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The surface freezing and surface melting transitions that are exhibited by a model two-dimensional
soft matter system is studied. The behaviour when confined within a wedge is also considered. The
system consists of particles interacting via a soft purely repulsive pair potential. Density functional
theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external
potential due to the confining walls is modelled via a hard-wall with an additional repulsive Yukawa
potential. The surface phase behaviour depends on the range and strength of this repulsion: When
the repulsion strength is weak, the wall promotes freezing at the surface of the wall. The thickness of
this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our
mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free
energy barrier) and its formation is necessarily a first-order transition, referred to as ‘prefreezing’,
by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot
terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-
fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can
instead occur. Then the interface between the wall and the bulk crystalline solid becomes wet by
the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence.
It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due
to its proximity to the bulk crystal and so the nucleation of the wetting film can be either first-order
or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting
critical point analogous to the surface critical point for the prewetting transition. When the fluid
is confined within a linear wedge, this can strongly promote freezing when the opening angle of the
wedge is commensurate with the crystal lattice.

I. INTRODUCTION

Over the last three decades or so, much work has been
done on wetting and related interfacial phenomena and
significant progress has been made in our understand-
ing of surface induced phase transitions – see, e.g., Ref.
[1]. The development and use of both phenomenologi-
cal Landau-type [2] and microscopic density functional
theories (DFT) [3–5], progress in computer simulation
methods [6] and also the advancing novel experimental
techniques enabling the modification of surface structures
on the molecular scale, have helped to provide deep in-
sight into the adsorption phenomena of fluids on solid
surfaces. The first theoretical studies, triggered by the
seminal works of Cahn [7] and Ebner and Saam [8], nat-
urally focused on the most evident phenomena such as
first-order or critical wetting, complete wetting, prewet-
ting or layering, all taking place on a planar wall. In all
of these situations a liquid-like layer (or gas-like layer,
in the case of drying) that would be metastable in bulk
is stabilised by the presence of the wall, which acts as a
stabilising external field. Describing wetting films on the
mesoscopic level, this can be understood by the concept
of a liquid-gas interface being bound or repulsed by the
interaction with the wall surface. To date, it can be said
that our qualitative understanding of these phenomena is
satisfactory, at least for simple fluid models [1, 2, 9–14].

Comparatively much less attention, at least from the
microscopic perspective, has been devoted to the situ-
ation where the presence of an external field (i.e. wall)
induces the phase transitions between the liquid and solid
(crystalline) phases. One reason for this is the implicit
expectation that most of the wall induced features exhib-
ited by a liquid-gas system below the bulk critical tem-
perature Tc, also apply for a liquid-solid system above
the triple point Tt. After all, in Landau-type theories
(i.e. phase field models) the two different phases are sim-
ply ‘labelled’ by the two order parameter values ±1. Any
change in symmetry at the transition is reflected in the
choice of terms in the free energy functional. On this
basis, much of the knowledge of the wetting transition
and related phenomena obtained from the study of fluid
systems can indeed be generalised to an almost arbitrary
situation involving three different phases. However, the
specific features of the system under consideration, par-
ticularly its symmetry, has to be taken into account.
Perhaps the most striking difference between a system
involving the liquid-gas and the liquid-solid coexistence
is the absence of a critical point in the latter case, as
the symmetry breaking leading to a transition between a
fully symmetrical fluid and an anisotropic crystal cannot
normally be accomplished in a continuous manner. This
also implies that the symmetry between wetting and dry-
ing phenomena has no analogy in the liquid-solid surface
transitions and thus surface freezing and surface melting
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should be strictly distinguished. Another reason relates
to the fact that the liquid and solid phases are generally
close in density, in contrast to the two phase at the gas-
liquid transition. The density disparity between liquid
and vapour phases (if not too closed to a critical point)
can often be utilised in the theoretical approaches. In
fact, the gas phase may in some cases be well approx-
imated by a vacuum [15]. This is clearly not the case
for the crystal, which also exhibits spatial inhomogeneity
that may play an important role, related to whether the
crystal lattice is commensurate with the substrate and
the spacing between walls in confined or finite systems.
This also leads to much higher computational demands
when the problem is treated numerically.

