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Multi-scale damage modelling of 3D woven composites under uni-axial
tension

S. Dai**, P. R. Cunningham?

% Department of Aeronautical and Automotive Engineering, School of Aeronautical, Automotive, Chemical and
Materials Engineering, Loughborough University, LE11 3TU, UK.

Abstract

This paper presents a detailed numerical analysis of two types of 3D woven composite architecture. a
unit cell, full finite element meso model, and a mosaic macro model are developed to simulate the
elastic and damage progression behaviour of the two weave types. Both models predicted the tensile
modulus and strength within 20% of the experimentally measured values, and the predicted failure

sequence was similar to the experimental observation.
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1. Introduction

Three dimensional (3D) woven composites offer the potential for lower cost high volume
manufacturing processes and higher out-of-plane mechanical properties compared to traditional
laminated composites. However, several problems arise with 3D woven composites. Voids and resin
rich pockets are more likely to oceur due to the liquid resin transfer moulding process, the in-plane
mechanical properties can be degraded due to the presence of crimps induced by the weaving process,
and predicting the mechanical properties is also complicated by the complex reinforcement structure.
Several modelling techniques have been developed in the literature, such as the unit cell model,
mosaic model, and binary model.

The unit cell. model is the most widely used approach to simulate the mechanical behaviour of the
3D woven composites. Since the 3D woven composite is generally constructed by repeating identical
unit cells,its behaviour can be simulated by modelling a unit cell with periodical boundary
conditions [1]+ The unit cell is mostly modelled as a block with the tow following idealised [2] or
realistic paths [3, 4] and its constant [2] or variable [3, 4] cross-section being elliptical [5, 6, 7],
rectangular [6], or lenticular [7]. Once the unit cell is built, load or displacement is then applied to
the unit cell and the behaviour can be then simulated using Finite Element Analysis or analytical
methods. Both tensile [2, 8] and compressive [9, 10] properties have been predicted successfully.
Maximum stress was one of the popular criterion to define failure [2, 4, 8], and different failure modes
(such as longitudinal tensile failure and transverse tensile failure) have been predicted showing good

agreement with the experimental data [4].
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The Mosaic model and binary model were developed for multi-scale simulation. In the mosaic
model, the composite structure was discretised into a mosaic assemblage with each mosaic brick
element having distinct material properties. Global displacement or stress can be applied to the
macro level model and then transferred to the mosaic blocks using iso-stress or iso-strain conditions
[11]. The mosaic model has been used to predict both elastic and strength properties for both flat
samples and T-section stiffeners [12, 13, 14]. However, this model faces the challenges of internal
continuity and stress singularity problems, which is caused by the two adjacent mosaic blocks having
distinctive elastic properties.

The binary model is also capable of predicting the behaviour of structural component such as
stiffeners [15]. Both the elastic and damage behaviour of 3D fabric structures have been simulated
and showed good agreement with experiments [16, 17, 18]. The Binary Model/is a more
computational efficient model than any other direct 3D FE models, and it-offers a relatively easier
way to incorporate non-linear properties into the model. However, since only one-dimensional
elements are used to model tows, the shear and transverse stress transfer between the resin and tow
cannot be easily modelled.

In order to investigate the effect of different failure criteria and simulate large scale structures,
two numerical models at different scale levels were created to simulate the damage behaviour of 3D
woven composites. A meso-scale unit cell model was created to simulate the detailed damage
development during tensile loading using different failure criteria. Once the damage modelling
technique was verified through the unit cell model, a mosaic model was developed to predict the

notched tensile properties and the stress distribution in a macro-scale level.

2. Modelling strategies

Two types of 3D woven composite have been modelled: an orthogonal weave W-1 and an angle
interlock weave W-3 as shown in Figure 1. Both weaves were manufactured using a traditional
narrow fabric weaving loom by M.Wright & Sons Ltd. Detailed geometrical and mechanical

properties of these composites have been published in [19].

