silver Coated Mono-Sized Polymer Spheres: 

Mono-sized silver coated polymer particles have recently been studied as a filler in 

ICAs with promising initial results from electrical, mechanical, rheological and 

reliability studies (Gakkestad et al. 2010; Nguyen 2012; Kristiansen et al. 2013). They 

also offer many potential benefits as discussed in Section 1.2. However, their 

anticipated higher percolation threshold and lower electrical resistivity is a matter of 

concern and needs investigation. 

2.7 Limitation of ICAs  

ICAs have tended to only be used in niche applications such as die attach, small passive 

chip attachment in automotive and aero electronics, RFID, chip on board and to bond 

heat sensitive components to low cost substrates, such as polyester or glass. Recently 

ICAs have been identified as a potential interconnection material in inorganic thin film 

and organic thin film PV cells and potential replacement material to solders for 

connecting solar cells using very thin Si wafers where standard soldering techniques 

induces more stress in the module during assembly process, such as metallisation wrap 

through cells and emitter wrap through cells.  

As discussed in Section 1.1.4 the main limitations which are impeding widespread use 

of ICAs are its poor long term reliability, i.e. unstable contact resistance and poor 

impact performance after exposure to high humidity and temperature, and mechanical 

cycling/shock. Thus to gain widespread acceptance as a solder replacement in 

electronics and PV applications, there is a need to both reduce their cost and improve 

electrical and mechanical reliability after exposure to high humidity and temperature 

and mechanical cycling/shock. The following sections will discuss these limitations and 

measures that might have been taken to overcome them. 
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2.7.1 Cost of ICA 

The cost of silver filled ICAs are currently around £5780/kg (Epotek 2012), about 30 

times that of Sn-Pb solders, which is around £110 - £190/kg (Farnell 2014). However, 

these materials are used by volume not weight. Since the density of Sn-Pb eutectic 

solder is 8.4 g/cc and the density of ICA is around 3.00 g/cc (depending on the amount 

of silver used), an ICA joint would require around one third of the weight of material as 

compared to Sn-Pb joint. Moreover, ICA also requires a thinner deposit as compared to 

solder pastes since solder losses 50% vol but only 10% mass during reflow and the 

adhesive loses less than 10% volume during cure (Gilleo et al. 2002). Thus, it could be 

argued that in costing the technology the material cost on a gram for gram basis is not a 

valid comparison and that the total system cost be must be evaluated i.e. after checking 

the material costs, the amount of material used must be estimated and the assembly 

process including process temperature, no need to clean assemblies, processing time, 

pot life, inspection technique, rework costs, and assembly yield must be considered. 

Depending on the processes involved in assembling a product, the higher material cost 

may be an insignificant part of the total system cost.  

Further, the cost of bulk silver is only £347/kg (Metalprices 2012) whereas the cost of 

silver flakes is around £2400/kg (Matthey 2012) and cost of silver filled ICA is 

£5780/kg (Epotek 2012), which is nearly sixteen times the cost of bulk silver (£347). 

This shows that in addition to the price of silver, the processes involved in the 

processing bulk silver into flakes and then to formulate adhesives contribute more 

towards the overall costs of an ICA. These processes may include manufacturing, 

storage, handling and support services. Thus to reduce the overall cost of an ICA there 

is a need to look at the individual cost contribution of different processes.  

The cost of ICAs have been reduced by using the low cost fillers such as Cu, Ni 

flakes/particles and carbon as shown in Table 2.2 but these ICAs have limited reliability 

and applicability as discussed in Sections 2.6.2.3 and 2.6.2.4.  

2.7.2 Reliability of ICA 

The key factors leading to poor reliability of an ICA have been identified as (Morris et 

al. 2001) (i) the absorption of moisture by the polymer matrix; (ii) the galvanic 

corrosion of the bonding surfaces; (iii) damage due to thermo-mechanical stresses; and 
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(iv) void formation. The following sections discuss how these factors affect the 

reliability of an ICA and what measures have been made to limit their affect.  

2.7.2.1 Absorption of Moisture by the Polymer Matrix  

All of the polymer matrices used in ICAs absorb moisture to some extent which affects 

their electrical and mechanical properties. If the absorbed or environmental moisture 

level is high, the electrical and mechanical performance of an ICA degrades rapidly. 

Moisture absorption affects the ICA joint by (i) altering adhesive properties (Boyle 

1992b); and (ii) corrosion (oxidation or hydration) of the filler or bonding surfaces 

(Morris et al. 2001; Xu et al. 2003).  

Boyle (1992) studied the effect of moisture absorption on the mechanical and electrical 

performance of epoxy based conductive adhesives. Boyle proposed that conductive 

channels containing negative charge exists in the metal epoxy interphase. Where the 

interphase is defined as the region within the epoxy where its structure is affected by 

the proximity to the metal. These channels contribute to both conduction and adhesion. 

Existence of these channels was previously confirmed by (Cognard 1991). Water 

ingress at the interphase reduces the electric field strength, and thus the adhesion force 

and the charge density in the channels leading to poor adhesion and reduced 

conduction.  

Frisk et al. (2012) studied the reliability of fourteen commercial ICAs under humid 

conditions. These ICAs were used to attach zero ohm resistors with Sn/Ni terminations 

onto FR-4 test boards with a Sn/Ni over Cu finish. Under test conditions of 10°C to 

65ºC at 85-90%RH for 200 cycles (with each cycle lasting 4 hrs) all of the ICAs failed 

except two (one polyimide based and one with a composition not disclosed) which 

survived the tests without significant changes in resistance. The failure of the ICA joints 

was found to be either delamination between the resistor and ICA or between the 

copper tracks and ICA or corrosion of the nickel coating on the copper tracks leading to 

poor contact resistance stability. Liu et al. (2011) investigated the effect of moisture 

absorption on adhesive bonds to a non-noble (Sn37Pb) metallization. They found that 

after 1000hrs of aging, under 85°C/85% RH conditions, moisture penetrated to the 

Sn37Pb surface and hydrated it, resulting in the formation of amorphous Pb(OH)2. 

Pb(OH)2 is an insulating compound that has a powdery structure which resulted in the 
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deterioration of both electrical and mechanical properties of the ICA joint. Xu et al. 

(2003) also investigated the effect of moisture on both Cu and Au/Ni plated Cu 

substrates. During moisture conditioning for 1200 hrs at 85°C/100% RH they found that 

the ICA joints on the Cu substrates failed faster (by 120 hrs) as compared to Au/Ni 

coated Cu substrate (by 1200 hrs). 

One method to reduce the effect of moisture and help improve the reliability of the joint 

is the use of higher electric potential (EP) metal finishes such as Ag, silver-palladium 

(Ag/Pd) or Gold (Au) however, use of Ag, Pd and Au lead to an increase in the cost 

(Yamashita et al. 2001). Modifying the polymer matrix to absorb less moisture is 

another method of improving reliability in humid conditions. Goobich et al. (1982), 

Barrie et al. (1985) and Shaw et al. (1994) replaced some hydrogen atoms within the 

epoxy matrix by halogen atoms. However, they found that the resulting polymers are 

rigid and highly cross-linked systems forming brittle adhesives with relatively low peel 

and impact strengths. In another study, Liong et al. (2005) used a thermoplastic polymer 

with low moisture absorption (0.28 wt%), called polyarylene ether and blended it with 

coupling agents. The coupling agents reduced the moisture absorption and showed 

improved adhesion strength and stable contact resistance to an Au/Ni substrate. 

However, they found that it is necessary to optimize the concentration of coupling agent 

for different surface finishes. Li et al. (2006) added polycyanate thermoset to a 

thermoplastic elastomer. This modified cyanateoster-based ICA yielded a toughened 

and flexible composite with low moisture absorption. This modified ICA also provided 

a solution to the phenomenon known as popcorn cracking. Popcorn cracking occurs in 

large and thin plastic component packages, when rapid heating causes moisture 

absorbed within the polymer turn to steam building up pressure inside the component 

and causing the package to crack (Gilleo 2002).  

Another method evaluated to increase the reliability of ICA interconnections in humid 

environments was the use of protective coatings to cover a whole device or “glob top” 

material to cover only the attached component. The aim of these materials is to protect 

the attachment from humidity and corrosion. Frisk et al. (2012) used glob top materials 

to improve the reliability of ICA joints under cycling between 10°C to 65ºC at 85-90% 

RH. For the poorer reliability ICAs tested the glob top was found to increase the 

reliability. On the other hand, for ICAs with better reliability the effect was reversed.  
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Thus their use should be carefully considered including selection of an optimal glob top 

material. 

2.7.2.2 Galvanic Corrosion of the Bonding Surfaces  

Galvanic corrosion has been found to be one of the main causes of increased contact 

resistance and poor mechanical performance of ICA joints especially on non-noble 

surfaces (Jagt 1998; Tong et al. 1999; Shimada et al. 2000; Yim et al. 2007; Zhang et al. 

2010; Liu et al. 2011). Typically in corrosion of ICA interconnections, a metal (usually 

the silver filler) with a higher electrochemical potential acts as the cathode and a 

metallisation (such as Sn, Cu, Ni, or Sn-Pb layers on the substrate or component) with a 

lower electrochemical potential acts as the anode. Table 2.3 lists the electrochemical 

potentials of some typical metals used in ICA interconnections. 

Table 2.3 Electrochemical potential of some typical metals used in ICA interconnection  

Metal Au Pt Ag Cu Pb Sn Ni 

Electrochemical Potential (V) + 1.50  +1.20 + 0.80  + 0.34  - 0.13  - 0.14  - 0.24  

 

During the corrosion process the following reactions occur at the anode and cathode (Li 

et al. 2006): 

Reaction at anode:  𝑴 − 𝒏𝒆− = 𝑴𝒏+                       2. 2 

 

Reaction at cathode:   𝟐𝑯𝟐𝑶 + 𝑶𝟐 + 𝟒𝒆− =  𝟒𝑶𝑯−              2. 3 

where M  is the lower EP metal; 

n is its valency; 

e- is the electronic charge; 

H2O is a water molecule;  

O2 is an oxygen molecule; and  

OH- is a hydroxyl ion. 
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The lower EP metal ions M 

n+ released from the substrate combine with OH- ions to 

form a layer of metal hydroxide, which can be further oxidized to form a metal oxide 

layer. For most metals these layers are highly electrically insulating increasing the 

contact resistance. From Equations 2.2 and 2.3 it can be seen that the presence of water, 

oxygen, an electrolyte and at least two dissimilar metals (metals with a significant 

difference in electrochemical potential) are necessary to initiate galvanic corrosion. 

Lu et al. (2000) studied the contacts made onto Sn/Pb surfaces using different ICAs. 

The ICAs were formulated using different epoxy resins, but the same hardener and 

catalyst. They also had similar properties, but different moisture absorption capacities. 

After aging tests (85°C/85%RH) they found that the ICA joints containing the resin 

with the higher moisture absorption corroded faster than those with the lower moisture 

absorption. In another study, Zwolinski et al. (1996) showed that ions present in the 

polymer matrix form electrolyte upon moisture intake. This electrolyte, when in contact 

with less-noble metals will initiate galvanic corrosion. In another study on the reliability 

of ICA interconnections in PV modules,  Eikelboom et al. (2002) and Knauss et al. 

(n.d.) found that interconnections made between non-noble metals (aluminium plated 

silicon substrates and copper tabs) had a more than 15% increase in their contact 

resistance after aging tests (200 temperature cycles from –40°C to +80°C and 2500hrs 

of damp/heat storage at 85°C/85%RH) as compared to interconnections involving only 

silver (silver-plated substrates and silver plated tabs). This increase is contact resistance 

was the result of corrosion of the interconnecting surfaces. In another study Lu et al. 

(1999) also observed a large increase in contact resistance after 500hrs of ageing under 

85°C/85%RH with the use of Ni, Sn, and Sn/Pb as compared to Ag, Au, and platinum 

(Pt). They further investigated the use of similar metals (for example nickel filled ICA 

to join nickel surfaces or silver filled ICA to join silver surfaces) and showed they had 

more stable contact resistances as compared to the use of dissimilar metals (such as 

nickel filled ICA to join silver surfaces or silver filled ICA to join nickel surfaces) after 

5000hrs of aging at 85°C/85%RH. These studies show that to improve contact 

resistance stability, galvanic corrosion should be minimised. They also indicate that use 

of a polymer matrix with low moisture absorption, noble metallisation on the bonding 

surfaces and resins with high purity (low levels of ionic contaminants) can help reduce 

galvanic corrosion (Petrie 2006). One of the approaches to formulate an ICA with more 
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stable contact resistance is to select epoxy and hardener combinations which can 

provide ICAs with as low as possible moisture absorption. 

In addition, the use of additives such as (i) corrosion inhibitors which are chemicals that 

adsorb on metal surfaces and act as a passivation barrier layer between the metal and 

the environment by forming an inert film; (ii) oxygen scavengers which remove oxygen 

by reacting with any dissolved oxygen in the aqueous solution and thus consuming 

oxygen diffusing into ICA joints have been shown to improve contact resistance 

stability (Tong et al. (1999); Lu et al. (2000)). Tong et al. and Daoqiang et al. studied 

the effect of both, corrosion inhibitors and oxygen scavengers on Sn-Pb surfaces under 

85°C/85%RH aging. However, they found that oxygen scavengers could only delay the 

corrosion process by up to about 100hrs but do not solve the corrosion problem 

completely. With continuing aging the oxygen scavenger within the ICA becomes 

depleted and oxygen may then diffuse to the interfaces and accelerate the corrosion 

process. They found that the corrosion inhibitors were more effective than the oxygen 

scavengers, however the effectiveness of the corrosion inhibitors is highly specific to 

the types of contact surfaces, and with the use of appropriate corrosion inhibitors, 

highly stabilized contact resistance were achieved. 

2.7.2.3 Damage Due to Mechanical Stress  

During the life time of an ICA it may be subjected to cyclic temperature changes which 

may be “slow” or “fast”. Typical epoxy resins have high (80 - 200 x 10-6/°C)  (Epotek 

2013) coefficients of thermal expansion (CTE) as compared to silver (19 x 10-6/°C) 

(Hyperphysics 2014). This means that temperature changes will cause stress at the 

material interfaces. These stress variations over the lifetime of an ICA may initiate 

cracking, leading to poor impact performance of adhesive joints. The elastic modulus of 

silver (70 GPa) is roughly 20 times higher than that of typical epoxy resins (below Tg) 

(Petrie 2006). During mechanical loading of the silver-epoxy composite, this will cause 

significant stress at the interface between the two materials. The damage due to these 

thermo-mechanical stresses induced during the life time of a product leads to micro-

cracking and potentially failure of ICA joints (Ogunjimi et al. 1992a; Morris 2006). 

Ogunjimi et al. (1992b) investigated stresses induced during curing. They bonded 

silicon die to alumina substrates using either a fully imidised polyimide or an epoxy. 
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They used epoxies with both low and high glass transition temperatures (Tg). They 

found that a higher level of stress (110MPa) was induced for the high Tg epoxy because 

of its higher processing temperature and high modulus of elasticity. Further, in their 

simulation studies Ogunjimi et al. found that the presence of inclusions and voids in the 

ICA led to an increase in stress, and that cracks in the polymer matrix were likely to 

propagate along the interface between the filler and polymer matrix thus high filler 

concentrations may promote crack growth. Bjorneklett et al. (1993) investigated the 

thermo-mechanical stresses induced in large silicon chips bonded to rigid substrates 

during curing and thermal cycling. The joint studied was made of 8 x 8 mm silicon die, 

bonded to three different substrates with different CTE (Aluminium (Al) > Cu > 

molybdenum (Mo)), using three different ICAs with both different curing temperatures 

and different Tgs. The stress induced was measured using integrated piezoresistive 

strain gauges on test chips. After temperature cycling from 10C to 150C the stress 

was found to be different between different adhesives. Larger stresses were found in the 

joints that have adherends with a larger CTE mismatch and which were cured at a 

higher temperature. Further, the effect of temperature cycling (resulting in stress 

cycling which strongly depends on the mismatch in thermal expansion) was 

investigated by measuring the thermal resistance between chip and substrate. An 

increasing thermal resistance was found with delamination of die or crack propagation 

in the adhesive.  

Zwolinski et al. (1996) studied the reliability of twenty five commercially available 

ICAs by mounting 44 input/output plastic leaded chip carriers on to PCB boards using 

these ICAs and subjecting them to drop tests. They found that none of the adhesives 

was able to pass the six drop tests. Adhesive joints show fracture at the lead adhesive 

interface after one drop while complete separation of plastic leaded chip carriers from 

the board was seen after 2–3 drops. Su (2006) studied the effect of stress generated by 

the relative displacements between component and substrate on the performance of ICA 

joint by applying cyclic compressive/tensile stresses and found that the samples under 

tensile strain failed faster (after 735 cycles) as compared to those under compressive 

stress (after 2000 cycles). Su also found that all failures were electrical conduction 

failures rather than mechanical (loss of adhesion or cracks). Su attributed this to the 

combined effect of deformation of the matrix and the accumulation of mechanical stress 

at the interface between the insulating polymer and the flakes due to cyclic 
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displacements between component and substrate. This mechanism leads to debonding 

of silver flakes from the adhesive (observed in scanning electron microscope images of 

the ICAs) which leads to electrical failure of the adhesive joint before any major 

cracking is evident.   

Many approaches have been studied to improve the impact performance of ICA 

materials. One approach was to decrease the filler loading to improve the impact 

strength. However, this will lead to a decrease in electrical performance (Morris et al. 

2007; Mir et al. 2008). Another approach is to improve the energy-dissipating capability 

of the ICA materials, and Vons et al. (1998), Shuangyan et al. (2003) and Rao et al. 

(2004) reported that by use of a flexible polymeric material with high loss factor and 

low Young’s modulus, the impact energy can be effectively dissipated. The ICA they 

formulated passed the drop test. However, to design materials with high energy 

dissipation capability requires selection of polymers with Tg below room temperature. 

The resulting lower Tg, elastic modulus and strength and higher CTE, limit the use of 

such ICA materials in many applications (Licari et al. 2005). Kotthaus et al. (1997) 

showed that by using the porous Ag instead of Ag flakes strain before failure can be 

improved by a factor of two however the resistivity increased to ~10-2Ωcm instead of 

typical values of ~10-4Ωcm. To reduce the local stress at the interface between the 

polymer matrix and the conductive particle, Mir et al. (2010) incorporated electrically 

conducting polymer (polypyrrole particles) into an epoxy matrix to form an ICA, 

without using solid metal particles. The ICA with 15 wt% polypyrrole particles showed 

good impact performance under drop tests, high mechanical lap shear strength, and 

sufficiently low moisture absorption. However, the electrical resistivity of this ICA with 

polypyrrole particles was very high (in the range of 103 Ωcm) compared with traditional 

ICAs. In order to reduce damage due to stress Gakkestad et al. (2010) and Nguyen 

(2012) replaced the solid Ag flakes/particles with Ag-MPS. This allowed the CTE and 

the elastic modulus of the conductive particles to be much better matched to those of 

the adhesive matrix as compared to solid Ag particles. Gakkestad et al. showed that the 

ICAs filled with Ag-MPS successfully passed a 60 000 g acceleration firing test 

demonstrating their excellent impact performance. Nguyen et al. showed ICAs filled 

with Ag-MPS have higher cohesive strength compared to commercial silver flake filled 

ones. However, the electrical performance of these ICAs is yet to be investigated in 

detail. 
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2.7.2.4 Void Formation 

Another mechanism that has been found to be responsible for poor reliability is the 

formation of voids during processing or due to formation of intermetallic compounds 

during humidity and temperature cycling (Ogunjimi et al. 1992a; Licari et al. 2005). In 

their simulation studies Ogunjimi et al. (1992a) found that the presence of inclusions 

and voids in an ICA can locally raise the stress and can therefore lead to greater risk of 

cracking of the bond. Adhesives are typically rejected if voids exceed 15% of the 

interconnection area, but in some applications, like windscreens and PV modules, any 

visible voids are not acceptable as they affect the appearance. Voids in the ICA joint 

during processing could be formed due to (i) poor wetting of adhered surfaces; (ii) 

trapping of air during mixing process of ICA; and (iii) evaporation of highly volatile 

components from ICA during curing. 

Formation of voids due to the formation of intermetallic compounds after humidity and 

temperature cycling when using Sn-Pb metallisation has also been reported (Yamashita 

et al. 2005; Yamashita et al. 2006). Yamashita et al. (2005) and (2006) investigated the 

interface between ICAs and Sn-Pb plated Cu electrodes after temperature cycling. Their 

element mapping analysis showed the apparent diffusion of Sn into the Ag filler 

particles. This results in large Kirkendall voids in the Sn-Pb plating layer, which 

decreases the true bonding area of the ICA joint and thus degrades both electrical and 

mechanical properties. These authors also pointed out that the diffusion constant of Sn 

in Ag3Sn (6.37 x 10-12 m2/s) is even higher than that of Sn in Ag and the formation of 

Ag3Sn cannot hinder the Kirkendall diffusion of Sn.  

Formation of voids during processing can be reduced by optimizing mixing and surface 

preparation processes; improving the wetting of the polymer matrix; and using ICA 

with low outgassing and no solvents (Petrie 2006). 

2.8 Focus of the Thesis and Novelty of the Proposed Research 

Gakkestad et al. (2010) and Nguyen (2012) investigated a novel idea i.e. to use Ag-

MPS as the conductive filler in ICAs. This was driven by the belief that it would 

improve the mechanical performance of ICA materials and at the same time reduce 

their cost. In preliminary tests, ICAs based on uniformly sized Ag-MPS showed 

positive results when exposed to temperature cycling and mechanical stress tests 
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(Gakkestad et al. 2010). Further, Nguyen et al. (2010), (2011) and (2013) extensively 

studied the rheological and the mechanical aspects of the use of Ag-MPS in ICA, and 

based on their rheological and mechanical characterisations, had proved the feasibility 

of using Ag-MPS as a conductive filler in an ICA. However, some concerns have been 

raised by (Morris 1999) on the use of metallised polymer spheres (MPS) in an ICA. 

These are the higher percolation threshold and lower system conductance compared to 

ICAs loaded with traditional flakes/particles. Further, the electrical performance and 

details of the conduction mechanism of ICAs using MPS have not been thoroughly 

studied yet. The effect of MPS volume fraction on electrical conductivity is less well 

understood, as are the effects of MPS size/size distribution and metal coating thickness 

on the electrical performance of ICAs. Additionally, where solid metallic 

particles/flakes are used as the filler, the resistance of the individual particles is likely to 

be a small part of the overall material resistance. However, for a MPS the thickness and 

morphology of the metallisation could be expected to have a significant influence on 

conductivity as the bulk of the conductor particle is comprised of a highly insulating 

polymer. These limits and the effects of the particle morphology on the electrical 

performance of the ICA are still to be investigated.  

In view of the mentioned concerns and lack of available data on the electrical 

performance of use of Ag-MPS as the conductive filler in ICAs, it is concluded that 

there is a need for a detailed study to investigate the electrical performance of the ICAs 

filled with Ag-MPS. Thus the focus of the research reported in this thesis is to 

investigate the parameters affecting the electrical performance of Ag-MPS and Ag-MPS 

based ICAs.  

In addition to improving the mechanical performance of ICA it is anticipated that the 

proposed concept will help reduce the amount of silver used in ICAs by up to 93%, i.e. 

93% of the cost contribution of the silver towards ICA would be reduced. When using 

only a few kg of ICA this may not be a large reduction but if widely adopted in PV 

applications where few tonnes of the material is used, it may offer potential cost 

savings. Further, reduced silver content will reduce the environmental impact of ICAs. 



Chapter 2: Literature Review 

44 

2.9 Concluding Remarks 

This chapter has reviewed various filler materials used within ICAs and has shown that 

on performance grounds gold can compete with silver. This chapter also reviews 

various approaches being adopted by different research groups to improve ICA 

reliability. This chapter identifies the use of Ag-MPS in ICA as a promising concept. 

The use of Ag-MPS will help reduce the amount of silver used in ICA, and hence it’s 

cost and environmental impact. Section 2.8 highlights a lack of research on the 

electrical performance of ICAs filled with Ag-MPS and identifies the need to 

investigate the electrical behaviour of these ICAs. Next, Chapter 3 will present in detail 

a feasibility study of Ag-MPS based ICAs. 
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CHAPTER 3 

 FEASIBILTY STUDY - USE OF SILVER METALISED POLYMER 

SPHERES AS CONDUCTIVE FILLER IN ICA 

This research aims at replacing the commonly used solid silver flake/particle ICA filler 

with Ag-MPS. The use of Ag-MPS offers several potential benefits such as a significant 

reduction in the required silver content and improvement of the overall mechanical 

properties. Furthermore, it also offers more flexibility to tune the properties of the filler 

according to the application. Despite these benefits, the use of spherical shaped fillers 

has not generally been considered to be advantageous in ICAs because of the following 

concerns (Morris 1999): 

(i) the higher percolation threshold, as compared to traditional flake fillers; and 

(ii) the absence of the higher in plane conductivity observed when flakes 

become oriented.  

The higher percolation threshold, which means a higher volume fraction of the filler is 

required to get adequate conductivity, will lead to a high viscosity, which can result in 

poor quality stencil/screen printing or dispensing of adhesives. In addition, a higher 

volume fraction of filler (i.e. a low volume fraction of the adhesive matrix) may also 

result in an ICA with low mechanical strength.  

Further, for the widespread acceptance of Ag-MPS ICAs in the market, they must be 

capable of achieving either similar or enhanced electrical performance as compared to 

the commercially available silver flake filled ICAs. In the first experimental phase of 

this research, initial experimental studies were carried out to benchmark the electrical 

conductivity of Ag-MPS filled ICAs against a commercially available silver flaked 

filled ICA. The rheology and mechanical strength of Ag-MPS filled ICAs was 

investigated by the collaborating partners. Their studies investigated the effect of Ag-

MPS volume fraction on printability and mechanical behaviour in comparison with 
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commercially available silver flake filled ICA. The aim of the experimental studies 

presented in this chapter was to further verify if Ag-MPS volume fractions imparting 

desirable conductivity lying within the limit suitable for stencil printing as determined 

by (Nguyen et al. 2010) and hence to check the effect of higher the percolation 

threshold for spheres on processability of ICAs. Details of these initial experiments are 

presented in this chapter.  

3.1 Experimental Investigation to Benchmark Ag-MPS Filled ICAs against 
Silver Flake Filled ICAs 

3.1.1 Aims 

i) To determine and compare the percolation threshold and electrical 

conductivity of ICAs formulated using Ag-MPS and silver flakes.   

ii) To benchmark the formulated Ag-MPS filled ICAs against a commercially 

available silver flake filled ICA. 

iii) To investigate the viability of a significant reduction in silver content with 

the use of Ag-MPS as a conductive filler.  

3.1.2 Materials Used 

In this study, Ag-MPS of two different diameters (4.8µm and 30µm) and silver flake 

fillers were used. The Ag-MPS fillers were produced and supplied by Conpart AS, 

Norway while silver flake fillers were purchased from Johnson Matthey, UK. Conpart 

initially supplied 30µm Ag-MPS and its density was measured using a Pycnometer, 

(details of the experiment are given in Appendix A). The same instrument was then 

purchased by Conpart and subsequent filler material was supplied with its density 

already measured. For silver flakes, the bulk density of Ag was used as they lose only 

0.6% of the weight when heated to 600°C (Matthey 2010). The main specifications of 

the filler materials used are given below in Table 3.1. The nomenclature used for Ag-

MPS (in Table 3.1) is defined based on its size, thickness and plating process, while for 

silver flakes the standard manufacturer product name is used. The Ag-MPS size is given 

in terms of average core diameter which has a typical co-efficient of variance (C.V.) of 

approximately 3%. The coefficient of variance is the ratio of the standard deviation to 

the mean. The polymer particles used were produced using the patented Ugelstad, two-

step seeded polymerization method owned by Invitrogen Corporation Dynal. Using this 
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method polymer particles with such an extremely narrow size distribution (almost 

identical sizes) and a wide variety of chemical composition can be synthesized (Redford 

2010). The possibility to tailor mechanical properties as well as the narrow size 

distribution has been the main motivation to extending the Ugelstad technology into 

ICA applications through metallizing the polymer particles. The silver was deposited 

onto the polymer spheres by electroless-plating however, the details of the method used 

for plating were not disclosed by the manufacturer. Moreover, the plating process 

details are not critical as the focus of this research is not to design particles. However, 

for comparison purposes, it is important to know if the specimens were produced using 

the same plating process or not. The same process, referred to as process ‘A’ in this 

case was used to prepare both specimens 4.8_15A and 30_13A.  

Table 3.1 Specifications of the fillers used  

Filler Type  Core Type 
Nomenclature 

Used 
Size 
(µm) 

Ag Coating 
Thickness (µm) 

Plating 
Process 

Density 
(g/cc) 

Ag-MPS 
Highly cross 

linked 
methacrylate  

4.8_15A 4.8 0.15 ± 5% A 2.50 ± 5% 

Ag-MPS 
Slightly cross 

linked 
methacrylate  

30_13A 30 0.13  ± 5% A 1.44 ± 5% 

Silver Flake 
(Matthey 

2010) 
N/A FS-34 

D90 7.3a 
D50 2.5b 
D10 1.0c 

N/A - 10.5 

      Note:          
a : D90 7.3 corresponds to 90% of the flakes are below 7.3µm 
b : D50 2.5 corresponds to 50% of the flakes are below 2.5µm  
c : D10 1.0 corresponds to 10% of the flakes are below 1.0µm  

SEM images in Figure 3.1 show the spherical shape and a narrow size distribution of 

the Ag-MPS and the much wider size distribution of the silver flakes. The fillers listed 

in Table 3.1 were mixed with a two component epoxy matrix, Epo-Tek 353ND, 

purchased from Epo-Tek, UK to formulate ICAs. The formulated ICAs were also 

benchmarked against a widely used, two component, silver flake filled commercial ICA 

(Epo-Tek H20E) purchased from Epo-Tek, UK. Not all the constituents of 353ND and 

H20E are disclosed by the manufacturer in their material safety datasheets, but the 

constituents that are disclosed are given in Table 3.2. The amount of silver used in Epo-

Tek H20E is also not specified in the manufacturer’s data sheet and is therefore 

estimated (to be 31 vol% ) from a technical article published by Epo-Tek (Brassell et al. 

n.d.). 
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Figure 3.1 SEM micrographs showing (a) 30µm Ag-MPS with a narrow size distribution, 

and (b) FS-34 silver flakes with a wide size distribution 

 

Table 3.2 Specifications of the adhesive matrix used (Epotek 2010c; Epotek 2010d) 

Epoxy 
Resin  

(Part A) 
Curing Agent  

(Part B) 
Conductive 

Filler 

Manuf. 
Recommended 
Curing Profile 

Epo-Tek 
353ND 

Epoxy phenol novolac  
and 

Polar activator  

 Imidazole  
and 

 Imidazole blend  
N/A 

150°C/1min 
120°C/5min 

  100°C/10min 
80°C/30min 

Epo-Tek 
H20E 

Epoxy phenol novolac  
 

 Substituted imidazole  
and 

 Reactive diluent  

Silver flakes   
and particles 
included in 

part A and B 

  175°C/45 sec 
150°C/5min 

  120°C/15min 
     80°C/3hrs 

The formulated ICAs were tested by printing onto specially designed PCBs supplied by 

Mosaic Solutions AS, as shown in Figure 3.2. These PCBs were manufactured on FR-4 

laminate material with a standard Cu/Ni/Au surface finish. Contact tracks on these 

PCBs are connected to probe pads for making resistance measurements. 

 

 

 

 

 

Figure 3.2 Specially designed PCB for resistance measurements 
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3.1.3 Equipment Used 

A digital weighing balance of 1mg resolution was used for weighing filler and resin. A 

Flack Tek Speed Mixer, DAC 150 FVZ-K from Hauschild, Germany, was used for 

mixing the materials. This mixer works on the dual asymmetric centrifuge principle i.e., 

by spinning a high speed mixing arm in one direction and the basket in the opposite 

direction as shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Speed Mixer™ DAC 150 FVZ-K  

A 90 µm thick laser cut plastic stencil with 2 mm x 58 mm apertures was used to print 

prepared ICAs onto the PCB boards. A JEM 310 single zone convective reflow oven 

was then used to cure the samples and a DataPaq data logger was used to continuously 

monitor the time/temperature profile within the oven. The resistance of cured samples 

was measured using a Keithley 580 micro Ohm-meter. 
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3.1.4 Methodology 

3.1.4.1 ICA Preparation 

The percolation threshold of randomly packed mono-sized spheres has been reported to 

be around 27 vol% (Zallen 1998). Therefore, a volume fraction of 20%, which is lower 

than this reported percolation threshold, was used as the initial filler volume fraction for 

the silver coated polymer spheres to ensure the onset of conduction was not missed. The 

percolation threshold for flakes has been predicted to be lower than that of mono-sized 

spherical particles (Morris 1999). Therefore a volume fraction of 12% was selected as 

the initial filler volume fraction for silver flakes to again ensure the onset of conduction 

was not missed.  

To prepare ICAs with these initial volume fractions, firstly the required amount of 

conductive filler and epoxy matrix was calculated using their density values. The epoxy 

matrix parts A and B hardener were mixed to the ratio10:1 by weight, as specified in 

the manufacture’s datasheet. The calculated amount of conductive filler and epoxy 

matrix was then mixed using Flack Tek Speed Mixer to form the ICAs samples. As 

listed in Table 3.1 there is a ±5% uncertainty in the density values of the Ag-MPS 

which may lead to a ±5% error in the volume fraction calculations. The mixing 

parameters (i.e., mixing speed of 2000 rpm and mixing time of one minute) were kept 

same for all the ICAs formulated to ensure consistency throughout the experiment. 

After preparing ICAs with the initial volume fractions, the loading of filler was then 

increased in increments of 2 - 4 vol% to detect the percolation threshold. After each 

filler addition the adhesive was remixed. This process was repeated until the point was 

reached where printing of the adhesive was difficult. The commercial silver filled ICA, 

Epo-Tek H20E, was formulated by mixing part A and part B in the ratio of 1:1 by 

weight, as recommended by the manufacturer (Epotek 2010a) using the same mixing 

parameters. 

3.1.4.2 ICA Printing 

Thin stripes of the formulated ICAs were then printed onto the test PCBs using the 

stencil and a razor blade. The printing process is illustrated in Figure 3.4. Several 

factors are known to affect printing (Kay et al. 2012) these include the stencil material, 
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aperture dimensions and roughness, printing medium rheology, printing parameters and 

environment, stencil framing and alignment and the properties of the substrate to be 

printed onto. However, as the main aim of the study was to investigate the electrical 

behaviour of novel ICAs, the effect of these parameters on print quality was not 

investigated. However, for widespread acceptance of these ICAs as an interconnection 

material the effect of parameters on printing requires investigation which will need to 

be addressed in future studies.  