One can extend Landau order-parameter type theories
by including in the theory more microscopic structural
information of the crystal phase [16, 17]. These so-called
phase-field-crystal theories can be viewed as simplified
DFTs. The use of true (non-local) DFT to study adsorp-
tion phenomena involving a crystalline phase is rather
sparse. This is because the crystal anisotropy requires
much more demanding numerical treatment than a fluid
phase. To resolve both the sharp density peaks and have
a system of the size required to observe a sizeable pre-
freezing layer requires numerics with a space discretiza-
tion having a large number of grid points. We are aware
only of the ground-breaking work of Ohnesorge et al.
[18, 19], who studied melting of a crystal of a simple
atomic system on its surface by tracking a sublimation
line towards the triple point. Surface melting was also
observed in the lattice DFT model in Ref. [20]. More
recently, the influence of a slit confinement on crystal-
lization of a soft repulsive model was examined [21]. For
wide slits, surface melting was observed when the con-
fining walls are purely repulsive and surface freezing was
observed when the walls are attractive. We show here
for a slightly different system that actually both effects
can be seen at repulsive walls. An alternative to DFT is
to use computer simulations and indeed various aspects
of wall induced freezing and melting has been studied
previously in this manner [22–28].

Here, we present DFT results for a system exhibiting
surface freezing and a surface melting induced by a purely
repulsive wall. We consider a particularly simple two-
dimensional (2D) model fluid consisting of particles in-
teracting via a soft purely repulsive pair potential that is
both finite and bounded: v(r) = εe−(r/R)n , with ε <∞.
This is the so-called generalised exponential model with
exponent n, or ‘GEM-n’ potential. When the exponent
n = 2, this corresponds to the Gaussian core model [29–
32]. Here, we focus on the case n = 4. The model should
be considered as a coarse grained potential for soft parti-
cles in solution, such as polymers whose globular shape is
given by their architecture, e.g. branched polymers such
as dendrimers or star polymers [31–43]. We consider this
model because the bulk structure and phase behaviour is
well understood in both 2D and 3D [44–56]. The particle-
wall interaction is also assumed to be repulsive and we

model it by the Yukawa potential [31, 35–38]. The main
reason we consider the system in 2D, rather than in 3D,
is because for the system sizes required to fully resolve
a thick adsorbed film on a surface, the computations re-
quired are currently prohibitive in 3D. However, many of
the qualitative predictions from the work presented here
are relevant to 3D.

The aim of our work is a twofold: First, we seek
to determine the full interfacial phase diagram compris-
ing both prefreezing and premelting and investigate the
(a)symmetry of the two transitions and also to compare
these phenomena with those involving a fluid-fluid (i.e.,
liquid-gas or liquid-liquid) interface. In particular, we in-
vestigate how varying the parameters that determine the
strength and range of the potential due to the wall influ-
ences the adsorption at the wall and the interfacial phase
behaviour. The pertinent questions we seek to address
are: What is the nature of the prefreezing/premelting
transition? Do the phase diagrams contain any (surface)
critical points? How does the interfacial phase behaviour
depend on the molecular parameters? Second, we inves-
tigate the effect of the substrate geometry, in particular,
we consider wedge-like confinement with a varying open-
ing angle to examine how the value of the angle alters
the freezing at the surface inside the wedge.

The system is treated using DFT [3–5], which is a the-
ory that provides a link between the observable phenom-
ena, such as the growth of a liquid-like or a crystal-like
layer at the wall and nature of the phase transitions,
with the microscopic properties of the considered sys-
tem. Thus, using DFT one can achieve a full description
of the system behaviour directly from the first principles,
i.e, merely from the knowledge of the mutual interaction
between the particles and the interaction of the parti-
cles with the wall. The appealing feature of the GEM-n
models is that a very simple approximate DFT, namely
that which generates the random-phase approximation
(RPA), can be satisfactorily used [32]. This is due to
the softness of the potential which means that when the
density is high, each particle interacts with many neigh-
bours, which justifies the use of the simple mean-field ap-
proximation. In Refs. [57, 58] comparison between DFT
and Brownian dynamics (BD) computer simulations for a
different but related model 2D soft-core system of parti-
cles exhibiting freezing and also quasicrystal formation,
showed good agreement between the DFT and BD re-
sults, pointing to the reliability of the DFT we use here
in 2D. Also, in Ref. [56] the present 2D GEM-4 system
was studied. There it was shown that for the liquid state
the RPA DFT test particle results for the radial distribu-
tion function g(r) compare well with results from Hyper-
netted-chain (HNC) integral equation theory [5]. These
results give confidence that the simple RPA DFT is able
to account well for the structure of the fluid state in 2D.

An important feature of the 2D GEM-4 system is that
at temperatures above kBT/ε ≈ 0.045 (our results here
are for kBT/ε = 0.5), there is no hexatic [59] intervening
between the liquid and crystal phases [55]. This is be-
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cause the hexatic only occurs where the 2D GEM-4 fluid
freezes to a single-occupancy crystal. However, at higher
temperatures, the system freezes directly from the liquid
to a multiple-occupancy cluster crystal [55]. This aspect
and the absence of the hexatic has implications for how
our results may relate to other 2D systems. We return
to this issue in our final conclusions section below.