2.1. Model geometry
2.1.1. Unit-cell model

The unit cell was built in Abaqus 6.11 with each tow modelled as a transversely isotropic
homogeneous composite material and the matrix modelled as an isotropic epoxy resin. Due to the
complexity of the woven geometry, tetrahedral elements with four nodes (C3D4) were used. Each tow
was created by partitioning the unit cell block so that it shared the nodes with the resin elements.
Based on the microscopic images, the waviness of the warp and weft tows were relatively low [19].
Therefore the warp and weft tows were modelled as idealised non-crimp unidirectional (UD)
composites, and the binder tows were also modelled as UD composites with the local fibre orientation
following the swept path. The intra-tow fibre volume fraction (packing factor) was back-calculated
from the geometry of the unit cell and the experimental fibre volume fraction so that the V; was the
same in the models and the samples as listed in Table 2. The dimensions of the tows are listed in

Table 3 and the intra-yarn packing factors (V) are listed in Table 5. To avoid interpenetration and



skewed elements around the contact region, a thin layer of matrix (0.005 mm) existed between every
two adjacent tows [20]. Since the unit cell is symmetrical and the periodical boundary condition
requires a symmetrically surface mesh, only a quarter of the unit cell was built and meshed in
Abaqus as shown in Figure 2. A Matlab program was written to produce the whole unit cell from the
quarter cell, and to apply a node-to-node based periodical boundary condition developed by S. Li{1].
Displacement was applied to the unit cell via the periodical boundary condition and Abaqus Explicit
solver and a VUMAT code within Abaqus was used to compute the deformation of the unit cell.

The Young’s modulus and the tensile strength of the W-1 unit cell model with different mesh sizes
were plotted in Figure 4. As can be seen the modulus converged in models with more than 40000
elements and the difference between the highest and the lowest modulus in the converged models was
less than 1%. The strength varied slightly among the six models but the variation was 38 MPa which
is less than 2.5%. The longitudinal stress along a warp tow (illustrated in-Figure 5) was plotted at
4400 micro-strain when damage (matrix cracking) initiated. The stress distribution in all six sized
models showed similar trend along the length of the warp tow and the value of the concentrated
stress converged after refining the mesh to 0.24 mm. The difference between the maximum stresses in
the converged models was about 1%. Therefore the solution was considered to be converged with a

nominal mesh size of 0.24 mm which were used for all of the models in this study.

2.1.2. Mosaic model

The macro-scale model was built by assembling a number of mosaic unit cells (created in Abaqus)
into a sample scale model using a Matlab code, which was then simulated under deformation using
Abaqus Explicit. As shown in Figure 3, each unit cell was discretised into several C3D8 (eight
noded) brick elements of different material, and the binder tow showed a stepwise path due to this
voxel type of discretisation. Each tow was modelled as a unidirectional CFRP composite material.
The model was first created as‘a rectangular shaped 48 mm long (warp direction) and 25 mm wide
(weft direction) sample and was then modified to an open-hole sample by deleting the extra elements
and changing the node coordinates. No periodical boundary condition was required in the mosaic
model since it simulates the whole sample. Longitudinal displacement was applied to one surface
perpendicular tothe x-axis until final failure, and zero-displacement boundary conditions were
applied to the opposite surface as shown in Figure 3. The damage process was modelled using the
same element deletion technique as the unit cell model, and the same Maximum Stress failure
criterion was used to define damage due to its simplicity and adequate accuracy. Both the elastic and
strength-models were built to simulate the tensile behaviour of both un-notched and open-hole

samples, and the results are discussed in the following sections.

2.2. Failure criteria

The elastic properties were calculated using the Chamis rules [21] as listed in Equation 1. Table 4
lists the raw material properties which were obtained from the manufacturer’s data sheets, previous

publications [22, 23], and online resources [24].
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Since each tow was modelled as a uni-directional composite, the failure criteria developed for
traditional laminates were adapted in this study. According to the models developed during the
second World-Wide Failure exercise [25, 26], the theory developed by Pinho et al [27, 28] was one of
the three better theories among all twelve proposed models and can be easily implemented into
Abaqus. Therefore this theory was adapted in this work to predict the failure behaviour of each
component of the 3D composites. In addition, the widely used Maximum Stress failure criterion was
also used as a reference. The strength properties of the tows used for both failure criteria were

calculated using the following equations [29].
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The longitudinal and transverse compressive strength, and the in-plane shear strength do not
have well-established accurate analytical solutions, and the compressive and shear properties of the
fibres were not, found in the literature. Therefore these properties of the tows were assumed to be the

same as the laminates used in [30], which have similar fibre and matrix strength.

2.2.1. Mazimum stress failure criterion

The maximum stress failure criterion states that once the stress of an element reaches the
strength of the material it is considered to have failed. For the pure resin elements the principal
stresses were used to calculate the failure index, and for the tow elements the stresses in the material
direction were used to calculate the failure index. For the maximum stress failure criterion, the
element was directly deleted after the failure index reached unity. The tensile failure of the warp
tows were the dominant failure model rather than the transverse and shear failure, therefore only the
Longitudinal Tensile Failure Index was used as a criterion for element deletion. All other failure

indices were calculated in VUMAT but not used for element deletion.



