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Abstract: Existing methods of estimating travel time from GPS data are not able to 

simultaneously take account of the issues related to uncertainties associated with GPS and 

spatial road network data. Moreover, they typically depend upon high frequency data sources 

from specialist data providers which can be expensive and are not always readily available. 

The study reported here therefore sought to better estimate travel time using ‘readily available’ 

vehicle trajectory data from moving sensors such as buses, taxis and logistical vehicles 

equipped with GPS in ‘near’ real-time. 

To do this, accurate locations of vehicles on a link were first map-matched to reduce the 

positioning errors associated with GPS and digital road maps. Two mathematical methods 

were then developed to estimate link travel times from map-matched GPS fixes, vehicle 

speeds and network connectivity information with a special focus o n  sampling frequencies, 

vehicle penetration rates and time window lengths. GPS data from Interstate I-880 

(California, USA) for a total of 73 vehicles over 6 hours were obtained from the UC-
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Berkeley’s Mobile Century Project, and these were used to evaluate several travel time 

estimation methods, the results of which were t h e n  validated against reference travel time 

data collected from high resolution video cameras.  

The results indicate that vehicle penetration rates, data sampling frequencies, vehicle 

coverage on the links and time window lengths all influence the accuracy of link travel time 

estimation. The performance was found to be best in the 5 minute time window length and for 

a GPS sampling frequency of 60 seconds.  

Key words: Travel time estimation, GPS data, Map-matching, vehicle penetration rate, 

sampling frequency 
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INTRODUCTION 

The estimation of network traffic states such as travel time, traffic flow, speed and density 

has increasingly become important for travellers and traffic operators (Jiang et al. 2006; Li, 

2008), and travel time is a particularly important input for assessing and monitoring the 

efficiency and performance of a transport network and its associated traffic management 

systems. For instance, travel time is the primary input to route guidance that provides 

information to travellers regarding the most suitable route depending on the traveller’s 

requirements, preferences and network states (Liao and Chen, 2015). Simply, a longer travel 

time will lead to a higher travel cost, and travellers would be able to avoid this situation if 

reliable pre-trip and en-route travel time information was provided. Therefore, accurate 

estimation of travel time has become a matter of high importance in recent years (Li, 2008).  

Unfortunately, existing methods of estimating travel time from GPS data are not able to 

simultaneously take account of the issues related to uncertainties associated with GPS and 

spatial road network data, e.g. sampling frequency, vehicle coverage on the network, time 

window length and vehicle penetration rate. Moreover, they also tend to depend upon higher 

frequency data sources from specialist data providers and hence can be expensive and not 

always readily available. The study reported here therefore sought to better estimate travel 

time using ‘readily available’ vehicle trajectory data from moving sensors such as buses, taxis 

and logistical vehicles equipped with GPS in ‘near’ real-time. 

The paper is structured as follows: the next section reviews the available literature, 

followed by a brief description of the data used in this study. The section on methodology 

describes two methods which are used to estimate link travel time using GPS and road 

network data. The results section then  provides the analysis and comparison with the 

reference travel time data. Finally, the paper ends with conclusions.  
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LITERATURE 

For travel time estimation it is essential to first determine the accurate location of vehicles 

travelling on road segments (Zhang and Gao, 2008). A range of different map-matching 

algorithms has emerged in the literature over the last decade. Based on the techniques used in 

the map-matching process, these map-matching algorithms can be categorised as geometric, 

topological, probabilistic and artificial intelligence (Xi et al. 2007; Jagadeesh et al. 2004). A 

geometric MM algorithm is the simplest approach to find a road segment which is the closest 

to the vehicle trajectory. A topological approach uses the information of the link’s geometry 

as well as link connectivity in the map-matching process. A probabilistic algorithm uses 

statistical models (i.e. based on probability theory) and considers all the links as the candidate 

links which fall within the defined error region around a positioning point. A fuzzy logic-

based map-matching algorithm is an artificial intelligence technique that uses knowledge-

based fuzzy rules formulated from the input and is able to take into account uncertainty 

associated with the map-matching process. This type of map-matching algorithm is suitable 

for dense urban road network in which the identification of the correct road segment among 

the candidate segments is more difficult (Syed and Cannon, 2004). Quddus et al. (2007) 

presented a detailed description of all existing map matching algorithms from simple 

(Geometric and probabilistic) to complex approaches (e.g. Fuzzy logic, Extended Kalman 

Filter, Dempster-Shafer’s theory, Bayesian theory, Belief theory and Hybrid Map-matching). 

For the development of an efficient traffic management system on freeways and arterials, the 

accurate travel time estimation is essential, and therefore there are number of methods which 

have been proposed in literature to estimate the travel times under these conditions (Petty et al. 

1998; Krishnan, 2008). Initially for freeway travel time estimation, techniques such as the 

‘Sandglass Method’ (Takaba et al.1991), ‘Simple Stochastic Based Regression Method’ 

(Petty et al. 1998), ‘K-Nearest Neighbour Model’ (Handley et al. 1998) ‘Artificial Neural 
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Network Approach’ (Dharia and Adeli, 2003), and ‘Spot-Speed Models’ (Zhang, 2006) 

typically drew on vehicle occupancy and flow data from fixed sensors such as Inductive Loop 

Detectors (ILD). Similarly, for arterial travel time estimation, loop detector occupancy and 

mean delay data at intersection were correlated using traffic simulation modelling (Bhaskar et 

al. 2007; Sisiopiku et al. 1994). In general, extrapolation methods are the simplest methods 

for travel time estimation, using data from ILDs. These methods are based on the assumption 

that speed is constant for the small distance between measuring points, and the spot speed and 

link speed can certainly be related in the case of freeways. However an extrapolation method 

cannot perform well in conditions of congestion and high traffic flow in urban networks, for 

example, where signalised or non-signalised intersections cause delays which can make the 

travel time estimation more challenging (Li et al. 2006; Bhaskar et al. 2007). 