The remainder of the paper is organised as follows: In
section II we formulate the model and describe the DFT
that we use in our study. Our numerical results are pre-
sented and discussed in section III. The paper concludes
with a summary and discussion in section IV.

II. MODEL AND DENSITY FUNCTIONAL
THEORY

We consider a 2D system of soft particles interacting
with one another via a soft purely repulsive pair poten-
tial,

φ(r) = ε exp
[
−(r/R)4

]
, (1)

which is the GEM-4 pair potential. r is the distance
between the centres of the particles and the parameters
ε > 0 and R define strength and range of the potential,
respectively.

In DFT [3–5], the equilibrium properties of the sys-
tem are obtained by minimising of the grand potential
functional

Ω[ρ(r)] = F [ρ(r)] +

∫
drρ(r)[V (r)− µ] , (2)

where ρ(r) is the one-body density profile, µ is the chem-
ical potential and V (r) is the external potential. The
intrinsic Helmholtz free energy functional F [ρ] can be
separated into two contributions,

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] . (3)

The ideal-gas part is known exactly,

βFid =

∫
drρ(r)

[
ln[Λ2ρ(r)]− 1

]
, (4)

where β = 1/kBT is the inverse temperature, kB is Boltz-
mann’s constant and Λ is the thermal de Broglie wave-
length. The excess part of the free energy is approxi-
mated as [32]

Fex[ρ(r)] =
1

2

∫
dr1

∫
dr2ρ(r1)ρ(r2)φ(|r1 − r2|), (5)

which generates the RPA for the pair direct correlation
function:

c(2)(|r1 − r2|) ≡ −
δ2βFex

δρ(r1)δρ(r2)
= −βv(|r1 − r2|). (6)

It is well-known that the approximation in Eq. (5) pro-
vides a reliable description of the thermodynamics and

structure of soft particles at high densities and not too
low temperatures. In this regime, the average number
of neighbours per particle is large, which justifies the
mean-field character of (5). This approximation is thus
intimately connected with the ultrasoft character of the
potential (1) and is clearly not applicable for pair poten-
tials possessing a hard core.

Here we consider two types of external potentials, rep-
resenting the influence of a solid substrate. For a planar
wall, we use the repulsive Yukawa potential

Vp(x, z) =

{
∞ z < 0 ,

A e−z/λ

z/λ z > 0
, (7)

where the parameter A > 0 determines the strength
and λ the range of the wall potential, respectively. This
potential approximates well the effective interaction be-
tween polymers or dendrimers with a hard wall [31, 35–
38], as long as λ ≈ Rg, where Rg is the radius of gyration.
We show below that the values of both A and λ are essen-
tial for determining whether or not wall induced freezing
or melting occurs.

The second external potential we consider is that
formed by two hard walls meeting at an opening angle ψ,

Vw(x, z) =

{
∞ for z < 0, or z > tan(ψ)x ,
0 otherwise

. (8)

The main interest in this case is to explore the influence of
the value of the corner angle ψ on the interfacial freezing
of the soft particles confined between these A→ 0 walls.

For a given external potential V (r), minimising the
Grand potential (2) leads to an Euler-Lagrange equation,
which can be re-written as follows:

ρ(r) = Λ−2 exp[βµ− c(1)(r)− βV (r)] , (9)

where the one-body direct correlation function is given
by the convolution

c(1)(r) = −
∫

dr′ρ(r′)βφ(|r− r′|). (10)

Eq. (9), which gives the equilibrium density distribution
of the GEM-4 particles, is solved numerically on a 2D
Cartesian grid with spacing ∆x = ∆z = 0.05R. The
convolution in Eq. (10) is evaluated in reciprocal space
with the aid of fast Fourier transforms.

III. RESULTS

Before describing the properties of the 2D GEM-
4 model at interfaces, we first recall the bulk phase
behaviour. This was determined in Ref. [55] using
Monte-Carlo computer simulations. For low tempera-
tures kBT/ε . 0.045, on increasing the density, the parti-
cles behave very similar to conventional 2D fluids [59, 60],
first exhibiting a transition to a hexatic phase, before
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FIG. 1: DFT phase diagram for the 2D GEM-4 fluid. For a
given value of the temperature, the binodals give the densities
of the coexisting fluid and crystal phases. We also display
the ‘spinodal’ or limit beyond which the metastable uniform
liquid state is linearly unstable.