 

 

 

 

Figure 3.4 Schematic of the stencil printing process 

 

3.1.4.3 ICA Curing 

The focus of this research is to investigate the suitability of MPS filled ICAs for 

applications such as PV module assembly. In PV manufacturing it would be preferable 

if the lamination of modules and curing of ICAs could be done together in a single step. 

Thus ICAs having a curing schedule the same as that of typical EVAs used for 

lamination are preferred. Most of the EVAs used in PV lamination have a curing 

temperature of around 150°C. Therefore, the printed samples were cured for fifteen 

minutes at a target temperature of 150°C. The time (15 min) to cure at 150°C was 

purposely kept higher than recommended by the manufacturer (1 min) as specified in 

Table 3.2. Using differential scanning calorimetry Cai (2012) showed 99% cure for 

novel ICA (30µm Ag-MPS in 353ND) at 150°C for 15 min. The samples were then 

cooled to approximately 100°C before removal from the oven. The temperature profile 

during curing is shown in Figure 3.5. This figure also shows that the temperature in the 

oven reaches 150°C in around three minutes and then over shoots to 166°C, while the 

temperature inside an ICA sample reaches 150°C in around nine minutes and over 

shoots to159°C. 
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Figure 3.5 Temperature profile during curing 

3.1.4.4 Conductivity Measurements 

Conductivity measurements of the printed ICAs were made in accordance with the 

ASTM standard D2739 “Standard Test Method for Volume Resistivity of Conductive 

Adhesives" (ASTM 2004). The micro-ohmmeter was used to carry out four-wire 

resistance (FWR) measurements. The main advantage of FWR measurement is that it 

eliminates any contact test lead resistances and only the bulk resistance of the sample is 

measured. In this measurement technique, current was supplied to the outer pair of 

probe pads on the PCB and the potential difference was measured between an inner pair 

of probe pads, as shown in Figure 3.6. For each of the ICA volume fractions 

formulated, resistance measurements on six stripes on PCB substrates were carried out. 

 

 

 

  

 

 

 

 

Figure 3.6 Schematic of the four probe resistance measurements 

V- I- V+ I+ 

Outer probe pads 

Inner probe pads 

ICA  

PCB 

I : Current 

V : Voltage  
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Once the resistance measurements were made, the volume resistivity, ICA, of each 

printed trace was calculated using: 

𝝆𝑰𝑪𝑨 (Ω 𝒄𝒎) = 𝑹𝑰𝑪𝑨.
𝒘 .𝒕

𝑳
                       3.1 

where, RICA is the measured resistance of the ICA trace (Ω); 

 w is the width of the ICA trace (m);  

 t is the thickness of ICA trace (m); and 

 L is the distance between the voltage probes (m).  

The width of the stencil opening was taken as the width of the printed ICA trace and 

thickness of the stencil used for printing was used as the thickness of the printed trace in 

the resistivity calculations. As the infinite resistivity could not be plotted the calculated 

resistivity ICA was then converted to conductivity σICA using the formula given below: 

𝝈𝑰𝑪𝑨 ((Ω 𝒄𝒎)−𝟏) =
𝟏

𝝆𝑰𝑪𝑨 
     3.2 

Variation of the resistance during the curing of one sample of each adhesive was also 

monitored for the maximum volume fraction of filler, as shown in Figure 3.7. A sixty 

channel Agilent 34970A Data Acquisition with Agilent 34901A module was used to 

record the resistances and oven temperature variations. Both measurements of 

resistance and temperature variations were in situ measured simultaneously and when 

making FWR measurements data acquisition system automatically compensates for 

thermal EMFs. Polyethylene terephthalate (PET) insulated wires, which can withstand 

temperatures up to 180°C, were used to connect the ICA samples to the Agilent 34901A 

module.  

 

 

 

 

 

 

Figure 3.7 Schematic of resistance measurement during curing of an ICA 
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3.2 Results and Discussions 

Figure 3.8 shows the averaged results from the resistance measurements plotted on log 

scale, together with standard deviation error bars vs volume fraction, for all three 

formulated ICAs. The hollow rectangles are shown for volume fractions where only 

two to four samples, out of the six formulated samples were conducting. It can be seen 

in Figure 3.8 that at low volume fractions, high resistance values with large standard 

deviations are obtained, whereas at higher volume fractions much lower resistance 

values and with small standard deviations are obtained. The reason for this greater 

variation at low volume fractions could be the smaller variable number of end to end 

conduction paths. However at high volume fractions there exists a multitude of different 

similar pathways, hence low and more repeatable resistance values are obtained. 

  

 

 

 

 

 

 

 

 

 

Figure 3.8 Log resistance vs volume fraction curve for all three formulated ICAs together 

with one standard deviation error bars 

For some samples the track dimensions were measured using the contact gauge of a 

Talysurf CLI 2000 (by Talysurf Hobson) where a diamond stylus was traversed at three 

positions along length of each trace and the readings averaged. Figure 3.9 (a) and (b) 

illustrates cross-section profiles of these ICA samples which contained 30 and 40 vol% 

of 4.8 µm MPS. Table 3.3 gives the means of the measured peak thickness and width 

values. The thickness and width of the ICA samples is not same as that of the stencil 

opening they were printed through, as can be seen in Table 3.3. Similar patterns were 

observed for other ICAs samples printed at these volume fractions. Thus calculating the 
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resistivity assuming the same value of width and thickness for all the samples may 

affect the accuracy of the results and could be another cause of variation in the 

resistance values. 

Table 3.3 Mean Thickness and width for samples of ICA 4.8_15A at 30 and 40 vol% 

Volume Fraction 
(vol%) 

Stencil 
Thickness 

(µm) 

Mean 
Thickness 

(µm) 

Stencil Aperture 
Width 
(µm) 

Mean Width 
(µm) 

30  90 141 2113 3335 

 40  90 150 2113 2260 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.9 Thickness profiles for cured ICA 4.8_15A at (a) 30 vol% and (b) 40 vol% 

3.2.1 Percolation Threshold 

Figure 3.10 illustrates the percolation curves obtained by plotting the average 

conductivity against the volume fraction of filler for all the ICAs (A plot of 

conductivity against volume fraction of silver for these ICAs is presented in Figure 

3.15). According to percolation theory, the percolation threshold for conducting 

systems, such as ICAs, is defined as the point at which a sharp phase transition from 

totally non-conducting to conducting occurs (Zallen 1998). However, it is difficult to 

find the exact percolation threshold due to experimental variations in the sample 

preparation and other experimental conditions (Ruschau et al. 1992a; Ruschau et al. 

(a)  

(b)  
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1992b; Zallen 1998). Figure 3.10 (b) shows the percolation threshold values observed 

for the formulated ICAs. It can be seen from Figure 3.10 (b) that for the ICAs 

formulated using silver flakes the non-conducting to conducting transition first occurs 

at 11 vol% of filler but they again become non-conducting at 13%, then again becoming 

conductive at 14 vol% and remain conducting thereafter, therefore the percolation 

threshold is taken as 14 vol%. 

At 28 and 31 vol% the percolation threshold values obtained for the Ag-MPS materials 

are in close proximity to the empirical value of 27 vol% for random close packed 

structures made using mono-sized spheres obtained by (Zallen 1998). It can be seen 

from Figure 3.10(b) that the percolation threshold for the silver  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Conductivity vs volume fraction curves for Ag-MPS and silver flakes (a) 

showing full range of conduction and (b) enlarged view at low volume fractions to show 

the percolation threshold (ϕc)  

flakes is considerably lower compared to that for Ag-MPS, which is probably because 

of a combination of their (i) higher surface area values; (ii) alignment in the conduction 

direction; and (iii) wide size distribution. Table 3.4 compares the volume and surface 
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area for the Ag-MPS and silver flakes used in this study. It shows that the smaller 

4.8µm Ag-MPS and silver flakes have higher surface area to volume ratio as compared 

to 30µm Ag-MPS. In calculating the volume and surface area of the flakes the thickness 

of the flakes is taken equal to particle size as thickness values were not provided in the 

manufacturer’s datasheet (Matthey 2010). In addition, the percolation curves shown in 

Figure 3.10(b) also shows lower percolation threshold (ϕc) for 4.8µm as compared to 

30µm MPS. This could be due to larger surface area to volume ratio for .8µm as 

compared to 30µm MPS. 

Table 3.4 Volume and surface areas for the Ag-MPS and silver flakes used 

 

Furthermore, horizontal alignment and wide size distribution of the silver flake was 

observed in the SEM image, as shown in Figure 3.11. This may boost flake connectivity 

in the “XY” plane, thereby initiating in-plane conduction at a lower volume fraction of 

flakes (Ruschau et al. 1992b). This may be an advantage if the ICA is used to create 

printed tracks, as here, but when used as an adhesive this orientation of flakes may 

reduce through thickness, conductivity. The MPS filled materials are not expected to 

display this anisotropy of conductivity. 

 

 

 

 

 

 

Figure 3.11 SEM image of the top surface of commercial silver flake filled ICA  

Filler Type 
Radius 
(µm) 

Thickness 
(µm) 

Volume 
(µm3) 

Surface Area 
(µm2) 

Surface Area/ 
Volume (µm-1) 

Sphere 
15 - 14137 2827 0.19 

2.4 - 53 66 1.25 

Silver Flake 0.5 - 3.5 1.0 – 7.0 1.04 - 359 7.85 - 384 7.5 - 1.07 
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3.2.2 Electrical Conductivity 

Further observations made from the Figure 3.10 are given below in Table 3.5. It can be 

seen from Table 3.5 that electrical conductivity close to that of a commercial silver 

flake filled ICAs was achieved with the use of 4.8µm MPS but with a higher volume 

fraction. This higher volume fraction may have a negative impact on the printability and 

the mechanical strength of the ICA. However, according to Genovese (2012) high 

concentrations of deformable spheres can accommodate each other at rest and squeeze 

past each other during flow, increasing ϕmeff than for flakes or solid mono-sized spheres 

and reducing ηr in Equation 2.1 resulting in a lower viscosity. Further, previous studies 

conducted on the rheology of the Ag-MPS filled ICAs demonstrated (i) good aperture 

filling during stencil printing and (ii) mechanical strength similar to that of a 

commercial flake filled ICA at as high as 50 vol% of Ag-MPS (Nguyen et al. 2010; 

2011; 2013). This shows that the processability and mechanical strength are not major 

concerns for ICAs loaded with as high as 50 vol% of Ag-MPS. However, if rheology 

modifiers such as SiO2 (silica) are used, the printing may be difficult at 50% (Redei 

2014). 

Table 3.5 Maximum observed conductivity of formulated ICAs 

 

Table 3.5 also shows that the conductivity of an ICA formulated using silver flakes is 

lower than that with 4.8µm Ag-MPS. This may be because the silver flakes used in the 

study are coated with surfactants to reduce the tendency for clustering or 

agglomeration, whereas the Ag-MPS used are not coated with any surfactants. The 

presence of surfactants on the surface of flakes may increase the contact resistance 

between silver flakes and could therefore be a cause of their lower conductivity. 

Furthermore, Table 3.6 also shows that the conductivity of the ICA formulated using 

silver flakes is lower than that of the commercial ICA, H20E, filled with silver flakes. 

The lower volume fraction of silver in the ICA formulated compared with the 

ICA  
Maximum Observed 
Conductivity (Ωcm)-1 

Vol% of Filler at Maximum 
Conductivity 

With 4.8µm Ag-MPS 2302 47% 

With 30µm Ag-MPS 411 52% 

With FS-34 Silver Flakes 1706 22% 

Commercial ICA with Silver 
Flakes  

2333 31% (Brassell et al. n.d.) 
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commercial ICA could be one reason for their lower conductivity. Another reason could 

be that 353ND and H20E contain same resin but in different quantities, further the 

curing agents is also different in both these matrices, some of the constituents of the 

commercial ICA and 353ND are not listed in the material safety data sheet (as given in 

Table 3.2). Therefore due to different curing agents, these matrices will have different 

curing reactions. H20E contains a reactive diluent, the presence of a reactive diluent 

generally leads to a faster rate of cure and a higher crosslink density than without one. 

Thus different curing agent and presence of a reactive diluent may  impart different 

shrinkages to H20E than 353ND thus different conductivities (Klosterman et al. 1998; 

Lu et al. 1999). The effect of shrinkage of epoxy matrix on the conductivity of the ICA 

is further investigated in Chapter 6. Figure 3.10 shows a steeper rise in the conductivity 

of the ICA containing 4.8µm Ag-MPS and silver flakes as compared to 30µm Ag-MPS. 

The reason may be that as the volume fraction of filler is increased beyond the 

percolation threshold the number of parallel paths increases more in 4.8µm Ag-MPS 

and silver flakes filled ICAs as compared to 30µm Ag-MPS because of the smaller size 

of 4.8µm Ag-MPS and silver flakes. 

The resistances of all the four ICAs during cure were monitored and its variation with 

temperature is plotted in Figure 3.12. The volume fractions used in this experiment 

were the ones showing maximum conductivity. The plots in Figure 3.12 show that 

before cure the commercial ICA, H20E, has relatively very high resistance as compared 

to all other ICAs formulated using 335ND. 

 

 

 

 

 

 

 

Figure 3.12 The variation of the resistance with temperature during thermal cure 
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As the temperature is raised above room temperature the resistance of all the ICAs 

remain nearly constant until 100°C, after 100°C the resistance of ICAs made using 

353ND starts decreasing but the decrease in resistance is small with further increase in 

temperature. As the temperature is increased beyond 135°C the decrease in resistance 

increases and this decrease in resistance continues till 150°C. In an adhesive matrix, 

cure begins with the formation and growth of the linear polymer chains and as the cure 

proceeds these chains begin to branch and then crosslink, forming a cross-linked 

network. The transformation from a viscous liquid to an elastic gel marks the first 

appearance of the cross-linked network and is called gelation. The formation of elastic 

gel does not inhibit the curing process. On further curing this elastic gel converts to a 

glass state this is called vitrification. This marks the end of cure. The initial decrease in 

resistance around 100°C can be associated with conductive filler packing on heating i.e. 

as the adhesive viscosity falls on heating it is squeezed from intra filler spaces lowering 

the resistance. The large decrease in resistance after 135°C can be explained that as 

temperatures increases more chains get cross-linked and the adhesive transforms from a 

viscous liquid to an elastic gel forcing the filler together. The subsequent decrease in 

resistance can be associated with the transformation of elastic gel to a glassy state called 

vitrification where on further development of cure, larger force on the particles act, 

forcing them further closer. Any solvent if present in the adhesive matrix may evaporate 

during curing. This may also the affect ICA conductivity. However, different trend is 

seen in the case of H20E. During the curing of H20E the resistance suddenly increases 

at around 140°C and then decreases drastically. This indicate the presence a constituent 

which either decomposes on heating at around 145°C or initiates rapid cure at around 

140°C. The decomposition of this constituent or rapid curing may be one of the reason 

for better final conductivity of the commercial ICA than other ICAs. This observation 

needs further detailed investigation and is out of scope of the present study.  

Further, ICA samples at volume fractions close to percolation threshold have been 

found to bleed. Pictures of uncured and cured ICA samples are shown in Figures 3.13 

and 3.14 respectively. Comparison of these images shows bleeding of adhesives below 

40 vol% of filler. The bleeding makes the width and thickness of the cured sample non-

uniform along the whole length of the printed trace. If the spreading/bleeding of the 

resin displaces the filler particles with it then it would affect the long range particle to 
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particle connectivity and may increase the percolation threshold and reduce the 

conductivity. 

 

 

 

 

  

 

 

  

Figure 3.13 Uncured 4.8µm Ag-MPS filled ICA at different volume fractions 

 

  

 

 

 

 

 

 

 

Figure 3.14 Cured 4.8µm Ag-MPS filled ICA at different volume fractions 

On the other hand, if bleeding/spreading adhesive does not displaces the filler particles 

with it, instead the particles come closer upon curing then the resin bleed/spread may 

increase the effective volume fraction of the particle in the adhesive increasing the 

particle to particle connectivity thus lowering the percolation threshold and increasing 

the overall conductivity. However, effect of bleeding on particle displacement within 

adhesive and thus on conductivity needs detailed investigation and is out of scope of the 

present study. Moreover, it can be observed from the Figure 3.14 the resin do not bleed 

on the Cu/Ni/Au metallisations even at volume fractions below 40 vol%. The reason 

could be that the adhesive made larger contact angle with gold compared to FR4 

substrate. Thus choosing the suitable substrate which makes larger contact angle with 

the adhesive matrix the bleeding may be controlled (Petrie 2006). 
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3.2.3 Silver Content 

The Ag-MPS with thin silver coating compared to solid silver flakes/ particles are 

anticipated to reduce the amount of silver used to manufacture ICAs. However, there 

was a concern that reducing the amount of silver may affect the conductivity (Morris 

1999). The effect of reduced silver amount on the ICA conductivity is presented in this 

section. Figure 3.15 plots the average values of conductivity for the formulated ICAs 

against the volume fraction of silver within them and compares them with commercial 

ICA. 

 

  

 

  

 

 

 

 

Figure 3.15 Conductivity vs volume fraction of silver 

Figure 3.15 shows that for a similar value of electrical conductivity, the 4.8µm MPS 

filler has significantly lower silver content (approximately 7.74 vol%) as compared to 

the commercial flake filled ICAs (31 vol%). This is a less than 75% reduction of the 

silver content, hence offering potential cost benefits. Additionally, it can also be 

observed that moderate conductivity value of up to 411 (Ωcm)-1 can be achieved with 

significantly lower amounts of silver (< 2 vol%), in the case of the 30µm MPS filler. 

On the other hand, for such low amounts of silver, both silver flake and 4.8µm MPS 

filled ICAs are non-conducting. Thus, 30µm Ag-MPS can offer even greater potential 

cost benefits for applications where high conductivity is not a requirement.  
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3.3 Concluding Remarks 

The experimental investigation reported in this chapter has showed promising results 

for the use of Ag-MPS as a conductive filler in ICAs. The results demonstrated that 

high conductivity values, comparable with commercially available ICAs, can be 

obtained by the use of Ag coated polymer spheres as conductive filler, but with a 

greatly reduced Ag content.  

The results also indicate that for a similar Ag coating thickness a higher conductivity 

can be achieved with a smaller diameter MPS. However the effect of thickness of MPS 

metallisation on conductivity needs further investigation. Further, the results show that 

the silver content in the larger MPS ICA is less than that in the smaller MPS, therefore 

for applications where very high conductivity is not required larger MPS may offer 

even greater potential cost benefits.  

The results provide a strong indication that Ag-MPS will be suitable for the production 

of robust and low cost ICAs following their optimization. Thus a more detailed insight 

into their conduction behaviour both by theoretical and empirical methods is required. 

The next chapter presents a theoretical study of the electrical conductivity of ICAs 

made using Ag-MPS to gain insight into the effect of various parameters such as MPS 

size, coating thickness, properties of the polymer matrix, and the manufacturing process 

conditions. 
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CHAPTER 4 

THEORETICAL MODEL OF ELECTRICAL CONDUCTIVITY OF ICAs 

FILLED WITH SILVER METALLISED POLYMER SPHERES 

The feasibility study presented in Chapter 3 showed that, for equivalent conductivity, a 

significant reduction in the required silver content can be achieved if Ag-MPS are used 

as the filler in ICAs instead of conventional solid silver flakes/particles. The study also 

showed that it is the higher volume fractions of Ag-MPS which provide the maximum 

benefits. However, the results presented in Chapter 3 are not sufficient to support the 

replacement of the silver flakes by Ag-MPS. To enable commercial use, optimisation of 

ICAs made using Ag-MPS is necessary. This requires a more detailed insight into the 

conduction behaviour of ICAs made using these spheres, both by theoretical and 

empirical methods. This chapter presents a theoretical study carried out to gain an 

understanding of various parameters which affect the conduction in ICAs filled with a 

high volume fraction of Ag-MPS. The Ag-MPS used are hereafter referred to as simply 

MPS or particles in this thesis. 

4.1 Factors Affecting Electrical Conduction in ICAs  

Electrical conduction in an ICA is a result of the formation of continuous linkages of 

conductive filler particles, i.e. percolation. The main factors which determine the 

resulting conductivity of an ICA are: (i) the volume fraction of filler particles; (ii) 

particle-to-particle conductivity; and (iii) conductivity within the individual particles. 

These three factors are discussed below in more detail.  

4.1.1 Volume Fraction of Filler Particles 

The volume fraction of filler particles plays a very important role in determining the 

electrical conductivity of ICAs. In this study the filler used is mono-sized Ag-MPS 

instead of silver flakes and the percolation curves shown in Figure 4.1 demonstrate the 

effect of volume fraction of Ag-MPS on ICA conductivity. These curves are based on 
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the experimental data presented in Chapter 3 and can be divided into three main 

regions, as identified in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Percolation curves for the Ag-MPS filled ICAs used in the feasibility study  

(i) Region I (0 vol% - 31 vol%): This region is below the percolation threshold 

(ϕc), and is where negligible conductivity is observed. This non-conducting 

behaviour is due to the low packing density resulting in a small probability 

of forming continuous chains of particle-to-particle contact; 

(ii) Region II (31 vol% - 52 vol%): This region is above the percolation 

threshold, but below the conductivity saturation point (ϕsat). The 

conductivity saturation point is described as a point on the percolation curve 

beyond which negligible further increase in conductivity occurs with 

increasing filler volume fraction. This region can be further divided into two 

parts, Part A and part B; 

Region II Part A (31 vol% - 43 vol%): Low but gradually increasing 

conductivity is observed in this region. This shows that there is still a 

significantly low probability of formation of continuous chains of particle-
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to-particle contact with increase in packing density/volume fraction. This 

low probability results in formation of only a small number of complete 

conductive paths between ends of the sample, lower the length of the sample 

and hence explains the low conductivity in this region; 

Region II Part B (43 vol% - 52 vol%): In this region conductivity increases 

rapidly with relatively small increases of volume fraction. This shows that 

the probability of formation of continuous chains of particle-to-particle 

contact increases substantially in this region with relatively small increases 

in packing density/volume fraction resulting in increased numbers of 

conductive paths. It has been shown that the desired levels of high 

conductivity can be achieved in this region with volume fraction values 

which are less than the upper limit for processability of the ICAs (Nguyen et 

al. 2010; Nguyen et al. 2013). This volume fraction range also results in 

good mechanical strength (Nguyen et al. 2010; Nguyen et al. 2011). 

However, in the case of flake filled ICAs desired levels of conductivity can 

be achieved with volume fractions of only 25 – 35 vol% (Li et al. 1995); and 

(iii) Region III (52 vol% and beyond): This is the region above the conductivity 

saturation point. In this region processing of the ICA becomes difficult due 

to very high viscosity and as a result of this ICA samples could not be 

mixed. Based on typical percolation curves, only a very small increase in 

conductivity would occur with further increases in volume fraction within 

this region (Morris 1999; Morris et al. 2007). This is shown by extending the 

experimental percolation curves by dotted lines in Figure 4.1. 

(iv) The negligible change in the number of conductive paths for any further 

increase in packing density/volume fraction of filler explains the negligible 

change in conductivity in this region. 

It is evident from the above discussion that, for a given volume fraction of Ag-MPS, the 

ICA conductivity depends upon the number of conductive paths which in turn will 

depend upon the packing arrangement of the filler particles. Significant packing 

arrangements for spherical particles are (i) simple cubic packing (SC), (ii) hexagonal 

close packing (HCP) and (iii) random close packing (RCP) as shown in Figure 4.2 (a), 

(b) and (c) respectively. The grey coloured circles in Figure 4.2 corresponds to the 
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first/base layer. The blue coloured, hollow circles corresponds to the place where 

second/subsequent layers could be placed. In SC packing, the spheres in the subsequent 

layers are placed exactly above the spheres in the first layer as shown in Figure 4.2 (a). 

It is the least dense ordered packing arrangement where each particle has a coordination 

number of six i.e. has six nearest neighbours, and results in a volume fraction of 52%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustrating (a) simple cubic (b) hexagonal and (c) random, close packing 

arrangement.  

In HCP, the spheres in the subsequent layers are placed above the voids in the 

preceding layer as shown in Figure 4.2 (b). HCP are the densest possible arrangement 

of spheres and have a coordination number of twelve. This packing is achieved at a 

volume fraction value of 74%. In RCP, there will not be any defined layers and spheres 

can be placed anywhere as shown in Figure 4.2 (c). Random close packing has 

coordination numbers between 5.3 to 6 and a packing density between 56 and 64 vol% 

(Scott et al. 1969; He et al. 1999). Further as the volume fraction of filler in an ICA is 

increased above percolation threshold which is ϕc, the probability during shearing flow 

of collisions and hydrodynamic interactions between filler particles rapidly increases 

(Stickel et al. 2005). This leads to an increase in the viscosity (Krieger et al. 1959; 

(c) 54 - 64 vol%   (cross-section view) 

(a) 52vol% 

(b) 74 vol%  

First Layer 

Second Layer 

First Layer 

Second Layer 

 No Distinct 
Layers 
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Genovese 2012). The viscosity of ICAs filled with Ag-MPS can be determined by 

considering them as dense mono disperse suspensions (Nguyen et al. 2010; 2013). At 

low volume fractions the relative viscosity of such mono disperse suspensions can be 

described by the theoretical equation of Einstein (1906) as: 

𝜼𝒓 =  
𝜼

𝜼𝒎
=  𝟏 +  [𝜼]𝝓𝑭𝒊𝒍𝒍𝒆𝒓                                                        4.1 

where ηr is the relative viscosity of a suspension; η the steady-state viscosity of a 

suspension with particle volume fraction; ηm is the viscosity of the suspending medium 

without particles; [η] is the intrinsic viscosity of particles and for uncharged monosized 

spheres it is 2.5, and ϕFiller is the volume of filler. However, at higher volume fractions, 

particle crowding produce hydrodynamic interactions as well as increasing probability 

of collision between particles, resulting in significant positive deviations from Equation 

4.1. One of the most useful expressions that can be used to describe the relative 

viscosity at higher volume fractions of filler is the semi-empirical equation of Krieger et 

al. (1959):  

𝜼𝒓 =  
𝜼

𝜼𝒎
=  (𝟏 −  

𝝓𝑭𝒊𝒍𝒍𝒆𝒓

𝝓𝒎𝒂𝒙
)

−[𝜼]𝝓𝒎𝒂𝒙

      4.2 

where ϕmax is the maximum packing fraction of particles, above which no flow is 

possible. As filler concentration approaches the level corresponding to a dense packing 

of particles in HCP (ϕmax = 74 vol%), there is no longer sufficient fluid to lubricate the 

relative motion of particles, and the viscosity rises to infinity. At this point the 

suspension shows a shear yield stress. However, ϕmax is usually lower than this 

theoretical maximum. In equation 4.2, ϕmax is taken to be 64 vol% because the 

arrangement of spheres in suspensions generally follows random close packing as 

discussed in several review papers (Krieger et al. 1959; Woods et al. 1970; Choi et al. 

1986; Stickel et al. 2005; Genovese 2012). Further, during processing, for the adhesive 

to flow the particle layers must slide over each other. As the volume fraction increases 

from 64% it must imply an increase in order (crystallinity) with perhaps regions of HCP 

which make adhesive flow and processing above 64% increasingly difficult. Using 

Krieger and Dougherty’s equation Nguyen et al. (2010) and (2013) found that the upper 

limit for processability of ICAs filled with MPS are in the range of 45 - 55 vol% as their 

measured data fits very well with Krieger and Dougherty’s equation over the entire 

range of volume fractions. From Figure 4.1, volume fractions of 45 - 55 vol% have also 
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been identified as being sufficient to generate desirable conductivity. Therefore, volume 

fractions of Ag-MPS that are of key importance lie in this range of 45 to 55 vol%, 

which implies a very loose random packing arrangement. 

4.1.2 Particle-to-Particle Conductivity  

Particle-to-particle conduction typically starts during the curing process and results in a 

sharp increase of ICA conductivity (Klosterman et al. 1998; Lu et al. 1999; Su 2006). It 

is believed that during the curing process, shrinkage of polymer matrix helps the filler 

particles to come into contact with each other. Some filler particles are also believed to 

have a (non- conduction) coating of surfactant film, which may dissolve in the resin 

above certain temperature (Lu et al. 1998; Lu et al. 2000). Particle-to-particle 

conduction can be a result of (i) a direct physical contact, or (ii) indirect physical 

contact with the presence of a very thin insulting film between them, or (iii) a 

combination of both. Particle-to-particle conductivity can therefore be described in 

terms of contact resistance, Rcr, and can be written as: 

𝑹𝒄𝒓 =  𝑹𝒄𝒔𝒓 +  𝑹𝒕                                                                    𝟒. 𝟑   

where,  Rcsr is the constriction resistance (Ω) which accounts for direct physical contact 

and Rt is the tunneling resistance (Ω) which accounts for indirect physical contact. 

These two components of Rcr will be discussed in the following two sections. 

4.1.2.1 Constriction Resistance 

Most surfaces are rough at the microscopic level, with projections, called “asperities” 

and such projections remain even with excellent plating or polishing process. When two 

metal surfaces come in contact with each other, initially they touch only at a few of 

these asperity points. However, when an external load is applied, these asperity contact 

points become enlarged into small areas and new contact spots also emerge. These load 

bearing asperity contact areas and spots, cover only a very small portion of the apparent 

contact area as shown in Figure 4.3. These load bearing areas and spots are called the 

actual contact area Ab, whereas the whole covered area is called the apparent contact 

area, Aa. Therefore, electrical current flowing between the two particles is constricted 

within these actual contact areas instead of flowing through the entire nominal contact 

surface. The constriction resistance is the resistance offered by these actual contact 
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Apparent 
contact area  

Actual contact 
areas  

areas to the flow of current. However, it is very difficult to measure the actual contact 

area and therefore in theoretical calculations apparent contact area is typically used. 

 

 

 

 

Figure 4.3 Physical contact between two particles showing apparent contact area and 

actual contact area  

Holm’s stationary electrical contact theory is widely used to calculate constriction 

resistances (Holm 1967; Li et al. 1995; Lu et al. 1999; Su et al. 2004; Dou 2007):     

𝑹𝒄𝒔𝒓 =  
𝝆𝒎𝟏 + 𝝆𝒎𝟐

𝟒𝒓𝒄
                                                           𝟒. 𝟒 

   

where  ρm1 and ρm2  are the electrical resistivities of the two contacting surfaces (Ωm); 

and rc, is the contact radius (m).  

If the contacting surfaces are of the same material then ρm1=ρm2=ρm and the constriction 

resistance can be re written as: 

𝑹𝒄𝒔𝒓 =  
𝝆𝒎

𝟐𝒓𝒄
                                                                         𝟒. 𝟓 

where the contact radius, rc, of contact between two spheres has been estimated using 

Hertz’s equations. The Hertz’s equations calculates the contact radius between the two 

bodies/spheres by assuming them to be semi-infinite half-spaces and that deformations 

are small (i.e. behaviour is linear elastic) and have been successfully used to model the 

contact of small and elastic deformations in electronic interconnections (Holm 1967; 

Johnson 1987; Chin et al. 2004). Liu et al. (1998) have shown that for two contacting 

spheres with small and elastic deformations up to 10% of the sphere diameter, the 

Hertz’s equations are valid. In the case of ICAs, where the compressive force on the 

neighboring particles is applied by the shrinkage of the polymeric matrix because of the 

curing process and thermal contraction during cooling from curing temperature, the 

particle deformation can safely be assumed to be less than 10% of the diameter, thus 
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Hertz’s equations have been used here to estimate the particle-to-particle contact radius. 

For two, nominally spherical bodies in contact the Hertz’s equations give the contact 

radius as a function of the normal contact force, the radii of curvature of both bodies 

and their elastic properties. If two homogenous spheres of radii r (Ø/2) can be assumed 

to be semi-infinite half-spaces with rc << r and with small and linear elastic 

deformations then the Hertzian relationship for the contact radius is  (Johnson 1987): 

𝒓𝒄
𝟑 =

𝟑𝑭𝑹𝒆𝒇𝒇

𝟒𝑬∗
                                                                        𝟒. 𝟔 

where,  F is the normal force applied between the contacting spherical particles (N); 

            E* is the effective elastic modulus of the contacting spherical particles (Pa); and 

        Reff is the effective radius of the contacting spherical particles (m). 

E* and Reff are further defined as: 

 

𝑹𝒆𝒇𝒇 =
𝒓 

𝟐
                                                                         𝟒. 𝟕 

 

𝟏

𝑬∗ =
𝟐(𝟏 − 𝝊𝒔

𝟐)

𝑬𝒔

                                                               𝟒. 𝟖 

where,  Es is the elastic modulus of the contacting spherical particles (Pa); and 

            νs is their Poisson's ratio. 

In the case of ICAs, the normal force is induced due to shrinkage of the polymer matrix. 

Polymer matrices with higher shrinkage will therefore induce a larger normal force, 

which will increase the contact radius. Therefore, a polymer matrix with higher 

shrinkage will offer less constriction resistance and could therefore be expected to be 

preferred for the formulation of ICAs. An experimental study of the effect of volume 

shrinkage on conductivity is presented in Chapter 6. 

A large contact area is desirable as it offers lower constriction resistance. It can be seen 

from equations 4.6, 4.7 and 4.8 that a larger contact area between particles can be 

achieved by selecting particles with (i) large diameter, (ii) smaller elastic modulus, and 
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(iii) smaller Poisson's ratio. In the case of solid metallic particles/flakes, the elastic 

properties (such as elastic modulus and Poisson’s ratio) are the same for all sizes of 

filler particle, but in the case of the silver coated polymer spheres their elastic properties 

may vary due to changes in the properties of the core material, size of sphere and 

coating thickness. He et al. (2009 a) investigated the effect of core material on the 

mechanical properties of polymer spheres and found that the Elastic modulus increases 

with increasing the crosslink density. Thus polymer spheres with a lightly cross-linked 

polymer core may be preferred over a highly cross-linked polymer. In another study He 

et al. (2008) found that, for the same polymer core, spheres with a smaller diameter 

were stiffer than larger spheres. Thus a larger diameter MPS may offer a lower modulus 

and therefore may be preferable to smaller ones. Another study conducted by He et al. 

(2009 b) showed that coating thickness, when it was less than 3% of the polymer core 

radius, had only a small effect on the mechanical properties of nickel-coated polymer 

spheres. In the case of silver coated polymer spheres, the effect of the coating thickness 

may be even lesser than for nickel as silver has a much lower modulus (83 GPa) than 

nickel (200 GPa). However, further investigation is required to determine the effect of 

silver coating thickness on the elastic modulus and Poisson’s ratio of Ag-MPS. 