More recent studies imply that data from fixed sensors may not be sufficient to reliably 

estimate travel time due to limited coverage area, low data accuracy and high implementation 

cost (Jiang et al. 2006; Izadpanah et al. 2011), and consequently the focus now is on using 

moving sensors to provide high accuracy speed (i.e. speeds of travelling vehicles), positioning 

and timing data to estimate travel time. For travel time estimation on arterials, the travel speed 

and time method (Yoo et al. 2005), Two-fluid model (Xiang et al. 2007) and Artificial Neural 

Network model (Zheng and Van Zuylen, 2013) were developed using GPS data from probe 

vehicles or cell phones.  

However, techniques relying on moving sensor data too, have problems that need addressing. 

Specifically, these relate firstly to the fact that positioning data from GPS have errors, 

especially in urban areas, and so some form of map-matching technique needs to be applied 

to match raw positioning fixes on to the road network so as to reliably estimate link travel 

time. This is challenging because while most current map-matching methods are suitable for 

high frequency GPS positioning data (i.e. data with 1 second intervals), they may not be 
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appropriate for lower frequency data (e.g. data with 30 second or 60 second intervals). 

Unfortunately though, many moving sensors from which data is generally more readily 

available (such as from bus, taxi, or logistics operating companies for example), only retain 

low frequency data so as to reduce the cost of data storage and transmission. In addition, 

any map-matching method to be employed in travel time estimation needs to operate 

quickly and efficiently so that a large number of GPS data can be processed within a short 

enough period of time. Secondly, once the map-matching has been completed, the next issue 

is to accurately estimate link travel time for links, particularly where there is little data 

available and where the quality of the data which does exist is relatively poor.  

In proposing solutions to these issues, Hellinga et al. (2008) suggested a method to solve the 

problem of travel time allocation on individual links (one of the steps necessary to estimate 

the average travel time on link), which was evaluated using data from a simulated network 

and compared with the benchmark method. However, although the method was evaluated for 

different data sampling frequencies (i.e. 15 seconds, 30 seconds, 60 seconds, 90 seconds 

and 100 seconds), vehicle penetration rates ( i . e .  proportion of vehicles equipped with 

GPS ) were not considered. It was suggested to evaluate the proposed method for an actual 

road network. Next, Zheng and Van Zuylen (2010) presented a comparison of travel time 

estimation models for urban links using probe vehicle data. Their proposed ANN model 

was evaluated using the VISSIM simulated urban network. The network was simulated for 

65 minutes for each simulation run and the data with a 60 second sampling frequency was 

used. The result was that the ANN model performed better than the Hellinga’s model. 

However, there were still problems. Thus, the GPS data used was insufficient (1 car data), and 

the projection of GPS data on links (map-matching), vehicle penetration rate and its influence 

on the accuracy of travel time estimation were not addressed (Zheng and Van Zuylen, 2013). 
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Hunter et al. (2009) meanwhile proposed an expectation maximization algorithm that 

identifies the possible paths travelled by probe vehicles and estimates the historical link travel 

time distribution through the network. The main focus of this study was to find the shortest 

trajectory taken by vehicle from the four selected shortest trajectories. Developing this, 

Herring et al. (2010) proposed a probabilistic approach to estimate the arterial travel time 

distribution using sparse probe vehicles data. The model was presented for traffic estimation 

using the measurements of random locations at random times. Data from 500 taxis with a 

sampling frequency of 1 minute were used. Here, the factors of varied data sampling 

frequency and lengths of time window were not considered. 

Izadpanah, et al. (2011) studied the real-time travel time prediction for motorways using 

1 second data from 8 probe vehicles and shockwave information. Data from probe vehicles 

provided better accuracy of link travel time estimation compared with data from the detectors. 

The performance of the model with low frequency data however, was not evaluated. Zheng 

and Van Zuylen (2013) proposed Artificial Neural Network (ANN) model for the estimation 

of link travel time  

Zhan et al. (2013) developed a model to estimate urban link travel times by using hourly 

origin destination trip data from taxicabs equipped with GPS receivers. The model was 

evaluated using one week data (1000 observations in one hour on weekday and 500 

observations on a weekend) which included the information about trip distance, trip origin 

and destination location and path travel time. In practice, the model was found to be capable 

of effectively estimating average link travel times. However, there were biases related to the 

route choice model to find the actual path travelled by taxicab; the hourly average estimated 

values of travel time did not represent the variations in link travel time in one hour; and the 

non-consideration of the junction delays in the proposed model can lead to the inaccurate 

estimation of travel time on urban links. 
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Wang et al. (2014) proposed a real-time model for travel time estimation in a city considering 

the issues of data scarcity and finding the optimal combination of trajectories for a query path. 

An attempt was made to address the data infrequency problem by modelling the driver's travel 

times on road segments with the combination of geospatial, temporal and historical 

framework of trajectories and dynamic programming solution was devised to find out the best 

possible linkage of trajectories for a particular path. Two months of GPS data from more than 

32,600 taxis with the average sampling rate of 96 sec per point in the time slot of 30 minutes 

was used for the assessment of proposed method, and was found to perform better than the 

baseline approaches in finding the correct values for missing data.  