freezing to form a hexagonal crystal phase. On further
increasing the density, the soft-core nature becomes ev-
ident and the particles start to overlap, pairing up to
form a 2-cluster crystal. Further increases in the den-
sity lead to higher numbers of particles in each cluster.
See also Ref. [54] for a description of the equivalent 3D
behaviour. However, for temperatures kBT/ε & 0.045,
the fluid freezes straight to a multiple occupancy cluster
crystal and there is no hexatic. For higher temperatures,
this freezing transition is well described by the mean-field
DFT in Eq. (5) – see [55]. The DFT predicts a first-order
freezing transition. The phase diagram is found by solv-
ing Eq. (9) with V (r) = 0, and is displayed in Fig. 1. For
a given temperature kBT/ε, there is always a uniform
density solution, ρ(r) = ρ, corresponding to the uniform
liquid state. This profile is only a minimum free energy
solution at lower densities. At higher densities, beyond
the spinodal in Fig. 1, it becomes a metastable saddle-
point in the free energy – i.e. at this point the uniform
liquid state becomes linearly unstable. For higher values
of the average density in the system, there is also a non-
uniform density profile solution to Eq. (9), corresponding
to the crystal phase. For a given temperature, at a unique
value of the chemical potential, these two solutions have
the same value of the grand potential (i.e. same pressure)
and thus are in thermodynamic coexistence. The average
densities of these two coexisting states are the binodals
displayed in Fig. 1. The DFT predicts the existence of
only one crystal phase. Also, since the potential (1) is
purely repulsive, there is only one fluid state.

Now we describe what happens at the interface be-
tween a planar wall and the bulk fluid. The inverse
temperature is set to be βε = 2, at which the system
is well described by the RPA free energy functional (5),
and the coexistence between the bulk fluid and crystal
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FIG. 2: Density profiles against a planar wall with potential
(7), with βA = 1 and λ/R = 1. In the top pannel, we display
the coexisting profiles corresponding to a surface freezing layer
on the wall (left) and remaining fluid at the wall (right). Both
profiles are for βε = 2 and βµ = 15.5, the state point at which
they coexist. Below, we display a series of laterally averaged
density profiles. The upper two profiles are for the liquid at
the wall and the lower ones average over the density peaks
corresponding to a prefrozen layer on the wall. Note that the
corresponding chemical potential values are indicated and the
profiles have been vertically shifted for clarity.

phases is predicted to occur at the chemical potential
value βµcoex = 16.1299. In Fig. 2 we display density pro-
files for chemical potential values µ < µcoex, i.e., for state
points where the bulk thermodynamic equilibrium phase
is the fluid state. These profiles are calculated for a wall
with a relatively weak repulsion strength βA = 1 and
range λ/R = 1. In this case, the external potential does
not considerably differ from the hard wall. As the chem-
ical potential is varied, we find that when the chemical
potential takes the value βµpf = 15.5, where µpf < µcoex,
we observe a first-order transition from liquid ordering at
the wall to crystalline ordering at the wall. Thus, at µpf

a prefreezing transition occurs. When µ = µpf two dif-
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FIG. 3: The thickness of the surface freezing layer as coexis-
tence is approached, for βε = 2, λ/R = 1 and βA = 1. The
thickness Nc is defined as the number of crystalline layers at
the wall. Note that ∆µ ≡ µ− µcoex, where µcoex is the value
at coexistence. The straight line guide to the eye has gradient
m = −1.1, indicating that the surface freezing layer thickness
Nc ∼ −m ln |∆µ| as coexistence is approached.

ferent density profiles coexist – i.e. have same value of Ω
– these are displayed in the upper panel of Fig. 2. The
density profile on the left exhibits several crystalline lay-
ers adsorbed on the surface of the wall, in contrast to the
profile on the right which exhibits liquid-like structuring
at the wall, which varies only in the direction perpen-
dicular to the wall. As the chemical potential is further
increased, approaching µcoex, the number of crystalline
layers adsorbed on the wall increases. This is illustrated
in Fig. 3 where we display a plot of the number of crys-
talline layers adsorbed at the wall, which shows a loga-
rithmic divergence of the total thickness of the crystalline
layer as µcoex is approached [21]. The density profiles in
the lower panel of Fig. 2 are obtained by first calculating
the two-dimensional density profiles at the wall, such as
those displayed in the upper panel of Fig. 2. From these,
we then average over the direction parallel to the surface
of the wall to give the laterally averaged density profile:

ρ(z) =
1

L

∫ L

0

ρ(x, z)dx, (11)

where L is the width of the system.
All the observed phenomena described above appear

to be analogous with the complete wetting (or drying)
behaviour when a film of the liquid (gas) phase which
is metastable in bulk is formed at the wall-gas (wall-
liquid) interface [10, 11]. Recall that for wetting, if the
transition (at bulk coexistence) is first order at the wet-
ting temperature Tw, there is indeed an off-coexistence
extension of the free energy singularity, giving rise to a
first-order prewetting or thin-to-thick adsorbed film tran-
sition. Also, when the interactions between the particles
are short ranged, then (above Tw) the thickness of the
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FIG. 4: The interfacial phase diagram as a function of A, for
λ/R = 1 and βε = 2. The limit A = 0 corresponds to the
hard wall, at which prefreezing occurs. As A is increased, the
interval in ∆µ in which prefreezing occurs gets smaller, and
for βA ≥ 1.6 there is no prefreezing at all.