2.2.2. Pinho’s failure criterion

Failure initiation

The failure criterion developed by Pinho et al [27, 28] defined independent failure indices for
different types of failure modes and also defined the crack initiation state and propagation state. The
pure polymer failure, matrix failure within the composites, and fibre tensile failure criterion were
included in the model. The thick-embedded-ply matrix failure criterion developed in [27, 28] was
used in the unit cell model since the thickness of the tow (0.46 mm) is higher than the thickness of a
typical lamina (0.125 mm). All materials in this model were assumed to have linear elastic behaviour
before failure initiates, therefore the criterion set for linear elastic fracture was used. The failure
indices used to determine failure initiation are listed below.

Pure Polymer Failure Index (FI,) [27, 28]:
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where opy1, ops , and opg are the maximum, middle, and minimum principal stress, oy, is the
hydrostatic pressure, and o, oy, and o, are the stresses in the global coordinate system, Xz, and
Xcom are the tensile and compressive strength of resin.

Fibre Tensile Failure Index (FIz)[27, 28]:
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Intra-tow Matrix Failure Index (FI,,) [28]:
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where Ty, TN L, and oy are the traction components on the potential matrix fracture plane.
Yis, St and Si are the in-situ transverse tensile strength, in-situ longitudinal shear strength, and
in-situ transverse shear strength, which were calculated using Equation 8 [28]. The friction
coefficients np and 7, account for the effect of pressure on the fracture behaviour, and the values

used by Pinho et al. [28] (nr = 0.287, n;, = 0.082) were used this paper.

Vi =1.12V2Yp
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Sif = /287 (8)

Failure propagation

After failure initiation (failure indices reach unity), the corresponding failure mode develops into



a propagation region. The failure progression is different for different failure modes, but all follow
this common approach: the constitutive law is modified after failure initiation, which gradually
reduces the traction components on the potential fracture plane to zero using a damage evolution

factor d as shown in Equation 9 [28].
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where o,,, is the degraded effective stress tensor acting on the fracture plane, the six stress
components were obtained by stress transformation, and damage evolution factor d was defined for
two scenarios: 0° fracture angle and non-zero fracture angle.

Pure Polymer Failure

For the pure resin failure, the damage evolution factor was set to unity immediately after failure
initiation.

Fibre Tensile Failure

The fibre tensile failure was considered to be brittle and fatal, which occurred normal to the fibre
direction. A triangle law was used to define the degradation: once the Fibre Failure Index FIy
reached one, the element entered the degradation region. The degradation factor d was defined by

Equation 10 and the failure strain ¢/ was defined in Equation 11 [28].
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where G, is the critical energy release rate for fibre tensile failure, and [ is the characteristic
length of the element. The Gr. value (92k.J/m?) in |28] was used in this paper as the materials are
similar.

Intra-tow Matrix Failure

The matrix failure was categorised into two failure scenarios: zero degree cracking angle and
non-zero degree cracking angle [28]. For zero degree matrix crack, the stresses can still be
transmitted to the failed layer by the shear force on the adjacent layers after the first matrix crack
has occurred. The cracks will keep accumulating until they reach a saturation state when the
distance between two adjacent cracks is too small to transmit stresses. The crack saturation density
n was calculated using Equation 12. Once the damage saturated, the cracks propagated into
delamination, and the damage evolution factor can be expressed with the mode II interlaminar
critical energy release rate Gy, as shown in Equation 12. The highest damage factor d throughout

time was used to degrade the traction stresses.
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where €Y is the failure onset strain that obtained when the failure index reaches one, ¢ is the
magnitude of the traction at failure onset, G, is the critical energy release rate of the failure mode, n
is the saturation crack density, ¢/ is the strain at final failure, Gy, is the model IT interlaminar
critical energy release rate, ¢ is the thickness of the element, S%* is the in-situ longitudinal shear
strength, Y7 is the in-situ transverse tensile strength, h is thethickness of the tow, & is the
magnitude of the instant traction, €° is the magnitude of therelastic strain vector on the fractured
plane, d"*! is the instantaneous damage evolution factor. The Gz, value (0.8k.J/m?) in [28] was
used in this paper as the materials are similar.

For a matrix crack with a non-zero fracture angle, a wedge effect will promote the delamination.
A triangle law similar to fibre tensile failure propagation was used to define the degradation factor d
with the failure strain expressed in Equation 13 [28]. More details of this failure criterion can be

found in [28], and more detailed on the parameters can be found in [31].
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where G, is the critical energy release rate of the failure mode, Gy, is the critical energy release
rate for matrix tensile failure, and the G;. value (0.21kJ/m?) in [28] was used in this paper as the

materials are similar.