Rahmani et al. (2015) used low sampling frequency GPS data of 2 minutes to estimate the 

path travel time distribution by a non-parametric method. The focus of the study was to 

determine and correct the biases related to the floating car data for instance incomplete route 

coverage and traversal of the adjoining road network. Data from 1,500 taxis was used and 

results were compared with the travel data from ANPR. The proposed method was found to 

be able to calculate the mean, median and percentiles of the travel time distribution.  

In all of these studies the comparative analysis using data with different sampling frequencies 

in multiple time window lengths was not addressed.  

As discussed, the vehicle penetration rate can be defined as the proportion of GPS-equipped 

vehicles travelling on a road in a given period of time. It is advantageous to have a higher 

vehicle penetration rate so as to enhance the estimation reliability but this may not always 

be possible due to issues related to personal privacy and the cost of data collection. It is also 

difficult to collect and process the data at short intervals of time, so that after a certain point 

the accuracy of link travel time e s t i m a t i o n s  do not increase significantly with the 

increase in vehicle penetration rate (Jiang et al. 2006; Xiang et al. 2007). Therefore, an 
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estimation of optimal vehicle penetration rate is desirable. In this regard, previous studies 

have shown that 5% of vehicles are sufficient to be used as probe vehicles to obtain the 

accurate estimates of travel time (Li, 2005; Herrera et al. 2010). Meanwhile, Chen and Chien 

(2000) used a micro-simulation model to find the minimum number of moving sensors 

required for travel time estimation and concluded that at  least 3% vehicles are needed to 

provide statistical accuracy in travel time estimation and for heavy flow 12% vehicles are 

required for accurate estimates. More specifically, when traffic flow is  low or high, then 

the vehicle penetration rate should also be high (Chen and Chien, 2001). They however 

concluded that the relationship between vehicle penetration rate and prediction error needs 

further research. 

[Table 1] 

Table 1: Summary of key studies on travel time estimation methods 

Table 1 shows the factors being considered or not considered in different studies in the 

literature. In order to develop a reliable travel time estimation method, all the factors should 

be considered and analysed collectively using a large data set. To summarise, the accuracy of 

travel time estimation using data from moving sensors depends on a range of factors such as 

vehicle penetration rate (i.e. proportion of vehicles equipped with GPS), coverage of links 

(i.e. proportion of links with GPS-equipped vehicles) and the process of eliminating 

positioning errors related to both GPS and road network data. It would also be interesting to 

investigate the performance of a travel time estimation method for GPS data with different 

sampling frequencies (such as 1 second, 30 second, 60 second, etc.).  
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CONCEPTUAL FRAMEWORK 

The comparative analysis presented in the above literature review indicates that the factors of 

different GPS data sampling frequencies, vehicle penetration rates, and time window lengths 

have not been carried out at the same time in link travel time estimation methods. All of these 

factors should be considered collectively using data from an actual road network. 

Consequently, in this paper link travel time estimation algorithms are proposed to estimate 

link travel time using GPS data consisting of time stamps, latitudes, longitudes, speed and 

road network data. Specifically, the proposed algorithms are different to existing methods in 

that these methods are dynamic in nature so as to estimate the travel time for all kinds of 

possible scenarios related to the inconsistent distribution of data on links (e.g. ranging from 

the scenario of not having a single GPS point on a link to the scenario of having more than 

one point from more than one vehicle on the that particular link. In addition to that, the 

proposed methods incorporate the data from adjacent links and time windows to consider the 

correlation of travel time in adjacent links (spatially) and over time (temporally) in the link 

travel time estimation.  

Finally the issues with sampling frequency, vehicle penetration rate, time window length, link 

coverage and map-matched vehicle positions should be considered and analysed, whilst the 

accuracy of travel time estimation by developed methods should also be validated by using 

the reference (true) travel time data collected by ANPR cameras, which has been rarely done 

in literature (Rahmani et al. 2015). 

In compiling these elements from the literature review into a conceptual framework, it was 

anticipated that the performance of the travel time estimation methods would develop as 

follows: 
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Sampling frequency: The expectation was that accuracy would exponentially fall as 

sampling frequencies were progressively reduced from a 1 second sampling frame. 

Time Window Length:  Increasing the time window length (TWL) was predicted to increase 

the data coverage on links which was expected to increase the accuracy of results.   

Vehicle penetration: Here, results were expected to improve as vehicle penetration increased, 

up to a level of 5% or so, at which point previous studies suggested that accuracy does not 

increase significantly. 

Model complexity: The expectation was that the more advanced mathematical models 

developed would outperform the simpler algorithms. 
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DATA PROCESSING 

GPS data collected by the University of California, Berkeley on a section of I-880 as part of 

the Mobile Century project has been used in this paper. Further details about the project and 

data collection can be found in Herrera et al. (2010). 

Specifically, this paper presents the analysis of data from a total of 73 vehicles equipped 

with GPS-enabled smart phones (i.e. Nokia N95) which travelled on interstate I-880 

California between Decoto Road and Winton Avenue in the Northbound (NB) direction. 

GPS positioning data points (i.e. longitude and latitude) in WGS84 were converted to the 

American plane coordinate system (California Zone 3; easting and northing coordinates) 

using a GIS package. The heading (the direction from the North) at each epoch was 

calculated using two consecutive easting and northing coordinates. The sampling frequency 

of the raw GPS data was 3 seconds. Altogether a total of 485,079 GPS observations were 

processed. In order to see how the performance of a travel time estimation method varies 

with the sampling frequency, the original GPS dataset was extracted at different sampling 

frequencies, namely 6, 30, 60 and 120 seconds. Road network data for Interstate I-880 and 

surroundings were obtained from a location-based service (LBS) provider CloudMade 

(http://cloudmade.com). Reference (true) travel time data from Decoto Road to Winton 

Avenue recorded by the ANPR cameras were also gathered from the same source so as to 

estimate the accuracy of the developed travel time estimation methods. A total of 65 links for 

the time duration of 6 hours were used in the analysis.  
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METHODOLOGY 

Link travel time is defined as the average travel time obtained from all the vehicles that 

travelled on a link during a particular time window length (e.g. 5 minutes, 10 minutes or 15 

minutes). The primary objective here was to develop and evaluate the methods to estimate 

link travel time using data from GPS-equipped vehicles. Accordingly, the methodology 

consisted of three main steps: map-matching, link travel time estimation, and validation. 