adsorbed layer, l ∼ − ln |∆µ|, where ∆µ ≡ µ − µcoex.
This is similar to the prefreezing we observe here. How-
ever, there is an important difference between wetting
and wall induced freezing. In the wetting (or drying)
case, one observes a preferential adsorption of a phase
possessing the same symmetry as the bulk phase, while
in the prefreezing case the symmetry between the two co-
existing phases is different. The change in the translation
symmetry (from continuous to discrete) thus necessitates
that the occurrence of the crystalline phase to be a first
order transition. It is interesting to note that it is the
symmetry breaking along the direction parallel to the
wall which drives the prefreezing transition, and there is
almost no change in the excess number of particles ad-
sorbed at the wall as µpf is crossed. This can be seen
from the lower panel of Fig. 2. For βµ = βµpf = 15.5,
comparing the laterally averaged density profiles of the
coexisting states displayed in the upper panel, we see
they are almost indistinguishable.

In Fig. 4 we display the surface phase diagram, show-
ing the locus of the prefreezing transition as the wall re-
pulsion strength parameter A is varied, while the range
of the wall potential is kept fixed at λ/R = 1. When
A < Ac, where βAc ≈ 1.6, the wall induces freezing, ac-
companied by a first-order prefreezing transition. When
A > Ac, no surface freezing occurs and in the limit
∆µ ≡ (µ − µcoex) → 0−, the whole system is filled
with the (strongly inhomogeneous) liquid phase. For
∆µ→ 0+, the whole system remains in the crystal state
for all values of A. This phenomenology can be easily un-
derstood by recalling that all interactions in the system
are purely repulsive. When the strength of the wall re-
pulsion is less than the particle-particle interaction, there
is a strong affinity of the particles to the wall surface, be-
cause this reduces the total energy of the system. This
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FIG. 5: The interfacial phase diagram as a function of A, for
λ/R = 4 and βε = 2. The limit A = 0 corresponds to the hard
wall, at which surface freezing occurs. As A is increased, the
interval in ∆µ in which surface freezing (or prefreezing) occurs
gets smaller, and for βA ≥ 0.9 there is no surface freezing
when the bulk is the liquid phase. However, in contrast to
the case when λ/R = 1, on approaching coexistence from
above (when the crystal is the bulk phase), we find that for
βA ≥ 3.07 there is wetting of the wall-crystal interface by the
liquid phase. This wetting transition is first order, with the
usual prewetting line. However, the prewetting line is rather
short – in the figure above the ends of the prewetting line are
marked with “�”.

can be most clearly understood in the A = 0 limit, when
the external potential acts as a hard-wall. In this limit,
a particle sitting on the surface of the wall interacts with
only a half-space containing particles, so the potential en-
ergy is less than the value for a particle in the bulk, far
from the wall. The effect of this is that when A is small,
the density of particles on the surface of the wall is high.
If the surface density is high enough, then these particles
can further lower the energy by fully overlapping with
some particles, so as to decrease the overlaps with others
– i.e. the surface particles freeze into a cluster-crystalline
layer. On increasing A, this effect becomes weaker, as
does the corresponding transition, which eventually dis-
appears at Ac. Since the freezing is always first-order,
there is no analog to the surface critical point of the
prewetting transition.

In Fig. 5 we display the interfacial phase diagram for
the case when the wall potential range is increased to
λ/R = 4. Compared to the previous case in Fig. 4, with
λ/R = 1, the net wall repulsion is greater for a given
A and thus the prefreezing line is steeper and meets
the bulk coexistence line at βA ≈ 0.9, rather than at
βA ≈ 1.6 (compare Figs. 4 and 5). For βA > 0.9 the
slowly decaying wall repulsion prevents prefreezing and
hinders the formation of the crystalline structure near
the wall surface. Furthermore, in contrast with the case
with λ/R = 1, when the bulk phase is the crystal, the
wall now has the ability to induce surface melting when
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FIG. 6: 2D density profile of the crystal phase near the wall
with βA = 4 and λ/R = 4. The surface of the wall is along
the line z = 0. The chemical potential βµ = 16.25 and tem-
perature kBT/ε = 0.5. Note that there is surface melting, i.e.
the density profile near the wall is liquid-like. However, right
at the wall there are still small amplitude oscillations in the
profile parallel to the wall due to the proximity of the bulk
crystal.
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FIG. 7: A series of laterally averaged density profiles against
a planar wall with βA = 3.7 and λ/R = 4. The upper
profiles, which are for state points away from coexistence,
show the crystal right up to the wall, but as coexistence at
βµcoex = 16.1299 is approached, we see in the lower profiles
that there is a growing liquid film on the wall. This film of
liquid grows continuously in thickness as coexistence is ap-
proached, with diverging thickness at coexistence. Note that
the corresponding chemical potential values are indicated and
the profiles have been vertically shifted for clarity.