4.1.2.2 Tunneling Resistance 

When the conducting particles are in close proximity but are not in direct metal to metal 

contact with neighbouring particles because of the presence of a very thin insulating 

film between the particles, conduction may take place by electrons penetrating this thin 

film, which is called tunnelling (Simmons 1963; Hill 1967). These films may be oxides 

or surfactants present on the particle surface, additives within the adhesive matrix for 

rheology control, adhesive matrix not squeezed out during curing or air trapped in 

between the particles. The resistance of these films can be described as a tunnelling 

resistance, Rt, which for very thin insulating films, i.e. less than approximately 1.5 nm, 

can be written as (Johnson 1987): 

𝑹𝒕 = 𝝆𝒕 𝝅𝒓𝒄
𝟐  ⁄                                                               𝟒. 𝟗 

where ρt is the resistance per unit area although referred to as tunneling resistivity and is 

given by : 

𝝆𝒕 = 𝟓 × 𝟏𝟎−𝟐𝟑𝑨𝟐𝒆𝒙𝒑⌈𝑨𝑩 (𝟏 + 𝑨𝑩)⁄ ⌉                                𝟒. 𝟏𝟎 
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where  

𝑨 = 𝟕. 𝟑𝟐 × 𝟏𝟎𝟓(𝒕𝒊 − 𝟕. 𝟐 𝜱)⁄                                                                                           𝟒. 𝟏𝟏 

𝑩 = 𝟏. 𝟐𝟔𝟓 × 𝟏𝟎−𝟔(𝜱 − 𝟏𝟎 𝒕𝒊𝜺)⁄ −𝟏/𝟐
                                                                            𝟒. 𝟏𝟐 

       Φ = work function of the metal (eV); 

              ti = thickness of the insulating film (m); and  

              ε = dielectric constant of the insulating film.  

Equations 4.9 to 4.12 show that the tunnel resistivity depends on the thickness, 

dielectric constant, ε, and work function, Φ, (a measure of minimum energy needed to 

remove a conduction electron) of the insulating film. The silver flakes used in ICAs are 

usually coated with surfactants to reduce the tendency for clustering/agglomeration, 

however the Ag-MPS used in this study are not coated with any surfactants thus any 

thin insulating films could be adhesive additives e.g. organic solvents, hardeners, metal 

catalysts or SiO2 for rheology control, epoxy matrix not squeezed out during adhesive 

cure, or air trapped in between particles. 

For a given material, the parameters ε and Φ don’t change, while the film thickness ti 

becomes smaller when the contact pressure is increased. In the case of ICAs the contact 

pressure is exerted by shrinkage of the adhesive matrix during curing thus an adhesive 

matrix with high shrinkage will again be preferred. The curing profile also affects the 

shrinkage of the ICA (Lu et al. 2000; Su 2006). 

4.1.3 Conductivity within a Single Particle 

In conventional silver flake filled ICAs, the conductivity of the flakes can be considered 

to be equivalent to the bulk conductivity of silver (Li et al. 1995; Li et al. 1997; Lu et al. 

1999). However, in the case of ICAs formulated with silver coated polymer spheres 

fillers, the filler conductivity is less than that of bulk silver. This is because the silver 

coating only accounts for a small proportion of the volume of the filler particles 

compared to the highly insulating polymer core. Therefore, the thickness and 

morphology of the silver coating is expected to have a significant influence on the filler 

particle conductivity. Metal coated polymer spheres (especially Nickel (Ni) and Gold 
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(Au) coated) are already widely used in ACA applications (Dou et al. 2004). However, 

both heat and pressure are simultaneously applied to ensure the formation of electrical 

connections in ACAs which significantly deforms the MPS. The deformation of MPS in 

ACA assembly is illustrated in Figure 4.4. Williams et al. (1993), Hu et al. (1997) and 

Shi et al. (1999) presented models to calculate the resistance of an individual solid 

metal particle in an ACA assembly. Unfortunately, their models are not applicable to 

the metal-coated polymer spheres used in the present study. Määttänen (2003) first 

presented an analytical model to calculate the resistance of a single metal-coated 

polymer sphere, Rmps. Määttänen calculated the resistance as a function of the degree of 

deformation and coating thickness by treating the MPS as a series of metal rings of 

thickness tc around the polymer particle. When external pressure is applied an MPS is 

deformed by depth d to height hd as shown in Figure 4.4. 

 

 

 

 

 

 

 

Figure 4.4 Deformation of MPS in ACA application  

Määttänen calculated the average cross-sectional area, Avr, of the thin metal rings 

around the polymer particle and the length, ld, of the MPS as a function of deformed 

height hd as: 

𝟏

𝑨𝒗𝒓
=

𝟐

𝝅𝟐𝒉𝒅𝒕𝒄
𝐥𝐧 𝒕𝒂𝒏 [

𝝅 

𝟒
(𝟏 +  

𝒉𝒅

𝟐𝒓
)]          4.13 
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𝝅𝒉𝒅

𝟐
      4.14  
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Assuming that the average cross sectional area through which the current passes is the 

average area of the thin metal rings around the polymer particle, he calculated the MPS 

resistance as: 

𝑹𝒎𝒑𝒔 =  
(𝑹𝒆𝒔𝒊𝒔𝒕𝒊𝒗𝒊𝒕𝒚 𝒐𝒇 𝒎𝒆𝒕𝒂𝒍 𝒄𝒐𝒂𝒕𝒊𝒏𝒈) ∗(𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒅𝒆𝒇𝒐𝒓𝒎𝒆𝒅 𝑴𝑷𝑺)

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒄𝒓𝒐𝒔𝒔−𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒎𝒆𝒕𝒂𝒍 𝒓𝒊𝒏𝒈𝒔
    4.15 

Combining equations 4.13 and 4.14 in equation 4.15 gives: 

𝑹𝒎𝒑𝒔 =  
𝝆𝒎

𝝅.𝒕𝒄
 𝒍𝒏 𝒕𝒂𝒏 [

𝝅

𝟒
 (𝟏 +

𝒉𝒅

𝟐𝒓
)]      4.16  

where ρm is the resistivity of metal coating. 

By also assuming that the MPS metallisation is made up of metal rings of thickness tc 

around the polymer particle Dou et al. (2003) derived another model to calculate the 

MPS resistance. They also obtained the particle resistance function based on the degree 

of deformation and coating thickness. However, their particle resistance function was 

more difficult to integrate, and required numerical solution.  

However, in the case of ICAs, the degree of deformation would be negligible as 

compared to ACAs. This is because no external pressure is applied and deformation is 

due to any adhesive shrinkage upon curing. In this study resistance model of a single 

MPS for ICA applications is developed in terms of on contact radius instead of the 

degree of deformation of the sphere and is presented in the next section.  

4.1.3.1 Conductivity Model of a Single Metalised Polymer Sphere 

In this model the MPS is considered as a spherical shell of radius  r and coating 

thickness tc , made up of annular rings of radius rsinθ and length rdθ , as shown in 

Figure 4.5. The following assumptions are made in this model;  

(i) The metal coating is smooth and homogenous; and  

(ii) Current flows uniformly in the metal coating parallel to the surface from one 

pole to the other. 

The resistance of each annular ring can be calculated using Ohm’s law and then 

integrated to calculate the resistance of whole MPS. The resistance contribution, dR, of 

a ring is given by: 
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𝒅𝑹 =
𝝆𝒎. 𝒓𝒅𝜽

𝟐𝝅. 𝒓𝒔𝒊𝒏𝜽. 𝒕𝒄 
                                                               𝟒. 𝟏𝟕 

where  ρm is the metal coating resistivity (Ωm); and 2πrsinθtc is the cross-sectional area 

of this annular ring (m2). 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.5 Metal coated polymer sphere shown as made up of small annular rings (for 

clarity only two rings are shown) 

As the geometry is symmetrical the resistance of a half spherical shell is calculated, 

which is then multiplied by two to calculate the total resistance. The resistance Rhs of 

the half spherical shell can be obtained by integrating Equation 4.17 between θ values 

of 0 and π/2.  

𝑹𝒉𝒔 = ∫
𝝆

𝒎
. 𝒓𝒅𝜽

𝟐𝝅. 𝒓𝒔𝒊𝒏𝜽. 𝒕𝒄 
=

𝝆
𝒎

𝟐𝝅. 𝒕𝒄

∫
𝒅𝜽

𝒔𝒊𝒏𝜽 
 

𝜽=𝝅 𝟐⁄
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                    𝟒. 𝟏𝟖
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In general:  

∫
𝒅𝜽

𝒔𝒊𝒏 𝜽

𝜽𝟐

𝜽𝟏

= { 𝒍𝒏 [𝒕𝒂𝒏
𝜽𝟐

𝟐
] − 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝟏

𝟐
]}                                   𝟒. 𝟏𝟗 

Therefore equation 4.18 can be restated as: 

𝑹𝒉𝒔 =
𝝆𝒎

𝟐𝝅.𝒕𝒄
{ 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝟐

𝟐
] − 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝟏

𝟐
]}

𝜽𝟏=𝟎

𝜽𝟐=𝝅/𝟐
    4.20  

𝑹𝒉𝒔 =
𝝆

𝒎

𝟐𝝅. 𝒕𝒄

{ 𝒍𝒏 [𝒕𝒂𝒏
𝝅

𝟒
] − 𝒍𝒏[𝒕𝒂𝒏 𝟎]}                                       𝟒. 𝟐𝟏 

𝑹𝒉𝒔 =
𝝆

𝒎

𝟐𝝅. 𝒕𝒄

{ 𝒍𝒏[𝟏] − 𝒍𝒏[𝟎]} = ∞                                                𝟒. 𝟐𝟐 

It can be seen from equations 4.18 and 4.22 that at the poles i.e. when θ = 0, the area of 

annular rings becomes zero and the resistance of the half spherical shells become 

infinite. This is because the model effectively assumes that the particle contact area is 

an infinitesimal. In reality the current will not flow through a point but through an area 

of contact between two particles. Assuming a small contact area between adjacent 

particles, a small value of θ1 is taken instead of zero, where this angle of contact θc = 

sin-1(rc/r) and rc is the contact radius as shown in Figure 4.5. The resistance Rhs of the 

half spherical shell can now be calculated by integrating equation 4.18 from θ1 = θc to 

θ2 = π/2: 

𝑹𝒉𝒔 =
𝝆𝒎

𝟐𝝅. 𝒕𝒄
{ 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝟐

𝟐
] − 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝟏

𝟐
]}

𝜽𝟏=𝜽𝒄

𝜽𝟐=𝝅/𝟐

                      𝟒. 𝟐𝟑 

𝑹𝒉𝒔 =
𝝆𝒎

𝟐𝝅. 𝒕𝒄
{ 𝒍𝒏 [𝒕𝒂𝒏

𝝅

𝟒
] − 𝒍𝒏 [𝒕𝒂𝒏

𝜽𝒄

𝟐
]}                                     𝟒. 𝟐𝟒 

i.e.: 

𝑹𝒉𝒔  =  
𝝆𝒎

𝟐𝝅. 𝒕𝒄
 { 𝒍𝒏(𝟏) − 𝒍𝒏 [𝒕𝒂𝒏

𝒔𝒊𝒏−𝟏(𝒓𝒄 𝒓⁄ )

𝟐
]}                        𝟒. 𝟐𝟓 

which as ln (1)= 0 reduces to: 

𝑹𝒉𝒔  =  
𝝆𝒎

𝟐𝝅. 𝒕𝒄
 {– 𝒍𝒏 [𝒕𝒂𝒏

𝒔𝒊𝒏−𝟏(𝒓𝒄 𝒓⁄ )

𝟐
]}                                      𝟒. 𝟐𝟔 

For small angle, sinθ ≈ θ so equation 4.26 reduces to: 



Chapter 4: Theoretical Model of Electrical Conductivity of ICAs Filled with Silver Metalised Polymer Spheres 

78 

𝑹𝒉𝒔  =  
𝝆𝒎

𝟐𝝅.𝒕𝒄
 {– 𝒍𝒏 [𝒕𝒂𝒏

𝒓𝒄

Ø
]}     4.27  

And as the resistance of the whole MPS, Rmps, is twice the resistance of a half spherical 

shell:  

𝑹𝒎𝒑𝒔  =  
𝝆𝒎

𝝅.𝒕𝒄
 {– 𝒍𝒏 [𝒕𝒂𝒏

𝒓𝒄

Ø
]}     4.28 

Equation 4.28 shows that the resistance of a metal coated polymer sphere depends on 

the (i) metal coating resistivity, (ii) metal coating thickness, (iii) contact radius, and (iv) 

MPS diameter (Ø). Figure 4.6 plots the variation of Rmps for different metallic coatings, 

MPS Ø and coating thickness, as a function of contact radius. Figure 4.6 (a) plots the 

variation of resistance of a 4.8μm MPS when coated with 120nm of the noble metals 

silver and gold. Figure 4.6 (a) shows that the silver coated MPS has lower resistance as 

compared to one gold coated, however gold has other advantages such as it does not 

oxidise and its ions are less susceptible to migration. Figure 4.6 (b) plots the variation 

of the MPS resistance with diameter and coated with 100nm of Ag. It shows that as the 

MPS diameter increase its resistance increase. Figure 4.6 (c) plots the variation in 

resistance of a 4.8μm MPS coated with Ag of different thickness. It shows that as the 

thickness of the Ag increases the resistance decreases. All of the plots in Figure 4.6 

show that resistance decreases with increasing contact radius. It can be further observed 

from Equation 4.5 that contact radius depends upon the stiffness of the polymer core 

and the normal force between adjacent MPS (due to shrinkage). Thus a MPS with a soft 

core are preferred. Therefore, experiments were carried out to investigate the effect of 

coating material, MPS Ø, coating thickness, contact radius, polymer core material and 

applied normal force on MPS conductivity. The details of these experiments are 

presented in Chapter 5. 
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Figure 4.6 Variation of Rmps with (a) different metallic coatings, (b) MPS diameter (Ø) and 

(c) coating thickness 
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4.2 Conductivity Model for an ICA formulated with Metalised Polymer 

Spheres 

The main aim of this research has been to investigate and optimise the parameters 

which effect the conductivity of ICAs formulated with Ag-MPS. Therefore, it is 

important to develop an ICA conductivity model. As discussed in Section 4.1, the 

conductivity of an ICA depends upon the volume fraction of filler, particle-to-particle 

conductivity and conductivity within a single particle. Conductivity models based on 

both a random distribution and regular distributions are discussed below. ICAs contain 

random arrangements of particles as it is not possible to achieve a volume fraction 

where regular arrangements (hexagonal or simple) of filler particles occur but models of 

random arrangements requires long calculation times due to solving complex iterative 

equations. Although, models based on a regular distribution of filler particles cannot be 

used to accurately predict the resistivity of a real ICA sample, such models will provide 

a lower bound on the resistivity and will help to establish optimum combination of 

values for design parameters such as MPS volume fractions, diameter and metal coating 

thickness. 

Resistivity models based on random packing have been investigated and developed to 

predict the resistivity of a block of ICA (Li et al. 1995; 1997; Su et al. 2004). Li et al. 

(1995) first made a model in two dimensions which was later extended (1997) to three 

dimensions while Su et al. made a model only in three dimensions.  A brief description 

of these models is presented below:  

The models of both Li et al. and Su et al. are simulations based on algorithms to 

generate random sites to place filler particles within a space between two electrodes, 

such that the particles must not impinge upon the space occupied by another particle or 

of the electrodes. After the placement of particles, the algorithm identifies whether there 

are any conductive pathways between the two electrodes. For each identified 

conductive pathway, the algorithm gives a common pathway identification number and 

counts the number of particles in that pathway. If any two sites at the opposite ends of 

the electrodes have the same identification number, the sample is determined to 

percolate in the direction perpendicular to the electrodes. The particle at each site in the 

pathway is considered as a resistor together with associated contact resistances. The 

overall resistivity of the ICA block is then calculated by the program which solves 
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Kirchoff’s current equation at each site, by iteration and finite difference methods. 

These models has some limitations associated with them including: 

(i) As the models are simulation based, generation of random sites and solving 

complex iterative equations associated with random packaging takes a long time 

and hence resistivity calculations also take a long time;  

(ii) Investigating the effect of different parameters such as filler size, and volume 

fraction on the resistivity of an ICA requires multiple independent simulations to 

be run; and 

(iii)  These models do not directly lead to an equation that can quantify the effects of 

the various parameters which determine the resistance of an ICA. In both Li and 

Su’s models, numerical value of the resistivity of the filler and pre-calculated 

contact resistance values are used to calculate the resistance of an ICA and they 

do not quantify the effect of various parameters on which the resistance of the 

filler and contact resistance depends.  

The resistance of an MPS is high compared to that of the bulk metal and depends upon 

various parameters as discussed in section 4.1.3.1. Further, as discussed in section 4.1.2, 

the contact resistance also depends upon various parameters.  To establish the effect of 

various parameters that can affect the resistance of an ICA, an analytical model 

represented by an equation is needed.  

Conduction through regular arrangements of filler particles, such as hexagonal and 

simple cubic packaging, can be readily represented by equations allowing quantification 

the effects of many of the parameters affecting the resistance of MPS based ICAs. 

These models can also overcome the above identified problem of long calculation times 

due to the complex iterative process associated with simulating random packaging.  

As discussed in Section 4.1.1, hexagonal packing occurs at volume fractions so high 

that processing of an ICA would be impossible. Therefore, an analytical model based 

on the simple cubic arrangement is more suited to explaining conduction within ICAs 

and is presented below.  
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In a simple cubic model layers of particles are stacked parallel to each other as shown in 

Figure 4.7. A conductive path is formed when a continuous chain of contact between 

particles is established between the two electrodes. Each conductive pathway comprises 

of a series of resistances formed due to the combination of particle-to-particle resistance 

and resistance offered by the particle itself. Every particle is different from each other 

and, similarly so are the contact resistances between adjacent particles. Furthermore, 

each particle in a simple cubic packing arrangement is connected to six other particles. 

This variability could lead to a conductive path that is very complex to accurately 

evaluate. Hence, the following assumptions have been made to allow development of an 

ICA conduction model: 

i) The volume fraction of the MPS is 52%; 

ii) Each particle has the same resistance value, Rmps ; 

iii) Particle-to-particle contact resistances are the same for all particles, Rcr; 

iv) Each particle therefore contributes equally to conduction and there are no dead 

ends; 

v) Each particle only has two points involved in forming the conducting paths. 

These two points are considered to be at the opposite ends of particle; and 

vi) The conductive pathways are straight chains as shown in Figure 4.7, rather than 

meandering randomly through the ICA volume. 
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Figure 4.7 Simple cubic arrangement of filler in an ICA illustrating conductive paths (for 

simplicity only the paths on the front face of the ICA are shown) 

Utilising these assumptions the total resistance of a volume of ICA can be given as a 

function of both particle resistance and particle-to-particle contact resistance, i.e. for an 

ICA stripe of length L, width w and thickness t, the total resistance can be given as; 

𝑹𝑰𝑪𝑨 =  
𝑹𝒎𝒑𝒔𝒏𝑳 + 𝑹𝒄𝒓(𝒏𝑳 − 𝟏)

𝒏𝒘𝒏𝒕
                                            𝟒. 𝟐𝟗 

where             𝑛𝐿 =  
𝐿

𝟐𝒓
 , number of MPS along the length L; 

                      𝑛𝑤 =  
𝑤

𝟐𝒓
 , number of MPS across the width w; 

                      𝑛𝑡 =  
𝑡

𝟐𝒓
 , number of MPS through the thickness t; and 

  r = MPS radius (m). 
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If the number of MPS along the length of the ICA volume is very large, then 

  𝒏𝑳 − 𝟏 ≅  𝒏𝑳                                                                    𝟒. 𝟑𝟎 

Substituting this value of 𝑛𝐿-1 in Equation 4.29, we get 

𝑹𝑰𝑪𝑨 =  
( 𝑹𝒎𝒑𝒔+𝑹𝒄𝒓)𝒏𝑳

𝒏𝒘𝒏𝒕
      4.31  

Further, the ICA resistivity can be estimated by combining Equation 4.31 with 

Equations 4.28, 4.5 and 4.9, as: 

𝑹𝑰𝑪𝑨 =
( 

𝝆𝒎
𝝅.𝒕𝒄

 {–𝒍𝒏[𝒕𝒂𝒏
𝒓𝒄
∅

]} +
𝝆𝒎
𝟐𝒓𝒄

+
𝝆𝒕

𝝅𝒓𝒄
𝟐)𝒏𝑳

𝒏𝒘𝒏𝒕
    4.32 

 
Which on further simplifying is:  

 

𝑹𝑰𝑪𝑨 =
( 

𝝆𝒎
𝝅.𝒕𝒄

 {–𝒍𝒏[𝒕𝒂𝒏
𝒓𝒄
∅

]} +
𝝆𝒎
𝟐𝒓𝒄

+
𝝆𝒕

𝝅𝒓𝒄
𝟐)∅.𝑳

𝒘.𝒕
    4.33 

 

And the resistivity is therefore :  

𝝆𝑰𝑪𝑨 =  ( 
𝝆𝒎

𝝅.𝒕𝒄
 {– 𝒍𝒏 [𝒕𝒂𝒏

𝒓𝒄

∅
]}  +

𝝆𝒎

𝟐𝒓𝒄
+

𝝆𝒕

𝝅𝒓𝒄
𝟐) ∅   4.34 

  

Equation 4.34 shows that the resistivity of an ICA filled with Ag-MPS is directly 

proportional to:  

(i) Metal coating resistivity, ρm.: In the case of an MPS, the resistivity of the metal 

coating can be assumed to be at least the bulk resistivity of the metal. Thus, 

MPS coated with a metal with lower resistivity will typically yield an ICA with 

lower resistance. Further, for a given metal, the resistivity of the thin metal 

coating will depend upon the thickness and quality of the coating. The resistivity 

of metal coatings on a flat substrate can usually be measured experimentally 

(Cui et al. 2012), however it is very difficult to measure the resistivity of the 

metal coating on a microsphere; 

(ii) Tunnel resistivity, ρt,: As discussed in section 4.1.2.2 tunnel resistivity depends 

on the thickness, dielectric constant and work function of the insulating film. 

The dielectric constant and work function of the insulating film may depend on 

the insulating film material, however the film thickness depends upon contact 
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pressure and becomes smaller when the contact pressure is increased. In the case 

of ICAs the contact pressure is exerted by shrinkage of the adhesive matrix; and 

(iii) MPS Diameter: MPS with smaller diameter but for same tc and rc will yield an 

ICA with a lower resistance, but at the cost of more metal due to the greater total 

MPS surface area. 

Equation 4.34 shows that the resistivity of an ICA filled with Ag-MPS is inversely 

proportional to: 

(i) Thickness of the metal coating, tc: ICAs filled with MPS having a thick silver 

coating will have less resistance as compared to those with a thinner coating; 

and 

(ii)  Contact radius, rc, between adjacent Ag-MPS; The contact radius between two 

adjacent MPS will depend upon the (i) MPS diameter, and (ii) normal force 

applied due to the shrinkage of the epoxy during curing. 

The effect of metal coating thickness and quality, MPS diameter, and the curing profile 

and resulting shrinkage on the conductivity of an ICA is experimentally investigated in 

Chapter 6. 

4.3 Concluding Remarks 

In this chapter the factors effecting the conductivity of an ICA made using silver coated 

polymer spheres have been discussed. These factors include, the volume fraction of 

filler particles, the particle-to-particle contact resistance and the individual particle 

resistance. The model has been developed to calculate both the resistance of a single 

particle and resistance of an ICA. These models show that particle size, its contact 

radius, coating thickness, stiffness of polymer core and the normal force exerted due to 

shrinkage of polymer matrix during curing are expected to affect the particle-to-particle 

contact resistance and single particle resistance and hence the overall resistance of an 

ICA made using MPS. 

To investigate the effect of these parameters on the electrical resistance of a single 

particle and on the resistance of an ICA formulated with Ag-MPS experimental studies 

have been carried out and are presented in Chapters 5 and 6. 
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 CHAPTER 5  

EXPERIMENTAL INVESTIGATION OF THE CONDUCTIVITY OF 

INDIVIDUAL SILVER METALISED POLYMER SPHERES 

The theoretical model for the average resistance of a MPS network within an ICA that 

was presented in Chapter 4 showed that the resistance of two MPS in contact depends 

upon the resistivity of the metal coating, the thickness of the metal coating, the MPS 

diameter and the radius of contact between them. This chapter presents experiments 

conducted using a nano-indentation based flat punch method to experimentally 

investigate the effect of these parameters on MPS resistance for comparison with the 

theoretical model. 

 Testing of MPS Properties  

The mechanical and electrical properties of metal-coated plastic spheres used in an 

ACA assembly have been studied by a number of researchers. Kristiansen et al. (2001) 

compressed a large number of MPS (typically in the order of 1000) between two flat 

silicon chips and investigated the effect of temperature on their mechanical properties. 

Later, Zhang et al. (2007) used the method introduced by Kristiansen et al. to 

investigate the elastic properties such as compression modulus and the Poisson’s ratio 

of the MPS up to 20% deformations. In both these studies the electrical properties of the 

MPS were not investigated. Moreover, for investigating mechanical properties a large 

number of MPS (such as in an ACA assembly) were simultaneously compressed. Any 

size variation between the MPS can therefore affect the characterisation of MPS 

properties. In order to accurately characterise the properties of single MPS, 

compression of an individual MPS needs to be investigated.  

Wang et al. (1998) characterised the mechanical properties of MPS by probing 

individual MPS in a cross-sectioned ACA assembly using nano-indentation technique. 

Nano-indention is mainly used for characterising the mechanical properties of materials 

at the micro and nano-scale, where a pointed tip indenter penetrates the flat material 

surface while the contact load and displacement are simultaneously measured using 
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highly sensitive transducers (Vanlandingham 2003; Schuh 2006). The standard pointed 

nanoindentation tip is however, not suitable for testing the free standing MPS therefore 

Dou et al. (2006), Kwon et al. (2006) and He et al. (2007) and (2008) and Helland 

(2008) replaced the conventional pointed tip indenter with a flat tip indenter. Using flat 

tip diamond indenter Kwon et al. (2006) compressed single MPS and characterised the 

bonding parameters for an ACA assembly they however did not measure the electrical 

resistance of an individual MPS during compression. Dou et al. (2006, 2007) specially 

manufactured flat and conducting nano-indenter tips, and for the first time measured the 

electrical resistance of individual gold and nickel plated polymer spheres while 

applying compressive force. He et al. (2007) and (2008), and Helland (2008) used the 

flat punch diamond nanoindenter to investigate the hardness, compression modulus, and 

Poisson’s ratio of individual MPS. As Dou et al. successfully measured the electrical 

resistance of single MPS, the methodology used by them is adapted in this research to 

measure the resistance of an individual Ag-MPS. Details of the experiments carried out 

are presented in the following sections. 

 Resistance Measurement Using the Nanoindentation Method 

 Aims 

The main aim of this experiment is to investigate the effect of the following parameters 

on the electrical resistance of Ag-MPS:  

i) MPS diameter; 

ii) Silver coating thickness and quality/morphology (this affects the resistivity 

of the coating and therefore of the MPS) ; and 

iii) Deformation of the MPS (from which the contact radius between two MPS 

is estimated). 

The results will assist in optimising the design of Ag-MPS for different ICA 

applications and in developing improved models for their conduction. 
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 Materials Used 

Ag-MPS supplied by Conpart AS, Norway, with cores having two different diameters 

and materials were used in this study. These spheres are coated with silver layers of 

different thicknesses and two different types of plating processes were used. 

Observations of the particles under SEM, show a narrow size distribution for each type, 

as shown in Figure 5.1. The flakes of silver that can be seen in Figure 5.1(f) are 

probably silver that did not get plated on to the MPS during electroless plating. The 

specifications of the Ag-MPS used are given in Table 5.1. 

Table 5.1 Specifications of silver coated polymer spheres 

Ø (µm)  Core material 
Ag Coating 

Thickness1 (µm) 
Plating Process 

Nomenclature 

Used 

30 
Lightly cross linked 

methacrylate 
0.13  ± 5% A 30_13A 

30 
Lightly cross linked 

methacrylate 
0.10  ± 5% B 30_10B 

30 
Lightly cross linked 

methacrylate 
0.15  ± 5% B 30_15B 

30 
Lightly cross linked 

methacrylate 
0.20  ± 5% B 30_20B 

30 
Lightly cross linked 

methacrylate 
0.25  ± 5% B 30_25B 

4.8 
Highly cross linked 

methacrylate 
0.15  ± 5% A 4.8_15A 

 

 

 

 

 

 

 

                                                 

1 Thickness is estimated by the manufacturer from the weight of the silver used in the plating process 
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(a) 30_13A (b) 30_10B 

(c) 30_15B (d) 30_20B 

(f) 4.8_15A (e) 30_25B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 SEM images of the Ag-MPS used in the study 
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 Equipment Used 

 Nanoindentor  

Two Nanoindentation instruments were used in this work. A NanoTest, manufactured 

by Micro Materials Ltd.2 together with a custom made flat tip indenter, as used by Dou 

et al. (2006, 2007), was initially used. The high resolution of 100nN of the NanoTest 

allowed accurate application of a very small force in the order of 100mN, and also 

made possible recording of the resulting deformations of less than 6μm at a resolution 

of 0.1nm while simultaneously measuring electrical resistance. However, the NanoTest 

broke down while carrying out the initial experiments and therefore another 

nanoindentation testing system, a TriboIndenter manufactured by the Hysitron 

Incorporation3, USA was subsequently used, as shown in Figure 5.2. 

 

 

 

 

 

 

 

 

Figure 5.2 TriboIndenter® with standard stage setup 

The Triboindenter uses a specially designed three-plate capacitive transducer for load 

and displacement measurements. The indenter tip is mounted to the central capacitor 

plate, which is suspended on springs and free to move in the normal direction, as shown 

                                                 

2  http://www.micromaterials.co.uk 

3 http://www.hysitron.com 
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Top Plate 

Central Plate  

Bottom Plate 

Indenter 

in Figure 5.3.  By modulating the electrical potential applied to this centre plate with 

respect to the top and bottom plates an electrostatic force is created between the plates, 

which drives the indenter tip. 

 

 

 

 

Figure 5.3 Cross-section of three-plate capacitive transducer 

The force applied to the indenter tip is therefore the sum of the electrostatically applied 

force and the net force introduced by the deformation (displacement) of the springs. The 

displacement is calculated by measuring changes in the capacitances between the centre 

plate and the top and bottom plates. The transducer used in this study can create a 

maximum load of 10000μN and a maximum indentation depth of 5µm, with load and 

displacement resolutions of 1nN and 0.1nm, respectively. The force-deformation data 

were recorded using the TriboIndenter whereas resistance data was measured using a 

separate Keithley 2602 source meter, as there was no provision to record resistance 

within the TriboIndenter. The standard tips used with TriboIndenter are pointed and 

were therefore replaced with a specially designed flat tip, which henceforth is referred 

as a flat punch in the context of this thesis.  A simplified schematic of the experimental 

setup is shown in Figure 5.4. 
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Figure 5.4 Experimental setup for the nanoindentation-based flat punch tests 

 Flat Punch and Substrate 

The particles were deformed between the flat punch and a substrate mounted on the 

base stage of TriboIndenter as shown in Figure 5.4. The materials of the flat punch and 

substrate were selected such that they are significantly harder than the particles. This is 

to prevent any deformation of the flat punch and substrate during indentation, thus 

aiding accurate measurement of particle deformation. In addition to being hard, the 

material should also have good electrical conductivity to allow particle resistance 

measurement. Diamond has been used as a common material for indenter tips, because 

of its very high hardness. However, diamond could not be used for making the indenter 

tip in this study, because it is an electric insulator and is therefore not suitable for 

resistance measurements. As an alternative to diamond, tungsten carbide was used for 

making the flat punch as it is also very hard, whilst having a low resistivity of 

2×10−6 Ωcm at 25°C. Considering the particle size and the required planarity of both 

flat punch head and substrate surface, the punch head tips were made circular and 

approximately 75μm in diameter, as shown in Figure 5.5.  

Silicon wafers with a sputtered thin gold film 200 nm thick were used as the substrate. 

These gold coated silicon wafers were supplied by Acreo AB, Sweden. The gold film 

on the substrates ensured good electrical contact between the MPS and substrate and as 

its thickness is small compared to the diameter of the tested particles (30µm & 4.8 µm), 

any deformation of the gold film during particle indentation can be assumed to have a 

negligible effect on the results.  
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Figure 5.5 Flat punch  

 Base Stage 

The base stage of the TriboIndenter has nine positions which can be used to mount 

samples. The centre of each sample position has a magnet mounted inside the stage to 

hold down the samples magnetically. Steel discs are provided to allow rapid mounting 

of the samples using the magnetic force. The Si substrates were glued onto the steel 

discs using Cyanoacrylate “instant” adhesive. The base stage has an integrated optical 

microscope with 10X magnification and can be used to locate a specific particle for 

indentation and to subsequently observe the indented particle. 

 Resistance Measurement Method 

The load and deformation measurements on the Ag-MPS were recorded by the control 

computer within the TriboIndenter. However, it is not capable of measuring electrical 

resistance. Therefore a Keithley 2602 source meter was used to record the electrical 

resistance. The Keithley 2602 source meter has two channels and when making FWR 

measurements automatically compensates for thermal EMFs. Using this meter, a 

constant current value was applied between the flat punch and the substrate, and the 

resulting voltage difference was automatically recorded using Lab View software in a 

computer connected to the Keithley 2602 source meter through a RS-232 interface. 

Table 5.2 lists the range and resolution of the Keithley 2602 source meter. 

 

400µm 

900µm 

300µm 

75µm 

300µm 



Chapter 5: Experimental Investigation of the Conductivity of Individual Silver Metalised Polymer Spheres 

94 

Table 5.2 Resolution of the Keithley 2602 source meter for the voltage  

Function Range Resolution 

Test Current 1-10 mA   100 nA 

Measured Voltage 1-10 mV   1 µV  

Measured Resistance 0.1-10Ω   1 µΩ  

 Experimental Procedure 

The experimental procedure can be divided into three main steps as follows: sample 

preparation; flat punch co-planarity check and calibration; and compression of the 

particle with simultaneous resistance measurement. 

 Sample Preparation 

The tests require the particles to be dispersed on the substrate such that they are fixed 

onto the substrate, while being far enough apart that they do not interfere with the 

measurement of other particles. Researchers previously have tried different techniques 

for attaching the particles to the substrate. Dou et al. (2006,2007) induced a static 

charge on the substrate by rubbing it with lens cleaning paper, which helped to attach 

the particles onto the substrate, whereas Helland (2007) and He et al. (2007) used 96% 

industrial ethanol solution to disperse the particles over the substrate. However, Helland 

and He et al. investigated only the mechanical properties and did not investigate the 

electrical properties. In the present study, an open circuit was detected during the 

resistance measurements when the particles were dispersed using ethanol. It is believed 

that a thin residual layer of ethanol is the cause of the open circuit. Therefore in order to 

make successful electrical contact it was decided not to use any solvent to help disperse 

the particles and a tiny amount of dry particles was sprinkled onto the Au-coated Si 

substrates for the tests.  

 Flat Punch Co-Planarity Check and Calibration 

A simplified schematic of the experimental set up is shown in Figure 5.4. The particles 

are placed on the substrate and indented between the flat punch and the silicon 

substrate.  Planarity of the flat punch and parallelism between the punch surface and the 

substrate are of crucial importance to the precision of the measurement. Particularly for 

the smaller particles if the planarity and parallelism of the flat punch are poor, the edge 
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of the punch might touch the substrate before compression of the particle is finished, as 

shown in Figure 5.6.  