These are briefly discussed below. 

Step-1: Map-Matching 

The first step was to map-match raw GPS positions on the links where the vehicles were 

travelling. This was achieved by using a map-matching algorithm (Quddus et al. 2003) 

requiring two types of input data: 

1. GPS data including time stamp (t), easting (x), northing (y), speed (v) in m/s 

and heading (i.e. the vehicle movement direction with respect to the north direction). 

2. Road network data consists of link ID number, start node (SN) and end node (EN) 

with their x and y coordinates (i.e. SNx, SNy; ENx, ENy). 

Most of the existing map-matching algorithms that use historical map-matched data, link 

connectivity and turn restriction information at junctions are suitable for 1Hz GPS data (i.e. 

sampling frequency 1 second) (Quddus et al. 2003). Since the GPS data to be employed in 

this study contained various (lower) sampling frequencies i.e. 3, 30, 60, 120 seconds, 

existing map-matching algorithms were not considered to be directly applicable. 

Therefore, a weight-based topological algorithm developed by Velaga et al. (2009) was 

employed, which was based on two weights: proximity (the distance for a GPS fix to a 

candidate link) and heading difference (the difference between the vehicle heading from 

GPS and link heading) (see Quddus et al. 2003 for further details).  
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To illustrate this, in Figure 1, P is a vehicle position from a GPS receiver and the 

corresponding candidate links are BC, BF, AB and BE. Equation (1) was then used to 

calculate the total weight score (TWS) for each of the candidate links and the link with the 

highest total weight is chosen as the correct link for the GPS fix. This process was repeated 

at every GPS epoch. The outputs of each epoch are: map-matched easting and northing 

coordinates, speed and time stamp. 

[Figure 1] 

FIGURE 1: Map-matching 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑊𝑊𝑃𝑃𝑖𝑖 + 𝑊𝑊𝐻𝐻𝑖𝑖 (1)  

 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑃𝑃𝑤𝑤 �1 −
|𝐷𝐷|
𝑇𝑇ℎ

� + 𝐻𝐻𝑤𝑤 cos(∆𝜃𝜃𝑖𝑖) (2)  

In which, 

𝑃𝑃𝑤𝑤 + 𝐻𝐻𝑤𝑤 = 𝟏𝟏;                         0 < 𝑃𝑃𝑤𝑤 < 1; 0 < 𝐻𝐻𝑤𝑤 < 1 

Where WPi represents the weight for proximity and WHi represents the weight for heading, Pw  

and Hw, represent the weight coefficients for proximity  difference and heading respectively, 

Δθi is the angle between vehicle heading (θ) and link direction (β) with respect to the north, D 

is the perpendicular distance from a GPS fix to the link and 𝑇𝑇ℎ represents the threshold for 

the position error indicating the allowable maximum positioning error in the positioning data 

from the GPS. Specifically, links which fell within the 100m of a GPS point were selected as 

the candidate links, meaning that the threshold value for the position error was 100m. The 

values for both proximity and heading weights were set at 0.5.  
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Step-2: Link Travel Time Estimation Methods 

As discussed in the literature review section, link travel time depends on many factors 

including the number of map-matched GPS points on the link, speeds of the vehicles, GPS 

sampling frequencies, time window lengths, vehicle penetration rates and vehicle trajectories. 

In the first step, links travelled by GPS-equipped vehicles (i.e. link coverage) were identified 

for the given Tw (i.e. 5 min, 10 min and 15 min). Link-level map-matched points (from Step-1) 

obtained from those vehicles were then stored. As expected, there was a mixed distribution of 

map-matched points by link. In representing these, four types of scenario were tested: 

• Scenario 1: no map-matched point on a link. 

• Scenario 2: only one map-matched point from one vehicle on a link. 

• Scenario 3: more than one map-matched point from one vehicle on a link. 

• Scenario 4: more than one map-matched point from more than one vehicle on a link. 

In this paper two methods were proposed to estimate link travel times from GPS data under 

different scenarios. Method-1 considered map-matched points from adjacent links while 

estimating travel time to enhance the link coverage and to reduce the uncertainty in the 

estimation. Method-2 assimilated link travel times from Method-1 in both spatial and 

temporal ways. Both of these methods are discussed below:  

6.1 Method-1 Distance and Time Proportion  

Map-matched fixes from step-1 were employed to estimate link travel time. Figure 2 depicts a 

generic condition in which there are four map-matched points from two different vehicles on 

link AB. One approach would have been to determine average speed on link AB based on 

speed measurements (from GPS) associated with these four map-matched points and then use 

average speed and the length of the link to estimate link travel time. Alternatively, the average 

speed for each of the vehicles could have been calculated and then employed to estimate two 



 

 

16 

 

measurements of travel time. Both of these approaches however would likely result in an 

incorrect estimate of travel time, especially for an urban link where delays are more common 

at junctions due to traffic lights. To counter this effect, the solution arrived at created vehicle 

trajectories by considering not only all map-matched points on link AB but also map-matched 

points outside link AB (i.e. map-matched points beyond downstream and upstream junctions 

of link AB). Thus, vehicle trajectories were created by taking into account map-matched 

points M3 - M6 as well as M1 - M2 and M7 - M8 (see Figure 2). After that the distance and time 

proportion approach for the vehicle trajectories (beyond and within the link) was utilised to 

reliably estimate travel time for portions of the link without any map-matched points. The 

distance and time proportion method for travel time estimation for V1 is explained in Figure 2. 