A > Am, where βAm = 3.07. This is the inverse pro-
cess to surface freezing, occurring as coexistence is ap-
proached from above, ∆µ → 0+. When the wall repul-
sion is sufficiently strong (relative to the particle-particle
repulsion), the slowly decaying wall potential decreases
the density near the surface of the wall, which gives rise
to a liquid-like structure in the vicinity of the wall. In
Fig. 6 we display the density profile at the wall-crystal
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sorbed at the wall. The thickness of this liquid layer then in-
creases as coexistence is approached, diverging as µ→ µ+

coex,
where βµcoex = 16.1299.

interface when the chemical potential βµ = 16.25, which
corresponds to β∆µ ≈ 0.12, where the average bulk crys-
tal density ρ̄R2 = 2.8. The density profile is liquid-like
at the surface of the wall, i.e. surface melting occurs.
However, one can also see small amplitude density mod-
ulations in the liquid at the wall due to the vicinity to
the bulk crystal so that the liquid phase still exhibits
broken translation symmetry along the x-axis. This is in
contrast to the surface freezing, where the formation of
the new crystalline phase requires a change of symmetry,
whereas for surface melting the symmetry of both phases
is the same, albeit the amplitude of the density modula-
tions in the liquid can be small. The consequence of this
is that it allows for the existence of a critical point at
A = Amc, separating a regime where the surface melting
appears via a first order transition as ∆µ → 0+, from a
regime where the thickness of the liquid film at the inter-
face grows continuously. Therefore, the topology of the
surface phase diagram for premelting is the same as for
wetting/drying.

In Fig. 7 we display a series of laterally averaged
density profiles for state points approaching coexistence
∆µ → 0+, for the wall with λ/R = 4 and βA = 3.7.
Laterally averaging over the density profile of the crystal
phase using Eq. (11) results in a highly oscillatory profile;
each oscillation corresponds to a different crystal plane.
The results in Fig. 7 are typical of the case A > Amc.
The amplitude of the oscillations are diminished close
to the wall. For states near to coexistence, the profiles
exhibit a portion where the density is almost flat, cor-
responding to a film of the liquid. The thickness of the

liquid layer l grows as coexistence is approached, diverg-
ing at coexistence l ∼ − ln |∆µ|. For A > Amc and for
any value of the chemical potential there is a unique mini-
mum solution of the grand potential functional (2). Thus,
the surface melting is continuous. In contrast, when the
wall strength Am < A < Amc there are two solutions
to Eq. (2): one corresponding to crystal right up to the
wall and the other to a state exhibiting a liquid-like layer
adsorbed at the wall. However, this fluid layer still pos-
sesses lateral inhomogeneity. The line at which the two
branches of solutions intersect in the Ω-µ plane defines
the first-order premelting transition. In Fig. 8 we display
a series of laterally averaged density profiles, calculated
along a path approaching coexistence. As the premelting
line is crossed, the liquid-like layer forms discontinuously,
appearing in Fig. 8 as a sudden jump in the amplitude of
the oscillations near the wall. The thickness of the liquid
layer eventually diverges as ∆µ→ 0+.

Now consider the crystallization of the GEM-4 fluid
inside a linear wedge formed by the conjunction of two
hard walls. Our primary interest is in the influence on
the surface freezing of the opening angle ψ of the corner
at which the two walls meet. In Fig. 9 we display a series
of equilibrium density profiles for β∆µ = −0.33 and for
various values of ψ. As discussed above, at the planar
hard-wall prefreezing occurs when the bulk fluid state is
near to coexistence with the crystal. For this state point,
far from the apex of the wedge, this surface frozen layer
consists of just two pronounced crystalline layers. Near
the corner, the degree to which the crystal structure can
be accommodated between the two converging walls has
a significant effect on the amount of frozen material near
the apex where the two crystalline films meet. When
ψ = 60◦, the thickness of the crystalline layer in the
corner is much thicker than on the planar wall and also
for any of the other cases in Fig. 9. For the case when
ψ = 55◦, which is close to ψ = 60◦, there is a thickening
of the crystalline layer, but to a much lesser extent. This
is due to the fact that when ψ = 60◦, the two walls are
both parallel to crystal planes and so the effect of the
corner is to enhance the amount of frozen particles in
the vicinity of the corner.

In Fig. 10 we display a plot of Ncp, the number of
sharp (i.e. crystal-like) density peaks in the corner, as
a function of the corner angle ψ. Ncp is defined as the
number of density peaks with a peak value ρp greater
than a specified threshold value that are located at a dis-
tance less than 15R of the apex of the corner. We display
Ncp for peaks with ρpR

2 > 7 and also with ρpR
2 > 10.