3. Results and discussion

3.1. Unit cell model

The predicted tensile properties of both damage models are summarised in Table 6. As can be
seen both models over estimated the tensile strength by less than 15% for both weaves. Moreover,
Pinho’s damage model predicted a higher strength than the Max-Stress model in both weaves. Since
Pinho’s damage criteria defined the damage propagation after failure initiated and the Max-Stress
model deleted the element immediately after failure initiated, it stands to reason that Pinho’s damage
model predicted a higher strength. In both damage models, matrix failure occurred first around the
binding points and the warp tow tensile failure occurred last which resulted in the final fracture.

Two models with the binder tows replaced by matrix elements were also created to investigate the
effect of the binder tow. The results showed that replacing the binder tows did not affect the
properties of W-1 but slightly reduced the strength of W-3. Since the binder fibre volume fraction in



W-3 was higher than W-1 and the angled binders contributed more to the longitudinal properties
than the orthogonal binders, it stands to reason that replacing the angled binders with matrix caused
a reduction in tensile strength. However, since the warp tow dominated the final fracture, the
reduction in ultimate strength was very limited. Although the numerical model showed that the
binder tows had little effect on the tensile performance of the 3D woven composites, the actual
binder tows in reality influence the tensile properties by affecting the waviness of the warp tows, a
feature that was not replicated in the model.

Figure 7 and Figure 8 show the stress-strain curves from both damage models of W-1 and W-3
along with the upper and lower bounds of the experimental results. In both weaves, the two damage
models produced similar stress-strain curves with the Max-Stress criteria producing slightly lower
stresses. Both damage models deviated from the linear-elastic behaviour from/about 0.005 strain due
to matrix cracking and the deleted matrix elements. The modelled stress-strain curves of W-1 were
closer to the upper bound of the experimental data and the results of W-3 model were closer to the

lower bound.

3.1.1. Maximum stress failure criterion

Figure 9 shows the resin crack propagation of half of the W-1 model using the Max-Stress criteria
plotted with the Longitudinal Tensile Failure (FIx,) index. The resin cracks initiated at the outside
of the binding points as highlighted in the red circles, and propagated along the binder tow in the
thickness direction. The resin cracks also propagated along the width from the binding points to the
boundary of the model as can be seen from Figure 9 b). All of the failed resin elements were caused
by the maximum principal stress being higher than the resin tensile strength, and the Compressive
Failure Index FIx, of all resin elements never reached unity. The thin layer of resin between the
surface weft tow and the outer warp tow started to fail and formed a debonding feature of the warp
tow as shown in Figure 10. This debonding feature started from the binding points between the
outer warp tows and weft tows, and later occurred around the inner warp tows. All of the thin layers
of resin failed completely at 570.76 MPa and were deleted from the model thereafter, which meant
there were only a limited amount of matrix elements left to transfer load between warp tows and weft
tows. Moreover, more resin elements failed and were deleted due to tensile failure with the increasing
load, such as the elements in the resin pocket between the warp and binder tows.

The transverse tensile failure index F'Iy, first reached unity in the surface weft elements which
were not interlaced by the binder tows as shown in Figure 11 a), and later at 411.04 MPa it reached
unity in the inner weft tows when the matrix cracks propagated as shown in Figure 11 b). At 411.04
MPa; the matrix cracks had already propagated through the thickness which disconnected the
surface weft tows from loading, therefore the index FIy, decreased in these regions and increased in
the inner weft tows where the load was still transferred by the matrix. As the deleted resin region
propagated further, F'Iy, dropped below unity in all of the weft tows after 627.64 MPa due to the
loss of load transferring medium. The post-failure microscopic image in Figure 13 b) showed that
transverse matrix cracking (transverse tensile failure) existed in the surface weft tows but not in the
inner weft tows. Since the inner weft tow transverse failure was predicted to initiate later than the
surface weft tow transverse failure, this intact inner weft tow indicated that the failure process was

predicted correctly but the failure initiation stress was under-predicted possibly due to the



under-estimated transverse tensile strength of the tows.

Although the transverse tensile failure was predicted by the model at an early stage of loading, it
did not affect the predicted strength since it was not used for element deletion and therefore not
involved in the damage evolution process. The final failure was only caused by the longitudinal
tensile failure of the warp tow and progressive matrix cracking.

The modelled failure process of W-3 was similar to W-1. The matrix cracking started first near
the binding points and propagated in the width and thickness directions, and the warp tow tensile

failure caused the final fracture of the unit cell.

3.1.2. Pinho’s failure criterion

The Pinho’s failure criterion predicted higher failure stress than the Maximum Stress criterion
and also predicted different failure modes within the damage initiation and propagation stages. The
first predicted damage initiation in W-1 was the intra-tow matrix cracking occurring in the binding
points of the binder tow at 127.96 MPa. With the load increasing, the matrix failure index ( F'I,,,) of
the elements in the surface weft tow regions also reached unity at 149.13 MPa as shown in Figure 12.
Although the predicted matrix cracking initiated at an early stage of loading, the intra-tow matrix
failure stayed in the damage propagation region (the damage degradation factor did not reach unity)
before final fracture, therefore no element was deleted due to intra-tow matrix failure.

According to the failure criteria, the intra-tow matrix cracks occurred at an angle a to the 1-2
plane in the local material coordinate system. This fracture angle was plotted at the last frame
before final failure in Figure 13. As can be seen most of the inner weft tows and part of the surface
weft tows exhibited a similar fracture angle of about 165°, and the cross-section of the failed sample
showed matrix cracks with fracture angles of about 140°, 150°, and 170° in the surface weft tows but
did not show any visible cracks in-the inner weft tows. The model showed that the matrix failure
initiated in the surface weft tows first-at 240.26 MPa and then in the inner weft tows at 385.49 MPa.
Therefore it stands to reason that the model under estimated the intra-tow matrix strength, possibly
because the under-estimated transverse tensile strength of the tows, which was also suggested by the
results of the Max-Stress model.

The failure behaviour of W-3 using Pinho’s failure criterion was similar to using the Max-Stress
Model. The first-deleted elements were the resin elements in between the surface binder and the
surface weft, which created a debonding feature. The resin cracks also initiated around the binding
points at 323.47 MPa, and propagated along the binder in both width and thickness directions as
shown in-Figure 14. As the load increased, the debonding of the warp tow occurred and the tensile
fracture of the warp tow resulted in the final failure.

Figure 15 shows the matrix cracking angle of the tows before final fracture. As can be seen the
cracking angle distributions in the two weft tows at both sides of the binder tow were almost
symmetrical, with the angle being smaller (around 50°) near the binder and being higher (around
160°) away from the binder. However, this phenomena was not observed in the experiments. The
microscopic image of a failed W-3 sample showed that the matrix cracks in the surface weft tows were
almost at 0° (or 180°) to the thickness direction, and mostly occurred across the centre of the weft

tow. No visible matrix cracks were observed in the warp and binder tow of the experimental samples.



3.2. Mosaic model
3.2.1. Un-notched model

Table 7 shows the elastic modulus results obtained from the mosaic models. As can be seen, the
modulus obtained from a coarse mesh model (nominal element size 0.85 mm) and a fine mesh model
(nominal element size 0.3 mm) are almost identical. The predicted results from W-1 mosaic models
are slightly lower than the unit cell model and about 1.2% closer to the experimental value. The
predicted modulus of W-3 mosaic model are also lower than the unit cell model and are less than 1%
higher from the experimental data possibly due to the angled binder orientation. Since the width of
the sample is not dividable by the width of the unit cell, each mosaic model contains incomplete unit
cells. Therefore it is reasonable that the results of the mosaic models differed from the unit cell
models. Since there was less than 7% difference between the two modelling techniques and both
models predicted modulus less than 15% higher than the experimental values, both models are
considered to be valid for elastic modulus prediction.

The Max-Stress failure criterion used in the unit cell model was employed to define damage in the
mosaic strength model. Table 7 lists the predicted tensile strength from both mosaic models along
with the experimental results. All of the predicted strengths were about 10% higher than the
experimental values and the mosaic model with finer mesh gave the lower predicted strength. In a
model with coarser mesh, the stress of an element was averaged over a larger region than in a finer
meshed model. Therefore the local stress level was lower in the coarser model than the finer model.
Since the failure criterion was based on the stress level of the elements, the critical element in the
finer mesh model reached its strength earlier and hence the model predicted lower ultimate tensile

strength.

3.2.2. Notched model

The elastic mosaic models were applied to both standard sized (4.1 mm diameter) and enlarged
(12.5 mm diameter) notched samples and only the fine-mesh models were used since the coarse mesh
were not able to accommodate the notch. Figure 16-17 show the longitudinal strain distribution from
the mosaic model and the experimental DIC results at similar load levels. As can be seen, the mosaic
model predicted-a similar strain distribution as the DIC, and the predicted distribution showed a
more regular pattern due to the idealised model geometry. The longitudinal strain distributions
along the centre line are also plotted as shown in Figure 16-17(c). Both models underestimated the
strain levels possibly because the models used idealised geometry and material properties. The
predicted strain distribution also showed similar trend to the DIC results. The lower strain regions
are the binder tow areas which have higher stiffness than the surround matrix. The higher strain
within the resin rich channels in W-1 (both standard and enlarged notch) was predicted by the
mosaic model along with the higher strain concentration around the hole. This higher strain in the
resin rich channels was caused by the lower local stiffness in these regions. Higher strain was also
predicted at the centre of the weft flow region, and lower strain on the surface binder tow was also
predicted. The DIC image also detected higher strain at the centre of the surface weft flow but did
not show any clear lower strain in the binder tow. One possible explanation is that the binder tow in

the actual sample had a curved path on the surface while the modelled binder tow had a straight
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path and was also longer in length. Therefore the modelled binder region would have a higher local
stiffness than the actual sample, hence the predicted strain was lower.

The strain distribution predicted for both W-3 samples also showed similarity with the DIC
results. The strain distribution around the notch was similar between the models and DIC images,
especially the standard notch model. The higher strain in the resin channels was predicted by the
mosaic model but was less pronounced from the DIC image. The real W-3 samples actually had
smaller resin rich channels than the model since all of the actual tows were not rectangular shaped
and were locally crimped. In addition, the model had a 0.18 mm thick resin layer covering most part
of the surface while the actual sample only had a very thin layer of resin (less than 0:05 mm) apart
from at the binding points. These factors all accounted for the differences between -the model and the
DIC results.

Strength and damage analysis were also conducted on the notched W-1and W-3 models using the
same Max-Stress failure criterion and element deletion technique as the ‘other strength models, and
the predicted results are shown in Table 8 compared with the experimental results from [32]. The
predicted open-hole tensile strength were significantly lower than the experimental results (at least
26% lower and up to 36%). Clearly, the model needs further improvement before it can be used to
predict the notched tensile strength.

The progressive damage modelled by element deletion showed that the pure matrix elements
failed first in the resin channels near the notch and then the warp tows near the notch started to fail.
However, the model reached its strength before the warp tow tensile failure started, which contradicts
the experiments. This premature failure indicated that deleting the matrix elements is not suitable
for this macro-scale model with stress concentration. In this macro model, each matrix element
occupied a larger region (approximately 1 x 1072 mm3) than in the unit cell model (approximately
5x 107 mm?3). A macro-scale gap was created by deleting a macro-level matrix element, which then
resulted in the loss of load transfer between the tow elements and further caused the premature
failure. Since the matrix elements in the unit cell model were smaller, deleting these elements can be
treated as creating micro-level cracks which were observed from the experiments. Therefore it is valid
to use element deletion in the unit cell model but not valid for the larger scale mosaic model.

The elastic modulus of an un-notched sample using this modified geometry were found to be
similar to the original mosaic model and the experimental results as shown in Table 9. Therefore this
modified geometry was considered to be valid. A modified model was created with the surface resin
elements replaced by weft tow elements and the thickness of the tows changed as shown in Figure 18.
Ag can be seen, the pure resin region in the modified model has been largely reduced, and the surface
weft tows now have a varied cross-section that expands in the binder-free region. In the actual weave,
the surface weft tows also have smaller cross-section area under the binder tows and the resin
channels are clearly observed between the surface weft tows. Therefore the modified mosaic model
represents the actual weave architecture better than the original model. A modified failure criterion
was adapted from the Maximum Stress and Pinho’s failure criterion to accommodate the problems
with matrix cracking and progressive damage. Bogdanovich [33] proposed a damage progressive
modelling scheme that degraded the stiffness of the damaged elements by a factor of o which related

to the volume of failed elements and the volume of the intact elements. A simplified stiffness

11



degradation scheme which used a constant degradation factor of 0.5 was used in the modified mosaic
model. Since no experimental data was available for the matrix damage progression after failure
initiation, this non-physically based arbitrary stiffness degradation scheme was used due to its
simplicity.

As can be seen from Table 9, the modified mosaic models showed more than 9% improvement
from the original models and only less than 20% difference existed between the modified models and
the experimental results. Although the difference was still higher than the other modelling results,
the shown improvement indicated that the mosaic technique can be used for macro-level simulation
with an appropriate damage modelling scheme. Moreover, in the previous literature; an-un-notched
mosaic model proposed by Bogdanovich [33] using stiffness degradation scheme predicted a tensile
strength 19% lower than the experiment data, and a 25% difference between model and testing
results was considered as a success [11]. Therefore, this mosaic modelling technique was considered to
be valid.

The failure process predicted by the mosaic models were similar between both weaves and both
notches. The matrix failure within the resin rich channel near the notch started first and then the
other matrix channels started to fail as shown in Figure 19. The failure of the surface matrix cracks
were also observed in the resin rich channels in the failed samples. The warp tow tensile failure
initiated around the notch at higher stress and propagated along the width as shown in Figure 20.
The sample reached its tensile strength before the tensile crack reached the edge of the sample as can
be seen from Figure 20 ¢) and d). The modelled warp tensile crack always propagated across an

entire cross-section of a tow, which was also observed in the experiments.

4. Conclusions

A meso-scale unit cell model and a marco-scale mosaic model were developed to simulate the
elastic and damage behaviour of W-1 and W-3 under tensile loading. Two failure criteria, the
Maximum Stress and Pinho’ criterion, were used along with element deletion to simulate the damage
behaviour.

The unit cell. model used an idealised geometry and predicted the tensile modulus and strength to
about 10% higher than the experimental values. Several failure modes were predicted: matrix
cracking, tow debonding, tow transverse tensile failure, and tow longitudinal tensile failure. The weft
tow transverse failure was predicted first, followed by matrix cracking, weft and warp tow debonding,
and finally warp tow tensile fracture.

The predicted elastic modulus and tensile strength of the un-notched mosaic model were about
10% higher than the experimental values, which were similar to the unit cell model. The mosaic
model also simulated the tensile behaviour of an open-hole plate and predicted a similar strain
distribution as the DIC experimental results. However, the predicted notch strength was about
10-21% lower than the experimental data, possibly because the failure criterion and the macro-scale
element did not capture the progressive fibre damage very well around the notch.

Overall, both models provided relatively accurate estimation of the tensile properties of 3D woven

composites at different scale levels. Both failure criteria can be used to obtain strength properties
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with different failure modes. The mosaic model has the potential to simulate the behaviour of larger

3D woven structures if the notch behaviour and progressive fibre damage are implemented.
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Nomenclature
d Damage evolution factor.
dmst Instantaneous damage evolution factor.
E; Young’s modulus in the i direction.
F; Force applied in i direction.
FI Failure index.
G, Critical energy release rate of the failure mode.
Grre Model II interlaminar critical energy release rate.
Gij Shear modulus in i-j plane.
St Longitudinal shear strength.
St Transverse shear strength.
Vir Packing factor, fibre volume fraction within a tow.
Vy Fibre volume fraction.
Xe Compressive strength of the composite in longitudinal direction.
Xr Tensile strength of the composite in longitudinal direction.
Yo Compressive strength of the composite in longitudinal direction.
Yr Tensile strength of the composite in transverse direction.

Greek letters

@ Inter-tow matrix fracture angle.
Yij Shear strain in i-j plane.

& Direct strain in i direction.

Vij Poisson’s ratio.

o; Direct stress in the i direction.
o Traction component.

Tij Shear stress in i-j plane.

Tlmm, Traction component in the I-m-n coordinate system.
Superscripts

0 Failure onset (strain, stress).

el Elastic (strain).

f Failure (strain, stress).
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1S In-situ property.

Subscripts

1,2, 3 Local coordinate system.

f Fibre.

m Matrix.

P Pure polymer (failure index).

Pi Principal stresses.

T, Y, 2 Global coordinate system.
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(a) W-1

Figure 1: Tdealised weave architectures generated using TexGen.
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Figure 2: Quarter of the unit cell of W-1.
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Mosaic model of W-1.

Figure 3
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Figure 4: Elastic modulus (F1) and tensile strength of the models with different number of elements.
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Figure 5: Longitudinal stress distribution on the warp tows at 4400 micro-strain in W-1 model with 0.15 mm mesh..
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Figure 8: Stress-strain curves of W-3 models.
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Figure 9: Longitudinal tensile failure index F'Iyx, and matrix cracking propagation in the W-1-MaxStress Model.
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Figure 10: Tow debonding at 505.10 MPa in the W-1-MaxStress Model.
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Figure 11: Transverse tensile failure index F'Iy,, of the tows at different stress levels in the W-1-MaxStress Model.
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Figure 12: Intra-tow matrix failure index F'lp, at 149.13 MPa in the W-1-Pinho Model.
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Figure 13: Intra-tow matrix fracture angle: (a) Distribution of the intra-tow matrix fracture angle a at 1587.36 MPa in
the W-1-Pinho Model, (b) Failed section showing fracture angle.
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Figure 14: Von-Mises stress distribution and matrix crack propagation in the W-3-Pinho Model.

27



Matrix Fracture Angle
(Avg: 75%)

+1.80e+02
+1.65¢+02
+1.50e+02
+1.35e+02
+1.20e+02
+1.05e+02
+9.00e+01
+7.50e+01
+6.00e+01
+4.50e+01
+3.00e+01
+1.50e+01
+0.00e+00

Figure 15: Intra-tow matrix fracture angle: (a) Distribution of the intra-tow matrix fracture angle a at 1587.36 MPa in
the W-3-Pinho Model, (b) Failed section showing fracture angle.
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Figure 20: Warp tow tensile failure progression of W-3 mosaic model (damaged regions are marked in red).
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Table 2: Fibre volume fraction and thickness of the samples.

D V; (%) CV (%)  Vaary (%) CV ()  Vert (&) _CV (%)t (mm) CV (%)

W-1 49.86
W-3 46.01

1.59 27.72 4.59 21.10 5.83 2.7 3.48
2.57 25.66 3.02 18.09 3.18 2.77 6.11

Table 3: Dimensions of the models.

Weave Tow

w (mm) h (mm) spacing (mm) UC length (mm) ~UC width (mm)

Warp 1.64 0.46 2.00
W-1 Weft 2.76 0.31 3.00 6.00 2.00
Binder 0.33 0.12 2.00
Warp 1.20 0.56 2.20
W-3 Weft 2.70 0.23 3.00 24.00 2.20
Binder 0.98 0.17 2.20
Table 4: Elastic properties of the fibre and matrix.
Tow Fibre Type E1 (GPa) E2 (GPa) V12 Va3 Glg (GP&) G23 (GP&) XT (MP&)
Warp IMS60 E13 24K 290.00 28.00 0.20 0.40 8.96 10.00 5690.00
Weft HTA 40 E13 6K 239.00 28.00 0.20 0.40 8.96 10.00 3825.00
BinderW-'  T300 Toray 1K 233.00 23.10 0.20 0.40 15.00 7.00 2500.00
BinderW-*  T33 Toray 3K 230.00 23.10 0.20 0.40 15.00 7.00 2500.00
Matrix Gurit Prime20LV. 3.50 0.40 1.25 73.00
Table 5: Strength properties of the tows.
Weave Tow Ver (%) Xr (MPa) Xc!' (MPa) Yp (MPa) Yo' (MPa) Sip! (MPa) Sas (MPa)
Warp 74.70 4268.91 1590.00 43.92 185.00 90.00 33.79
W-1 Weft 56.19 2181.10 1500.00 55.14 150.00 70.00 36.18
Weft™ 70.86 2731.72 1500.00 46.80 150.00 70.00 34.40
Binder 89.11 3153.54 950.00 63.42 125.00 97.00 31.94
Warp 85.37 4360.32 1590.00 56.04 185.00 90.00 33.50
W-3 Weft 83.75 1840.41 1500.00 56.47 150.00 70.00 55.03
Binder 82.22 2626.01 950.00 63.64 125.00 97.00 34.61

1 Obtained from [30].
* Surface weft tows.
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Table 6: Predicted tensile strength of unit cell.

Weave Model

Modulus (GPa)

Experiment (MPa) Strength (MPa) Experiment (MPa)

Max-Stress 86.66 1525.36
Max-Stress* 87.64 1533.86

W-1 Pinho 87.96 76.75 1589.00 1368.91
Pinho* 87.43 1586.88
Max-Stress 87.06 1448.35
Max-Stress* 80.28 1402.68

W-3 Pinho 87.32 8049 1483.96 ) o g
Pinho* 80.44 1429.26

*Model with binder tows replaced by matrix.

Table 7: Predicted tensile modulus of un-notched composites.

Weave Modulus (GPa)

Experiment (MPa) Strength (MPa) Experiment (MPa)

W-1

86.45

76.75

1492.67 1368.91

W-3

80.57

80.49

1399.64 1280.99

Table 8: Predicted open-hole tensile strength using mosaic models.

Weave Notch

Simulated (MPa)

Experiment (MPa) Difference (%)

W-1 Standard 782.07 1145.71 -31.74
Large 811.66 1101.07 -26.28
W-3 Standard 812.24 1265.01 -35.79
Large 795.66 1173.50 -32.20

Table 9: Predicted open-hole tensile strength using mosaic models with modified geometries and modified failure criteria.

Weave ~Notch Strength (MPa) Difference (%) Improvement (%)
W-1 Standard 976.10 -11.35 20.39
Large 920.35 -16.41 9.87
W-3 Standard 918.18 -21.76 14.03
Large 956.70 -18.47 13.73
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