 

 

 

 

 

 

 

 

 

Figure 5.6 Illustration of effect of non-coplanar punches on (a) large and (b) small MPS 

The primary factor influencing parallelism of the flat punch is the mechanical mounting 

of the tip. After carefully mounting the tip to the transducer, the parallelism of the flat 

punch was checked by making indents into a polished indium surface. Though the 

indent onto the indium surface was not exactly uniform and circular, the tip was 

regarded to be acceptable for the 30µm particles involved in this experiment, because 

the non-coplanarity of the tip was not believed sufficient to cause the effects on the 

measurements shown in Figure 5.6. The relative positions of the integrated optical 

microscope and the indenter were also calibrated using the indent on the indium. This 

ensures the indentation takes place at the position chosen with the optical microscope. 

From the mounting of the tip, the co-planarity check and the calibration to taking 

measurements, the TriboIndenter was operated by a highly experienced operator, Dr 

Jianying He. 
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 Compression of the Particle 

After co-planarity and calibration checks were completed, the compression of the 

particles was carried out using the following procedure: 

i) Prior to each test, the flat punch was cleaned using cotton buds dipped in ethanol 

to remove external impurities. All tests were performed in air and at room 

temperature; 

ii) Individual particles at a sufficient distance from their closest neighbour were 

identified using the integrated optical microscope of the TriboIndenter; 

iii) Compression was performed using the load/force controlled mode of the 

instrument, in which the applied load/force follows a predefined profile. The 

loading and unloading profile used in this experiment is shown in Figure 5.7 and 

Table 5.3. A maximum load of 8000μN was selected due to the limit of the 

transducer and the fact that the MPS are not so highly deformed in an ICA as 

they are in an ACA; 

iv) After compression the coordinates and an image of the tested particle were 

recorded, to make sure that the same particle was not tested twice; and 

v) For each group of particles, at least four single particles were tested in order to 

check the repeatability of the results. 

 

 

 

 

 

  

 

Figure 5.7 Loading and unloading profile for the compression of Ag-MPS 
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Table 5.3 Force and time values for loading, holding and unloading phases  

 Resistance Measurement  

During the compression of Ag-MPS, electrical resistance measurement was only 

conducted during a specific period, in order to prevent the tested particle from being 

destroyed due to sudden discharge off current when the flat punch contacts the particle 

if the current source was activated before contact. The resistance measurement was 

started after 5s when the force was being held at 2000 µN and was stopped at 78s when 

the force was again held at 2000 µN, as illustrated by the dotted red lines in Figure 5.7. 

No resistance measurements were conducted in the first loading phase i.e. between 0-

2000 µN and in the last unloading phase 8000-2000µN. Therefore to reduce the 

experimental time, loading and unloading rates were kept higher in these two phases. 

For each compression, the force, deformation and resistance were recorded as functions 

of time. The flat punch and the Au-coated substrates were connected to the current 

source and voltmeter as shown in Figure 5.4. The resulting current flow and the 

electrical resistances involved in the measurement are shown in Figure 5.8. Rsv is in 

series with the voltmeter and thus not in the current path and could be neglected. It can 

be seen form Figure 5.8 that: 

                  𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 =  𝑹𝑴𝑷𝑺 + 𝑹𝒕𝒗 + 𝑹𝒑𝒔 + 𝑹𝒑𝒕  5.1 

Therefore: 

 𝑹𝑴𝑷𝑺 =  𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 − (𝑹𝒕𝒗 + 𝑹𝒑𝒔 + 𝑹𝒑𝒕)   5.2 

 

 

 Force  (μN) Time (s) Rate (μN/s) 

Loading Profile 

Loading 0 - 2000 2 1000 

Holding 2000 5 - 

Loading 2000 - 8000 20 300 

Holding Profile  8000 20 - 

Unloading Profile 

Unloading 8000 - 2000 20 300 

Holding 2000 16 - 

Unloading  2000 - 0 2 1000 
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Figure 5.8 Electrical resistances included in the measurement  

where  RMPS is the MPS resistance ; 

Rpt is the contact resistance between particle and flat punch; 

Rps is the contact resistance between particle and substrate; 

Rsi is the resistance of the portion of the substrate between the current source 

connection on the substrate and the particle; 

Rsv is the resistance of portion of the substrate between voltage measurement 

connection on the substrate and the particle; 

 Rtv is the resistance of the portion of the flat punch between the voltage 

measurement connection on the punch and the bottom surface of the punch; and  

Rti is the resistance of the portion of the flat punch between the current source 

and voltage measurement connections on the punch. 

The portion of the flat punch imparting resistance Rtv can be considered to be made by 

joining a truncated cone and cylinder as shown in Figure 5.5. The resistance of a 

truncated cone made of tungsten carbide with smaller base diameter of 75µm, larger 

base diameter of 300µm, and height of 400µm was calculated to be 4.52mΩ. The 

resistance of a cylinder of tungsten carbide with diameter of 300µm and height of about 

V 
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900µm was calculated to be 2.54 mΩ. Thus the total resistance Rtv was calculated to be 

7.06 mΩ. 

Rps and Rpt were calculated using Holm (1967) and Hertz’s formulae Johnson (1987) 

discussed in Section 4.1.2.1 as: 

𝑹𝒑𝒔(Ω) =  
𝝆𝑨𝒈+ 𝝆𝒘𝒄 

𝟒𝒓𝒄
          5.3 

 

𝑹𝒑𝒕(Ω) =  
𝝆𝑨𝒈+ 𝝆𝑨𝒖 

𝟒𝒓𝒄
        5.4  

where  rc is the contact radius (m); 

ρAg is the resistivity of silver (Ωm); 

ρwc is the resistivity of tungsten carbide (Ωm); and 

ρAu is the resistivity of gold (Ωm);  

The contact radius, rc, can be estimated from the deformation using (Johnson 1987): 

𝒓𝒄 =  √𝒓 (
𝒅

𝟐
)       5.5  

 where  r is the radius of the Ag-MPS (m); and  

d is the depth of deformation (m). 

Using the bulk resistivities of silver as 1.59 x 10-6 Ωcm, tungsten carbide as 2.0 x 10-5 

Ωcm, and gold as 2.4 x 10-6 Ωcm (Hyperphysics 2014) and depth of deformation 

between 600 to 1700 nm, the sum of Rps and Rpt is estimated to be in the range of 30.1 – 

23.3 mΩ. For deformations in the range over which resistance data is available, the sum 

of Rtv, Rps and Rpt lies therefore between 30.36 – 37.16 mΩ. This is very small in 

comparison to the measured resistance values of the MPS for these deformations (of the 

order of 0.500 - 1.1 Ω) and their contribution towards the measured resistance values 

can therefore be neglected.  
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 Results and Discussion 

 Mechanical Characterisation 

Deformation of all the particles under the application of force was measured and 

recorded by the TriboIndenter. Figure 5.9 (a), (b), (c), (d) and (e) exhibits the force-

deformation curves for 30_13A, 30_10B, 30_15B, 30_20B and 30_25B respectively.  

For each particle type, deformation curves for three particles are shown. The plateaus in 

each force-deformation curve correspond to the holding segments on the loading 

profile, where the applied force is held at 2000μN, 8000μN and then 2000μN. Further, 

the average mechanical response for the five types of Ag-MPS are shown in Figure 

5.10, where the average values of force and deformation for three tested particles for 

each batch shown in Figure 5.9 are plotted. The force deformation curves in Figure 5.9 

show that the deformation increases with the applied force. The curves show larger 

deformations in the first loading segment (0 - 2000 µN) as compared to in the second 

loading segment (2000µN - 8000µN). The loading rate is also higher (1000µN/s) for the 

first loading segment as compared to the second loading segment (300μN/s). It can be 

also be seen that during the holding segments at constant load of 2000μN and 8000µN, 

the deformation increases. The deformation decreases on the release of load during 

unloading segment but after complete removal of load, non-recoverable deformations of 

up to 900nm were observed. Increase in deformation with increase in loading rates 

during the loading segment show the viscoelastic nature of the MPS. The decrease in 

deformation during unloading segment shows the viscoelastic nature of the MPS 

however, MPS do not retain its original shape on the release of load showing 

viscoplastic nature. The increase in the deformation with time but at a constant load 

during the holding segments shows that there is creep or viscoelastic creep of the MPS. 

Similar phenomena were observed by Dou et al. (2007) and He et al. (2008) in their 

studies. Solid polymers are often viscoelastic (Ward et al. 1993), and the observed 

viscoelastic nature of the MPS is probably due to the viscoelastic nature of the polymer 

core. 
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Figure 5.9 Force vs deformation curves for 30μm Ag-MPS 

No evidence of the MPS being crushed during compression was obtained from the force 

versus deformation curves, which is unlike what Dou et al. and He et al. have observed 

in their studies. Dou et al. and He et al. both observed that, for larger forces, the MPS 

deformation increased within a few milliseconds by about 20%, for almost no recorded 

change in the force whereas in these tests no such abrupt increase in deformation is 

observed at constant force. In this study, a maximum applied load of 8000μN was 

applied, as compared to the 50,000µN and 10,000µN applied by Dou et al. and He et al. 
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respectively, such that maximum deformations of only 5 – 7% of the particle diameter 

observed, as can be seen in Figure 5.10 (b), are also much lower than 50% and 63% 

achieved by Dou et al. and He et al. respectively. The low load force used might 

therefore not be enough to crush the MPS. 

 

 

 

 

 

 

Figure 5.10 Average compression test results for different coating thickness (a) Force vs 

deformation curves (b) Average maximum deformation attained for 30 µm Ag-MPS at 

8000µN with one standard deviation error bars  

The force deformation curves in Figure 5.10 (a) show the effect of Ag coating thickness 

and the plating quality/morphology on the mechanical performance of the MPS. For the 

MPS plated using method B, there is little effect on the mechanical response with 

increasing coating thickness. However, slightly larger deformations are exhibited by 

MPS 30_13A, which were plated using method A. The silver coating on these particles 

is made of interlinked silver deposits grown from dispersed nucleation sites scattered 

across the surface of the particle where the silver can grow outwardly from the surface 

of the polymer as well as along the surface starting from the nucleation site (Kristiansen 

et al. 2013). This means that the thickness of the silver coating is not constant. Figure 

5.11 shows SEM images of the different silver coatings on the 30µm Ag-MPS. These 

images show that the silver deposits that make up the coating of 30_13A are circular in 

shape and did not coalesce with each other whereas the silver deposits that make up the 

coating of 30_10B, 30_15B, 30_20B and 30_25B are irregular in shape and well 

coalesced. This lack of coalescence of the 30_13A silver deposits may reduce the 

coating strength, and therefore the mechanical properties of the polymer core may play  
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Figure 5.11 SEM images of the silver coatings on (a) 30_13A (b) 30_10B, (c) 30_15B, (d) 

30_20B and (e) 30_25B                                                                                    ( contd……..) 
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Figure 5.11 SEM images of the silver coatings on (a) 30_13A (b) 30_10B, (c) 30_15B, (d) 

30_20B and (e) 30_25B  

(d) 30_20B 

(e) 30_25B 
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a greater part in determining the mechanical properties of these particles and this could 

be the reason for slightly larger deformation of these particles as compared to those 

coated with method B. In the present study, the electrical resistance was also 

simultaneously measured during the measurement of mechanical deformation of the 

particle. The current supplied for the electrical measurements may lead to an increase in 

the temperature of the contact area, due to localised heating (Holm 1967). For similar 

contacting surfaces the increase in temperature Θ would be (Holm 1967):  

𝚯 =  
𝑼𝟐

𝟖𝝆𝝀 
     5.6 

where  ρ is the electrical resistivity of the contacting surface (Ωm) ; 

λ is the thermal conductivity of the contacting surface (Wm-1K-1);  

U is the voltage applied (V); 

If the contacting surfaces are made of dissimilar materials then the ρ and λ of the 

surface with poorer electrical and thermal conductivity is used. Using the values of ρ = 

0.2 x 10-6Ωm and λ = 84.03 Wm-1K-1 of tungsten carbide, at the maximum voltage of 

6.0 mV measured in this experiment, the rise in the temperature of the contact area 

would be only 0.268 K. However, the effect of the constriction area and the thickness of 

the conducting surfaces on the rise in the temperature would need to be determined 

using FE models, as was done by Oguibe et al. (1998) for gold and nickel coated ACA 

particles This was out of the scope of present research and could to be addressed in 

future studies. A previous study by Helland (2008) showed that softening of the particle 

occurred with localised heating. The variation in the mechanical behaviour due to local 

heating of the particle may cause large deformations. However this topic is beyond the 

scope of the present study and needs to be addressed in further studies. 

Force-deformation curves for one of the much smaller 4.8_15A MPS, are compared 

with and an indentation directly onto the gold plated silicon substrate in Figure 5.12. 

The holding force was reduced to 500µN for this test. The force-deformation behaviour 

observed for 4.8 MPS shows that as the force is increased up to 5000µN, the 

deformation increases rapidly and reaches nearly 50% of the particle Ø, and all the 

particles tested undergo different deformation. On further increasing the load force, 

deformation remains constant, this suggests that at this point one end of the flat punch 
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started indenting on the flat substrate preventing further compression of the MPS. The 

reason being that the non-coplanar tip, with diameter 75μm is too big for testing the 

4.8μm MPS because it comes into contact with the substrate, when the force is applied 

during compression of the MPS as shown in Figure 5.6. However, a smaller tip suitable 

for both electrical and mechanical measurements was not available, and due to this and 

constraints on time and funds, further indentation experiments on 4.8μm MPS were not 

carried out. Therefore, the electrical and mechanical performance of 4.8μm MPS is not 

presented in this study. The effect of MPS diameter and core material on the resistance 

of MPS based ICAs therefore still needs to be addressed in future studies. 

  

 

 

 

 

 

Figure 5.12 Force vs deformation curves for (a) 4.8μm Ag-MPS and (b) Au plated silicon 

substrate 

 Electrical Characterisation 

The electrical resistance of the Ag-MPS were measured simultaneously with the force 

and deformation. The resistance measurement data were noisy, as can be seen in Figure 

5.13, which is because of the small signal being measured. Due to the large number of 

data points it is not feasible to tabulate all values, but to show the scale of the signals 

measured, the maximum values of the voltage drop recorded at the 5mA test current are 

given in Table 5.4 along with the calculated resistance for this voltage. Further, due to 

the equipment available, the resistance data and the force-deformation data were 

recorded with different sampling rates. Therefore in order to correlate the particle 

resistance with the applied load and deformation (i) the noise had to be filtered from the 

resistance measurement data; and (ii) the resistance measurement data had to be 
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matched in time to the applied load and deformation. The resistance measurement data 

were fitted using a non-parametric fitting tool within MATLAB software4. Figure 5.13 

plots the fitted data and as measured data versus time. The non-parametric tool uses an 

algorithm which filters the noise using the weighted average method and, at the same 

time, extracts resistance data with the same sampling rate as the force and deformation 

data using spline interpolation. Figure 5.13 shows the fitted resistance values are similar 

to those obtained by taking a simple moving average over 30 samples and the fitted 

values of the resistance and the deformation follow the same trend as the measured 

ones. Therefore the method used to filter the noise from the measured resistance and 

match the sampling rates of the resistance with the deformation and force was 

considered acceptable and is used in this study. 

Table 5.4 Max voltage and resistance values recorded for each type of MPS tested 

Ag-MPS Maximum Measured Voltage (mV) Maximum Resistance (Ω) 

30_13A 5.6 1.13 

30_10B 4.2 0.85 

30_15B 3.6 0.724 

30_20B 2.9 0.593 

30_25B 2.8 0.570 

 

  

 

 

 

 

  

 

 

Figure 5.13 Plot showing the variation of measured resistance with deformation, and the 

fitted resistance and deformation with time 

                                                 

4 The data fitting was done by the collaborative partner from Norway using MATLAB. 
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Figure 5.14 plots the variation of experimentally measured resistance values for each 

tested particle against the measured deformation. The results presented in Figure 5.14 

show that as expected, the resistance decreases with increasing deformation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Variation of particle resistance with deformation for three samples each of (a) 

30_13A (b) 30_10B, (c) 30_15B, (d) 30_20B and (e) 30_25B 
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The Ag-MPS used in the study have the same polymer core, but have different coating 

thicknesses and are coated using two different plating processes. Figures 5.14 (b) to (d) 

show that for the same plating process and deformation, the resistance of the Ag-MPS 

decreases with increasing coating thickness and as the coating thickness increases, more 

consistent resistance values for the three tested particles from each batch are obtained. 

The plots in Figure 5.14 (d) and (e) do not show a significant further reduction in the 

resistance values on increasing the coating thickness from 200nm to 250nm.The coating 

thickness for the Ag-MPS is estimated from the weight of silver used to coat the MPS, 

where the silver deposits/grains making up the coating are assumed to be uniform in 

size and perfectly coalescing with the neighbouring grains to give a continuous coating. 

However, in reality the silver deposits/grains making the coating are not uniform in size 

and at places the neighbouring deposits/grains do not coalesce thereby leaving a pore in 

the coating, as can be seen in SEM image in Figure 5.11. Figure 5.15 shows a FEGSEM 

image of a cross-section through the Ag-MPS coating at high magnification.   

 

 

 

 

 

 

Figure 5.15 Cross-section of the Ag-MPS coating showing uneven thickness 

Because of the difference in morphology between the assumed smooth and continuous 

coating and the actual coating, the actual thickness may differ from the estimated value. 

Another factor which could influence the coating thickness estimation is that all of the 

silver added is not used in making the coating, e.g. some of the silver take the form of a 

residue on the MPS surfaces, as shown in Figure 5.16 (highlighted by the red arrows). 

Including the amount of silver in the form of these residues in the estimate of the 

coating thickness leads to a higher estimated value than the actual thickness. Because of 

this limitation of the estimating method, there is a possibility that the difference in the 

coating thickness between 30_20B and 30_25B MPS is smaller than estimated and 
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could be a reason for their similar resistance values. Further it can be observed from 

Figure 5.14 that although 30_13A has a thicker coating than 30_10B it exhibits higher 

resistance values and with comparatively large scatter. Ag-MPS 30_13A and 30_10B 

are coated with plating process A and B respectively which result in different coating 

qualities/morphologies. The observed high resistance and the large resistance scattering 

for 30_13A could be due to poor quality/morphology of the Ag coating. The silver 

deposits on 30_13A are not as dense as those on 30_10B, as can be seen in Figure 5.11 

(a) and (b). Small Ag grains and the resulting many grain boundaries on 30_13A may 

scatter electrons, thus increasing the resistivity of the coating and hence the resistance 

of the particle. 

 

 

 

 

 

 

 

Figure 5.16 Sample showing large Ag deposits on Ag-MPS 

 Comparison with Theoretical Model  

The resistance measurement results were compared with the theoretical model for MPS 

conductivity presented in Chapter 4, where the theoretical resistance values for different 

contact radii was calculated using Equation 4.27. To compare the resistance 

measurement results with the theoretical model, the contact radii were estimated from 

the measured deformation values using Equation 5.5. Figure 5.17 plots the variation of 

experimentally measured resistance and theoretically predicted resistance values for 

each tested particle against the normalized predicted contact radius i.e. rc/r. As 

predicted by the theoretical model, Figure 5.17 shows that with the increasing contact  



Chapter 5: Experimental Investigation of the Conductivity of Individual Silver Metalised Polymer Spheres 

111 

R
es

is
ta

n
ce

 (
Ω

) 

rc/r 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

(a) 30_13A

Experimentally Measured

Theoretically predicted using bulk resistivty of silver (TPBR)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

(c) 30_15B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

(d) 30_20B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

(e) 30_25B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.05 0.10 0.15 0.20 0.25

(b) 30_10B

 

 

  

   

 

 

 

 

 

 

   

 

  

 

 

 

 

 

 

 

 

 

Figure 5.17 Experimental and theoretically predicted resistance vs estimated rc/r 
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radius the resistance of the Ag-MPS decrease. Further, it can be seen from Figure 5.17 

that, for a given contact radius, the theoretically predicted resistance of the Ag-MPS are 

considerably lower than those measured. For Ag-MPS that are coated with method A, 

the theoretically predicted resistances values are 8 - 9 times lower than the 

experimentally measured values. For particles coated with method B, the theoretically 

predicted resistances are about 4 – 5 times lower than the corresponding measured 

values.This difference between the measured and the theoretically predicted resistances 

may be due to a combination of the factors described below: 

(i) In the theoretical model, the resistivity of bulk silver (1.59 x 10-6 Ωcm) is used 

to calculate the resistance of Ag-MPS, where the silver coating is assumed to be 

smooth and continuous. However, silver coatings are porous and nodular, with 

variable grain sizes as can be seen in the SEM pictures in Figure 5.11. 

According to a study by Sabayev et al. (2011) the resistivity of thin Ag films 

deposited by electroless processes depends upon the morphology of the 

deposited film.  Sabayev et al. found that for a thickness of up to 35 - 40 nm Ag 

film resistivity can be much higher than for bulk material i.e. up to 11.4 x 10-6 

Ωcm, if the film is comprised of isolated and elongated grains. This high 

resistance was mainly attributed to the percolation effect, where dielectric gaps 

separating the conducting Ag clusters restrict the electrical transport through the 

film. Sabayev et al. also showed that as the coating thickness increases above 

30nm the isolated grains coalesce and, the effect of percolation decreases. When 

the film thickness reaches values larger than the electron mean free path, which 

is 52 nm for Ag (Kreibig et al. 1969), the resistivity of the film decreases and 

attains a saturated value of  2.5 x 10-6 Ωcm at 60 nm thickness i.e. if the 

thickness is increased beyond 60nm the resistivity remains same. Therefore the 

resistivity of Ag-coatings could be 1.57 – 7.1 times the bulk resistivity. 

However, all the Ag-MPS used in this study have estimated coating thicknesses 

above 100nm. Based on the study of Sabayev et al. if the resistivity of the Ag 

coating is assumed to be 2.5 x 10-6 Ωcm rather than 1.58 x 10-6 Ωcm, the 

predicted resistance of Ag-MPS increases, and is shown by purple lines in 

Figure 5.21. However, this increased film resistivity does not account for all of 

the observed difference between the measured and predicted resistances, as 

shown in Figure 5.21, and there must be other factors contributing to the 
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difference. Furthermore, the Ag-MPS coated using process B has coalesced 

grains as compared to the ones coated using method A where the silver grains 

are isolated. Therefore the resistivity of the Ag coating coated with method A 

may be higher than 2.5 x 10-6 Ωcm (Sabayev et al.). According to Redford 

(2011) plating on to small spheres would differ from that onto a flat surface, 

even when using exactly the same plating process therefore the resistivity on a 

sphere could not be accurately predicted from similar coatings on a flat surface.  

Moreover, a study by Cui et al. (2012) showed that even for the same coating 

thickness, different methods will give different morphology and may have 

different resistivity. Cui et al. studied Cu coatings, but according to Sabayev et 

al. Cu coatings are more homogenous than silver coatings (because of the way 

they are made), and silver coatings are expected to have a more variable 

morphology than Cu. This shows that the nano scale nodular nature of the 

coating may result in increased resistivity of the coating compared to the value 

for bulk silver and is one of the factor contributing to the difference between the 

measured and predicted resistances. However, further detailed studies are 

required to determine accurately the resistivity of Ag coatings on micro particles 

to predict MPS resistance accurately, which is out of the scope of the present 

study. Further, gold coating on silicon may have resistivity higher than bulk 

gold and may affect the contact resistance. However, the resistivity of a 20nm  

gold film on glass has been shown to be in the range of 2.5 - 3.4 x 10-6 Ωcm 

depending upon deposition temperature (Hecht et al. 1994). It is assumed that a 

200nm thick film may have a lower resistivity i.e. closer to that of gold (2. 4 x 

10-6 Ωcm). Therefore bulk resistivity of gold is used here for calculating contact 

resistance.  

(ii) In the theoretical model, the estimated value of the coating thickness is used to 

calculate the MPS resistance. As discussed in Section 5.3.2 the actual coating 

thickness is different from the estimated coating thickness. For example, if 

instead of the estimated 130nm, the average coating thickness is actually only 

100 nm, then using Equation 4.27 the MPS resistance would be a factor of 1.3 

higher. A sample of an ICA containing Ag-MPS was cross-sectioned in an 

attempt to estimate the coating thickness. However, it was difficult to measure 

the actual coating thickness from this cross-section because of the rough, 
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nodular and porous nature of the coating, as shown in Figure 5.15. The 

difference between the actual coating thickness and the estimated coating 

thickness may therefore be another factor contributing to the difference between 

the measured and predicted resistances, but a value for this is however difficult 

to obtain and needs to be investigated in more detail as part of future studies. 

(iii)  In the measured resistance, the contribution due to the resistances Rps and Rpt 

neglected. These are calculated using Equations 5.3 and 5.4, which used the 

apparent contact area, rc, based on an assumption of ideally smooth contact 

surfaces, for both the Ag coating and the tip/substrate. In practice, all the 

surfaces have some degree of roughness. Figures 5.11 and 5.15 show how rough 

the Ag coatings are. The surfaces of the indentation tip and the Au substrate are 

also not perfectly flat. The contact between the Ag-MPS and the punch/substrate 

therefore probably consists of a number of contact spots through which the 

current is constricted, as shown in Figure 5.18, instead of there being a single 

continuous contact area i.e. the apparent contact area as is assumed in Equations 

5.3 and 5.4. For such contact spots the constriction resistance will be Holm 

(1967):  

𝑹(𝒏𝒔, 𝒂, 𝒍) =  
𝝆𝒎

𝟐𝝅𝒏𝒂
𝒂𝒄𝒓𝒕𝒈

√𝒍𝟐−𝒂𝟐

𝒂
− 𝟎. 𝟔𝝆𝒎

√𝒍𝟐−𝒂𝟐

𝑨𝒂
   5.7 

where the contact spots are assumed to be of equal area a, and with an average 

distance between the centres of these contact areas 2l. 

 

 

 

 

 

 

Figure 5.18 Current flow through many contact spots distributed over the apparent 

contact area (after (Holm 1967)) 
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Holm (1967) predicted the variation of the normalised constriction resistance 

R(ns,a,l)/(ρm/4rc) with the ratio l/a for different number of contact spots, ns. 

Approximated values of the R(ns,a,l)/(ρm/4rc) taken from Holm’s graph at 

different l/a for different number of contact spots are given in Table 5.5. Table 

5.5 shows that as the distance between the centres of the contact spots increases, 

the constriction resistance increases and could reach up to 5 times the 

constriction resistance when the contact area is considered as a single contact 

spot of radius rc, but if the number of contact spots increases the constriction 

resistance decreases. From Figure 5.19, it appears that the number of contact 

points/ within in a 2µm contact radius lies between 50 - 250. For 30 µm Ag-

MPS maximum contact radius at 8000µN force is estimated between 3 - 4 µm. 

From Figure 5.19 it also appears that in addition to being rough the surface of 

Ag coating is also not levelled/flat. Number of actual contact spots will depend 

upon the roughness and the waviness of the Ag surface. 

                    Table 5.5 R(ns,a,l)/(ρm/4rc) at different values of ns and l/a after (Holm 1967) 

 

 

 

 

Considering the waviness of the Ag coating, the number of contact spots can be 

assumed to be between 5 - 250 within the estimated contact area, then 

depending upon the value of l/a the maximum increase in constriction resistance 

would be up to 5.4 times over ρm/4rc. Adding this contribution to the predicted 

resistance with the resistivity of Ag coatings raises the curves higher, as shown 

by yellow line in the Figure 5.21. However, this contribution also does not fully 

account for the difference and shows that there must be another factor 

contributing to the difference. However, it is difficult to predict the actual 

number of contact spots and the distance between them within any contact and it 

is therefore difficult to predict an actual correction factor to Rps and Rpt based on 

the number of the contact spots but is it estimated to be 5.4 times. 

 

 

No. of Contact  
Spots 

l/a 

0 2 4 6 8 10 

5 1.0 1.4 2.4 3.4 4.4 5.4 

10 1.0 1.3 2.0 2.8 3.4 4.0 

50 1.0 1.2 1.4 1.8 2.1 2.4 

250 1.0 1.1 1.2 1.3 1.4 1.5 
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Figure 5.19 Black circle showing contact area for a 2µm contact radius on a sample of 

30_20B 

(iv) In addition to assuming a single apparent contact area, Equations 5.3 and 5.4 

assume that the contact between MPS and flat punch/substrate is a circular 

contact area, as discussed in Section 4.1.2.1. The current spreading is assumed to 

be symmetrical into both of the contacting surfaces. However, in the case of a 

thin film, current lines must bend sharply at the interface and current crowding 

occurs in a small thickness of the film, as shown in Figure 5.20. Therefore, the 

constriction resistance of a contact area located in a thin film may not be 

accurately predicted using Equations 5.3 and 5.4.  

 

 

 

 

 

Figure 5.20 Current flow in contact between bulk metal and a thin film (after Timsit 

(2008)) 
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Divigalpitiya (2008) has shown using FEA that in an ACA assembly using 

metal coated particles, the current flow between the coated particle and the 

contact pad is concentrated in a circular ring instead of a circular area, where the 

width of the ring is 2rc/15 (rc being the outer radius of the contact ring). 

Divigalpitiya (2008) has shown that the constriction resistance becomes 15 

times higher if the contact is ring shaped compared to a circular area.  Based on 

Divigalpitiya’s work if the constriction resistance is increased by 15 times than 

the sum of Rps and Rpt calculated in Section 5.2.4.4 would increase from 23.3 

mΩ - 30.1 mΩ to 349.5 mΩ - 450mΩ, adding 450mΩ to the predicted resistance 

value with film resistivity for 30_13A , 30_10B and 30_15B, and adding 

349.5mΩ to the predicted resistance value with film resistivity for 30_20B and 

30_25B  the light blue curves which lies close to the experimentally obtained 

resistances is obtained, as shown in Figure 5.21. This then provides a credible 

explanation of the majority of the remaining difference between the 

experimental and predicted resistances, however how this value for the 

constriction resistance is calculated by Divigalpitiya is not clear and needs 

further investigation. In another study Timsit (2008) showed that the 

constriction resistance of a contact between a bulk solid and a thin film would 

differ from that calculated by Equation 5.3 and 5.4. He predicted the variation in 

the constriction resistance up to a value where the ratio of contact area to the 

coating thickness i.e. rc/tc is 0.5. However, in the present situation this ratio is 

above 10. Therefore the study by Timsit could not be used to predict Rps and Rpt. 

A more detailed study is required to investigate value of Rps and Rpt because of 

the bending of current flow lines and current crowding at the constriction 

between the flat punch/substrate and the Ag-MPS, so that the contribution of the 

contact resistance to the measured resistance of the MPS could be calculated. 

This investigation is however, outside the scope of the present study and need to 

be addressed in further studies perhaps using finite element analysis. 
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Figure 5.21 Experimental and theoretically predicted resistance with suggested 

modifications  



Chapter 5: Experimental Investigation of the Conductivity of Individual Silver Metalised Polymer Spheres 

119 

(v) Furthermore, tarnish films of silver oxide (Ag2O), with resistivity in the range of 

10−4 Ωcm to 10−3 Ωcm (Reddy et al. 2014) or silver sulphide (Ag2S) with 

resistivity in the range of 107 Ωcm to 1012 Ωcm (Holm 1967), may be formed on 

Ag surfaces at room temperature on exposure to normal atmosphere and can 

therefore affect silver coating resistivity and hence the contact resistance. 

However, Ag oxidises to Ag2O only in the presence of ozone and Ag2S is 

formed only in the presence of H2S gas. As the concentration of H2S is usually 

small in air Ag2S films grow very slowly (because of the low rate of arrival of 

sulphur atoms at the surface). Both these films are soft (Ag2S has a hardness half 

that of pure Ag i.e. 1.5 x 108 N/m2 ) and could be easily displaced at the contact, 

providing relatively good conductance through metallic contact spots (Holm 

1967). Moreover, the linear relationship between resistance and voltage as seen 

in Figure 5.22, does not indicate the presence of insulating layers, such as oxides 

at contact points or, if present, may have been  damaged by the applied force at 

the contact, providing relatively good conductance through metal spots, and are 

therefore not expected to affect the contact resistance. Further, residues from the 

plating process or contamination on the flat punch and substrate can also reduce 

the effective contact area between particle and the tip/substrate. Any decrease in 

effective contact area due to such contamination will result in an increase in 

contact resistance between the particle and the tip/substrate. However, a study 

by Divigalpitiya (2008), using both finite element (FE) analysis and analytical 

modelling, has shown that the increase in the constrction resistance of an MPS is 

small, even if up to 85% of the contact surface is contaminated. 

(vi) A localised increase in the temperature due to heat generated by the current 

flowing through the constricted surfaces can also affect the constriction 

resistance (Holm 1967). The resistance is increased by a factor of : 

(1 +
2

3
𝛼Θ)      5.8 

where  α is the temperature coefficient of resistivity (°C-1) and  

 Θ is the rise in the temperature (°C) given by Equation 5.6 
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In the present case the rise in the temperature of the constricted area would be 

negligible, as discussed in Section 5.3.1. In addition the linear relationship 

between resistance and voltage over the applied current range, as seen in Figure 

5.22, also do not indicate any Joule heating effect showing that heat generated at 

the contact points due to the current flowing through them would be negligible 

and thus would not lead to any significant increase in the measured constriction 

resistance. However, the effect of the contact area on temperature rise at contact 

point needs to be investigated in future studies, using FE models as was done by 

Oguibe et al. (1998).  

 

 

 

 

 

 

 

Figure 5.22 Typical resistance - voltage curve obtained for Ag-MPS tested 

The comparison between the experimentally measured and theoretically predicted 

values have shown that many factors such as coating resistivity, difference between 

actual and predicted coating thickness, difference between apparent and actual contact 

spots, contact geometry, presence of the tarnish films on Ag and contamination of gold 

surfaces, and temperature increase at the contact interface can contribute to MPS and 

contact resistance and need to be taken into account. Among these parameters the effect 

of contact geometry on the constriction resistance between MPS and tip/substrate 

appear to be most significant and would explain the major differences between the 

measured and theoretically predicted values. However, accurate predictions of the 

contribution of each these factors is beyond the scope of this study and needs further 

investigation. 
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 Concluding Remarks 

This chapter has presented the results of mechanical and electrical characterisation of 

Ag-MPS using a nanoindentation-based flat punch method. The results show that the 

electrical resistance of the 30μm Ag-MPS is dependent on the thickness and quality of 

the Ag coating. As predicted by the theoretical model, Ag-MPS with thicker and more 

uniform coatings are found to have lower and more consistent resistances as compared 

to Ag-MPS with thinner and more porous coating. The quality of the Ag coating seems 

to have considerable effects on both the mechanical properties, and the electrical 

properties of Ag-MPS. The results presented in this chapter show that the particles 

showing repeatable mechanical behaviour also show more consistent electrical 

resistances, therefore linking the electrical resistance of the Ag-MPS to their 

mechanical performance. Ag-MPS, particularly with 0.20 μm and 0.25 µm, thick 

coatings, exhibited good properties both in terms of repeatable mechanical response, 

and low and consistent electrical resistance. The electrical resistance for these 

thicknesses was found to be similar. 