Qualitatively, the results are very similar over the inter-
val ψ ∈ (10◦, 90◦) with either threshold value. As ψ is
increased, we observe an increase in Ncp, reflecting sim-
ply the fact that as the angle ψ increases, the corner gets
bigger and so there is more space for density peaks to be
present. However, for a narrow interval of angles around
the value ψ = 60◦, we see a significant increase in Ncp,
reflecting the fact that for this value the crystal phase
fills the wedge to a large extent, as can be seen in in
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FIG. 9: Density profiles of the fluid confined in a hard-wall wedge with varying opening angle, ψ. From top left to bottom
right: ψ = 30◦, 45◦, 55◦, 60◦, 70◦, 90◦. Note that the particles are frozen in the vicinity of the wall. Depending on ψ, the corner
contains more or less frozen layers than at the planar wall. The chemical potential βµ = 15.8, which corresponds to the fluid
state in bulk.
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FIG. 10: Number of crystalline density peaks in the corner
Ncp, defined as the number of density peaks within a distance
of 15R from the corner of the wedge. We plot the number of
peaks with a peak density value ρpR

2 > 7 (solid line) and
ρpR

2 > 10 (dashed line).

FIG. 11: Density profile in a hard-wall wedge with an opening
angle ψ = 10◦. The chemical potential βµ = 15.8 corresponds
to the fluid state in bulk.

Fig. 9. The very strong enhancement of the crystalline
structure when the opening angle ψ ≈ 60◦ is because
the wedge geometry matches with the hexagonal lattice
of the 2D crystal and therefore promotes the crystalliza-
tion. On the other hand, for smaller corner angles, such
as when ψ = 30◦, there is a strong interference between
the two surface layers, which suppresses the formation of
the crystal near the apex. However, as can be seen from
Fig. 11, for extremely acute wedges ψ ≈ 10◦, formation of
bridges connecting crystal-layers on the respective sides
of the wedge occurs (cf. Fig. 10).
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FIG. 12: Density profiles for the fluid confined within a triangle, as the chemical potential is varied, approaching bulk coexis-
tence. The chemical potential values, going top left to bottom right, are: βµ = 14.5, 15, 15.25, 15.5, 15.75 and 16. The walls of
the triangle are hard and the three corner angles are 30◦, 60◦ and 90◦.

Finally, in Fig. 12 we show a sequence of density pro-
files for the system confined within a triangular cavity
with hard walls meeting at corners with angles ψ = 30◦,
60◦ and 90◦. The profiles are for a sequence of increasing
chemical potential values µ → µ−coex. Placing the three
different corners within the same system allows one to
see the difference in how the crystal phase appears at
a different rate depending on the angle of the corner as
µ → µ−coex. As already observed, in the 60◦ corner the
crystal is strongly enhanced in comparison with the other
two corners. A specific feature of this closed system is
that it is rather resistant to being completely frozen, even
when µ ≈ µcoex. This is because each of the corners gen-
erates a different crystal orientation and complete freez-
ing requires the crystalline orientation induced at one of
the corners to prevail over the other two. Therefore, the
unfavourable crystalline structure near the 30◦ and 90◦

corners creates a barrier to full crystallization, in contrast
with an open wedge.

IV. SUMMARY AND CONCLUSIONS

Using DFT we have studied the surface freezing and
surface melting interfacial phase behaviour of a soft mat-
ter system at a planar wall and inside of wedges at state
points close to phase coexistence between the liquid and
the crystal, which occurs when µ = µcoex. For the planar
wall, both the range and the strength of the repulsion
due to the wall can have a profound effect on the nature
of the surface phase behaviour. When the wall repulsion
is strong enough and slowly decaying, then this favours
premelting when (µ− µcoex)→ 0+, but when the wall is
repulsion decreases rapidly, then this favours prefreezing
when (µ− µcoex)→ 0−.

In general, there is a threshold value of the wall repul-
sion amplitude Ac below which the wall induces freezing
at µcoex and there is a prefreezing transition on the ap-

proach to coexistence (µ − µcoex) → 0−, at which the
first crystalline layers near the wall nucleate. Further
approaching bulk coexistence, the number of crystalline
layers Nc adsorbed at the wall increases and eventually
diverges, Nc ∼ −m ln |µ − µcoex|. This implies that the
leading order term in the binding potential in an effec-
tive interfacial Hamiltonian description of surface freez-
ing ∼ e−Nc/m, which is the dominant term as Nc → ∞.
Since the prefreezing requires a change of symmetry, the
transition is always first-order and cannot exhibit a crit-
ical point. This feature is analogous to a bulk solid-
fluid transition and distinguishes surface freezing from
the wetting/drying transition, where the two phases have
the same symmetry.

When the wall potential is slowly decaying, then there
is the possibility of surface melting for sufficiently large
values of the wall repulsion amplitude A. In this case, the
wall is completely wet by the fluid as bulk phase coexis-
tence is approached (µ−µcoex)→ 0+. It is also observed
that the surface melting is not merely the inverse process
to surface freezing. While in the case of surface freezing
the bulk liquid possesses a different symmetry to that
of the wall-adsorbed crystal, in the case of surface melt-
ing the wall-adsorbed fluid state still exhibits a broken
symmetry due to its proximity to the bulk crystal. The
latter are distinguished by the magnitude of the density
oscillations in each phase. This implies the possibility
of a critical point for the premelting transition, separat-
ing the regime for which the melting is continuous from
where it is a first-order transition.

When the fluid is confined within a wedge made of
two converging hard walls, the value of the opening an-
gle of the wedge is found to have a considerable effect
on the structure of the confined particles in the wedge.
Whether or not the crystal structure is commensurate
with the wedge shape can either promote or suppress the
fluid from freezing. In particular, when the opening an-
gle is around ψ = 60◦, the wedge geometry matches with
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the bulk crystal lattice, which strongly enhances freezing
near the apex. This effect was also observed in studies of
heterogeneous crystal nucleation [61, 62], where the an-
gle of the groove in the 3D surface was observed to have
a significant effect on the nucleation rate.

In Ref. [21] the phase behaviour of the 3D GEM-8
system confined within a slit was studied. The authors
considered confinement between a pair of parallel planar
walls with potentials given by the same repulsive Yukawa
form as in Eq. (7), with λ/R = 1 and βA = 10, and also
between a pair of attractive Lennard-Jones type walls.
When the slit width is large, surface melting was observed
at the repulsive wall and surface freezing at the attractive
wall. However, in light of the present work one should
also expect to observe surface freezing of the 3D GEM-
8 fluid at the repulsive Yukawa wall if the range of the
wall repulsion is decreased and/or the amplitude of the
repulsion A is decreased. The general trends and over-
all qualitative behaviour of the 2D GEM-4 fluid studied
here should apply more generally to 2D and 3D soft-core
fluids exhibiting freezing to a cluster crystal.

We should caution against drawing conclusions from
our results here regarding the interfacial phase behaviour
of the 2D GEM-4 fluid to 2D fluids in general, particu-
larly those composed of particles having a hard core. Re-
call that in 2D, in view of the Mermin-Wagner theorem
(see [59] and references therein), one should expect large-
scale fluctuations to prevent genuine long-range transla-
tional order. Additionally, as the density is increased, 2D
fluids composed of particles with a hard-core first exhibit
a transition to the hexatic phase, before freezing to form
a hexagonal crystal phase [59, 60]. This is also what the
2D GEM-4 system does at low temperatures. However,
for higher temperatures kBT/ε & 0.045 the 2D GEM-4
system freezes from the liquid state directly to a cluster
crystal state and there is no hexatic [55]. It is in this

regime that our results are relevant.

A further aspect that we should remark on relates
to the mean-field character of the DFT that we use.
The theory is remarkably accurate for describing the 2D
GEM-4 system, due to the softness of the particles. At
high densities, there are multiple overlaps and each par-
ticle interacts with very many neighbours (the classic
mean-field scenario). Nonetheless, we expect fluctuation
effects to round the observed surface transitions and pre-
vent them from being genuine phase transitions. In view
of the pseudo one-dimensional character of the premelt-
ing critical point, going beyond mean-field and including
a proper description of the large-scale fluctuations will
destroy the observed premelting transition, making the
transition rounded – see also Ref. [63]. However, this
should only apply for the 2D system studied here. We
do expect a true premelting transition to occur for the
3D fluid. As regards the influence of fluctuations on the
observed prefreezing transition, it is hard to judge. Even
in bulk, the true 2D crystal only has quasi-long-range
positional order due to fluctuations, so one must expect
fluctuation effects to change the character of the tran-
sition. However, since the prefreezing requires a change
in symmetry and possesses no critical point, fluctuation
effects may be less pronounced than for the premelting
transition. We certainly expect that in 3D the premelt-
ing transition to be qualitatively similar to that observed
here based on a mean-field treatment of the 2D system.
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[26] A. Esztermann and H. Löwen, J. Phys.: Condens. Matter

17, S429 (2005).
[27] B. B. Laird and R. L. Davidchack, J. Phys. Chem. C 111,

15952 (2007).
[28] A. J. Page and R. P. Sear, Phys. Rev. E 80, 031605

(2009).
[29] F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
[30] A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen, J.
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