As can be seen in Figure 2, the travel time for link AB consisted of the cumulative travel time 

for the three portions of the link (see Equation 3). The distance and time proportion method 

was then applied for the first and last portion of the link (TT1 and TT2) as shown in Equations 

3(a) and (b). The travel time for the middle portion (𝑖𝑖. 𝑒𝑒.∆𝑡𝑡𝑖𝑖+2,𝑖𝑖+1) was obtained from the 

time differences at epoch ti+2 and ti+1 as shown in Equation (3).  

[Figure 2] 

FIGURE 2: Distance and time proportion travel time estimation 

 

 𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 = ∆𝑡𝑡𝑖𝑖+2,𝑖𝑖+1 + �𝑇𝑇𝑇𝑇𝑖𝑖

2

𝑖𝑖=1

 
(3)  

 𝑇𝑇𝑇𝑇1 = (𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖) × 𝑑𝑑𝑖𝑖+1
 (𝑑𝑑𝑖𝑖⁄ + 𝑑𝑑𝑖𝑖+1) 3(a)  

 𝑇𝑇𝑇𝑇2  = (𝑡𝑡𝑖𝑖+3 − 𝑡𝑡𝑖𝑖+2) × 𝑑𝑑𝑖𝑖+3
 (𝑑𝑑𝑖𝑖+3⁄ + 𝑑𝑑𝑖𝑖+4) 3(b)   
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However, it should be noted that the above equations were applicable only when there was at 

least one map-matched point from the adjacent links is available. All possible conditions are 

depicted in Figure 3 and fully explained below.  

[Figure 3] 

FIGURE 3: Summary of distance and time proportion algorithms 

Model 1: When no map-matched fixes from the adjacent links are available in Tw  

The generic form of travel time estimation by method-1 for model-1 is presented in Figure 4. 

Scenario 1: For the first scenario when no map-matched point existed on a link in a particular 

Tw, then speed limit data of the link was considered as being the ‘average speed’ to use in 

estimating the travel time. Another option is to employ link-based historical travel time that 

would be more accurate than that of using the speed limit.  

Scenario 2: For the second scenario, when one map-matched point was available on a link, 

then the distance between the two nodes of link (AB) and vehicle speed (v) at epoch (t) given 

by the GPS receiver was used for link travel time estimation as shown in Figure 3(b).  

cenario 3: For the third scenario when there were more than one map-matched points from 

one vehicle, the average speed (𝑣̅𝑣) of that vehicle was used to estimate the travel time for the 

first and last portion of a link as shown in Figure 3(c). The link travel time therefore consisted 

of the travel time for each of the three portions of the link, denoted by TT1, TT2 and Δti+3,1 as 

shown in Figure 3(c) and Equations 4(a) and (b). 

 𝑇𝑇𝑇𝑇1  = (|𝑥𝑥𝑖𝑖𝑚𝑚 − 𝑥𝑥i|2 − |𝑦𝑦𝑖𝑖𝑚𝑚 − 𝑦𝑦i|2)1 2⁄ 𝑣̅𝑣⁄  4(a)  

 𝑇𝑇𝑇𝑇2 = (|𝑥𝑥i+1 − 𝑥𝑥𝑖𝑖+3𝑚𝑚 |2 − |𝑦𝑦i+1 − 𝑦𝑦𝑖𝑖+3𝑚𝑚 |2)1 2⁄   𝑣̅𝑣⁄  4(b)  
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Where xi, yi and xi
m, yi

m were the easting and northing of start node and first map-matched 

point on a given link respectively. 

Scenario 4: For the fourth scenario when map-matched points were from more than one 

vehicle passing on the link, the travel time was estimated for each vehicle using average 

speeds and time stamp data as explained in Scenario 3 and then the average travel time for the 

link was calculated as shown in Figure 3(d).  

Where TTV represents travel time for a vehicle and n is the number of vehicles travelled on a 

link. 

[Figure 4] 

FIGURE 4: Flow chart of Model 1 algorithm of Method 1 

Model 2: When map-matched data were only available from one adjacent link (either the 

succeeding or the preceding link) in Tw  

In Model 2, map-matched points on the adjacent link were considered along with the map-

matched points on the link for which the link travel time was being estimated (see Figure 2). 

This data included the map-matched positions, time stamps and speed data both for both links. 

For these models the distance and time proportion method was used to estimate travel time for 

a given link under different scenarios as shown in Figure 3 (e), (f), (g), (h) and explained 

below. 

Scenario 1: same as Scenario-1 under Model-1 

Scenario-2: travel time for the first portion of the link (TT1) was estimated using the distance 

and time portion method between the last map-matched point of preceding link and the first 

map-matched point on a given link as shown in Figure 3(f). While the travel time for the 

remaining part of the link was estimated using vehicle speed at epoch (ti+1) and distance 
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between the map-matched point and the end node of link. Where ti and ti+1 are the time epochs 

and di and di+1 represent the distance of map-matched points on a preceding and given links 

respectively.  