The measured resistances of individual particles were compared with the theoretical 

model derived in Chapter 4. The theoretically predicted resistances were about 5 – 9 

times lower than the measured resistances, depending on particle type, showing that 

additional factors not accounted for in the model have a significant effect. The 

discussion in Section 5.4 has shown that differences between the bulk metal and thin 

film resistivity, and the estimated and actual coating thickness can significantly affect 

the MPS resistance and need to be taken into consideration. Further, the discussion 

above has shown that the difference in the apparent and actual contact area, the current 

crowding in the bulk and the thin films, the presence of the thin insulating films on the 

Ag or tip/substrate surfaces are all factors which may be significant to contributing to 

the measured resistance and that together these factors are sufficient to explain the 

difference between the initial model and experiments. However, accurate predictions of 

the contribution of each factor discussed is beyond the scope of this study and need 

further investigation. 
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CHAPTER 6 

 FACTORS AFFECTING CONDUCTIVITY OF ICAs FILLED WITH 

SILVER METALISED POLYMER SPHERES 

The model for the conductivity of ICA presented in Chapter 4 summarizes the main 

factors on which the conductivity of an ICA filled with MPS depends. This chapter 

presents an experimental investigation of the effect of these factors on conductivity.  

6.1 Aims 

To investigate the effect of  

i) MPS diameter; 

ii) coating thickness and quality/morphology; and 

iii) curing conditions and shrinkage of the epoxy matrix (both which affect the 

resulting contact radius) 

on the electrical conductivity of ICAs filled with Ag-MPS. 

6.1.1 Materials Used 

MPS having three different diameters, i.e. 6µm, 10µm and 30µm and with varying Ag 

coating thicknesses have been used. They all have a very narrow size distribution (C.V. 

of approx. 3%), and were produced and supplied by Mosaic Solutions AS, Norway. 

Three different plating processes have been used by Mosaic to coat the polymer 

spheres. The coating thicknesses were provided by the manufacturer with their stated 

margin of error in estimating the coating thickness being ± 5%. However, this coating 

thickness is an average estimated from the amount of silver used during the coating 

process. The MPS were examined in SEM before conducting the experiments and any 

batch of particles with poor silver coating, as shown in Appendix B, were not used. All 

of the particles used in this work have Ag coating, continuously covering the entire 

surface area of polymer sphere. Table 6.1 gives the specifications and nomenclature of 
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the Ag-MPS used. FS34 silver flakes as used in Chapter 3 were again used for 

comparison. 

Table 6.1 Specifications and nomenclature for the Ag-MPS used  

Ag-MPS 

 Name  

PS Core 
diameter 

(µm) 

Plating  

Process 

Ag thickness  

(µm) 

Ag Volume Fraction 

(%) 

Density 

(g/cm3) 

06_10B 06 B 0.10 9.3 1.93 

10_15B 10 B 0.15 8.4 1.95 

10_20C 10 C 0.20 11.1 2.21 

10_21D 10 D 0.21 11.6 2.26 

30_10B 30 B 0.10 1.9 1.36 

30_15B 30 B 0.20 2.9 1.45 

30_20B 30 B 0.20 3.9 1.54 

30_25B 30  B 0.22 4.9 1.64 

30_20C 30  C 0.20 3.9 1.54 

30_22D 30  D 0.22 4.3 1.57 

Two types of polymer matrix were used, both commercially available two component 

epoxy systems. They are denoted as type I and type II in this study and their details are 

given in Table 6.2. 

Table 6.2 Characteristics of epoxy systems used 

 Type I Type II 

Resin Epoxy Phenol Novolac Bisphenol A/F 

Curing Agent Imidazole Polyetheramine 

Viscosity of Resin High Low 

Pot Life (min) 180 480-580  

Density of Resin (g/cc.) 1.20 1.18 

Density of Curing Agent 
(g/cc.) 

1.02 0.948 

6.1.2 Equipment used 

The same equipment used in the study described in Chapter 3 was used for conducting 

these experiments.  

6.1.3 Methodology 

The same method as used in Chapter 3 was used to the prepare samples and carry out 

resistance measurements. In this investigation the volume fractions of Ag-MPS used 
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were at least 43 vol%, which is well above the percolation threshold for all of the ICAs 

formulated (Jain et al. 2011). The main reason for only using high volume fractions is 

that the variation in resistance between samples is very large near to the percolation 

threshold and factors other than the particle properties, such as small variations in the 

mixing and stencilling processes may have a significant impact. Another reason is that 

any commercially viable ICA is likely to require these high volume fractions to ensure 

consistent electrical properties, even if only moderate conductivity is required (Jain et 

al. 2011; Jain et al. 2013). For each type of particle listed in Table 6.1 and each volume 

fraction tested six ICA tracks were printed from same mix. 

6.1.4 Results and Discussion 

6.1.4.1 Effect of MPS size 

To study the effect of MPS size on the conductivity, MPS with diameter 6μm, 10μm 

and 30μm, combined with the type I epoxy matrix were used. They were all coated 

using the same plating process, process B. The 6μm and 10μm have a 0.10μm and 

0.15μm thick coating respectively and are denoted as 6_10B, and 10_15B whereas 

30µm MPS with both, a 0.10μm and 0.15μm thick coating were used and are denoted as 

30_10B and 30_15B. The ICAs formulated were cured at 150°C for 15 min. Figure 6.1 

plots the averaged results from the resistivity measurements for ICAs formulated using 

these four MPS at different volume fractions, together with one standard deviation error 

bars. The theoretical model for conductivity in Chapter 4 gives the resistivity of an 

MPS filled ICA as: 

 𝝆𝑰𝑪𝑨 =  ( 
𝝆𝒎

𝝅.𝒕𝒄
 {– 𝒍𝒏 [𝒕𝒂𝒏

𝒓𝒄

∅
]}  +

𝝆𝒎

𝟐𝒓𝒄
+

𝝆𝒕

𝝅𝒓𝒄
𝟐) ∅                                 6.1  

This shows ICA resistivity increases with increasing coating resistivity ρm , MPS 

diameter, Ø, and contact resistance whereas decreases with increasing contact radius rc 

and increasing coating thickness tc. As predicted by model the plots in Figure 6.1 shows 

that ICAs made using smaller MPS, i.e. with diameters of 6µm and 10µm, have a lower 

resistivity than those made using larger MPS, i.e. 30µm, whereas the ICAs made using 

6_10B and 10_15B have similar resistivities. The plots also shows that the difference 

between the resistivities of the ICAs is smaller in proportion to difference in MPS 

diameters. The reason for similar resistivities of 6_10B and 10_15B may be that smaller 
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6_10B MPS behave stiffer (He et al. 2008), and may therefore have a smaller contact 

radius than 10_15B for the same force applied (under similar curing conditions) which 

may increase resistance of 6_10B and contact resistance compared to 10_15B. 

 

 

  

 

 

 

 

Figure 6.1 Effect of MPS size on resistivity 

Additionally, when MPS diameter decreases, although there is an increase in the 

number of conductive pathways (which should reduce the ICA resistance), the number 

of particle-to-particle contacts in each pathway also increases, which increases the total 

of the contact resistances. Thus increased contact resistance lessens the effective 

reduction in resistivity due to the increase in the number of parallel paths and could be a 

reason for the similar resistivities of the ICAs made using 6_10B and 10_15B, and the 

smaller difference between the resistivities of the ICAs made using 30µm, 10µm, and 

6µm MPS in proportion to their size. 

It can also be seen from Table 6.1 that 10_15B uses 2.8 times and 6_10B uses 3.8 times 

more silver than 30_15B and they both give only a 1.8 times decrease in resistivity. 

This shows that although the resistivity of an ICA decreases with decreasing MPS 

diameter, it is not in proportion to the increase in the amount of silver used. This also 

shows that increasing the coating thickness on the larger MPS lowers the resistivity 

more in comparison to the silver increase, and therefore uses silver more efficiently 

offering greater environmental and cost benefits (Plots of resistivity against the quantity 

of silver used in Ag-MPS filled ICAs are shown in Figures 6.8 and 6.9.)  Further, using 

larger MPS may have other benefits, i.e. for a given resistivity a larger MPS with a 
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thicker coating will have a density closer to the resin than smaller MPS with a thinner 

coating thus reducing the tendency for sedimentation. This can be seen by comparing 

rows 2 to 5 and 9 to 11 from Tables 6.1 with rows 6 and 7 in Table 6.2. Using larger 

MPS, the volume fraction of the polymer core is greater compared to silver, meaning 

their mechanical properties will be closer to those of the polymer. Moreover, it has been 

shown in Chapter 5 that increasing the coating thickness on the 30µm MPS has only a 

minor effect on their mechanical behaviour. The next section discusses the effect of 

coating thickness on resistivity for 30µm MPS. The variation of the resistivity against 

the amount of silver is shown in Figure 6.8. 

6.1.4.2 Effect of Ag Coating Thickness  

To investigate the effect of coating thickness, MPS 30_10B, 30_15B, 30_20B and 

30_25B were used, which all have the same core diameter and were plated using same 

process. All the other parameters such as adhesive matrix, curing profile and curing 

method were also kept identical for this investigation. Figure 6.2 shows the averaged 

results from the resistivity measurements for ICAs formulated at different volume 

fractions, together with one standard deviation error bars.  

  

 

 

 

 

 

 

Figure 6.2 Effect of coating thickness on resistivity 

It should be noted that the graph for 30_10B finishes before others in Figure 6.2. This is 

because a printable mixture could not be obtained for these ICAs above 50 vol%. One 

reason could be more porous coating on 30_10B compared to other MPS, which may 
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increase surface roughness or trap some of the epoxy inside the pores increasing the 

ICA viscosity. Another reason could be accumulation of errors in calculating the 

volume fraction of filler as each higher volume fractions are made from adding particles 

to the previous mixture. The results plotted in Figure 6.2 show that (as predicted by 

Equation 6.1) the resistivity of the ICA decreases with increasing Ag coating thickness, 

although the ICAs made using 30_20B and 30_25B have nearly the same resistivities at 

all volume fractions. A larger variation in resistivity is observed for the ICAs made 

using 30_10B and 30_15B. Equation 6.1 predicts that the ICA resistance depends upon 

the MPS resistance and the contact resistance. The experimentally measured MPS 

resistance have been found to be similar for 30_20B and 30_25B, as can be seen in 

Figure 5.14 (d) and (e). Thus similar MPS resistance could be the reason for similar 

resistivities of ICAs containing 30_20B and 30_25B. Figure 6.3 plots the resistivity (log 

scale) calculated using ICA conductivity model developed in Chapter 4 in comparison 

with the measured values.  

 

 

 

 

 

 

 

Figure 6.3 Comparison of theoretical resistivity (without contact resistances) and 

experimental resistivity values for ICAs containing 30µm Ag-MPS 

Figure 6.3 shows that as predicted by the analytical model resistivity decrease with 

increasing coating thickness but, the measured values are 100 time higher than 

predicted. In theoretical model the resistivity was calculated using the Ag-MPS 

resistances as measured in the Chapter 5. However, the contact resistances were not 

taken into account and could be the reason for the large difference in theoretical and 
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experimental values. This indicates the importance of the contact resistances and shows 

that further studies need to be conducted to successfully predict the overall resistivity. 

For ICAs made using the same adhesive matrix and under the same curing conditions, 

the contact force is assumed to be same, however the contact radius and hence the 

contact resistance may vary with coating morphology. Figures 5.9 and 5.14 in Chapter 5 

show a larger variation in the mechanical deformation and resistance at the same 

applied force, for 30_10B and 30_15B as compared to 30_20B and 30_25B. A change 

in the stiffness could lead to a variation in the contact radius for the same applied force 

due to shrinkage and may therefore result in a different contact resistance. Further, the 

Ag coatings on 30_10B and 30_15B are porous as compared to those on 30_20B and 

30_25B, as can be seen in Figure 5.11. This porosity may lead to variations in the actual 

contact area and hence contact resistance. Thus a large variation in MPS resistance and 

contact resistance may be the reason for the large difference in resistivity between ICAs 

formulated using 30_10B and 30_15B. Moreover, larger variability can be seen below 

48 vol%, and loose packing of the spheres at these vol% may also add to the variability 

in the resistivity. In addition, as discussed in Chapter 3, variability in the printed 

thickness of the ICAs could be another reason for the spread in measured ICA 

resistivity. 

Further, using the values in Table 6.1 the ratio of Ag vol% on the different 30µm Ag-

MPS (with increasing coating thickness) are:   

Ag 30_10B : Ag 30_15B : Ag 30_20B : Ag 30_25B  = 1 : 1.5 : 2.1 : 2.6 

whereas the ratio of the ICA conductivities at 50 vol% from Figure 6.2 are: 

σ30_10B : σ30_15B : σ30_20B : σ30_25B = 1: 2.4 : 3.0 : 3.0 

where Ag30_10B , Ag30_15B, Ag30_20B and Ag30_25B  are vol% of Ag on 30_10B, 30_15B 

30_20B and 30_25B respectively and σ30_10B, σ30_15B, σ30_20B and σ30_25B are the 

conductivities of the ICAs formulated using 30_10B, 30_15B, 30_20B, and 30_25B 

respectively. The ratio of Ag vol% and the conductivities is also plotted in Figure 6.4. 
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Figure 6.4 Ratio of Ag vol% and the conductivity of 30µm Ag-MPS (with increasing 

coating thickness) 

This shows that when the Ag thickness is increased from 0.10µm to 0.15µm the 

conductivity of an ICA increases 2.4 times for 1.5 times increases in Ag vol% whereas 

when the Ag thickness is further increased from 0.10µm to 0.20µm the conductivity 

increases 3.0 times for a 2.1 times increase in Ag vol%. However, when the Ag 

thickness is further increased from 0.10µm to 0.25µm the conductivity still only 

increases only 3.0 times for 2.6 times increase in Ag vol%. This shows increasing 

thickness up to 0.20 µm results in increased conductivity but that further increasing 

thickness from 0.20 µm to 0.25µm, results in a negligible change in conductivity even 

though the Ag vol% increases by a further 25%. The reason could be similar MPS 

resistance for 30_20B, and 30_25B. 

6.1.4.3 Effect of Plating Process and Coating Morphology  

The silver plating processes for MPS are under continuous development at Mosaic, and 

the particles tested in this thesis have been plated with several different processes, as 

indicated in Table 6.1. This difference in plating process results in differences in the 

plating quality/morphology, as can be seen from the FEGSEM images in Figure 6.5.  

However, all of the particles used in this work have a continuous Ag coating over the 

whole MPS. To investigate the effect of plating quality arising out of the different 
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plating processes on the ICA conductivity samples of two sizes of MPS coated using 

processes, B, C and D have been used, as detailed in Table 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 FEGSEM images of 10 and 30 µm Ag-MPS showing morphology of Ag coating 

due to plating process B, C and D 

 

(a) 30_20B (b) 30_20C 

(c) 30_22D 

(f) 10_21D 

(e) 10_20C (d) 10_15B 
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Table 6.3 Ag-MPS used for plating process comparison 

  

 

 

To investigate the effect of coating morphology on the ICA conductivity for Ø 30µm, 

MPS 30_20B, 30_20C and 30_22D coated using the processes B, C and D respectively 

have been used. For MPS 30_20B, 30_20C, the type I resin matrix was used and the 

ICA was cured at 150°C for 15 minutes whereas for 30_22D, ICA samples were 

prepared in Norway by collaborators using the type II matrix and cured at 120°C for 30 

minutes. Further, fresh samples were prepared for each vol% in Norway as compared to 

the procedure of further adding particles to the previously mixed vol%, as was used in 

the other experiments. To cure the type II samples a Termaks TS 8136 oven was used. 

The oven was preheated to the curing temperature and then the samples were placed in 

it. A Keithley 3706 System Switch/Multimeter was then used to measure the 

resistances. Figure 6.6 shows the averaged results from the resistivity measurements for 

ICAs formulated at different volume fractions, together with one standard deviation 

error bars 

 

 

 

 

 

 

 

Figure 6.6 Effect of plating process B, C and D on resistivity for 30 µm Ag-MPS 

Ag-MPS 
Diameter 

Plating Process 

B C D 

10 µm  10_15B 10_20C 10_21D 

30 µm  30_20B 30_20C 30_22D 
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Only small differences in the average resistivities for ICAs made using 30 µm MPS 

plated with different plating processes were observed. Above 50 vol% MPS made using 

plating process D produced slightly higher resistivity ICAs compared to those plated 

using process B and C although they have a thicker coating (0.22µm) compared to other 

two (0.20µm). The coating morphology on all 30 µm MPS looks similar, and apart 

from coating thickness and plating process the other difference is the different adhesive 

matrix and curing conditions. Different the adhesive matrix and curing conditions may 

induce different shrinkage and hence may impart different resistivity. Additionally, it 

can be observed that for 30_22D, ICA resistivity remains more constant with increasing 

vol% of filler. The reason may be that increase in the MPS vol% lead to increase in 

number of contact resistances which may compensate the effective decrease in 

resistance with increase in volume fraction of filler. Further, below 48 vol%, some 

difference between the average electrical resistivity of ICAs formulated using 30_20B 

and 30_20C can be seen, while at and above 48 vol% negligible differences can be 

seen. Below 48 vol% the MPS would be more loosely packed, which might be one of 

the causes for the differences in the resistivities of these two ICAs.  

The effect of the Ag coating morphologies resulting from plating processes B, C, and D 

on the ICA resistivity for ICAs containing 10µm MPS has also been investigated. The 

Ag-MPS used were 10_15B, 10_20C and 10_21D. For 10_15B, the type I matrix was 

used and the ICA was cured at 150°C for 15 minute whereas for 10_20C and 10_21D, 

ICA samples were prepared in Norway by collaborators using the same conditions as 

for 30_22D described above. Figure 6.7 shows the averaged results from the resistivity 

measurements for ICAs formulated using 10µm MPS at different volume fractions, 

together with one standard deviation error bars. The results plotted in Figure 6.7 show 

no difference in the average resistivities of the ICA formulated with MPS 10_20C, 

10_21D whereas higher average resistivities can be seen for ICAs formulated using 

10_15B. Reason for the similar average resistivities of MPS 10_20C and 10_21D could 

be their similar coating morphologies as can be seen in Figure 6.5, and a minor 

difference in coating thickness whereas reason for higher average resistivities for ICAs 

formulated using 10_15B could be their thinner and more porous coating. Further, the 

ICA using 10_15B was formulated using different matrix and curing conditions 

compared to other two. The difference in the matrix and the curing conditions may also 

affect the ICA resistivity. In addition, different vol% for the ICAs using 10_15B were 
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formed by adding the particles to the previously mixed vol%, this may affect their 

curing and hence final shrinkage and resistivity. However, for ICAs containing 10_20C, 

10_21D fresh samples for each vol% were prepared. It should be noted that the graph 

for 30_20C finishes before 30_20B and 30_22D in Figure 6.6 and the graph for 10_20C 

finishes before 10_15B and 10_21D in Figure 6.7. This is because a printable mixture 

could not be obtained for these ICAs above 50 vol%. The coating has previously been 

shown to affect rheology when the filler concentration is above 45 vol% (Nguyen et al. 

2013), though coating morphology on all 30µm Ag-MPS looks similar as can be seen in 

the FEGSEM images in Figure 6.5 (a) to (c), however there may be some differences in 

the coating morphology that could not be quantified using the FEGSEM images. 

 

 

 

 

 

 

 

 

 

Figure 6.7 Effect of plating process on resistivity for 10 µm Ag-MPS 

The results presented in this section have shown that MPS coated using different plating 

process B, C and D show similar resistivities when the morphology of the coating is 

same. In addition to the coating plating process and morphology, the adhesive matrix, 

curing conditions and the mixing procedure can also affect the ICA resistivity. 

6.1.4.4 Effect of Silver Content 

The previous sections have shown that as the amount of silver on an Ag-MPS increases, 

the resistivity of ICAs formulated using it decreases, however it may not be in 

proportion to the increase in the amount of silver. This section summarises the effect of 
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the silver content on the ICA resistivity. Figure 6.8 shows the averaged results from the 

resistivity measurements for all of the ICAs formulated in this study. The volume 

fraction of silver is calculated corresponding to the volume fraction of Ag-MPS used. 

Figure 6.8 also compares the resistivity of the ICA samples at similar volume fraction 

of silver and with the bulk Ag resistivity at those volume fractions of silver. Figure 6.9 

compares the averaged resistivity for these ICAs at the vol% of silver corresponding to 

a 50 vol% of Ag-MPS. The main reason for only highlighting 50 vol% is that the 

variation in resistance between samples is small at this vol% and all formulations had 

attained minimum resistivity by this vol%, while some MPS could not be processed at 

higher vol%.  

 

 

 

 

 

 

 

 

 

Figure 6.8 Resistivity vs silver content for all samples and bulk Ag 

It is apparent from Figures 6.8 and 6.9 that as the amount of silver in the ICAs increases 

the resistivity decreases. Figure 6.8 shows that for a small increase in vol% of silver 

comparatively large reductions in ICA resistivity can be obtained with 30 µm Ag-MPS 

whereas for larger increases in vol% of silver, the ICA resistivity remains nearly 

constant when using 6 and 10µm Ag-MPS. This indicate that if the rheology of the 

matrix could be modified to accommodate a greater vol% of 30µm Ag-MPS, lower 

resistivities comparable to that obtained with 6 and 10µm Ag-MPS, could be obtained 

but at a lower vol% of silver. It can also be noted that the smaller spheres utilise 

considerably more silver than the larger 30µm spheres to provide only slightly lower 

resistivity i.e. they did not give a decrease in resistivity proportional to the rise in the 
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silver content showing that the larger spheres with a thick silver coating use the silver 

more efficiently. 

 

 

   

 

 

 

 

 

 

 

Figure 6.9 Resistivity vs silver content corresponding to 50 vol% of Ag-MPS 

This should offer lower cost where the very lowest resistivity is not needed. In addition 

to cost benefits, when less Ag is used the vol% of polymer in the ICA increases, and 

thus the mechanical properties of the polymers may dominate than the metal. Moreover, 

Ag-MPS with less Ag have lower densities, more similar to the epoxy matrix which 

will help reduce the effect of sedimentation during storage. Figure 6.8 also show that 

the more thickly coated spheres uses more silver to provide a lower resistivity ICA as 

compared to spheres with a thinner coating. However, if the Ag-MPS size is kept 

constant, not much difference in the resistivity values for ICAs formulated using Ag-

MPS with 0.20µm and thicker coatings has been observed i.e. 10_15B and 30_15B 

have higher resistivities but all of the other 10µm and 30µm MPS having coating 

thickness equal to 0.20µm or above have similar resistivities. Further, ICA formulated 

with 10_15B uses less silver than with 06_10B but show lower resistivity. All these 

examples show that apart from the silver content the quality of the MPS coating also 

plays an important part in determining the conductivity to an ICA. The Figure 6.8 also 

shows that the resistivity of the Ag-MPS filled ICAs is higher than the bulk Ag 

resistivity for the same amount of Ag used. This shows that the silver is not very 

efficiently used in these MPS to obtain lower resistivity. The reasons for this higher 
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resistivity of ICAs compared to same vol % of bulk Ag could be (i) the contact 

resistance between MPS; and (ii) morphology of Ag coating on MPS. As the coating is 

made up of coalescing of the large number of Ag grains. This may lead to increase in 

Ag coating resistivity and hence the ICA resistivity. 

6.1.4.5 Effect of Curing Conditions and Polymer Matrix 

The effect of two different types of epoxy matrix and two curing profiles, i.e. 120°C for 

30 minutes and 150°C for 15 minutes, was been investigated. In this investigation the 

time taken to cure the ICAs at 120°C and 150°C was purposely kept higher than 

recommended by the manufacturer for these temperatures. Thus it is assumed that for 

the curing schedules used, the epoxy was fully cured. As noted earlier the epoxies used 

are denoted as type I and type II. Both of the epoxies do not contain any viscosity 

reducing additives, solvents or diluents but type II less viscous. For this investigation 

the 30μm MPS, 30_20C was used. Figure 6.10 shows the averaged results from the 

resistivity measurements at different volume fractions, together with one standard 

deviation bars for the ICAs formulated. Figure 6.10 shows that the ICAs made with the 

type II adhesive matrix offer a lower average resistivity for up to 50 vol% of spheres, as 

compared to the type I adhesive. This indicates that the type of adhesive matrix in 

addition to the particles may also affect ICA electrical properties.  

 

 

   

 

 

 

 

 

 

 

 

 

Figure 6.10 Effect of curing condition and adhesive matrix on resistivity 
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In addition, it has been observed that for the type II adhesive, a homogeneous and 

printable mixture can be obtained for up to 53 vol% of filler, whereas using type I 

adhesive it is difficult to get a homogenous mixture above 50 vol%. Further, from 

Figure 6.10 the average resistivity values are found to be lower for the ICA cured at 

150°C for 15 minute than for ICA cured at 120°C for 30 minute, however the difference 

is quite small.  

One factor anticipated to contribute to the effect of polymer matrix and curing profile 

on the resistivity of ICAs formulated in this investigation, is the resulting shrinkage 

(Kohinata et al. 2014) and a detailed investigation of this was carried out, as presented 

in the section below. It is well known that different thermosetting polymer matrices 

shrink by different amount (Lu et al. 2000), and that curing conditions can affect this 

shrinkage (Petrie 2006; Edward 2008). The type and volume fraction of filler can also 

affect the actual (observed) shrinkage of an ICA. The effect of polymer matrix, curing 

conditions and volume fraction of filler on the shrinkage of ICAs filled with Ag-MPS is 

presented in the following section. 

6.2 Volume Shrinkage  

Lu et al. (2000) proved that intimate contact between conductive filler particles caused 

by shrinkage during curing was the main mechanism for establishment of conductivity 

in isotropic conductive adhesives (ICAs). They investigated the changes in dimension 

(i.e. cure shrinkage) of three different ICA formulations (whose resins had different 

cure shrinkages) filled with an uncoated Ag powder and correlated them with 

establishment of conductivity. From this study, they concluded that (i) conductive 

adhesives achieved high conductivity only when enough cure shrinkage was achieved; 

and (ii) ICAs with higher cure shrinkage showed higher conductivity. In another study 

Su (2006) also established that ICAs formulated using resins with higher cure shrinkage 

showed higher conductivity. Therefore it is important to understand the effect of ICA 

shrinkage on the conductivity of Ag-MPS filled ICAs.  

Lu et al. (2000) used a thermo-mechanical analyser (TMA) to measure dimensional 

changes in an ICA paste during curing. In the setup used by Lu the dimensional changes 

with temperature in the vertical direction were measured by TMA, however a small 

change/expansion in the lateral direction, because of flow of the ICA during curing, was 
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not measured. Thus, this method was not considered suitable to measure changes in 

volume accurately during curing. On the other hand, Su (2006) used measurements 

based on Archimedes’ principle to establish the shrinkage of an epoxy during cure. In 

this experiment a small amount of unfilled epoxy was placed on a thin 

polytetrafluoroethylene (PTFE) film, and the epoxy together with the film was 

immersed in a beaker filled with mineral oil. The mineral oil was then heated on a hot 

plate to 150°C. The apparent weight of the epoxy resin in air, and in oil before and 

during the curing was measured by attaching the PTFE film to a digital balance by a 

thin string. The volume shrinkage of the epoxy resin was calculated by measuring the 

change in the buoyancy force for the epoxy in the oil. However, in this experiment the 

epoxy was in direct contact with mineral oil during curing, and chemical interactions 

between the epoxy and mineral oil may have affected the epoxy shrinkage and was not 

taken into account in shrinkage calculations. Thus the method adopted by Su may not 

be suitable for measuring changes in ICA paste volume accurately during cure. 

Therefore, a new method which can measure the change in volume of an ICA paste 

accurately after curing is needed. 

In this study a non-contact measurement technique using an Alicona InfiniteFocus, IFM 

G4 (IFM), was used to measure the change in volume due to cure shrinkage. This 

system is based on the focus variation principle, which combines the small depth of 

focus of an optical system with vertical scanning. By analysing the variation of focus 

for each surface point during the scanning process the height of each point is obtained. 

In addition to the height information, the device also provides true colour information 

for each measurement point, which is registered to the height data. Another important 

aspect in the context of measurement is that the system is able to measure very steep 

surface flanks of 80° (Danzl et al. 2009). With this technique changes in volume can be 

accurately measured based on dimensional changes both in the vertical and lateral 

direction. The details of these experiments are given below. 

6.2.1 Materials 

ICAs formulated with different combinations of filler, matrix and curing conditions, to 

test the effect of filler volume fraction, filler type, matrix type and curing conditions on 

the ICA shrinkage are described in Table 6.4.  
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Objective Lens 

Motorised Base 
Stage 

Table 6.4 ICAs used for volume shrinkage measurement 

Filler  Polymer matrix Vol % of Filler  Curing Temp, Time 

30_20B Type I 40, 47, 50, 52 150°C, 15 min 

30_20C Type I 44 150°C, 15 min 120°C, 30 min 

30_20C Type II 46, 50, 52 120°C, 30 min 150°C, 15 min 

FS34 Type I 21 150°C, 15 min 

FS34 Type II 21, 23 120°C, 30 min 150°C, 15 min 

H20E ------------- 31 120°C, 30 min 150°C ,15 min 

To formulate these ICAs the same method as described in Chapter 3 was used. Highly 

specular and transparent surfaces are very difficult for the IFM to capture the high data 

from the images of the object. This can result in certain data points of the image not 

being properly recorded. Thus to capture a full set of data points in the image, objects 

with opaque surfaces and with a small degree of roughness are required. However, if 

the object surface is too rough the peaks and valleys in the surface can also interfere 

with the measurement. Therefore, steel plates polished to an optimal smoothness (such 

that it does not affect the volume measurement) were used as the substrates onto which 

ICAs were printed. 

6.2.2 Equipment Used 

Figure 6.11 shows the IFM used to measure the volume of the printed ICA. This system 

can be equipped with objectives of different magnification ranging from 2.5X to 100X. 

A fixture was used to hold the steel substrates, ensuring that they did not move on the 

base stage.  

 

  

 

 

 

 

Figure 6.11 Alicona InfiniteFocus laboratory system 
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6.2.3 Methodology  

6.2.3.1 Sample preparation 

To prepare samples for volume measurement, small circular dots of the formulated 

ICAs were printed onto steel substrates using a 90 µm thick plastic stencil with a 

1.25mm diameter opening. 

6.2.3.2 Volume Measurement 

The following procedure was used for the volume measurements: 

(i) The sample was mounted onto the fixture; 

(ii) A position on the motorised base stage of the IFM was selected and marked; 

(iii)  The fixture holding the sample was placed on the marked position on the 

motorised base stage. For all measurements the same position was used to place 

the fixture. This was to make the procedure consistent for every measurement 

and reduce the probability of error in the measurements due to set up of the 

equipment; 

(iv) The sample was then illuminated with white light to obtain a dense 3D surface 

representation of the object in the form of a 3D dataset. In this case, the 

objective lens with 5X magnification was used from the interchangeable 

objectives to both provide illumination and obtain the 3D dataset. It has a field 

of view of 2.8 mm x 2.2 mm approximately. An in plane resolution of 7.36 μm 

and a vertical resolution of 552 nm were selected. At this resolution the system 

was able to measure the volume to a resolution of 3.0 x 10-8 mm3 combined with 

high speed;  

(v) After acquiring the 3D dataset, volume calculations were performed. To 

measure volume, a specific area of the image is selected on the volume 

measurement screen. Great care was taken to select the same area for both cured 

and uncured samples for a given ICA. The red rectangles in Figure 6.12 show 

examples of area selection on the volume measurement screen where the same 

area was selected for both cured and uncured samples; and 
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Figure 6.12 Volume measurement screen showing area selected for volume measurements 

(a) uncured ICA formulated with 30_20C Ag-MPS in type I epoxy matrix (b) same ICA 

cured at 150°C for 15min 

(vi)  Before conducting the volume measurements, it is important to calculate the 

number of samples required that are statistically significant. In this study to 

establish the 99% confidence level, the sample size was calculated using the 

formula (Moore 2004) : 

𝑺𝒂𝒎𝒑𝒍𝒆 𝑺𝒊𝒛𝒆 =
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 𝒙 𝒁𝜶 𝟐⁄

𝑴𝒂𝒓𝒈𝒊𝒏 𝒐𝒇 𝒆𝒓𝒓𝒐𝒓
    6.2 

where Zα/2 is the critical value of the standard normal distribution. For a 99% 

confidence level, Zα/2 is 2.56 and the margin of error is 0.01. To obtain data to 

calculate the standard deviation five datasets were recorded for the same sample 

using steps (iii) and (iv), where the sample was removed from the IFM and 

replaced between each measurement. Then for each dataset ten volume 

calculations were performed using step (v). From these measurements the 

standard deviation was calculated to be 0.000652 (see Appendix 2). For a 99% 

confidence level and the measured standard deviation, Equation 6.2 gave the 

sample size to be less than 1, therefore in the following experiments only one 

sample per volume measurement was used and five volume measurements were 

taken for each, both before and after curing of the ICA samples. The averages of 

(a) 

(b) 
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these five measurements were then used for the volume shrinkage calculations. 

Volume shrinkage is calculated as: 

 

    % 𝑽𝒐𝒍𝒖𝒎𝒆 𝑪𝒉𝒂𝒏𝒈𝒆 =
𝑽𝒐𝒍 𝒐𝒇 𝒄𝒖𝒓𝒆𝒅 𝑰𝑪𝑨−𝑽𝒐𝒍 𝒐𝒇 𝒖𝒏𝒄𝒖𝒓𝒆𝒅 𝑰𝑪𝑨

𝑽𝒐𝒍 𝒐𝒇 𝒖𝒏𝒄𝒖𝒓𝒆𝒅 𝑰𝑪𝑨
 𝒙 𝟏𝟎𝟎%     6.3 

 

A negative volume change corresponds to volumetric shrinkage upon curing. 

6.3 Results and Discussion 

Both the unfilled resin and hardener system and the ICAs containing a volume fraction 

of filler near to the percolation threshold have shiny surfaces. As discussed above, a full 

set of 3D data points representing the surface could not be recorded from such shiny 

surfaces, thus volume measurements on these samples could not be made. At volume 

fractions of Ag-MPS above 40%, the ICA surface texture becomes matte and volume 

measurements were successfully completed. The averaged volume measurements of the 

uncured and cured ICA samples together with one standard deviation error bars, for the 

different volume fractions of 30_20B MPS in type I epoxy are plotted in Figure 6.13 (a) 

and the corresponding % volume changes calculated using Equation 6.3 are plotted in 

Figure 6.13 (b). These ICAs were all cured at 150°C for 15 minutes.  

 

 

 

 

 

 

Figure 6.13 (a) Average volume of cured and uncured ICA at different vol% of 30_20B 

and (b) % volume change 

The results plotted in Figure 6.13 all show an increase in volume, i.e. volumetric 

expansion following curing. This is an unexpected behaviour compared to traditional 

ICAs, where only volume shrinkage during curing has been reported in the literature. 

This is an important observation, as it may have a significant effect on the conductivity 

of ICAs formulated with Ag-MPS, as it will effectively increase their volume fraction 
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and may force the neighbouring MPS into contact enhancing the contact area and 

reducing the contact resistance. For the 40 vol% sample the volume change is very 

small, close to the standard deviation, but for the other samples the volume change is 

well above one standard deviation (can be seen in Appendix 2). The results plotted in 

Figure 6.13 shows that the volume expansion increases up to 50 vol% of Ag-MPS but 

decreases for 52%, a non-consistent trend in volume expansion with increasing volume 

fraction of MPS.  

The curing process can be divided into three steps: (i) heating to the curing temperature; 

(ii) maintaining this temperature for a specific period of time; and (iii) cooling back to 

room temperature. When the ICAs are heated for cure, the polymer core of the Ag-

MPS, Ag coating and the epoxy resin, begin to expand. However, when the curing 

temperature is reached, the epoxy begin to shrink with the onset of curing, whereas the 

polymer core of the Ag-MPS and Ag coating is still expanding. The Ag-coating will 

expand less compared to the polymer core. Moreover, the polymer core is made of an 

amorphous polymer (Redford 2011), and typically such polymers have a thermal 

expansion much higher above Tg than below Tg (Brown 1999; Petrie 2006). Thus during 

curing process both Ag-MPS and epoxy matrix are under continuous volumetric stress 

that is generated because of the epoxy matrix shrinkage and relative expansions of 

polymer core, Ag coating and the epoxy matrix. When the temperature is maintained 

constant for some time, during that period of time the epoxy gets fully cured and the 

shrinkage of the epoxy due to crosslinking attains a constant value, but both the epoxy 

and Ag-MPS can still be expanding due to constant supply of thermal energy, however 

the expansion of epoxy will be very small compared to in uncured state. When the ICA 

is cooled to room temperature both the Ag-MPS and the epoxy begin to shrink. Thus, 

the total volume change will depend upon the thermal expansion, elastic modulus of the 

polymer core, Ag coating and epoxy, and the epoxy shrinkage.  

Rule of mixtures which assumes that the volume change of a composite as the 

combination of the volume change of the filler and the matrix in relation to their 

proportions can give the volume change of an Ag-MPS filled ICA as:  

∆𝝓𝑰𝑪𝑨

𝝓𝑰𝑪𝑨
=  (

∆𝝓𝑭𝒊𝒍𝒍𝒆𝒓

𝝓𝑭𝒊𝒍𝒍𝒆𝒓
) (𝒗𝒐𝒍. 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒇𝒊𝒍𝒍𝒆𝒓)  +  

∆𝝓𝑴𝒂𝒕𝒓𝒊𝒙

𝝓𝑴𝒂𝒕𝒓𝒊𝒙
(𝒗𝒐𝒍. 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝑴𝒂𝒕𝒓𝒊𝒙)    6.4 
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where ΔϕICA and ϕICA are the volume change and volume of the ICA sample , 

respectively (m3) ; 

ϕFiller, ϕMatrix are the volume of the filler and matrix respectively 

 ΔϕFiller, ΔϕMatrix are the volume change of the filler and matrix respectively.   

The volume change of filler upon increase in temperature can be written as: 

 

  
∆𝝓𝑭𝒊𝒍𝒍𝒆𝒓

𝝓𝑭𝒊𝒍𝒍𝒆𝒓
=  (𝜶𝑭𝒊𝒍𝒍𝒆𝒓∆𝑻)    6.5 

where αFiller CTE of filler (m/m/°C); and  

 ΔT is temperature change (°C); 

The matrix volume can be assumed to be shrunk by 3.6 % as obtained by (Redford et al. 

2012) for cure schedule 100°C for 20 min, though for higher cure temperature it may 

shrink more. The filler 30_20B is largely made of polymethylmethacrylate (PMMA) 

with only 3.9% of silver (as stated in Table 6.1) in the form of plating, also the 

expansion of PMMA is more than silver, and the lower expansion of silver may also 

oppose the expansion of the PMMA. Therefore using αFiller equal to CTE of PMMA as 

70-77 x 10-6/°C (Goodfellow 2014) in Equation 6.5, to calculate filler volume change, 

would give the value for maximum possible volume expansion due to filler. The 

relative elastic moduli of PMMA, Ag coating and epoxy, under the shrinkage stress 

may also oppose the expansion of the polymer core. Using these above specified values 

for volume change of filler and resin, the ICA volume change at all the volume fraction 

of 30_20B Ag-MPS tested, were calculated using Equation 6.4 and is listed in Table 

6.5. 

Table 6.5 Measured and predicted values of ICA volume change when filled with Ag-MPS  

 40% 47% 50% 52% 

Measured  Volume Change 0.0020 0.0095 0.0132 0.005 

Predicted Volume Change 
(using Equation 6.3) 

-0.0182 -0.0156 -0.0144 -0.0135 

The results presented in Table 6.5 predicts that volume ICA would decrease upon 

curing. However, measurements show increase in volume. Moreover, in this experiment 
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the observed volume change is not consistent. The reason for this variation could be the 

presence of an additional element, such as air trapped between the Ag-MPS, which 

expanded during curing. This air might have got trapped between the Ag-MPS during 

processing i.e. mixing and printing. A large number of air bubbles can also be seen in 

the FEGSEM image of the small section of an ICA sample (containing 50% of 30_20B) 

as shown in Figure 6.14. From Figure 6.14 the relative area taken by trapped air was 

calculated to be approx. 8.5 % using ImageJ software1. In this the relative air bubbles 

were calculated as a ratio of the dark grey/black to grey pixels which corresponded with 

the fraction of air bubbles over the total surface.  

 

 

 

 

 

 

 

 

Figure 6.14 FEGSEM image of a cross-sectioned ICA sample filled with 50 vol% of 

30_20B, showing trapped air 

Assuming % area of trapped air is equal to the volume %, the resulting volume 

expansion during curing was estimated using the volumetric expansion of air between 

room temperature and cure, i.e. 4.9%. An estimated volume expansion of approx. 4.5% 

was obtained for ICA containing 50% of 30_20B as can be seen in Figure 6.13(b). The 

used FEGSEM image however, represent only a small section of a sample, there may be 

areas having less concentration of bubbles in the sample thus this calculation provides 

an estimate of max bubble density. As the proportion of trapped air would vary from 

                                                 

1 The percentage of trapped air using ImageJ software was calculated by A. Thanos 

Air pocket 
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sample to sample this may also explain the observed variation in volume expansion 

probably from sample to sample. 

Further, to check whether the apparent volumetric expansion is because of trapped air, 

an uncured adhesive sample was placed under vacuum to expel the trapped air. This 

was done using a Medline Scientific OV-11 vacuum oven. However, when the pressure 

in the chamber was decreased below atmospheric pressure, the ICA sample started to 

foam up. The reason may be, as the pressure is lowered below atmospheric pressure, the 

air trapped boiled from the ICA and was pumped off, and when the pressure is lowered 

to the vapour pressure of the constituents of either resin system or MPS, they will also 

begin to boil off. This pumping out of the air or the constituents of the resin, when the 

pressure is lowered below their vapour pressures could be a reason for the foaming of 

the ICA. However, the material safety datasheet does not list all the constituents of the 

resin due to its propriety nature, thus it is difficult to verify the exact component 

causing the foam. But as the pressure is lower than the air pressure it could be that the 

air trapped inside the ICA samples is causing the ICA to foam. Table 6.6 lists the results 

of volume measurements on the ICA samples which were subjected to vacuum. The 

results show that after vacuum treatment at 50 mm of Hg, the volume of the uncured 

ICA filled with Ag-MPS reduced however, this reduction is small (0.5%) and within the 

uncertainty of the measurement, moreover when this sample was cured its volume still 

increased by 1.6%.  

Table 6.6 Volume of the Ag-MPS filled ICA sample before and after vacuum treatment 

 

 

 

 

Another option to expel any trapped air, would have been to use a centrifuge. However, 

the only centrifuge available required around 2 gm of adhesive for testing. As this 

amount of Ag-MPS filled ICA was not available, the centrifuge test was not carried out.  

 
47 vol% Ag-MPS  

Average Volume  
(mm3) 

Standard 
Deviation  

% Volume 
Change 

Uncured Before 
Vacuum Treatment 

0.3477 0.0007 ------ 

Uncured and 
Vacuum Treated 

0.3459 0.0010 - 0.5 

Cured and Vacuum 
Treated 

0.3536 0.0006 +1.6 
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To further check if the observed volume expansion is because of the specific filler used 

i.e., 30_20B, or for the specific batch of resin, a volume shrinkage investigation was 

carried out on ICAs formulated with different fillers i.e. 30_20C and solid silver flakes. 

To further investigate the effect of the epoxy matrix and curing schedule, volume 

shrinkage of ICAs formulated with both types of epoxy matrix i.e., type I and type II 

were also carried out and compared with commercial ICA. The advantage of carrying 

out investigation with solid silver flakes is that its volume expansion would be 

negligible as compared to Ag-MPS and the actual volume change of the ICA system 

could be better assessed. The ICA samples investigated were cured at two curing 

schedules i.e. 150°C for 15 minutes and 120°C for 30 minutes. Appendix C, Section 

C.1 tabulates the results of the volume shrinkage measurements carried out in this 

chapter. Figures 6.15 (a) shows the average volume of the uncured and the uncured ICA 

formulated using 21 vol% of solid silver flakes in type I adhesive and cured at 150°C 

for 15 minutes and Figure 6.15 (b) shows the corresponding % volume change. Figures 

6.16 (a) shows the average volume of the uncured and the uncured ICA formulated 

using different vol% of solid silver flakes in type II adhesive and cured at different 

curing conditions, and Figure 6.16 (b) shows the corresponding % volume change. 

 

 

 

 

Figure 6.15 (a) Average volume of a cured and uncured ICA sample formulated using 

solid silver flakes in type I polymer matrix and (b) % volume change 

Figures 6.15 and 6.16 show that for ICAs formulated with silver flakes: 

(i) Volume shrinkage decreases with increasing volume fraction of filler. ICAs 

filled with 21 vol% of silver flakes show higher shrinkage than ICAs filled with 

23 vol%.  
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(ii) Volume shrinkage increases with increasing curing temperature. ICAs cured at 

150°C for 15 min showed higher shrinkage as compared to ICAs cured at 120°C 

for 30 min. However, it has been observed that for lower volume fractions of 

silver flakes the effect of curing temperature on volume shrinkage is more 

prominent as compared to a higher volume fraction.  

(iii)  For the same curing profile, ICAs made with the type II adhesive matrix exhibit 

more shrinkage (15.9 %) than those made with type I (3.5%). 

 

 

 

 

 

 

 

 

Figure 6.16 (a) Average volume of a cured and uncured ICA sample formulated using 

solid silver flakes in type II polymer matrix and (b) % volume change 

 

 

 

 

 

 

Figure 6.17 (a) Average volume of a cured and uncured ICA sample formulated using 

30_20C in type I and II polymer matrix (b) % volume change 
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Figure 6.17 (a) shows the average volumes of the uncured and cured ICAs formulated 

using different vol% of 30_20C in type I and type II adhesive and cured at 150°C for 15 

minutes while Figure 6.17 (b) shows the corresponding % volume change. Figure 6.18 

(a) shows the average volume of the uncured and cured ICAs formulated using different 

vol% of 30_20C in type II adhesive and cured at different conditions, and Figure 6.18 

(b) shows the corresponding % volume change.  

 

 

 

 

 

 

 

 

 

 

Figure 6.18 (a) Average volume of a cured and uncured ICA sample at different vol% of 

30_20C in type II polymer matrix (b) % volume change 

It can be seen from Figures 6.17 and 6.18 that: 

(i) The ICA made using type II adhesive with 52 vol% of Ag-MPS showed 

volumetric shrinkage when cured at 150°C for 15 min whereas all other ICAs 

expanded upon curing,  

(ii) Changes in volume do not follow a consistent trend with volume fraction of 

Ag-MPS or curing conditions. 

The change in volume upon curing for H20E was also measured. Figure 6.19(a) shows 

the average volume of the uncured and the cured H20E at different curing conditions, 

and Figure 6.19 (b) shows the corresponding % volume change. It can be seen from 
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 Volume Shrinkage

Figure 6.19 that H20E shrinks during curing. The decrease in volume was more for the 

sample cured at 150°C for 15 min compared to that cured at 120°C for 30 min. Figure 

6.20 summarises all the results plotted in Figure 6.15 to 6.19 on one graph, it can be 

seen from Figure 6.20 that H20E shrinks more than all other ICAs tested. The 

composition of the type II matrix is different from both type I and from the matrix in 

H20E and thus H20E would expected to have different shrinkage. Type I and H20E 

contain a similar resin but in different quantities, further the quantity of the hardener is 

also different in both these matrices, thus due to different chemical components these 

matrices will have different curing reactions imparting different shrinkage. Moreover, it 

has been identified in Chapter 3 that H20E increases in conductivity suddenly at around 

145°C. This could either be due to a surfactant on the flakes or due to a component of 

H20E, which increases shrinkage to enhance conductivity. Thus using a component 

which will enhance the shrinkage may enhance the conductivity (Lu et al. 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 (a) Average volume of a cured and uncured H20E (b) % volume change 

The volume measurements for silver flake filled ICAs show that the shrinkage depends 

upon volume fraction of filler, the curing conditions, and the type of epoxy matrix. 

However, the volume measurements on Ag-MPS filled ICA do not show any consistent 

trend for the dependence of shrinkage on filler volume fraction, curing conditions and  
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Figure 6.20 Summarises volume shrinkage of 30_20C, FS34 filled ICAs and H20E  

the type of epoxy matrix. Further, the comparison of the volume measurements for 

silver flakes and Ag-MPS show that for same polymer matrix and curing conditions 

ICAs formulated with the silver flakes shrinks whereas the majority of the samples of 
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ICAs made using Ag-MPS expand. The observed shrinkage for flake filled ICAs 

indicates that both polymer matrices (type I and type II) do shrink on curing, and the 

observed volume expansion for the majority of ICAs formulated using Ag-MPS must 

therefore be because of factors such as (i) air trapped in the adhesive; (ii) expansion of 

the polymer core of the Ag-MPS; (iii) outgassing from MPS. However, it is difficult to 

quantify the effect of each factor and further detailed studies are required. The different 

volume changes for the silver flakes and Ag-MPS may indicate that ICAs containing 

Ag-MPS more readily traps air compared to silver flake filled ICAs. The silver flakes 

used were coated with surfactant to prevent aggregation and to aid their uniform 

dispersion, however the surface of the Ag-MPS is rough/porous and is not coated with 

any surfactants, and additionally the dry powder of Ag-MPS have been seen to 

aggregate into small clusters. The air can get trapped in these clusters and if not 

expelled on mixing then its expansion upon curing may affect the ICA volume 

shrinkage. 

Another investigation of the volume expansion of ICAs filled with Ag-MPS after curing 

was carried out by Redford et al. (2012). Redford et al. used the same formulations of 

ICAs as used herein however, they measured the change in volume by measuring the 

density change, using a Pycnometer. They also observed volume expansion for Ag-

MPS filled adhesive and volume shrinkage for neat adhesive. They also used a 

centrifuge to expel the air from the samples however, they found that it caused 

separation of the adhesive and the filler, and when the ICA was taken out from the 

centrifuge and remixed for printing, air again got trapped inside the ICA. The similar 

results obtained by Redford et al. using a different measurement method, increase 

confidence in the accuracy of the measurement methods used in this study, but still do 

not resolve the issue of the root cause of expansion during cure. 

To establish the relationship between contact area, conductivity and the particle contact 

forces due to shrinkage for Ag-MPS filled ICAs and the effect of various factors such 

as volume fraction of Ag-MPS, curing profile and the type of matrix on shrinkage, 

further studies are needed which are beyond the scope of this thesis. 



Chapter 6: Factors Affecting Conductivity of ICAs Filled with Silver Metalised Polymer Spheres 

153 

6.4 Concluding Remarks 

The experimental results presented in this chapter go some way towards validating the 

conductivity model for ICA filled with MPS presented in Chapter 4. As predicted by 

the theoretical model the experimental results show that the conductivity of the Ag-

MPS filled ICA increased with decreasing MPS diameter, increasing metal coating 

thickness and improved the coating morphology. However, the results also show that 

the smaller MPS do not give the increased conductivity in proportion to the extra silver 

they use. Further, the results show that the conductivity increases considerably with 

coating thickness up to 0.20µm but become nearly constant for a further increase in 

coating thickness where the morphology of the coating appears the same. The results 

show that larger MPS with a 0.20µm coating can offer greater benefits both in terms of 

cost and mechanical properties. 

The results show that curing schedule and type of the epoxy matrix also affect the 

conductivity of the Ag-MPS filled ICA, but not to a large extent. Volume shrinkage was 

seen for only a few MPS containing samples whereas volume expansion was observed 

for most samples. Further studies need to be conducted to validate the effect of the 

contact area and the shrinkage force on the conductivity, however these are out of the 

scope of the present thesis.  

The main aim of the study presented in this thesis is to investigate the electrical 

performance of ICAs filled with Ag-MPS. The electrical performance of an 

interconnection material is a combination of the volume resistivity (bulk material 

resistivity) and the contact resistance (interface resistance) to the conductors bonded to. 

The volume resistivity and the effect of various factors on volume resistivity received 

preliminary investigation in Chapter 3 and more detailed study in the present chapter. 

However, the effect of these factors on the contact resistance of Ag-MPS filled ICAs 

also needs investigation and is the focus of the next chapter. Further, studies on 

temperature dependence of resistivity of composite material has been shown to provide 

an insight the conduction mechanism of heterogeneous materials (Nicodemo et al. 

1978). As the focus of this study is also to understand the conduction mechanism in an 

Ag-MPS filled ICA, thus experiments were conducted to investigate the dependence of 

the resistivity on temperature and the results will also be presented in the next chapter. 
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CHAPTER 7 

 OTHER ELECTRICAL MEASUREMENTS 

Chapters 3 and 6 presented the effect of MPS volume fraction, diameter, Ag coating 

thickness, matrix type and curing conditions on ICA bulk resistivity, however how these 

factors affect the contact resistance between the ICA and the component or substrate 

terminations is also important. This chapter presents an investigation into the effect of 

these factors on ICA contact resistance. As discussed in Chapter 4, electrical conduction 

in an ICA takes place through contacting metallic filler particles, thus current encounters 

metallic resistance offered by the particles and the constriction and tunnelling resistances 

offered by the contacts. The effects of temperature on metallic resistance are different 

from those on constriction and tunnelling. Thus the variation of ICA resistance with 

temperature may give some insight into the conduction mechanisms within ICAs and an 

investigation of this is also presented in this chapter. 

7.1 Contact Resistance Measurement for ICAs 

The measurement method used for the previously presented resistance results (FWR) is 

designed to eliminate any contact resistances from the measurements. The contact 

resistance was measured by combining the existing FWR results from the samples 

described in Chapters 3 and 6 with a three wire resistance (TWR) measurements on the 

same samples. Figure 7.1 show a schematic of the TWR measurement method. In this 

method, one pair of the current and the voltage probes were placed on the same probe 

pad, so that the contact resistance between the adhesive stripe and the contact track 

joining to the probe pad, where current and voltage probes were placed together, was also 

included in the resistance measurement. The contact resistance between the adhesive and 

the track connected to the pad with the current and voltage probes was then calculated as: 

𝑪𝒐𝒏𝒕𝒂𝒄𝒕 𝒓𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 = 𝑻𝑾𝑹 − 𝑭𝑾𝑹     7.1  
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In this experiment the contact resistance was measured to the gold PCB metallisation. 

The use of the same samples for FWR and TWR has enabled a comparison of volume 

resistivity/bulk resistance with contact resistance. For each sample, contact resistance 

measurements on both left and right contacts on each ICA stripe were made. In the TWR 

measurements the resistance of the small length of contact trace between contact with the 

ICA and the inner probe pad, where both the current and voltage probes are placed is also 

included. The estimated resistance of this track is ~ 0.0079 Ω, (details of calculation are 

given in Appendix C, Section C.2) and is subtracted from the measured contact resistance 

values.  

 

 

 

 

  

 

 

 

Figure 7.1 Schematic of three wire resistance measurement 

7.2 Results and Discussion 

The results of the contact resistance measurements are plotted in Figures 7.2, 7.3 and 7.4, 

with one standard deviation error bars, where each contact resistance value corresponds 

to the arithmetic mean of eight to twelve measurements. To investigate the effect of filler 

shape, the contact resistances of the Ag-MPS filled ICAs are also compared with the 

contact resistances of both the commercial (H20E) and FS-34 flake filled ICAs. The 

following sections discuss the results obtained.  

7.2.1 Effect of Shape of Filler, MPS Diameter and Volume Fraction 

Figure 7.2 presents the variation of contact resistance with the MPS diameter and volume 

fraction and type of filler. It presents the contact resistance values for ICAs made using 

I : Current              
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the 4.8_15A, 06_10B and 30_13A, Ag-MPS and silver flakes all within the type I 

polymer matrix and cured at 150°C for 15mins. It also presents the contact resistance 

values for H20E. The results of contact resistance measurements were also compared 

with the volume resistivities of these ICAs and are presented in Appendix C, Section C.2. 

 

 

 

 

 

 

 

 

Figure 7.2 Contact resistance variation with filler volume fraction, size and type 

These results show a general trend of the contact resistances decreasing with increasing 

vol% of filler, however at lower volume fractions large variability in the contact 

resistance for all ICAs can be observed. The results presented in Figure 7.2 also show 

that at low vol% the contact resistances of the ICAs tend to decrease with decreasing 

MPS diameter, however at the larger vol% not much variation in the contact resistances 

with MPS diameter was seen i.e. at the highest volume fraction all of the MPS gave the 

same contact resistance of around 0.058Ω.  There is some variation in the Ag coating 

thickness between these MPS. At lower vol% ICAs filled with 06_10B show lower 

average contact resistance than those containing 4.8_15A. As these volume fractions are 

close to the percolation threshold, large variations in particle distribution may be the 

reason for this inconsistency. These results show that at high volume fractions, MPS 

diameter and Ag coating thickness do not have a significant effect on the contact 

resistance of an ICA. On the other hand it can be observed from Chapters 3 and 6 that 

MPS diameters and coating thickness do have a significant effect on the volume 
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resistivity of an ICA. Detailed resistivity and contact resistance results for the samples 

tested in this chapter are tabulated in Appendix C. 

The contact resistance at the interface between a conducting track and an ICA will depend 

upon the number of contact points and on the contact areas of these contact points. A 

large number of contact points would give more parallel paths for current to flow and 

would decrease the contact resistance as would larger contact areas. The contact area for 

each of the Au plated tracks with the ICA samples is 0.4mm2 (2 mm length x 0.2mm 

width). Assuming the distribution of MPS in an ICA to be homogeneous, the number of 

MPS that could be accommodated on the track for different volume fractions investigated 

is given in Table 7.1. Smaller MPS can have more contact points than larger MPS as can 

be seen from Table 7.1, which could be expected to result in a decrease in the contact 

resistance unless their contact areas are smaller.  

Table 7.1 Number of MPS that can be accommodated within the track contact area for a 

given vol% 

 

Figure 7.2 also compares the contact resistance values of Ag-MPS filled ICAs to silver 

flake filled and commercial ICAs. It shows that the Ag-MPS filled ICAs have contact 

resistances similar to the silver flake filled ICA using the same resin but higher than the 

commercial ICA used. The lower contact resistance of the commercial ICA might be due 

to (i) the higher vol% of silver flakes/particles in it; (ii) its larger volumetric shrinkage as 

seen in Chapter 6, which may press the filler more towards the contact track and enhance 

the contact area; or (iii) the presence of an unknown component in the resin (which may 

have also been responsible for the reduction in the resistance of H20E at around 140°C 

described in Chapter 3) which may enhance the contact between the contact track and 

silver flakes/particle, thereby reducing the contact resistance. The lower resistance of 

H20E than other formulated ICAs shows that the components of adhesive matrix also 

Filler 
Theoretical 
i.e. at (74%) 

MPS volume fraction 

35% 40% 42% 44% 46% 50% 

4.8_15A 14719 6962 7956 8354 8752 9150 9945 

6_10B 9804 4637 5299 5564 5829 6094 6624 

30_13A 413 195 223 234 245 256 279 
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have an impact on the contact resistance as well as the filler particle type. The effect of 

matrix type is also presented in Section 7.2.3. 

7.2.2 Effect of Coating Thickness and Morphology 

Figure 7.3 presents the contact resistances of the ICAs filled with 30_13A, 30_20B and 

30_20C with one standard deviation error bars. These MPS have the same core diameter, 

but different coating thickness and are coated using three different processes. These ICAs 

were all prepared using the type I polymer matrix and cured at 150°C for 15mins.  

 

 

 

 

 

 

 

 

Figure 7.3 Contact resistance variation with Ag coating thickness/type 

The results presented in Figure 7.3 show large variations in the contact resistance values 

for all of the formulated ICAs, which makes it difficult to evaluate the effect of coating 

thickness on contact resistance. The SEM images in Figure 5.9 show that Ag-MPS plated 

with processes B and C have better coating morphology/quality than those coated with 

process A, and ICA volume resistivity has been found to decrease for better coating 

quality, as discussed in Section 6.1.4.3. From the results presented in Figures 7.2 and 7.3, 

it can be summarised that the large MPS with thin Ag coating offers nearly the same 

contact resistance as the small MPS with thick Ag coating. Therefore using the larger 

MPS with a thin Ag coating may offer greater cost benefits. However, large deviations 

in the contact resistance measurements were observed in the results plotted in Figure 7.2 

and 7.3. This large variability in the measurements could obscure the actual trend for the 

contact resistance variation with MPS diameter, coating thickness and 
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morphology/quality. One cause of this large variation in the resistance measurements 

may be a non-uniform distribution of filler in the adhesives. The Ag-MPS in the ICA are 

assumed to be randomly distributed, thus the number of the MPS in contact with the 

contact track may vary from sample to sample. However, as no surfactants were used on 

the Ag-MPS to ensure their uniform dispersion, there may be small clumps/aggregates. 

ICA samples were printed manually with no automated control over speed, force or the 

angle of printing.  The resulting variation in the speed, force or angle of the printing from 

sample to sample could result in variations in the particle distribution between samples 

and therefore in the contact resistances. Similar deviations were also be seen in the 

volume resistivities of these ICAs, as shown in Appendix C. 

7.2.3 Effect of Matrix Type and Curing Condition 

Figure 7.4 plots the contact resistances of ICAs made using the three different matrices 

and cured at two different curing profiles, with one standard deviation error bars. All 

these ICAs were made using 30_20C Ag-MPS except for H20E.  

 

 

 

 

 

 

 

 

Figure 7.4 Contact resistance variation with polymer matrix and curing conditions 

These results show that the type II matrix imparts significantly lower contact resistances 

than type I. Further, it can be seen that the contact resistances of ICAs made with type II 

resin are even lower than H20E cured at 150°C for 15 min, however H20E cured at 120°C 

for 30 min has the lowest contact resistances. One reason for the lower contact resistances 



Chapter 7: Other Electrical Measurements 

160 

for the type II matrix than type I could be its higher shrinkage than type I matrix, as was 

observed in Chapter 6 (Figures 6.15 and 6.16), this may enhance the contacts between 

filler and the substrate track lowering the contact resistance. Another reason could be its 

lower viscosity than the type I matrix. A lower viscosity  allows the molecules to become 

more mobile in the early stages of cure, which results in a more reactive system (Petrie 

2006) and imparts higher shrinkage. Further, H20E has the lowest contact resistances and 

highest shrinkage. Figure 7.4 also shows that most of the ICAs cured at 120°C for 30 min 

have lower contact resistances than ICAs cured at 150°C for 15 min, however they have 

higher shrinkage at 150°C for 15 min. One possible reason for the higher contact 

resistances at 150°C for 15 min could be that, samples for both the curing schedules were 

printed together, and while the samples were in the oven undergoing cure at 120°C for 

30 min, the samples cured at 150°C for 15 min were lying at room temperature. During 

the delay these samples might have started to cure. This may affect the shrinkage of the 

matrix and hence the contact resistance.  

This section presented the investigation of contact resistance of Ag-MPS filled ICAs on 

the PCBs with Au/Ni/Cu metallisation. The contact resistances of Ag-MPS filled ICAs 

on other metallisation’s, such as Cu/Ni, Ag/Sn and Ag/Pd, and on other substrates, such 

as glass and ceramic, needs further investigation as does their stability particularly in hot 

and humid conditions. This is however, out of the scope of this study. 

7.3 Temperature Coefficient of Resistance Measurements 

To understand the conduction mechanism within the ICAs Li et al. (1997) and Inoue et 

al. (2008) investigated the temperature coefficient of resistance of flake filled ICAs. Both 

Li and Inoue found that the TCR of an ICA is lower than that of bulk silver (3.8 x 10-3 

°C-1). Additionally, Li et al. found that the TCR of an ICA is dependent on the silver 

particle sizes and distributions, with small (0.5 µm), and bimodal (3–8 µm, and 1 µm) 

fillers imparting lower TCR (1.8 x 10-3 °C-1 to 2.4 x 10-3 °C-1) than larger fillers (10–15 

µm) (closer to TCR for Ag). Following section presents the experiments conducted to 

investigate the TCR of Ag-MPS filled ICAs.  
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7.3.1 Materials Used 

The ICAs samples manufactured for the study described in Section 6.3 were used. As the 

main aim was to understand the effect of Ag-MPS on TCR, only ICA samples made with 

type I polymer matrix were used.  

7.3.2 Equipment Used 

A Design Environmental climatic test chamber model Delta 190H was used to provide 

temperature controlled environment. The chamber has ports in the walls through which 

the wires attached to the ICA samples under investigation can be fed to allow resistance 

measurements during temperature cycling. An Agilent 34970A data acquisition system 

with an Agilent 34901A interface module was used to record the resistances. The data 

acquisition system has a 60 channel/second scan rate and can make in situ measurements 

of resistance and temperature simultaneously. Also, when making FWR measurements, 

it automatically compensates for any thermal EMFs. PET insulated wires which can 

withstand temperatures up to 170°C were used to connect the ICA samples to the Agilent 

34901A module. 

7.3.3 Methodology  

The specimens used for the TCR measurements were fully cured before testing. The 

specimens were heated from 30°C to 120°C and kept at 120°C for 30 min, and then cooled 

back to 30°C while FWR measurements were made.  Measurements were taken every 10 

sec. To monitor the temperature in the oven during heating and cooling, a type K 

thermocouple was attached to one channel of the data acquisition system. A schematic of 

the TCR measurement set up is shown in Figure 7.5. Figure 7.6 shows a typical air 

temperature variation in the environmental chamber. 
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Figure 7.5 Set up for TCR measurement 

 

 

 

 

 

 

 

 

 

Figure 7.6 Typical time/air temperature profile observed in TCR experiments 

7.4 Results and Discussions 

The TCR results are presented in Figures 7.7 to 7.10. Figure 7.7 shows the resistance 

variation with temperature for ICAs containing 50 vol% of 30µm Ag-MPS having 

different Ag coating thicknesses, whereas Figure 7.8 is for ICAs having different volume 

fractions of 30_20B and Figure 7.9 shows the resistance variation with temperature for 

ICA  
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ICAs containing 30µm Ag-MPS plated using different plating process (30_20B and 

30_20C). All the ICAs for which data is presented in Figures 7.7 to 7.9 were cured at 

150°C for 15 minutes. Figure 7.10 shows the resistance variation with temperature for 

ICAs cured at two different curing conditions. For comparison Figure 7.11 shows the 

resistance variation with temperature for Ag as given by Matula (1979). In Figures 7.7 to 

7.10, the upper part of each curve corresponds to resistance variation during heating while 

the lower part is for cooling.  It can be seen that the resistance values during cooling are 

lower compared to during heating. All of the curves in Figures 7.7 to 7.10 show that 

during heating the resistance increases linearly up to about 85°C, whereas above 90°C 

the rate of increase in resistance drops slightly. However, these apparent changes in TCR 

vary from sample to sample (and they may be due to small lag between the air and sample 

temperature changes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Resistance variation with temperature for ICAs filled with 30µm Ag-MPS having 

different coating thicknesses 
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Figure 7.8 Resistance variation with temperature for ICAs having different volume 

fractions of 30_20B 

 

 

 

 

 

 

 

 

 

Figure 7.9 Resistance variation with temperature for ICAs made using Ag-MPS coated 

with different plating processes 
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Figure 7.10 Resistance variation with temperature for ICAs filled with 30_20C and cured 

under different conditions 

 

 

 

 

 

 

 

 

 

Figure 7. 11 Plot of Ag resistance variation as given by Matula (1979) 

The increase in the ICA resistance with temperature is believed to be due to the combined 

effects of the increases in silver resistance with temperature and in the contact resistance 

due to expansion of the polymer matrix on heating i.e. during heating the greater 

expansion of the polymer matrix reduces the contact force pressing the particles together 

and thus decreases the contact area and increases the contact resistance. The Tg of Ag-
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MPS is ~ 133°C (Nguyen et al. 2011) and the Tg of type I resin is ~ 90°C (Epotek 2010b). 

As the temperature increases above Tg, the resin softens. On softening, the matrix may 

also flow out from between two adjacent Ag-MPS, thus allowing them to be come closer 

and reducing their contact resistance. As the temperature is reduced contraction of the 

matrix will occur, pressing the particles again into the metallic contacts, which may 

increase the effective contact area and reduce contact resistance and could be a cause of 

the reduced resistance observed during cooling segment. Another reason could be post 

curing, as the curing profile used has been found to impart less than 100% cure (Cai 

2012), the increase in the temperature would lead to further cure and may impart more 

shrinkage to adhesive, reducing the contact areas between filler which can ultimately 

reduce the resistance. 

It can be seen in Figure 7.7 that the difference in the resistances during heating and 

cooling decreases as the coating thickness increases. With the increase in coating 

thickness the porosity in the coating decreases (as can be seen in Figure 5.9) and the 

contact area increases this may lead to differences in the mean free paths and therefore 

the resistance variation with temperature for different coating thickness. It can also be 

seen in Figure 7.8 that the difference in the resistances during heating and cooling 

decreases as Ag-MPS volume fraction increases. Further, sharp drop in the resistance of 

ICA at 45 vol% of Ag-MPS is observed during the cooling segment. Lower volume 

fraction of filler means higher volume fraction of resin. ICA with higher volume fraction 

of matrix may contract more on cooling, thus may enhance the contact areas more. And 

could be a cause for larger difference in resistances during heating and cooling segments 

for the ICAs. From Figure 7.9 the difference in the resistance values during heating and 

cooling is larger for 30_20B Ag-MPS than for 30_20C. The coatings on both these MPS 

are similar (Figures 5.9 and 6.5). Further, the difference in the resistance values during 

heating and cooling is also seen for ICAs cured at lower temperature. One reason may be 

greater increase in internal stress for ICAs cured at lower temperature during subsequent 

heating.  