Scenario 3: since there was more than one map-matched point on a link, the total travel time 

therefore consisted of the aggregate of the travel times for each of the three portions of the 

link as shown in Figure 3(g). For the first portion, travel time (TT1) was estimated using the 

distance and time proportion method. For the last portion of the link, travel time (TT2) was 

estimated using average speed as shown in Figure 3(g). 

Scenario 4: there were more than one map-matched points from more than one vehicle 

travelling on the given link as shown in Figure 3(h). Link travel time here was estimated as 

Scenario-3 for each vehicle separately and then the average travel time was calculated based 

on travel time experienced by all vehicles.  

The above description was also applicable for the case of a succeeding link with one map-

matched point as shown in the Figure 3 (i), (j), (k), (l).  

Model 3: when map-matched data were available from both adjacent links in Tw  

Model 3 was based on the condition whereby map-matched points on both preceding and 

following links were available for a link in the same time window length. Therefore, the time 

distance proportion method was applied both for the first and last portion of given link as 

described below and shown in Figure 2 and Figure 3(n). 

Scenario 1: same as Scenario 1 Model 1. 

Scenario 2: the map-matched data from following and preceding links were available along 

with the data on the current link. Therefore travel time for the first and last portion of the 

given link (TT1 and TT2) was estimated based on the position and time data at epoch (ti), (ti+1) 

and (t i+2). The application of time and distance proportion method is shown in Figure 3(n). 
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Scenario 3: the travel time estimation approach used has been explained for the example of 

vehicle 1 (V1) in Figure 2 and Equation (3).  

Scenario 4: the link travel time was estimated as discussed above for Scenario 3. That is, 

individually for all vehicles and then the average travel time of link was calculated based on 

the average travel time experienced by all of the vehicles on the given link as shown in Figure 

3(p). 

6.2 Method-2 Spatial and Temporal Moving Average 

It was reasonable to assume that the link travel time among adjacent links may be correlated 

with each other for a given time window. For instance, the link travel time for link (AB) may 

be correlated with the link travel time for both links (DA) and (BC), especially for the same 

time window length (see Figure 5). It was also rational to assume that link travel time of a 

link may be correlated over time. Especially, link travel time for link (AB) at time window (t) 

may be correlated with travel time at time window (t-1) and (t+1). Therefore, the estimation 

of link travel time could potentially be enhanced by link travel time input values from the 

adjacent links for the same time window (i.e. spatial component) and from the adjacent time 

windows for the same link (i.e. temporal component). Since vehicle trajectory data from GPS 

were used in estimating travel time, for the temporal component it was required to integrate 

the current travel times of a given link with those of the previous and following time windows. 

For the spatial component, the lengths and travel times of the connected links needed to be 

used. Therefore, the link travel time estimation based on spatial and temporal component was 

be derived as follows:  

[Figure 5] 

FIGURE 5: Link travel time using the spatial and temporal connectivity 
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Link travel time for link AB: 

(a) Spatial component – since link travel time for link AB was likely correlated with that of 

link DA and BC, the weighted average of link travel time of these three links was judged to 

provide a good estimate of link travel time for AB. 

 

𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠 = (𝑇𝑇𝐷𝐷𝐷𝐷 ∗ 𝐿𝐿1 + 𝑇𝑇𝐴𝐴𝐴𝐴 ∗ 𝐿𝐿2 + 𝑇𝑇𝐵𝐵𝐵𝐵 ∗ 𝐿𝐿3) (𝐿𝐿1⁄ + 𝐿𝐿2 + 𝐿𝐿3 ) 

 

(5)  

(b) Temporal component – average link travel time for AB over nth consecutive time 

windows: 

𝑇𝑇𝐴𝐴𝐴𝐴𝑡𝑡  =
1
𝑛𝑛
� (𝑇𝑇𝐴𝐴𝐴𝐴)𝑡𝑡−𝑘𝑘

𝑛𝑛

𝑘𝑘=−𝑛𝑛

 (6)  

Where n was the total number of time windows considered and n=1.  

This suggests that travel times for the given link in the current time window can be estimated 

using the travel times in both the preceding and succeeding time windows.  By taking n=1 in 

Equation (6) it is confirmed that link travel time is estimated by integrating the travel times of 

the current time window (t), the preceding time window (t-1) and the succeeding time 

window (t+1).  This ensures that the method is applicable to real-time (Method-1) and near 

real-time (Method-2) with a delay of 5-15 minutes. For n>1, the method would therefore be 

suitable for an offline application. 
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Total link travel time for link AB was obtained as the weighted average of spatial and 

temporal components as follows:  

𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴  = 𝛼𝛼(𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠 ) + 𝛽𝛽(𝑇𝑇𝐴𝐴𝐴𝐴𝑡𝑡 ) (7)  

In which                𝛼𝛼 + 𝛽𝛽 = 1 and                         0 < 𝛼𝛼 < 1; 0 < 𝛽𝛽 < 1  

Where 𝑇𝑇𝐴𝐴𝐴𝐴𝑠𝑠 , 𝑇𝑇𝐴𝐴𝐴𝐴𝑡𝑡  represent the spatial and temporal components of travel time for link AB, L1, 

L2, L3 represent the length of links DA, AB and BC respectively, and α, β are the weight 

coefficients for spatial and temporal components respectively. The values of these two weight 

coefficients (α = 0.1 and β = 0.9) were determined based on an empirical analysis. This 

suggests that the effect of spatial correlation in link travel time estimation was in fact much 

weaker than initially hypothesised. It is worthwhile to note that the values of the two weight 

coefficients α and β can also be obtained from link-based reference travel time data if such 

data are available.  
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RESULTS 

Evaluation Indicators 

For the purpose of performance evaluation two widely used statistics such as Mean Absolute 

error (MAE) and Mean Absolute percentage error (MAPE) were used (3): 

 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝑇𝑇𝑇𝑇𝑟𝑟,𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑒𝑒,𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

 (8)  

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100 ∗
1
𝑁𝑁
��

𝑇𝑇𝑇𝑇𝑟𝑟,𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑒𝑒,𝑖𝑖

𝑇𝑇𝑇𝑇𝑟𝑟,𝑖𝑖
�

𝑁𝑁

𝑖𝑖=1  
(9)  

Where, TTr,i is the average reference travel time from probe vehicles observed during time 

window length i, TTe,i is the mean estimated travel time during time window length i and N is 

the total number of time windows. 