The calculated TCRs of the ICAs is presented in Tables 7.2 to 7.3. The tables show that 

all of the Ag-MPS filled ICAs exhibit a positive TCR, however they were all lower than 

the TCR for bulk Ag, which is 3.8 x 10-3 °C-1 at 20°C (Hyperphysics 2014). The observed 

TCR values are close to the TCR values observed by Li et al. (1997) and Inoue et al. 
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(2008) for flake filled ICAs. The lower TCR values than for Ag could be due to the 

following reasons. TCR of Ag in its nano form has been measured as 2.9 x 10-3 °C-1 (Qin 

et al. 1997), which is different from bulk silver. The Ag-MPS are coated with a thin layer 

of Ag which is grown by the coalescing of nano-sized Ag particles. Therefore when Ag-

MPS are used TCR of the sub-micron thickness metallic layer may be lower than that of 

bulk Ag. This could result in lower value of TCR. Conduction in an ICA occurs by a 

combination of metallic conduction and the constriction and tunnelling phenomena. The 

constriction resistance due to the relatively small contact area imposes mean-free-path 

limitations on the contacts and therefore has a TCR smaller than that for bulk Ag (Qin et 

al. 1997). Tunnelling resistance purely depends upon the electron transmission 

probability through the potential barrier, which depends upon height and thickness of the 

barrier (which are independent of temperature) (Holm 1967). Thus tunnelling resistance 

is expected to have zero TCR (Morris 1999). Thus the collective contributions of metallic 

conduction and constriction or tunnelling may result in a lower TCR than the bulk Ag. 

Table 7.2 also shows that the TCR increases with coating thickness and volume fraction 

of Ag-MPS. The reason could be that with increasing coating thickness and volume 

fraction of Ag-MPS metallic contribution to the conduction increases. The grain size of 

the silver deposits may also be different for different coating thickness which may affect 

the density of grain boundaries leading to differences in the mean free paths and therefore 

the TCR.  

Table 7.2 TCR at different (a) Ag coating thickness (b) volume fractions of Ag-MPS 

(a) 
 

(b) 

Coating Thickness TCR (°C -1) 
 Volume fraction of 

30_20B 
TCR (°C -1) 

0.10µm 2.08 x10-3  45.0 % 2.04 x10-3 

0.15µm 2.22 x10-3  47.5% 2.19 x10-3 

0.20µm 2.24 x10-3  50.0 % 2.20 x10-3 

0.25µm 2.32 x10-3  52.5 % 2.21 x10-3 

Table 7.3 TCR for different (a) plating processes and (b) curing conditions 

(a) 
 

(b) 

Plating Process TCR (°C -1) 
 

Curing Conditions TCR (°C -1) 

 Process B 2.27 x10-3  120°C/30min 1.83 x10-3 

Process C 1.98 x10-3  150°C/15min 2.0 x10-3 
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Table 7.3 shows that Ag-MPS coated with two different plating processes show different 

TCR. The different values of the TCR for different plating process may be due to a 

different grain size and therefore density of grain boundaries, which may lead to 

differences in the mean free paths and therefore a different TCR. Moreover, the samples 

(30_20B and 30_20C) were run separately in two different experiments, the small 

variation in temperature values or rate of change of temperature with time between these 

two experiments may also affect the TCR between these two MPS. Table 7.3 also shows 

that TCR increases with curing temperature, the reason for this may be that, for the same 

adhesive matrix, a higher curing temperature may induce larger shrinkage which may 

increase the effective areas of metallic contact and hence TCR. 

7.5 Concluding Remarks 

This chapter has presented an investigation of the effects of MPS diameter, Ag coating 

thickness, type of polymer matrix and curing conditions on the contact resistance of Ag-

MPS filled ICAs. The results presented showed significant variations in the contact 

resistance with changing polymer matrix and curing conditions. The contact resistance 

was also observed to decrease with increasing filler content, but little effect of the MPS 

diameter and Ag coating thickness on the contact resistance was observed. 

The chapter also presented a study of the TCR of Ag-MPS filled ICAs. The TCRs of the 

ICAs formulated with the Ag-MPS were found to be lower than that of bulk silver, and 

decrease slightly with temperature. The TCR of the ICA was found to increase with the 

coating thickness, filler content and curing conditions. This showed that both the filler 

and the polymer matrix affect conduction.   

This chapter and the previous chapters have presented the effect of various factors on 

the electrical performance of the Ag-MPS filled ICAs. The next chapter will present the 

conclusions drawn from this research. A case study on the use of Ag-MPS filled ICAs 

in a novel PV module assembly application is presented in Appendix D. 
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CHAPTER 8 

 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

A summary of the progress made against the objectives set and the conclusions that can 

therefore be drawn from this study are presented in this chapter. During the course of 

this research a number of interesting areas worthy of future work have been identified. 

Based on these this chapter also presents recommendations for future work.  

This work has resulted in a number of publications and a list of these together with 

further proposed publications is also included in this chapter. 

8.1 Summary of Progress against Objectives 

This section presents key conclusions based on how the objectives presented in Chapter 

1 have been met. The objectives are repeated here for clarity. 

Objective 1: To critically review the literature to gain an understanding of the factors 

that can affect the performance of an ICA and identify the merits and demerits of using 

mono-sized metal coated polymer spheres in an ICA in place of silver flakes. 

To fulfill Objective 1 a critical review of the literature was conducted. The main 

conclusions drawn from this review are: 

 Electrical conductivity, chemical stability, nature (e.g. coated polymers vs 

metallic), shape, size, and size distribution of the conductive filler are the most 

important parameters which can affect the electrical performance of an ICA.  

 Use of Ag-MPS as a conductive filler can reduce the amount of silver used in an 

ICA and hence help reduce its cost while achieving equivalent mechanical 

strength. 
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Objective 2: To establish the feasibility of using mono-sized metal coated polymer 

spheres in ICAs in place of silver flakes by benchmarking these novel ICAs against a 

traditional silver flake filled ICA. 

To achieve Objective 2 a feasibility study was conducted which demonstrated:  

 The silver can be more efficiently used in an ICA if silver flakes are replaced 

with Ag-MPS  

 For similar high levels of conductivity, Ag-MPS based ICAs significantly 

reduce the amount of silver used i.e. to approximately 7.74 vol% as compared to 

the commercial flake filled ICAs around 31 vol%. At such a low volume 

(7.74%) of silver, silver flake filled ICAs would be non-conducting.  

 For moderate conductivity values of up to about 400 (Ωcm)-1, the volume of 

silver can further be reduced to less than 2 vol% with the use of 30µm Ag-MPS 

filler. This amounts to a reduction of 93% in the volume of silver used. 

 To achieve similar conductivities a higher Ag-MPS volume fraction (around 

50%) is required compared to silver flakes (around 35%). However, this is not a 

concern as, according to Nguyen et al (2010 and 2013), at 50 vol% of filler, Ag-

MPS filled ICAs have a rheology suitable for stencil printing and dispensing.  

Objective 3: To develop a theoretical model to gain an understanding of the effect of 

different factors such as MPS diameter (Ø), coating thickness and morphology on the 

electrical performance of the individual MPS. 

Objective 4: To develop a theoretical model to gain an understanding of the effect of 

different factors such as MPS volume fraction, diameter (Ø), coating thickness and 

morphology, curing conditions, and curing shrinkage of the epoxy resin on the electrical 

performance of an ICA filled with MPS. 

To accomplish Objectives 3 and 4 theoretical models for the conductivity of both a 

single MPS and of an MPS filled ICA have been developed. The models show that:  

 The conductivity of an individual MPS increases with increasing coating 

thickness and contact radius (which depends upon the inter particle forces 

resulting from shrinkage and the size and stiffness of the MPS core material) 
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and decreases with increasing coating resistivity (which depends upon coating 

thickness and morphology) and MPS size.  

 Smaller MPS with a thicker coating should offer more conductivity than larger 

MPS with a thin coating. However, smaller MPS with thicker coatings use more 

silver than larger MPS and do not give an increase in conductivity proportional 

to the increased amount of silver they use, indicating that larger MPS use silver 

more efficiently.    

 Ag-MPS filled ICA conductivity increases with increasing MPS conductivity, 

volume fraction, coating thickness and contact area (which is believed to depend 

upon the matrix shrinkage and hence on the type of matrix and the curing 

conditions) and decreases with increasing MPS size. 

Objective 5: To experimentally verify the findings of the theoretical models on the 

electrical performance of MPS and the novel ICAs; and  

Objective 6: Based on the theoretical model and the experimental findings to establish a 

link between the electrical properties and different factors such as MPS volume 

fraction, size, coating thickness and morphology, curing conditions and epoxy 

shrinkage, which will help in the design of MPS filled ICAs with tailored properties for 

specific applications.  

To accomplish Objectives 5 and 6 the correlation between the theoretical predictions 

and experimental results was investigated.  The main findings were: 

MPS Conductivity: 

 With increasing deformation (contact radius) and coating thickness, the 

conductivity of the MPS increases, thus validating the prediction of the 

theoretical model.  

 The measured MPS resistance is found to substantially higher than that 

theoretically predicted. Based on the values of the measured resistance, 

improvements to the theoretical model for MPS conductivity were proposed. 

These are: (i) that the thin film resistivity needs to be calculated using e.g. FE 

models and used in place of bulk metal resistivity; (ii) the actual contact 

geometry between MPS and between MPS and flat pads needs to be investigated 
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using FE models, and used in place of the assumed uniform circular contact area 

and; (iii) the actual contact area needs to be used in place of the apparent contact 

area. However, accurate predictions of the contribution of each of these factors 

discussed is beyond the scope of this study and needs to be addressed in future 

studies. 

ICA Conductivity: 

 The conductivity of the Ag-MPS filled ICAs increased with decreasing MPS 

size and increasing metal coating thickness, as predicted by the theoretical 

model. 

 The curing schedule and type of the epoxy matrix both affect the conductivity of 

an Ag-MPS filled ICA, but not to as large an extent as the MPS size and coating 

thickness.  

 Smaller MPS (4.8µm, 6µm, 10µm) do not give the increased conductivity in 

proportion to the extra silver they use as compared to (30µm). Larger MPS with 

a thicker coating use silver more efficiently and can offer more cost benefits. 

 Conductivity initially increased considerably with increasing coating thickness, 

but only up to a thickness of 0.20µm and became nearly constant for further 

increases in coating thickness.  

 Contact resistances for the Ag-MPS filled ICAs have been found to be higher 

than those of commercial silver flake filled ICAs. The contact resistances do not 

vary much with MPS size, coating thickness and curing schedule, however the 

type of matrix has been found to affect the contact resistances more than the 

volume fraction of filler. 

To investigate the suitability of Ag-MPS filled ICA in a PV application, their 

performance was investigated in a novel PV module assembly application. The 

successful assembly of modules using Ag-MPS filled ICA proved that they could be 

used as an interconnection material in PV applications. However, all the assembled 

modules showed higher resistive losses and poorer performance than expected. 

Analysis identified damage and shunting of cells during the module manufacturing 

process, and an increase in series resistance (possibly due to oxidation of the Al 

metallisation and Cu tracks) to be the cause of the poor performance of the modules. 



Chapter 8: Conclusions and Recommendations for Future Work 

173 

Thus further studies need to be conducted into the root causes of the shunting issues and 

investigate the optimum Ag-MPS filled ICA (based on MPS size, coating thickness and 

the adhesive matrix) for PV application as well as contact resistances, and their 

stability, with different conductive surfaces. 

8.2 Contributions and Conclusions 

Silver coated mono-sized polymer spheres have been identified as a potential 

conductive filler in place of traditional silver flakes/particles to improve the reliability 

and reduce the metal usage, and hence cost, of ICAs. However, anticipated concerns 

over the higher percolation threshold and lower conductivity associated with the use of 

Ag-MPS as conductive filler in ICA needed investigation. Further, the parameters 

affecting the electrical performance of Ag-MPS and ICAs based on Ag-MPS needed 

investigation. With the aim to address the concerns related to the use of Ag-MPS in an 

ICA and to gain in depth knowledge of the parameters affecting the electrical 

performance of Ag-MPS and ICAs based on Ag-MPS this study was undertaken. The 

main contributions and findings of the study are: 

 This study for the first time demonstrated that the higher percolation threshold 

and lower electrical conductivity related to the use of Ag-MPS as a conductive 

filler are not significant concerns. 

 This study established the use of Ag-MPS as a conductive filler, demonstrating 

that the silver can be much more efficiently used in an ICA if silver flakes are 

replaced with Ag-MPS. 

 This study showed that, for similar high levels of conductivity, Ag-MPS based 

ICAs reduce the amount of silver required by approximately 75% as compared 

to commercial flake filled ICAs, while for moderate conductivities of up to 400 

(Ωcm)-1, the silver content can be reduced by about 93 %. This study also 

showed that larger MPS (30µm) with a thicker coating use silver more 

efficiently than smaller MPS (4.8µm, 6µm, 10µm). Thus demonstrating that 

according to the conductivity requirement of an application, the amount of silver 

used can be altered. This allows tuning of the ICA properties for specific 
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application, which is something that cannot be achieved when using silver flake 

filled ICAs. 

 This study has indicated that when MPS are used as filler, the filler/MPS 

resistance is higher than that offered by bulk Ag and its contribution to ICA 

resistivity is significant, which is different for MPS of different size, coating 

thickness, and coating morphology. This is different from the case of silver flake 

filled IACs where the filler resistance is always taken equal to bulk silver and its 

contribution to ICA resistivity is negligible. In the case of flake filled ICAs the 

main contributions to ICA resistivity are from the contact resistances between 

flakes.  

 This study has also indicated that the shape of the contact between MPS 

significantly affects the contact resistance and the MPS resistance. In the case of 

solid flake filler the shape of contact between two solid flakes is assumed to be 

circular whereas when MPS are used, the shape of contact is ring shaped instead 

of circular (Divigalpitiya 2008) and can affect the contact resistance and the 

MPS resistance significantly. However the shape of the contact between MPS 

and the corresponding contact resistance, needs investigation using FE models. 

 In the case of ACAs, the resistance offered by MPS depends upon the degree of 

deformation. This study has also shown that in the case of ICAs, where the force 

due to adhesive shrinkage may not deform the MPS and can only force the MPS 

together in an electrical contact, the MPS resistance depends upon the contact 

radius between MPS. 

 This study has revealed volume expansion of Ag-MPS filled ICA however 

whether the volume expansion is due to degassing/expansion of Ag-MPS or 

trapped air could not be confirmed in the investigation. To further investigate 

the possibility of this expansion being due to trapped air, volume measurements 

on the samples cured in vacuum compared with those, for example cured in an 

autoclave need to be conducted. 

 The production of functional MWT (2 x 2) modules, interconnected using Ag-

MPS filled ICA have demonstrated that the Ag-MPS filled ICA can be used as 
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an interconnection material in PV module assembly. However, observed poorer 

performance than expected showed that the module assembly process used in 

this study needs improvement. 

8.3 Recommendations for Future Work 

This research has successfully demonstrated the use of Ag-MPS as a conductive filler 

and identified various factors which can affect the conductivity of an Ag-MPS and Ag-

MPS filled ICAs, however further time and effort still needs to be invested in various 

aspects of the work. The future priorities can be summarized as follows: 

MPS size distribution: This study has investigated the electrical conductivity when 

using mono-sized Ag-MPS. However, the effect of the Ag-MPS size distribution (bi, tri 

and multi modal) on the conductivity, rheology and mechanical properties of an ICA 

needs investigation.   

Coating resistivity: The theoretical model for individual Ag-MPS conductivity 

predicted that Ag-MPS conductivity depends upon the metal coating resistivity. The 

resistivity of very thin metal coatings is different/higher than the bulk metal resistivity 

due to their morphology and microstructure. As the process of metallisation of the 

polymer spheres is typically by electroless plating, which results in the silver deposits 

growing from dispersed nucleation sites scattered across the surface of the particle. The 

discontinuities between the silver deposits on the surface can lead to a limited number 

of electrical pathways for conduction and many grain boundaries that scatter electrons 

resulting in increase in coating resistivity. Measuring or calculating coating resistivity 

was out of the scope of this thesis and further studies, which might include FE models 

to find the resistivity of coatings grown from random nucleation points followed by 

isotropic growth, need to be undertaken to better understand the effects of plating 

processes on the coating resistivity. For illustration, preliminary FE models of silver 

deposits in the form of random deposits is shown in Figure 8.1. 
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Figure 8.1 Illustrating silver coating in the form of random silver deposits (Taken from an 

unpublished FE modelling study by Whalley (2013)) 

MPS mechanical properties: The silver coating thickness can affect the mechanical 

properties, such as the effective Elastic modulus and Poisson’s ratio, of an Ag-MPS, 

which in turn can affect their contact radius and hence the resulting contact resistance. 

The effect of silver coating thickness on these properties needs to be more thoroughly 

investigated. 

Constriction resistance between MPS: In the case of a thin film, current lines bend 

sharply at the interface and current crowding occurs in a small thickness of the film, as 

shown in Figure 5.18. Therefore, the constriction resistance of a contact area located in 

a thin film may not be accurately predicted by the Hertz and Holms equations. Further, 

FE analysis needs to be done to predict the effective electrical contact area between two 

Ag-MPS taking into account the current bending at the edges of the film and current 

crowding in the thin film and hence more accurately predict constriction resistance. 

MPS Expansion: MPS thermal expansion may affect ICA shrinkage, and therefore the 

contact area between adjacent particles, and hence may have an effect on ICA 

conductivity. Further investigation is needed to investigate MPS expansion with 

temperature and its effect on shrinkage the contact area and hence on ICA conductivity. 

ICA mechanical strength and reliability: Reliability tests such as thermal cycling, 

mechanical vibration and mechanical shock (drop) need to be carried out to establish 

the mechanical reliability of MPS-based ICAs in comparison with conventional Ag 

flake filled ICAs and solders. The fracture toughness of MPS-based ICAs needs to be 
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studied in order to understand their fracture behaviour. A study on current carrying 

capability of MPS-based ICAs is also crucial. 

Different types of MPS with different core materials (and thus different thermo-

mechanical properties), as well as coating materials, should be tested as conductive 

particles in ICAs in order to investigate the effect of particles on the mechanical and 

electrical properties of ICAs. 

8.4 Publications 

The study has so far resulted in three conference publications and two poster 

publications as listed below: 

 Jain, S., Whalley, D. C., Cottrill, M., Kristiansen, H., Redford, K., Nilsen, C. B., 

Helland, T., Liu, C. (2011). “Electrical Properties of an Isotropic Conductive 

Adhesive Filled With Silver Coated Polymer Spheres”, Proceedings of the 

IMAPS European Microelectronics and Packaging Conference (EMPC), 

Brighton, United Kingdom, September 12-15, pp. 240-246.  

 Jain, S., Whalley, D. C., Cottrill, M., Kristiansen, H., Redford, K., Nilsen, C. B., 

Helland, T., Liu, C. (2013) “The Effect of Coating Thickness on the Electrical 

Performance of Novel Isotropic Conductive Adhesives Prepared Using 

Metallised Polymer Micro-Spheres”, Proceedings of the 63rd Electronic 

Components and Technology Conference (ECTC), Las Vegas, USA, May 31- 

June 02, pp. 796-802. 

 Jain, S., Whalley, D. C., Cottrill, M., Kristiansen, H., Redford, K., Helland, S., 

Helland, T., Kalland, E., Liu, C. (2013). “Factors Affecting Conduction in 

Novel Isotropic Conductive Adhesives Filled with Silver Coated Polymer 

Spheres”, Proceedings of the IMAPS European Microelectronics and Packaging 

Conference (EMPC), Grenoble, France, September 09-12, pp. 1-7. 

 Jain, S., Whalley, D. C., Cottrill, M., Kristiansen, H., Redford, K., Helland, S., 

Helland, T., Kalland, E., Liu, C. (2012). “Novel Isotropic Conductive Adhesives 

Filled with Silver Coated Polymer Spheres”, Poster in IeMRC Printed & Plastic 

Electronics one day seminar, Loughborough, United Kingdom, March 19. 
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 Jain, S., Whalley, D. C., Cottrill, M., Kristiansen, H., Redford, K., Helland, S., 

Helland, T., Kalland, E., Liu, C. (2012). “Novel Isotropic Conductive Adhesives 

Filled with Silver Coated Polymer Spheres”, Poster in IeMRC Annual 

Conference, Loughborough, United Kingdom, September 05. 

A joint journal publication with the collaborating partner has been drafted and is due to 

be submitted in June. 

 Nguyen, H.V., Jain, S., Whalley, D.C., Aasmundtveit, K.E., Kristiansen, H., 

Helland, T., He, J.Y.,  “Electrical characterization of silver-coated mono-sized 

polymer spheres using a nano-indentation based flat punch method for an ICA 

applications’’ This publication will be partly based on the results presented in 

Chapter 5. 

Planned future publications are:  

 Jain, S., Nguyen, H.V., Whalley, D.C., Cottrill, M., Kristiansen, H., Redford, 

K., Helland, T., He, J.Y., “An improved MPS conductivity model based on 

electrical measurements on single MPS”. 

 Jain, S., Nguyen, H.V., Whalley, D.C., Cottrill, M., Kristiansen, H., Redford, 

K., Helland, T., He, J.Y., “Correlation between MPS properties and conductivity 

of MPS filled ICAs”. 
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APPENDIX A 

MPS DENSITY MEASUREMENT 

Aim 

The aim of this experiment is to measure the density of 30m Ag-MPS. 

Material used 

30m Ag-MPS with a narrow size distribution were supplied by Conpart As, Norway.  

Equipment used 

Weighing Machine, Micromeritics Multivolume Pycnometer 1305 

 

 

 

 

 

 

 

 

 

Figure A.1 Micromeritics Multivolume  Pycnometer 1305 
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Method used 

The Micromeritics pycnometer operates by detecting the pressure change resulting from 

displacement of Helium by a solid object. 

 A sample of unknown volume, Vsamp, was placed into a sealed sample chamber of 

known volume, Vcell. After sealing, the pressure P1 within the sample chamber was 

measured. Then, an isolated reference chamber of known volume, Vexp, was charged to 

a pressure P2, which was greater than that of the sample chamber. A valve isolating the 

two chambers was opened and the pressure of the system was allowed to equilibrate. It 

was assumed that the system is maintained at a constant temperature and there is no net 

loss or gain of Helium i.e. the number of Helium molecules n is constant throughout the 

experiment. Applying the gas law the volume of the sample is calculated by the 

pycnometer software as follows: 

                                            𝑽𝒔𝒂𝒎𝒑 = 𝑽𝒄𝒆𝒍𝒍 −
𝑽𝒆𝒙𝒑

(𝑷𝟏−𝑷𝒂)

(𝑷𝟐−𝑷𝒂)
−𝟏

                                                 𝑨. 1 

where Vsamp is the volume of sample under measurement 

Vcell is the volume of sealed chamber 

Vexp is the volume of reference chamber 

P1 is the pressure of sealed chamber 

P2 is the pressure of reference chamber 

Pa is the pressure at equilibrium 

Dividing this volume by the mass of the sample, the density is obtained 

Results 

Vcell = 36.19169 cc, Vexp = 20.86496 cc, Pa = 14.695949 Psi,  

Mass of the sample = 7.6933g  
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Five sets of measurements of P1and P2 were taken for the same sample was noted. 

These values and the software calculated the density are shown in Table A.1 

Table A.1 Density Measurement 

 P1 (Psi) P2 (Psi) P1/P2 Density (g/cc) 

1 19.565 11.672 1.6762 1.441 

2 19.562 11.670 1.6763 1.441 

3 19.563 11.670 1.6764 1.440 

4 19.561 11.667 1.6766 1.437 

5 19.561 11.666 1.6768 1.435 

   
Average 1.438 
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APPENDIX B 

ADDITIONAL SCANNING ELECTRON MICROSCOPY IMAGES OF 

Ag-MPS 

This appendix contains some additional FEGSEM images of Ag-MPS showing 

examples of poor plating quality. 

  

 

  

 

 

 

 

 

 

 

 

 

 

Figure B.1 10µm Ag-MPS 
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Figure B.2 4.77 µm Ag-MPS 
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Figure B.3 (a) 30µm Ag-MPS (b) magnified image showing poor Ag coating quality 

 

(a) 

(b) 
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Figure B.4 (a) 30µm Ag-MPS (b) magnified image showing poor Ag coating quality 

(a) 

(b) 
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APPENDIX C 

 RESULTS AND CALCULATIONS USED IN CHAPTERS 6, 7 AND 8 

C.1 Results and Calculations Used in Chapter 6 

Volume fraction % of silver in Ag-MPS: 

The formula used to calculate the % volume fraction of silver in Ag-MPS is: 

% 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑙𝑣𝑒𝑟 𝑖𝑛 𝐴𝑔 − 𝑀𝑃𝑆 =  
(𝒗𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝑴𝑷𝑺−𝒗𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝑷𝑺)

𝒗𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝑴𝑷𝑺
  C.1 

Table C.1 Volume fraction of silver in various Ag-MPS used in Chapter 6 

Ag-MPS 
PS Volume  

(cm3) 
Ag-MPS 

Volume (cm3) 
Ag Volume  

(cm3) 

% Vol Fraction 
of Silver in Ag-

MPS 

30_10B 1.413x10-08 1.442x10-08 2.846x10-10 1.97% 

30_15B 1.413x10-08 1.456x10-08 4.283x10-10 2.94% 

30_20B 1.413x10-08 1.471x10-08 5.730x10-10 3.89% 

30_25B 1.413x10-08 1.485x10-08 7.187x10-10 4.83% 

30_22D 1.413x10-08 1.478x10-08 6.457x10-10 4.36% 

10_15B 5.235x10-10 5.721 x10-10 4.855 x10-11 8.48% 

10_20C 5.235x10-10 5.889 x10-10 6.537 x10-11 11.10% 

10_21D 5.235x10-10 5.923 x10-10 6.878 x10-11 11.61% 

6_10B 1.130x10-10 1.247 x10-10 1.169 x10-11 9.36% 
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Volume fraction % of silver in an Ag-MPS filled ICA: 

The formula used to calculate the % volume fraction of silver in Ag-MPS is: 

% 𝑣𝑜𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑙𝑣𝑒𝑟 𝑖𝑛 𝐼𝐶𝐴 = ((𝒗𝒐𝒍. 𝒐𝒇 𝑴𝑷𝑺 − 𝒗𝒐𝒍. 𝒐𝒇 𝑷𝑺)|𝒗𝒐𝒍. 𝒐𝒇 𝑴𝑷𝑺 ) ∗

𝒗𝒐𝒍% 𝒐𝒇 𝑴𝑷𝑺          C.2 

Table C.2 Volume measurement to determine sample size 

 

Table C.3 Averaged volume measurements for uncured and cured ICAs using 

30_20B  

 Uncured Sample Cured Sample 
Volume Change 

Vol % of 
30_20B 

Avg. 
Volume 
(mm3) 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Standard 
Deviation 

(mm3) 
%  

Volume 
change 

40% 0.3025 0.000424 0.3045 0.0010 0.0020 0.5 

47% 0.2519 0.00077 0.2614 0.00077 0.0095 3.7 

50% 0.2912 0.00044 0.3044 0.00054 0.0132 4.5 

52% 0.2312 0.0013 0.2362 0.00044 0.005 2.1 

Volume Measurement 
(mm3) 

No. of 
Measurements 

1st Dataset 2nd Dataset 3rd Dataset 4th Dataset 5th Dataset 

1 0.2722 0.2759 0.2758 0.2762 0.2781 

2 0.2714 0.2756 0.2767 0.2762 0.2776 

3 0.2720 0.2759 0.2758 0.2762 0.2775 

4 0.2715 0.2770 0.2758 0.2770 0.2777 

5 0.2747 0.2769 0.2765 0.2772 0.2779 

6 0.2726 0.2760 0.2773 0.2773 0.2778 

7 0.2726 0.2771 0.2766 0.2773 0.2776 

8 0.2719 0.2769 0.2754 0.2770 0.2766 

9 0.2720 0.2769 0.2761 0.2773 0.2759 

10 0.2715 0.2766 0.2755 0.2772 0.2759 

Average  0.2722 0.2764 0.2761 0.2768 0.2772 

Standard 
Deviation 

0.000913 0.000536 0.000574 0.000463 0.000776 
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Table C.4 Comparing volume change of uncured and cured ICA for FS-34 

Cure 
Schedule 

Vol 
%  

Uncured Sample Cured Sample 
Volume 
Change 
(mm3) 

% 
Volume 
Change Avg. 

Volume 
(mm3) 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Standard 
Deviation 

Type I  

150°C, 
15min  

21% 0.2728 0.00072 0.2631 0.0012 -0.0097 
- 3.5% 

Type II  

120°C, 
30min 

21% 0.0587 0.00076 0.0517 0.00071 - 0.0070 - 11.9% 

23% 0.0513 0.00013 0.0466 0.00058 - 0.0047 - 9.1% 

150°C, 
15min 

21% 0.0710 0.00062 0.0596 0.00039 - 0.0113 -15.9% 

23% 0.0396 0.00020 0.0364 0.00077 - 0.0032 - 8.3% 

 

Table C.5 Average volume of uncured and cured ICA with standard deviation for 

30_20C 

 

 Uncured Sample Cured Sample  
 

Vol 
%  

Avg. 
Volume 
(mm3) 

Standard 
Deviation 

Avg. 
Volume 
(mm3) 

Standard 
Deviation 

Volume 
Change 
(mm3) 

% Volume 
Change 

Type I  

150°C, 
15min 

44% 0.2547 0.0010 0.2546 0.00064 - 0.0001 0.02% 

Type II  

120°C, 
30min 

46% 0.4212 0.000349 0.4323 0.0003898 0.0111 2.8% 

50% 0.2566 0.000644 0.2573 0.00109 0.0007 0.01% 

52% 0.333 0.000962 0.3455 0.00078 0.0125 3.75% 

150°C, 
15min 

46% 0.2529 0.00064 0.2592 0.00071 0.0063 2.5% 

50% 0.3349 0.000571 0.3364 0.000691 0.0015 0.01% 

52% 0.3151 0.000749 0.29812 0.00058 - 0.01698 -5.3% 

 

Table C.6 Average volume and standard deviation of cured and uncured H20E 

H20E 

Uncured Cu   

Average 

Volume  

(mm3) 

Standard 

Deviation  
Average 

Volume 

(mm3) 

Standard 

Deviation 

Volume 
Change 
(mm3) 

% Volume 
Change 

120°C/30min 0.0865 0.00061 0.0715 0.0001 0.150 -17.3% 

150°C/15min 0.0741 0.0004 0.0582 0.0001 0.159 -21.4% 
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C.2 Results and Calculations Used in Chapter 7 

Resistance of Au/Ni/Cu track on PCB:  

The formula used to calculate Au/Ni/Cu track resistance that need to be subtracted from 

TWR measurements is: 

𝟏

𝑹 (𝑨𝒖,𝑵𝒊,𝑪𝒖)𝑻𝒓𝒂𝒄𝒌
=   

𝟏

𝑹𝑨𝒖−𝒕𝒓𝒂𝒄𝒌
+

𝟏

𝑹𝑵𝒊−𝑻𝒓𝒂𝒄𝒌
+

𝟏

𝑹𝑪𝒖−𝑻𝒓𝒂𝒄𝒌
    C.3 

where  

𝑅𝐴𝑢−𝑇𝑟𝑎𝑐𝑘 =   𝜌𝐴𝑢

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓  𝑇𝑟𝑎𝑐𝑘

𝑊𝑖𝑑𝑡ℎ 𝑜𝑓  𝑇𝑟𝑎𝑐𝑘 𝑥 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝐴𝑢 𝑐𝑜𝑎𝑡𝑖𝑛𝑔 
 

𝑅𝑁𝑖−𝑇𝑟𝑎𝑐𝑘 =   𝜌𝑁𝑖

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑇𝑟𝑎𝑐𝑘

𝑊𝑖𝑑𝑡ℎ 𝑜𝑓  𝑇𝑟𝑎𝑐𝑘 𝑥 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑁𝑖 𝐶𝑜𝑎𝑡𝑖𝑛𝑔
 

𝑅𝐶𝑢−𝑇𝑟𝑎𝑐𝑘 =   𝜌𝐶𝑢

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓  𝑇𝑟𝑎𝑐𝑘

𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑇𝑟𝑎𝑐𝑘 𝑥 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝐶𝑢 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 
 

Using values: ρAu = 2.40 x 10-8 Ωm, ρNi = 6.99 x 10-8 Ωm, ρCu = 1.68 x 10-8 Ωm. Length 

and width of track as 3.5 x 10-3 m and 0.20 x 10-3 m respectively. And Au coating 

thickness as 200 x 10-9m, Ni coating thickness as 8µm and Cu coating thickness as 

35µm. The track resistance is calculated as: 0.0079Ω. 

Table C.7 Contact resistance and resistivity of 4.8 µm MPS filled ICA 

 

 

4.8_15A 

Vol% of Filler 35% 39% 40% 42% 44% 46% 

Average Contact Resistance 
(Ω) 0.083 0.043 0.061 0.072 0.066 0.059 

Standard Deviation 0.023 0.088 0.041 0.039 0.023 0.003 

% Standard Deviation 25 88 59 48 31 4 

Average Resistivity (Ωcm) 0.0093 0.0047 0.0074 0.0049 0.0009 0.0004 

Standard Deviation 0.0018 0.0015 0.0010 0.0011 0.0003 0.00005 

% Standard Deviation 19 33 13 24 33 13 
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Table C.8 Contact resistance and resistivity of 6 µm MPS filled ICA 

 

Table C.9 Contact resistance and resistivity of 30 µm MPS filled ICA 

30_13A 

Vol% of Filler 35% 37% 40% 42% 46% 49% 52% 

Average contact 
resistance (Ω) 0.138 0.131 0.098 0.096 0.090 0.073 0.063 

Standard Deviation 0.043 0.040 0.026 0.018 0.010 0.002 0.002 

% Standard Deviation 31 28 24 17 11 2.5 3 

Average Resistivity 
(Ωcm) 0.029 0.0200 0.0097 0.0081 0.0068 0.0051 0.0031 

Standard Deviation 0.0029 0.0046 0.0009 0.00097 0.0007 0.0001 0.0004 

% Standard Deviation 9 23 9 11 11 3 16 
 

 

Table C.10 Contact resistance and resistivity of silver flake filled and commercial 

ICA 

 

 

06_10B 

Vol% of Filler 35% 40% 45% 48% 50% 

Average contact 
resistance (Ω) 0.071 0.072 0.087 0.059 0.029 

Standard Deviation 0.014 0.005 0.008 0.003 0.021 

% Standard Deviation 17 6 8 4 33 

Average Resistivity (Ωcm) 13.90 0.0044 0.0012 0.0012 0.0011 

Standard Deviation 22.31 0.0005 0.0002 0.00014 0.0001 

% Standard Deviation 160 11 17 11 14 

 FS-34 H20E 

Vol% of Filler 18% 20% 22% 31% 

Average contact resistance (Ω) 0.090 0.068 0.062 0.034 

Standard Deviation 0.026 0.006 0.004 0.002 

% Standard Deviation 26 8 4 6 

Average Resistivity (Ωcm) 0.006726 0.001245 0.000596 0.443 

Standard Deviation 0.000575 0.00016 0.000079 0.017 

% Standard Deviation 8 12 13 4 
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Table C.11 Contact resistance for ICAs containing 30 µm MPS plated using 

method B 

 

Table C.12 Contact resistances for ICAs containing 30µm MPS plated using 

method C 

 

 

 

 

 

 

 

 

 30_20B 

Vol% of Filler 35% 40% 45% 48% 50% 52.5% 

Average contact 
resistance (Ω) 0.104 0.128 0.089 0.079 0.047 0.067 

Standard Deviation 0.020 0.0242 0.017 0.008 0.036 0.009 

% Standard Deviation 19 18 19 11 70 13 
Average Resistivity 

(Ωcm) 
11.73 0.0109 0.0038 0.0026 0.0018 0.0013 

Standard Deviation 9.161 0.0117 0.0023 0.0006 0.0006 0.0003 

% Standard Deviation 64 26 10 16 36 23 

 30_20C 

Vol% of Filler 44% 46% 48% 51% 

Average contact resistance (Ω) 0.085 0.075 0.080 0.083 

Standard Deviation 0.020 0.006 0.025 0.034 

% Standard Deviation 24 08 31 40 

Average Resistivity (Ωcm) 0.0040 0.0030 0.0021 0.0014 

Standard Deviation 0.0003 0.00006 0.0001 0.0002 

% Standard Deviation  7 2 4 13 
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Table C.13 Contact resistances for ICAs formulated using type I matrix and 

different curing conditions 

 

Table C.14 Contact resistances for ICAs formulated using type II matrix 

 

 

 

 120°C /30min 150°C /15min 

Vol% of Filler 44% 46% 48% 51% 44% 46% 48% 51% 

Average contact 
resistance (Ω) 

0.100 0.095 0.083 0.070 0.093 0.083 0.088 0.086 

Standard 
Deviation 

0.007 0.025 0.008 0.024 0.020 0.006 0.025 0.024 

%  Standard 
Deviation 

7 26 9 34 21 7 28 27 

Average 
Resistivity (Ωcm) 

0.003 0.003 0.002 0.001 0.004 0.003 0.002 0.001 

Standard 
Deviation 

0.0002 0.0002 0.0002 0.0003 0.0003 0.00006 0.0001 0.0002 

%  Standard 
Deviation 

7 7 10 18 7 2 4 13 

 120°C /30min 150°C /15min 

Vol% of Filler 46% 50% 53% 46% 50% 53% 

Average contact 
resistance (Ω) 

0.007 0.008 0.007 0.014 0.018 0.009 

Standard 
Deviation 

0.003 0.001 0.002 0.009 0.007 0.002 

%  Standard 
Deviation 

42 12 28 64 38 22 

Average 
resistance (Ω) 

0.0018 0.0012 0.0009 0.0014 0.0014 0.0011 

Standard 
Deviation 

0.0001 0.00009 0.0001 0.00009 0.0001 0.00007 

%  Standard 
Deviation 

6 9 6 6 7 11 
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C.3 Formulas Used in Chapter 8 

Copper track resistance in MWT module: 

The resistance offered by copper track for making back and front contact is calculated 

using formula: 

𝑹𝑪𝒖−𝑻𝒓𝒂𝒄𝒌 =   𝑵𝒐 𝒐𝒇 𝒕𝒓𝒂𝒄𝒌𝒔 𝒙 𝝆𝑪𝒖
𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒓𝒂𝒄𝒌

𝑾𝒊𝒅𝒕𝒉 𝒐𝒇 𝒕𝒓𝒂𝒄𝒌 𝒙 𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 𝒐𝒇 𝒕𝒓𝒂𝒄𝒌 
   C.4  

 

Using the values of ρCu as 1.68 x 10-8 Ωm, length, width and thickness of Cu track as 

1.6 x 10-2 m, 0.8 x 10-2 m and 35 x 10-6 m respectively. 

ICA resistance in MWT module 

𝑹𝑰𝑪𝑨 =   𝑵𝒐 𝒐𝒇 𝑰𝑪𝑨 𝒅𝒐𝒕𝒔 𝒙 𝝆𝑰𝑪𝑨
𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇  𝑫𝒐𝒕

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝑪𝑨 𝒅𝒐𝒕 
      C.5 
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APPENDIX D 

CASE STUDY: USE OF Ag-MPS FILLED ICA IN A PV APPLICATION  

As discussed Chapter 1 photovoltaics are a fast growing sector among the various 

renewable energy sources. Back contact cells, with large cell area and made using thin 

Si wafers are an upcoming type of PV cell which offer many benefits such as lower 

cost, lower shading losses, lower series resistance and higher module packing densities 

and thus have a higher power output for a given area compared to modules utilising 

conventional H-pattern cells assembled using tab string assembly (Spath et al. 2008; 

Eerensteina et al. 2012). Additionally, isotropic conductive adhesives have recently 

emerged as an important material in photovoltaic (PV) module interconnections, 

especially for these large area back contact cells where the high process temperatures of 

soldering induces larger stresses in the cells which may lead to their degradation and 

poor reliability (Eikelboom et al. 2002; Bultman et al. 2003). As there is a great 

potential for significant growth in ICA usage in PV, the performance of ICA 

interconnections in a novel design of back contact PV module has been investigated and 

is presented in this chapter.  

In this investigation metallisation wrap through (MWT) cells, a type of back contact PV 

cell, were used to make modules. MWT cells use the same materials as the process for 

standard H-Pattern cells with the only major difference being the laser drilling of vias in 

the wafer which are then filled with silver paste for carrying current to front contact on 

rear side of the cell. Therefore, the methods used to assess the performance of standard 

Si cells/modules were used to assess the performance of the MWT cells/modules. One 

of the ways in which the performance of a PV cell/module can be assessed is in terms 

of performance parameters deduced from current verses voltage (I-V) curves such as 

open circuit voltage (VOC), short circuit current (ISC), maximum power (PMAX), fill 

factor (FF), efficiency (η), and series (RS) and shunt resistances (RSH), obtained at 

standard conditions of temperature and illumination. This chapter first briefly explain 

the performance of modules assembled using Ag-MPS filled ICA.  
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D.1 Electrical Performance of PV Modules: A Theoretical Overview 

PV cells are made of semiconducting materials, most commonly silicon, arranged in the 

form of a p-n junction that can convert incident radiation in the solar spectrum to an 

electrical current. When there is no light present to generate any current, the PV cell 

behaves like a junction diode. A cross-section of a basic PV cell is shown in Figure D.1 

  

 

 

 

 

 

Figure D. 1 Cross-section of a PV cell after (Nelson 2003) 

The idealised electronic behaviour of a PV cell can be modelled as a current source in 

parallel with a diode (Hersch et al. 1982; Meyer et al. 2004). In practice however no PV 

cell is ideal, power is dissipated through the resistance of the contacts and through the 

leakage currents around the sides of the device, so a shunt resistance, RSH, and a series 

resistance, RS, are added to the model (Nelson 2003). This equivalent circuit model for 

a photovoltaic cell is illustrated in Figure D.2. 

 

 

 

 

Figure D.2 Equivalent circuit model for a photovoltaic cell 

From the equivalent circuit it is evident that the current produced by the PV cell is equal 

to that produced by the current source, minus that which flows through the diode, minus 

that which flows through the shunt resistor.  

𝑰 = 𝑰𝑳 −  𝑰𝑫 − 𝑰𝑺𝑯      D.1 

n - Type 

p - Type 

Back 
Contact 

Front 
Contact 

External 
 Load 

+ 

- 

Sunlight 
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where I is the output current (A);  

IL is the photo generated current (A);  

ID is the diode current (A);  

ISH is the shunt current (A);  

By Ohm’s law the current diverted through the shunt resistor is:  

𝑰𝑺𝑯 =  
𝑽+𝑰𝑹𝒔

𝑹𝑺𝑯
       D.2 

where V is the voltage (V) that is either produced or applied (voltage bias)  

The Shockley diode equation gives the current diverted through the diode (Nelson 

2003): 

𝑰𝑫 = 𝑰𝟎 (𝒆
𝒒(𝑽+𝑰𝑹𝑺)

𝑵𝒌𝑻 − 𝟏)     D.3 

where  I0 is the saturation current of the diode (A);  

N is the diode ideality factor (1 for an ideal diode but typically between 1 and 

2); 

q is the elementary charge (C);  

k is the Boltzmann constant (J/K); and 

T is the cell temperature (K).  

Substituting equations 8.2 and 8.3 into equation 8.1 produces the characteristic equation 

of a solar cell, which relates the cell parameters to the output current and voltage:  

𝑰 = 𝑰𝑳 − 𝑰𝟎 (𝒆
𝒒(𝑽+𝑰𝑹𝑺)

𝑵𝒌𝑻 − 𝟏) −  
𝑽+𝑰𝑹𝒔

𝑹𝑺𝑯
      D.4  

As the forward bias voltage is swept from zero to VOC (the open circuit voltage), the 

current verses voltage (I-V) characteristics of the PV cell can be obtained . An ideal I-V 

curve for an illuminated PV cell/module as the voltage is swept from zero to VOC, has 

the shape shown in Figure D.3 
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Figure D.3 I-V curves for non-illuminated and illuminated PV cells/modules  

The I-V characteristics are generally used to extract useful information about the 

electrical performance parameters of a PV cell, or group of cells assembled into a 

module, such as open circuit voltage (VOC), short circuit current (ISC), maximum power 

(PMAX), fill factor (FF), efficiency (η), and series and shunt resistance. The performance 

parameters that can be extracted from an I-V curve are described below (Instruments 

2012). 

D.1.1 Short Circuit Current (ISC) 

The short circuit current is the current through the PV cell when the voltage across the 

cell is zero, i.e. I = ISC at V = 0. The short-circuit current is due to the generation and 

collection of light-generated carriers. Thus for forward-bias ISC  = IMAX ≈ IL. 

D.1.2 Open Circuit Voltage (VOC) 

The open circuit voltage is the voltage across a PV cell when no external current passes 

through it i.e. V = VOC at I = 0. The open-circuit voltage corresponds to the amount of 

forward bias on the PV cell due to the bias of the cell junction with the light-generated 

current. It is the maximum voltage available from a cell. Thus for forward bias VOC = 

VMAX. 

I 

Illuminated 
I S

C
 

V 

Non- illuminated 
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D.1.3 Maximum Power (PMAX), Current at PMAX (IMP), Voltage at PMAX (VMP) 

The short-circuit current and the open-circuit voltage are the maximum current and 

voltage respectively from a PV cell. However, at both of these operating points, the 

power from the cell is zero. The point at which the array generates maximum electrical 

power output for a given illumination level is called maximum power point, PMAX, as 

shown in Figure D.4 and lies within the knee region of the I-V curve and is sometimes 

also called the knee point. The voltage and current at the maximum power point are 

denoted as VMP and IMP respectively and are shown in Figure D.4.  

 

 

 

 

 

Figure D.4 Maximum power transfer point on an I-V curve 

At voltages well below VMP, the solar-generated electrical current to the external load is 

relatively independent of output voltage. Near the knee of the curve, this behaviour 

starts to change. As the voltage increases further, an increasing percentage of the 

charges recombine within the cell rather than delivering energy to the load. At VOC, all 

of the charges recombine internally. 

D.1.4 The Fill Factor (FF)  

The fill factor is a measure of quality of the solar cell. It is defined as the ratio of the 

maximum power from the solar cell to the theoretical power (PT) that would be output 

at both the open circuit voltage and short circuit current together as shown in Figure 

D.5:   

                                     𝑭𝑭 =
𝑷𝑴𝑨𝑿

𝑷𝑻
=  

𝑰𝑴𝑷  .𝑽𝑴𝑷

𝑰𝑺𝑪  .𝑽𝑶𝑪
    D.5 
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Figure D.5 Fill factor from IV curve 

If the I-V curves of two individual PV modules have the same values of ISC and VOC, 

the module with the higher fill factor will be capable of producing more power. Any 

impairment that reduces the fill factor also reduces the output power by reducing IMP or 

VMP or both and an I-V curve helps to identify the nature of such impairments. 

D.1.5 Efficiency (η) 

The efficiency is the most commonly used parameter to compare the performance of 

one solar cell to another. The efficiency of a solar cell is the fraction of incident optical 

power which is converted to usable electricity and is defined as the ratio of the 

electrical power output POUT, to the solar power input, PIN. 

 𝜼 =  
𝑷𝑶𝑼𝑻

𝑷𝑰𝑵
=

𝑷𝑴𝑨𝑿

𝑷𝑰𝑵
     D.6 

POUT can be taken to be PMAX since the solar cell can be operated at its maximum power 

output point to get the maximum efficiency.  

D.1.6 Shunt Resistance (RSH) and Series Resistance (RS) 

During operation, the efficiency of a solar cell/module is reduced by the dissipation of 

power within the parasitic series and the shunt resistances, as depicted in Figure D.6. 

For an ideal cell, RS would be zero, resulting in no further voltage drop before the load, 

while RSH would be infinite and would not provide an alternate path for current to flow. 

Increasing RS and decreasing RSH will decrease the fill factor (FF) and efficiency, as 
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shown in Figure D.6. If RSH is too low, VOC will drop, while an excessive RS can cause 

ISC to drop.  

 

 

 

 

 

Figure D.6 Effects of RS & RSH diverging from ideality (Instruments 2012) 

Experimentally the I-V curve and the performance parameters of a PV cell can be 

acquired using a solar simulator. Solar simulators consist of a calibrated light source, 

contacting system and I-V measurement system. They measure I-V characteristics 

under precisely specified temperature environmental conditions (Kaminski 2013). The 

detail of experiments conducted to test the I-V characteristics of PV module, assembled 

using an Ag-MPS filled ICA, are presented in the following section. 

D.2 Experimental Investigation of the Electrical Performance of PV Modules 

Assembled Using Ag-MPS Filled ICA  

Two sizes of PV modules i.e. with 36 cells and with 4 cells were made for evaluation 

using I-V measurements. Five samples of 36 cell module and six samples the 4 cell 

module were made. In the 36 cell module the cells were arranged in six rows and six 

columns and in 4 cell module the cells were arranged in two rows and two columns (as 

shown in Figure D.9 and 8.11). In real applications PV modules have to survive 

extreme of temperature and therefore in this study the I-V characteristics were 

measured before and after temperature cycling. A schematic cross-section of these 

MWT modules is shown in Figure D.7. 
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Figure D.7 Cross-section of MWT module showing only one cell (not to scale) 

D.2.1 Materials Used 

2.5 cm x 2.5 cm MWT cells made using 180µm thick polycrystalline Si wafers and with 

150 µm Ø metallisation filled vias were used for these tests. These MWT cells were 

designed and produced by the Institute for Energy Technology, IFE, Norway and were 

performance tested before supply. Table D.1 lists the performance parameters of these 

MWT cells. Figure D.8 shows front and rear images and a schematic cross-section of 

the cell.  

 

 

 

 

 

 

 

 

Figure D.8 Views of MWT cell used (a) front, (b) back and (c) cross-section  
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Table D.1 Performance parameters of MWT cells used in the study 

 Isc (A) Voc (V) RS (Ω) RSH (Ω) Fill Factor (%) Efficiency (%) 

Average 0.223 0.618 0.615 228 63.19 13.99 

Standard 
Deviation 

0.00040 0.014 0.028 152 0.025 0.28 

A specially designed back sheet was used to provide back contacts to the MWT cells. 

Back sheets for the 2 x 2 cells were prepared using conventional etched copper PCB 

processes on 1.6mm thick FR4 rigid laminate. Back sheets for the 6 x 6 cells were 

manufactured by In2Connect, using 125µm thick PET (polyethylene terephthalate) with 

etched copper tracks 35µm thick. A 200µm thick stencil with 1.5 mm diameter 

openings were used to print the ICA. The pattern of the back sheet and stencil was also 

designed by IFE, Norway as shown in Figure D.10(a). The ICA used was 45 vol% Ag-

MPS 30_20B (refer to Table 3.2) in the two component epoxy matrix, type II (refer to 

Table 6.2). At the time of these experiments, plating process C and D were not 

sufficiently developed and Ag-MPS 30_20B provided the lowest resistivity among the 

MPS available. The type II epoxy matrix was chosen as it has a longer pot life than type 

I and ICAs made using type II have achieved slightly lower resistivity than those using 

type I. Glass and EVA from Vistasolar was used to laminate the modules. This EVA 

has a similar cure schedule, i.e. 150°C and 10-20 min, to that of the ICA used. 

D.2.2 Methodology 

D.2.2.1 Module Preparation 

An automatic printer was used to print the ICA onto the pre-patterned back sheets 

(Figure D.9 (b)). The automatic pick and place machine was then used to place MWT 

cells onto the back sheet (Figure D.9 (c)). The benefit of using automatic printing and 

pick and place machines is that they can be programmed to accurately and quickly print 

the ICA and place the cells at the required locations on the pre-patterned back sheet, 

with controlled pressure to handle the fragile cells. The pick and place machine locates 

centre of the required ICA dot on the back sheet and places the MWT cell so that the 

centre of the backside metallisation coincides with it, as shown in Figure D.10. As the 

machine parameters were fixed for preparing all the modules, any variation due to the 

manufacturing process was minimised significantly. After placing the cells at the 

specified place Sn coated Cu strings were then attached to the modules for electrical 
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connection as shown in Figure D.9 (d). The module was then heated at 150oC for 15 

min. This cures the adhesive and make the interconnection permanent. This assembly 

process was performed at the Norwegian Defence Research Establishment, FFI, 

Norway. Ideally the modules would have been cured during lamination, but due to the 

laminator being at a different location and to prevent the movement of the cells during 

transfer the modules were cured before lamination. A P. Energy L036 A laminator with 

610 mm x 610 mm useable heating plate area was used to laminate the assembled mini 

modules with glass and EVA sheets, at 1bar and 135-140oC. A complete module is 

shown in Figure D.9 (e). Before and after lamination I-V measurements were made on 

the modules at IFE, Norway1. The results of these I-V measurements are presented in 

Section 8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.9 Schematic of MWT module assembly processes (not to scale) 

                                                 

1 These measurements were made by the collaborators Erik Foss and Junjie Zhu at IFE, Oslo, Norway. 
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Figure D.10 Placement machine camera images showing its identification of (a) the centre 

of a ICA dot on the back pattern sheet and (b) the centre of a through metallisation via 

D.2.2.2 I-V Measurements 

Once laminated, the modules were transferred to Loughborough University where a 

more extensive full set of measurements were made. I-V measurements on the modules 

were first made using the PASAN Sun Simulator 3b. This is a large area (3m x 3m) 

flash simulator. The I-V characteristics of a module can be affected by ambient 

conditions such as temperature and the intensity and spectrum of the incident light. 

Thus all of the measurements were conducted under standard test conditions (STC) i.e. 

at a temperature of 25ºC, irradiance of 1000W/m2 and air mass AM1.5 spectrum 

(Hersch et al. 1982). To check the repeatability, three I-V measurements were taken for 

each module. The measurement system schematic is presented in Figure D.11 

 

 

 

 

 

 

 

 

Figure D.11 Schematic for I-V measurements 
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D.2.2.3 Electroluminescence (EL) Imaging  

After the I-V measurements, electroluminescence images were captured using a 

charged coupled device (CCD) camera (Atik 314E) to detect any defects in the 

modules. Electroluminescence (EL) is a useful solar cell and module characterisation 

technique as it produces images of grain boundaries and defects such as micro-cracks 

and broken contact fingers (Fuyuki et al. 2005; Sander et al. 2010; Yongqing et al. 

2013). These defects can have a significant effect on the performance and longevity of 

the module. In this technique the infrared radiation emitted by a solar cell/module under 

forward bias is imaged in dark room conditions to produce an EL image of the 

cell/module (Howard 2009; Fuyuki et al. 2010; Yongqing et al. 2013). A schematic of 

the set up for EL imaging is shown in Figure D.12. Each MWT module was forward 

biased using a power supply. The maximum forward current was set at 0.2A, which 

corresponds to the short circuit current obtained for these modules from I-V 

measurements. The infrared (IR) radiation emitted by the modules was collected using a 

CCD camera with 1392 x 1240 pixels.  

 

 

 

 

 

 

 

Figure D.12 Schematic of set up for EL imaging 

The temperature of the camera was maintained 25°C below ambient temperature to 

improve accuracy and prevent noise in the image from thermally generated carriers in 

the detector. An IR filter that allows radiation of wavelengths of 700nm-1200nm, a 

range that incorporates most of the expected EL emissions from silicon cells (peak of ~ 

1050 nm), was mounted in front of the camera lens. For each module it was found that 
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after integrating radiation from the cell for 8 minutes the CCD camera produced a clear 

image of the module. The camera is connected to a computer for IR image capture. 

D.2.2.4 Temperature Cycling (TC) 

After the EL measurements the modules were put in a Delta 190H climatic test chamber 

for temperature cycling. The temperature cycling tests were performed according to 

ASTM Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and 

Humidity Environments (ASTM 2009). The modules were subjected to 200 

temperature cycles between -40°C and 85°C, at ramp rates of 100°C per hour as shown 

in Figure D.13. The temperature was held for 30 min at both -40°C and 85°C. After 

temperature cycling, the I-V measurements and EL measurements were repeated to 

check for any degradation of the module. 

 

 

 

 

 

 

Figure D.13 Temperature variation during one cycle (ASTM 2009) 

D.3 Results and Discussion 

The back sheet of all five of the modules containing 6 x 6 cells warped during curing 

and the cells became displaced from their specified positions in the module, as shown in 

Figure D.14.  
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Figure D.14 Showing 6 x 6 module with warped back sheet and displaced MWT cells 

These modules were therefore completely non-functional and were discarded. The back 

sheet for the 6 x 6 modules was a flexible PET material with copper tracks, PET has a 

higher CTE than copper, and as the temperature was increased for curing the flexible 

material expanded more than the copper inducing stresses in the sheet, which led to the 

warping and thus displacement of the cells. To eliminate the warping, all the 2 x 2 cell 

modules were made using rigid PCB laminate as the back sheet.  The results of the I-V 

measurements for the six 2 x 2 modules assembled, before and after lamination, are 

presented in Tables D.2 and 8.3 respectively. These I-V measurements were made by 

collaborators at IFE, Norway under the same conditions as specified in Section 8.2.2.2.  

Table D.2 I-V parameters measured before lamination 1 

Module No. Isc (A) Voc (V) RS (Ω) RSH (Ω) Fill Factor (%) Efficiency (%) 

1 0.20 2.36 5.33 134 48 9.5 

2 0.02 2.13 70.4 78.08 24 0.6 

3 0.05 2.29 46.4 38.4 23 1.2 

4 0.20 2.29 4.8 91.2 51 9.7 

5 0.20 2.38 5.3 58.4 61 12.1 

6 0.03 2.10 73.6 52.8 24 0.6 
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Table D.3 I-V parameters measured after lamination 1 

Module No. Isc (A) Voc (V) RS (Ω) RSH(Ω) Fill Factor (%) Efficiency (%) 

1 0.22 1.28 2.13 44.8 62 7.0 

2 -- -- - - -- -- 

3 0.01 0.72 20.57 54.4 35 0.2 

4 0.21 1.76 1.6 80 66 10.2 

5 0.22 1.24 1.6 54.4 67 7.5 

6 0.20 0.57 1.6 8 44 2.7 

For a (2 x 2) module containing four MWT cells arranged in series if the assembly 

process do not affect the all performance, ISC should remain same as that of the 

individual MWT cells whereas the VOC and RS of the four cells would sum to give a 

value of 2.4V and 2.46 Ω respectively (Solmetric 2011). The total series resistance RS, 

is the sum of cell internal resistances Rcell, contact resistances between Cu of front and 

back contacts and ICA, RCR(Cu,ICA), contact resistances between Al metallisation on the 

back of cell and ICA, RCR(Al, ICA), Cu track resistance RCu-Track, contact resistance 

between the Ag metallisation and ICA, RCR(Ag, ICA). These resistances can be seen in 

Figure D.15. The calculated combined contribution of all of these resistances for 2 x 2 

module sum up to ~3.45 Ω (Appendix C, Section C.3). Table D.2 shows that before 

lamination all the modules have lower ISC, RSH, FF and efficiency than the individual 

MWT cells, with modules 2, 3 and 6 showing the lowest values. Table D.2 also show 

that all the modules had an RS, higher than the calculated, with module 2, 3 and 6 

showing significantly higher values. The main reason for the observed reductions in ISC, 

fill factor and the efficiency of modules 2, 3 and 6 is believed to be their very high 

interconnection series resistances, and low shunt resistances. 

 

 

 

 

 

 

Figure D.15 Resistances contributing to the series resistance and possible flattening of 
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Table D.3 shows that after lamination RS and RSH of all the modules had decreased. The 

fill factor of all the modules improved after lamination, but their efficiency decreased 

drastically with the exception of modules 4 and 6 whose efficiency improved slightly. 

Module 2 had stopped functioning totally and no I-V parameters could be obtained. ISC 

had further deteriorated for module 3 but had improved slightly for modules 1, 4, and 5 

whereas it had improved greatly for module 6. VOC had dropped for all the modules, but 

more significantly for 2, 3 and 6. Module 6, which had I-V parameters similar to 

module 2 before lamination saw marginal improvement in the parameters after 

lamination. The reduction in VOC for all modules could be a significant increase in the 

leakage current i.e. flowing through the shunt resistance. As no insulation was used to 

prevent any direct contact between the Al metallisation (back contact) on the cell and 

the Cu trace connecting to the front contact of back sheet, as can be seen in Figure 

D.10. Under the high pressures of lamination the Al metallisation can come into direct 

contact with the front contact resulting in a short circuit between the front and back 

contacts, and could be the reason for the decrease in Rs, VOC and hence the efficiency 

of the modules. The reduction in RS may also be the reason for increase in ISC and FF. 

The performance parameters of the modules (as shown in Tables D.2 and 8.3) show that 

none was perfect, however to test their robustness they were subjected to temperature 

cycling. To detect defects such as micro-cracks and broken contacts in PV cells EL 

images of the modules were also taken. Temperature cycling, EL imaging and the I-V 

measurements presented hereafter were all carried out at Loughborough University.  

For each module I-V measurements and EL images were taken before and after 

temperature cycling. There was a time gap of nearly six months between the I-V 

measurements made at IFE Norway and those at Loughborough University. This was 

mainly due to limited availability of the equipment. For each module three I-V 

measurements were taken to verify the repeatability of the test method. As all three of 

these measurements produced identical I-V curves only one I-V curve is presented for 

each module in Figure D.16. The I-V parameters measured for the modules before and 

after temperature cycling are summarised in Tables D.4 and D.5 respectively.  

Tables D.3 and D.4 compare the I-V parameters measured after a gap of nearly six 

months. The comparison shows that the RS and VOC increased whereas ISC, fill factor 

and efficiency of all the modules decreased with time. The increases in RS  are believed 
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to be due to the formation of insulating oxide films on the bare Cu track and the Al 

metallisation, leading to increased contact resistances. Module 2 was again found to be 

non-functional in these measurements. It has to be taken into consideration that 

measurements listed in Table D.3 and Table D.4 were taken at two different places, at 

two different times of year and by two different instruments thus a small variation in 

them is expected. However, as both sets of measurements were taken under the same 

standard test conditions, the large improvements in VOC for the modules was not 

expected. The reason for improvement in VOC could be that over a period of time, 

possibly by expansion/oxidation of the adhesive, contact between the cell and back 

sheet decreased, removing the short between front and back contact thus improving 

their VOC. 

Table D.4 I-V parameters measured before temperature cycling 

Module No. Isc (A) Voc (V) Rs (Ω) Rsh(Ω) Fill Factor Efficiency % 

1 0.05 1.87 59.11 31.30 21 1.0 

2 - - - - - - 

3 0.04 1.75 23.45 42.07 26 1.0 

4 0.20 2.40 7.86 37.84 35 7.0 

5 0.20 2.40 5.44 68.96 43 8.0 

6 0.03 2.14 64.62 66.36 24 1.0 

Table D.5 I-V parameters measured after temperature cycling 

Module No. Isc (A) Voc (V) Rs (Ω) Rsh(Ω) Fill Factor Efficiency % 

1 0.20 2.44 9.97 20.92 28 5.0 

2 -- - - - - - 

3 0.04 2.35 31.77 44.74 23 1.0 

4 0.20 2.40 6.85 45.95 38 7.0 

5 0.20 2.44 15.04 26.81 28 5.0 

6 0.02 1.75 68.58 71.79 0.25 1.0 

Further, on comparing the I-V performance parameters before and after temperature 

cycling in Tables D.4 and D.5 it was found that for module 1 and 3 the value of VOC is 

further improved by nearly 0.6V, the efficiency of the modules 4 and 5 reduced and, the 

series resistances of module 3, 5 and 6 increased, while those of modules 1 and 4 

decreased. A large reduction in the series resistance and slight improvement in the 

efficiency of module 1 was seen. Further, before temperature cycling modules 1, 3 and 

4 had low shunt resistance compared to modules 5 and 6 but after temperature cycling 

the shunt resistance of modules 1 and 5 decreased whereas those for modules 3, 4 and 6 
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increased slightly.  The values of the performance parameters were found to vary 

significantly from module to module, but are much lower than those expected from 

these modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.16 I-V curves for the five functioning PV modules 
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temperature cycling could be damage to the cell during assembly, which prevent it from 

generating current equal to the other cells in the string. This limits the current output 

from the string to the current generated by the weakest cell (Solmetric 2011). This 

however, would only have a small effect on VOC but does result in a lower power output 

from all the cells and hence the module. It can also lead to hot spot formation, which 

causes further degradation to the cell (Solmetric 2011). The large drop in ISC for 

modules 2, 3 and 6 but only small drop in their VOC may therefore be due to a damaged 

cell in the circuit.  

The I-V measurements of the modules before and after temperature cycling were also 

compared with the EL images to detect any defects in the cells. The EL imaging does 

not give quantitative results, but only produces qualitative images utilising the 

radiative-recombination phenomenon (Fuyuki et al. 2007; Fuyuki et al. 2009). Broadly, 

an EL image is distinguished in two types of variation from the typical image intensity 

luminescence i.e. dark spots/regions of decreased luminescence and bright spots/regions 

where luminescence is higher. In an EL image, dark spots/regions are the inactive areas 

where no electron hole recombination is taking place. They correspond to defects or 

inhomogeneities that are inherent in the cell materials or result from the cell or the 

module fabrication process which do not produce any recombination current and are 

one of the regions of high resistive losses seen in I-V measurements (Fuyuki et al. 2005; 

Crozier 2012). Bright spots/regions usually correspond to an increase in radiative 

emission, such as from hot spots. The EL images of the modules taken before and after 

temperature cycling are shown in Figure D.17. No image was obtained for module 2. 

The cells are numbered clockwise within the module starting at the top right.  

Four distinct type of regions can be distinguished in the EL images shown in Figure 

D.17: 

(i) Slightly dark regions marked by black rectangles in the images: these may be 

due to inherent discontinuities in the cell structure; 

(ii) Dark regions marked by light blue rectangles in the images: these are the 

regions around the through via metallisation, and as it is free from any 

aluminium metallisation negligible recombination is expected to in this region 

(Fuyuki et al. 2010); 
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(iii) Dark regions marked by red rectangles in the images: these are the regions 

showing breakage or degradation of the cells; and 

(iv)  Bright spots as marked by green rectangles in the images: which are the regions 

where non-EL emission occurs, which may be because of hot spots. 

Not all the regions seen are marked with the rectangles as then the image would look 

cluttered. As an example only one type of each region is shown on the images. The 

presence of the large number of dark spots marked with red rectangles on each module 

indicate that cell damage or degradation is the main cause of the highly reduced ISC, fill 

factor and efficiency. The damage could be due to stresses involved during assembling 

and handling or due to shunting of the cells which cause large currents to deviate from 

their paths. EL images shows that cell nos 1 and 2 in module 1, cell no 1 in module 3 

cell no 2 in module 4, and cell nos 2 and 4 in module 6 were not conducting before 

temperature cycling, indicating they had poor back or front contacts or shunts (a short 

circuit between the front and back contacts) which is also reflected in their lower VOC 

values. However, after temperature cycling these cells started to conduct except for cell 

no 1 in module 1 and cell no 4 in module 6. This is indicated in the improvement of 

VOC for modules 1, 3 and 5. However, VOC for module 6 reduced. Bright spots are also 

observed in the centre of cell no 2 in module 3 and cell nos 3 and 4 in module 6. These 

bright spots show high radiative emissions and could be due to hot spots. The IR filter 

used for imaging allows wavelength in the range 700-1200nm because high radiative 

emissions of the Si normally occur around 1050nm. However, this range also includes 

thermal radiation emitted by hot bodies and any thermal radiation emitted by the cells in 

this range would be picked up by the CCD camera. The presence of hot spots could be 

due to damage or cracks in the cells and could further damage the cell. No EL image 

could be obtained for module 5 after temperature cycling although I-V measurements 

could still be obtained. As I-V parameters could be obtained this indicates that the 

module is working thus no possible reason could be assigned for not able to capture any 

EL image. 
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Figure D.17 Electroluminescence (EL) images of (a) module 1, (b) module 3(c) 

module 4, (d) module 5 and (e) module 6                       (contd………) 
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Figure D.17 Electroluminescence (EL) images of (a) module 1, (b) module 3(c) 

module 4, (d) module 5 and (e) module 6                           (contd……….) 
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Figure D.17 Electroluminescence (EL) images of (a) module 1, (b) module 3(c) module 4, 

(d) module 5 and (e) module 6 

All the modules tested show poor performance due to high resistive losses, shunting and 

cell damage thus the performance of the ICA in the assembly could not be accessed. 

More tests are required on single cell modules to test the performance of ICA 

interconnections in this type of assembly.    

D.4 Concluding Remarks 

This chapter investigated the electrical performance of MWT PV modules assembled 

using Ag-MPS filled ICA. I-V curves show poor module performance with heavy series 

and shunt resistive losses and defects in manufacturing which were aggravated during 

lamination. EL investigation before and after temperature cycling have indicated short 

circuits between front and back contact, degradation or breakage of the cells or 

manufacturing defects such as poor interconnections between cells could be the reason 

for the failure of the PV modules. Thus with the inherent assembly defects these 

experiments could not provide information about the performance of the Ag-MPS filled 

(e) Module 6 
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ICA in PV applications. Further studies after eliminating the manufacturing defects are 

needed to allow analysis of the performance of the Ag-MPS filled ICAs in this 

application.  
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