The reference travel time data recorded by high resolution ANPR video cameras provided the 

exact travel times of individual vehicles through license plate re-identification. A total of 

4,126 vehicles were matched during the experiment from 11:00 to 17:00. From the travel 

times of these vehicles, the average reference travel time was calculated for 5, 10 and 15 

minute time window lengths. The average link travel times estimated by the two developed 

algorithms for different sampling frequency GPS data sets (i.e. 3, 30, 60, 120 seconds) in 

three time window lengths (i.e. 5, 10 and 15 minutes) were compared with the average 

reference link travel time from 11:00 to 17:00 as shown in Figure 6. The solid line represents 

the average link reference travel time while the dotted lines show the link travel time 

estimated by the developed algorithms for each of the different sampling frequency GPS data 

sets (i.e. 3, 30, 60, 120 seconds). 
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[Figure 6] 

FIGURE 6: Comparison of link travel time estimates for 5 minutes time window length 

The overall accuracy of both methods for the 5 minute time window length was found to be 

better relative to the other time window lengths (i.e. 10 minute and 15 minute) due to the 

higher vehicle penetration rate (5-8%) and higher vehicle coverage on the test route as shown 

in Figure 7. The mean vehicle penetration rate ranged between 5-8% for the 5 minute time 

window length, 4-5% for the 10 minute and 3-4% for the 15 minute time window length. The 

correlation between the estimated link travel times by the two methods and the reference link 

travel times for different sampling frequency data sets (i.e. 3, 30, 60, 120 seconds) is shown in 

Figure 8. For the data sets with sampling frequencies of 3, 30 and 60 seconds, the distance 

and time proportion method (i.e. Method 1) provided good correlations between the estimated 

and the reference travel time (i.e. the R2 was more than 0.8). However for the data set with a 

sampling frequency of 120 seconds, the travel time estimated by Method 1 differed from that 

of the reference travel time significantly as shown in Figure 8(g). Meanwhile the spatial and 

temporal moving average method (i.e. Method 2) performed better than the distance and time 

proportion method which can be inferred from Figure 8(b) (d) (f) and (g). Specifically it 

showed a high correlation with the reference travel time (the R2 was more than 0.90 for the 30 

and 60 second data sets) and performed better even for the 120 second data set as compared to 

the distance and time proportion method. 

[Figure 7] 

FIGURE 7: Change in vehicle penetration rate with time window lengths 

[Figure 8] 

FIGURE 8: Correlation between reference travel time and estimated travel times 



 

 

25 

 

The performance of the link travel time estimation results was also evaluated in terms of 

MAPE and MAE as shown in Table 1. The MAPE and MAE were small for both methods 

when the sampling frequency of data sets was 60 and 120 seconds, though interestingly the 

prediction was less accurate for the data sets with higher 3 and 30 second sampling 

frequencies for both methods. Overall then, the spatial and temporal moving average method 

performed better than the distance and time proportion method by reducing the MAPE from 

8.56% and 11.12% to 7.55% and 8.43% for 60 and 120 second data sets respectively. 

[Table 2] 

Table 2: Performance Comparison between Distance and Time Proportion Method and 

Spatial and Temporal Moving Average Method (5 minutes Tw) 
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DISCUSSION AND CONCLUSION  

This paper identified a range of factors that influence the estimation of link travel time from 

GPS data of sub optimal quality (i.e. lower frequencies) of the type that is most readily 

available. This includes: GPS sampling frequency, vehicle penetration rate and length of time 

window. The paper then argued that one needs to control for all of these factors 

simultaneously in order to reliably estimate link travel time from vehicles equipped with GPS. 

Two mathematical methods were therefore developed. Method 1 was based on the number of 

map-matched points and connectivity of links and Method 2 was based on spatial and 

temporal travel time components of the link. This paper then examined the performance of 

these two travel time estimation algorithms using real-world data from a section of Highway 

I-880.  

Specifically, in practice the elements in the conceptual framework did not perform quite as 

expected in several regards.  

Thus, while the expectation for sampling frequency was that accuracy would exponentially 

fall as sampling frequencies were progressively reduced from a 1 second sampling frequency, 

in practice both methods performed better for the lower frequency GPS data sets (i.e. 60 and 

120 seconds) as compared to the higher frequency data sets (i.e. 3 and 30 seconds). At first 

glance this seems surprising in the first instance as one would expect that higher frequency 

data would lead to a better estimate of travel time. However, whilst this may be true for traffic 

in free-flowing conditions, in a congested network a higher GPS sampling frequency means 

that there are many GPS observations travelling at low speeds which could somehow impact 

on the accuracy of travel time predictions.  

Such an explanation would tally with the traffic conditions experienced on the test route, 

whereby an accident resulted in slow traffic between 10.00 and 11.50 on the day for which the 
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data were obtained, whilst the route additionally suffered heavy congestion from 15.20 

onwards (see Mazare et al. 2012 for details). In this situation, it is conceivable that for the 3 

and 30 second frequency tests a higher proportion of map-matched points were sampled 

travelling at low speeds thereby leading to the over-estimation of travel time and hence to 

errors in the travel time estimation prediction. By contrast for the lower frequency cases the 

GPS data may have been masked, resulting in smaller errors in travel time. Moreover, this 

effect may have been exacerbated because the travel time from Decoto Road to Winton 

Avenue (i.e. a section of the test route I-880) was calculated by summing up the link travel 

times of each of the 65 individual links between this O-D pair, travel time was overestimated 

due to traffic congestion. Finally, the data set with a sampling frequency of 60 seconds was 

found to be optimal with the MAE of 1.15 min (MAPE 8.56%) and 1.04min (MAPE 7.55%) 

by the first and second link travel time estimation methods respectively.  

Similarly, whilst increasing the TWL was predicted to increase the link coverage and finally 

the accuracy of travel time estimation, it was found that actually the 5 min TWL had better 

results than the 10 and 15min TWLs. One reason for this could be that the high vehicle 

penetration rate (5-8%) was observed in 5 min TWL as compared to 4-5% and 3-4% vehicle 

penetration rate in 10 min and 15 min TWL respectively. In future the impact of time window 

length can be further investigated while keeping the constant rate of penetration in all time 

window lengths.  

Regarding vehicle penetration, results were expected to improve as vehicle penetration 

increased, up to a level of 5% or so, it was found that in the time window length of 5 min 

when the vehicle penetration rate was 5-8%, the accuracy of results improved.  

Finally, although both methods performed well for travel time estimation, spatial and 

temporal moving average method (Method 2) was found to be the best performing model for 
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low sampling frequency GPS data. This appears to have been because in Method 2, the link 

coverage was improved due to the data infusion from adjacent links and from previous and 

following time windows.  

Moreover, since the computation times for the travel time estimation methods was less than 3 

minutes for the 3 second data set, but less than 1 minute for the 30, 60 and 120 second data 

sets, the developed methods would perhaps be more suitable for real-time ITS applications. 

From the results it is concluded that the accuracy of the developed method depends upon 

establishing and maintaining a consistent and optimal vehicle penetration rate for a particular 

time window length, thus ensuring a reasonable coverage of the network in terms of the 

number of map-matched points on each link.  

Based on the above discussions, the following recommendations are made for future research: 

(a) The weight coefficients for spatial and temporal components derived empirically 

can be further checked for different road network data to find the optimal values 

using an optimisation technique; 

(b) The impact of lengths of time windows can be further investigated by keeping the 

vehicle penetration rate constant;  

(c) In future the analysis with urban road network data can be carried out;  

(d) The combination of data from different sources, for example, Bluetooth, smart 

phones, mobile sensors and inductive loop detectors data can be used to analyse 

the accuracy of travel time.  
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Table 1: Summary of key studies on travel time estimation methods 

 

× not considered     considered 

 

 

 

 

 

 

References Data 

Factors 

Different Data 

Sampling 

Frequencies 

Vehicle 

Penetration 

Rate 

Time 

Window 

Lengths 

Map-

Matching 

ANPR  Data 

For Validation 

Rahmani et al. 

(2015) 

1500 taxis (2 

min GPS data) × × ×   

Wang et al. 

(2014) 

32,00 taxis (96 

sec GPS) data × × ×  × 

Zhan et al. 

(2013) 

OD trip GPS 

taxicab data (1 

week) × × ×  × 

Zheng and Van 

Zuylen, (2013) 

1 probe vehicle 

(60 sec GPS 

data) × × × × × 

Izadpanah, et al. 

(2011)  

8 probe vehicles 

1sec GPS Data × × × × × 

Hellinga et al. 

(2008) 
Simulation Data  × ×  × 
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Table 2: Performance Comparison between Distance and Time Proportion Method and 

Spatial and Temporal Moving Average Method (5 minutes Tw) 

 

 

 

 

 

 

 

 

 

 

 

 

Data sets 
Distance and Time proportion Spatial and temporal moving average 

MAPE (%) MAE(min) MAPE (%) MAE(min) 

3 sec 

30 sec 

60 sec 

120 sec 

 

13.40 

11.76 

8.56 

11.12 

 

1.56 

1.65 

1.15 

1.45 

 

15.60 

13.39 

7.55 

8.43 

 

1.86 

1.90 

1.04 

1.07 
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FIGURE 1: Map-matching 
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FIGURE 2: Distance and time proportion travel time estimation 
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FIGURE 3: Summary of distance and time proportion algorithm 
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FIGURE 4: Flow chart of Model 1 algorithm of Method 1 
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FIGURE 5: Link travel time using the spatial and temporal connectivity 
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(a) Distance time proportion method 

 

(b) Spatial and temporal moving average method 

FIGURE 6: Comparison of link travel time estimates for 5 minutes time window length 
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FIGURE 7: Change in vehicle penetration rate with time window lengths 
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(a)                                                              (b) 

 
(c)                                                               (d) 

 
(e)                                                               (f) 

(g)                                                               (h) 
Distance and time proportion method                 Spatial and temporal moving average method 

FIGURE 8: Correlation between reference travel time and estimated travel times 
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	6.1 Method-1 Distance and Time Proportion
	6.2 Method-2 Spatial and Temporal Moving Average
	Where n was the total number of time windows considered and n=1.
	This suggests that travel times for the given link in the current time window can be estimated using the travel times in both the preceding and succeeding time windows.  By taking n=1 in Equation (6) it is confirmed that link travel time is estimated ...
	Total link travel time for link AB was obtained as the weighted average of spatial and temporal components as follows:

