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Abstract

3D stereoscopic technology intensifies and heightens the viewer’s expe-

rience by adding an extra dimension to the viewing of visual content.

However, with expansion of this technology to the commercial market

concerns have been expressed about the potential negative e↵ects on

the visual system, producing viewer discomfort. The visual stimulus

provided by a 3D stereoscopic display di↵ers from that of the real

world, and so it is important to understand whether these di↵erences

may pose a health hazard. The aim of this thesis is to investigate the

e↵ect of 3D stereoscopic stimulation on visual discomfort. To that

end, four experimental studies were conducted.

In the first study two hypotheses were tested. The first hypothesis

was that the viewing of 3D stereoscopic stimuli, which are located

geometrically beyond the screen on which the images are displayed,

would induce adaptation changes in the resting position of the eyes

(exophoric heterophoria changes). The second hypothesis was that

participants whose heterophoria changed as a consequence of adapta-

tion during the viewing of the stereoscopic stimuli would experience

less visual discomfort than those people whose heterophoria did not

adapt. In the experiment an increase of visual discomfort change in

the 3D condition in comparison with the 2D condition was found.

Also, there were statistically significant changes in heterophoria un-

der 3D conditions as compared with 2D conditions. However, there

was appreciable variability in the magnitude of this adaptation among

individuals, and no correlation between the amount of heterophoria

change and visual discomfort change was observed.

In the second experiment the two hypotheses tested were based on the

vergence-accommodation mismatch theory, and the visual-vestibular

mismatch theory. The vergence-accommodation mismatch theory pre-

dicts that a greater mismatch between the stimuli to accommodation



and to vergence would produce greater symptoms in visual discom-

fort when viewing in 3D conditions than when viewing in 2D condi-

tions. An increase of visual discomfort change in the 3D condition

in comparison with the 2D condition was indeed found; however the

magnitude of visual discomfort reported did not correlate with the

mismatch present during the watching of 3D stereoscopic stimuli.

The visual-vestibular mismatch theory predicts that viewing a stimu-

lus stereoscopically will produce a greater sense of vection than view-

ing it in 2D. This will increase the conflict between the signals from

the visual and vestibular systems, producing greater VIMS (Visually-

Induced Motion Sickness) symptoms. Participants did indeed report

an increase in motion sickness symptoms in the 3D condition. Further-

more, participants with closer seating positions reported more VIMS

than participants sitting farther away whilst viewing 3D stimuli.

This suggests that the amount of visual field stimulated during 3D

presentation a↵ects VIMS, and is an important factor in terms of

viewing comfort.

In the study more younger viewers (21 to 39 years old) than older

viewers (40 years old and older) reported a greater change in visual

discomfort during the 3D condition than the 2D condition. This sug-

gests that the visual system’s response to a stimulus, rather than the

stimulus itself, is a reason for discomfort. No influence of gender on

viewing comfort was found.

In the next experiment participants’ fusion capability, as measured by

their fusional reserves, was examined to determine whether this com-

ponent has an impact on reported discomfort during the watching of

movies in the 3D condition versus the 2D condition. It was hypoth-

esised that participants with limited fusional range would experience

more visual discomfort than participants with a wide fusion range.

The hypothesis was confirmed but only in the case of convergent and

not divergent eye movement. This observation illustrates that par-

ticipants capability to convergence has a significant impact on visual



comfort.

The aim of the last experiment was to examine responses of the ac-

commodation system to changes in 3D stimulus position and to deter-

mine whether discrepancies in these responses (i.e. accommodation

overshoot, accommodation undershoot) could account for visual dis-

comfort experienced during 3D stereoscopic viewing. It was found

that accommodation discrepancy was larger for perceived forwards

movement than for perceived backwards movement. The discrepancy

was slightly higher in the group susceptible to visual discomfort than

in the group not susceptible to visual discomfort, but this di↵erence

was not statistically significant.

When considering the research findings as a whole it was apparent

that not all participants experienced more discomfort whilst watching

3D stereoscopic stimuli than whilst watching 2D stimuli. More visual

discomfort in the 3D condition than in the 2D condition was reported

by 35% of the participants, whilst 24% of the participants reported

more headaches and 17% of the participants reported more VIMS.

The research indicates that multiple causative factors have an im-

pact on reported symptoms. The analysis of the data suggests that

discomfort experienced by people during 3D stereoscopic stimulation

may reveal binocular vision problems. This observation suggests that

3D technology could be used as a screening method to diagnose un-

treated binocular vision disorder. Additionally, this work shows that

3D stereoscopic technology can be easily adopted to binocular vision

measurement.

The conclusion of this thesis is that many people do not su↵er adverse

symptoms when viewing 3D stereoscopic displays, but that if adverse

symptoms are present they can be caused either by the conflict in the

stimulus, or by the heightened experience of self-motion which leads

to Visually-Induced Motion Sickness (VIMS).
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Chapter 1

Introduction

1.1 Motivation

Over recent years, the use of three dimensional (3D) technology has become

widespread across di↵erent media devices. Cinema, blu-ray players, televisions

and even mobile phones are available in this format. There is no doubt that we

are witnessing the renaissance of 3D technology.

Due to technological advancement for the first time 3D has become available

not only in cinemas but also in our homes. According to Informa Telecoms &

Medias forecasts for the 3D TV sector the global penetration of 3D TV sets is

growing. In 2010 only 0.2% of households had been equipped with a 3D ready

TV set. Level of market penetration increased to 3.4% at the end of 2012 and

it is expected to rise to 28.2% by the end of 2017 (Thomas 2013). From 2013 to

2018 TechNavios analysts forecast the Global 3D market will grow at a CAGR

of 35.85% (PRNewswire 2014). This increase is mainly driven by the fact that

3D is now a standard feature of many new TV sets. Similar observations can be

made in relation to 3D enabled cinemas. The number of 3D cinemas worldwide

increased by a factor of around 251 from 258 in 2006 to 64,905 in 2014 (Statista

2014).

With the increasing accessibility to 3D stereoscopic technology many concerns

and warnings about the health hazards of viewing 3D stimuli have been expressed.

In 2010 it was reported that the Italian government confiscated 7000 sets of 3D

1



1.Introduction

glasses because they “did not display tags proving they would not cause short-

term vision problems to users” (Reuters). Nintendo, in their Health and Safety

Information and Usage Guidelines, state that “viewing of 3D images by children 6

and under may cause vision damage”. The world’s biggest electronics companies

have also warned about the dangers of watching 3D television. For example, Sony

has claimed that “some people may experience discomfort (such as eye strain, eye

fatigue, or nausea) while watching 3D video images or playing stereoscopic 3D

games on 3D televisions”. Similar concerns can be found on websites belonging to

LG, Samsung and Panasonic. Furthermore some of these companies recommend

restricting use. Samsung highlights that “pregnant women, the elderly, su↵erers

of serious medical conditions, those who are sleep deprived or under the influence

of alcohol should avoid utilising the units 3D functionality.” Recently the French

watchdog (ANES1) issued an internal request to assess the potential health risks

related to the use of the 3D stereoscopic technologies. Moreover the agency has

recommended that “children under the age of six should not be exposed to 3D

technologies” and “children under the age of 13 should only use 3D technologies

in moderation”. One may ask whether warnings issued by these manufacturers

and institutions are based on thorough scientific research (proven facts) or if they

simply reflect an attempt to limit the possibility of users making compensation

claims due to adverse health impacts from 3D technology.

Accessibility to 3D stereoscopic technology is still increasing, as 3D is a stan-

dard function of many new TV sets. Nevertheless, user engagement with 3D

technology is constrained largely due to limited availability of high quality 3D

content. The number of newly released 3D stereoscopic movies between 2010

to 2014 remains stable [Woods]. However when compared with the number of

movies created in 2D it is negligible On the other hand, the enthusiasm for the

3D format is declining. Taking into account movies, which were presented on

both 3D and 2D screen, the median 3D takings as a percentage of total takings

fell from 71% in 2010 to 37% in 2013 (BFI 2014). It can be speculated that

one of the reason for this decrease is discomfort experienced by viewers. It is

understandable that people who have had a bad experience while watching 3D

stereoscopic movie are more cautious in selection of movie format.

1ANSES - French Agency for Food, Environmental and Occupational Health & Safety

2



1.Introduction

Several organisations have undertaken work in the standardisation of 3D tech-

nology for example: SMPTE1, EBU2, 3D@Home Consortium, ITU3, DTG4, ISO5.

Regardless of this, it is worth highlighting that at the moment the level of stan-

dardisation is far from satisfactory. There is a lack of agreement on definitions

for technical requirements for the creation of 3D stereoscopic content and there

are no objective tests which can be used to assess the quality of 3D content and

the quality of 3D enabled devices. What more to the best of author’s knowledge,

there is no guidance on safe exposure time for 3D viewing. Finally there are no

formally agreed procedures to test discomfort experienced by people exposed to

3D stimuli.

Concerns about the adverse e↵ects of 3D stereoscopic stimulation have given

rise to a number of studies aiming to determine the e↵ect of this stimulation

on discomfort. Much of the research is limited in terms of the methods used

to assess discomfort (e.g. lack of pre-sessional data, problems in interpretation

of the questionnaires used), or because they do not assess individual di↵erences

between 3D and 2D conditions. The most serious limitation, however, to these

studies is that only association and not causation, of the problem can be shown.

It is also important to highlight that 3D steroscopic technology is used not

only in the entertainment industry. As this technology enables more accurate

understanding and analysis of an object it is used also in medicine, biomedicine

(diagnosis, pre-operative planning, training /teaching) (Van Beurden et al. 2009,

Schreer et al. 2005), military activities (training and simulation in virtual environ-

ments) (Schreer et al. 2005), geology (BGS), architecture (Minoli 2011), commu-

nication (mobile devices, scientific visualization) (Minoli 2011). 3D stereoscopic

technologies have also entered some classrooms enabling visualization in areas

that are abstract to aid understanding (Bamford 2011, Sensavis 2015).

From day to day the spectrum of 3D applications is getting wider and wider.

It is therefore important to determine the impact of 3D stereoscopic stimuli on

the visual system and the e↵ect of these stimuli on viewing comfort.

1Society of Motion Picture and Television Engineers
2European Broadcasting Union
3International Telecommunication Union
4Digital TV Group
5International Organisation for Standardisation

3



1.Introduction

1.2 Research aims

The aim of this thesis is to investigate the e↵ect of 3D stereoscopic stimulation

on visual discomfort. The key questions explored in this work are whether partic-

ipants experience more visual discomfort whilst watching 3D stereoscopic stimuli

than whilst watching 2D stimuli, and if so, why. The research addresses this

question through subjective measurements of visual discomfort before and after

viewing both 3D and 2D stimulation. Specific hypothesises were made, based on

characteristic of the stimuli presented, in terms of the expected e↵ect on the eyes

responses and on discomfort.

The research described in this thesis tested these hypotheses by

• objectively analysing stimuli content and evaluating its e↵ect on subjective

reported discomfort

• objectively measuring eye response (heterophoria, fusional vergence, accom-

modation) and subjective reported discomfort

• analysing participants’ viewing positions and their e↵ect on subjective re-

ported discomfort

• analysing participants attributes e.g age, gender and exploring that impact

on subjective reported discomfort

In order to do this, special binocular vision tests and stimuli were required,

which were developed by the author. The tests were displayed on the 3D stereo-

scopic screen and watched by participants equipped with 3D stereoscopic glasses.

This way of presenting the binocular vision test/stimulus allowed for the control

of eye movements so that they matched these found during the watching of 3D

stereoscopic movies.

1.3 Thesis structure

The thesis is organised in seven chapters. This first chapter is an introductory

section which outlines the motivation for the research, the research aims and the

4



1.Introduction

structure of the thesis. The next chapter defines the key terms and reviews the

literature related to the research topic. The core part of the thesis consists of

the experimental work and is described in chapters three to six. Each of these

chapters has the same structure, and containing the following sections: purpose of

the research, introduction, methods, results and discussion. In the final chapter,

the major findings are summarised and the main conclusions are highlighted. At

the end of this chapter possible applications of the research are discussed

1.4 Research approach

The first part of this research was a general review of the current state of knowl-

edge in the field of discomfort whilst viewing 3D stereoscopic stimuli. Based on

this review the possible causes of discomfort were identified. Following on this

the main terms and problems associated with this research were discussed in the

literature review section. Taking into account the current research and the prob-

lems, which can intensify as a result of di↵erences between the normal viewing

condition and 3D conditions the following experimental chapters were defined:

• Heterophoria adaptation during the viewing of 3D stereoscopic stimuli.

In this chapter two hypotheses were tested. The first hypothesis was that the

viewing of 3D stereoscopic stimuli, which are located geometrically beyond the

screen on which the images are displayed, would induce exophoric heteropho-

ria (phoria) changes (adaptation). The second hypothesis was that participants

whose phoria changed as a consequence of adaptation during the viewing of the

stereoscopic stimuli would experience less visual discomfort than those people

whose phoria did not adapt.

• Vergence - accommodative mismatch and visual - vestibular mismatch dur-

ing viewing of 3D stimuli.

In this chapter two hypotheses were tested. The first hypothesis was that

a greater mismatch between stimuli to accommodation and to vergence would

produce greater symptoms in visual discomfort of viewing in 3D conditions when

5



1.Introduction

compared to the discomfort of viewing in 2D conditions. The second hypoth-

esis was that 3D stimuli produce a greater sense of vection increasing the con-

flict between the visual and vestibular systems and thus produce greater VIMS

symptoms compared to 2D viewing conditions. In this chapter it was also asked

whether headache is reported during 3D stereoscopic stimulation and whether

the headache whilst exposed to 3D stereoscopic stimulation is more severe than

headache whilst exposed to 2D stimulation. This was considered important to

investigate as people who experience symptoms associated with visual discomfort

and VIMS can also experience symptoms associated with headache (Wilson 1996,

Lawson et al. 2002, Scheiman & Wick 2008, Howarth & Hodder 2008, Ujike et al.

2008, Kennedy et al. 2010).

• The impact of participants fusion capacity on discomfort whilst watching

movies in 3D versus 2D condition.

In this chapter it was hypothesized that participants with limited fusion range

would experience more visual discomfort than participants with a wide fusion

range. The hypothesis was analyzed in terms of positive fusional reserve (PFR),

negative fusional reserve (NFR) and total fusional reserve (FR=PFR+NFR).

• Accommodation discrepancy whilst viewing 3D stereoscopic stimuli.

This chapter aimed to examine the response of the accommodation system to

the change in the 3D stimulus position and to determine whether any changes

would account for the visual discomfort reported during the viewing of 3D stimuli.

1.5 Ethical approach

Three dimensional (3D) technology is commercially available and is a standard

feature of many new TV sets. Currently there is a lack of agreement on definitions

for technical requirements for the creation of 3D stereoscopic content and there is

no restriction on the use of this technology. In all experiments presented within

this thesis stimuli were displayed on commercially available screens. Therefore

participation in any study described in this thesis would not be expected to

cause more problems than might be present whilst watching 3D at home or at

6



1.Introduction

cinema. All participants gave their informed consent for participation. The

test procedure and the conditions were explained to each participant. Following

familiarization with testing procedures and laboratory equipment, participants

signed an informed consent form. In the conducted studies only participants over

18 were included, this approach was chosen to exclude the di�culties of children

giving informed consent. All participants were aware that:

• they had an opportunity to ask questions about their participations

• they were under no obligation to take part in the study

• they had the right withdraw from the study at any stage for any reason,

and would not be required to explain their reason for withdrawal

The investigator was aware of the duty of care to participants. If any un-

expected/unplanned situation occured (e.g. participant feeling unwell/ weak)

invigilator was able to provide assistance (e.g. provide a place to rest, provide a

glass of water, help to get home or to a medical doctor). All experiments were

conducted in Environmental Ergonomics Research Center. After completing the

experiment any personal data collected during a study (names, ages, gender etc.)

were anonymously coded and kept securely, in accordance with the requirements

of the Data Protection Act.
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Chapter 2

Literature Review

Purpose: This chapter describes the main terms and background literature

related to the field of study. First the evolution of 3D is summarised. Next, the

current state of research in the field of discomfort whilst viewing 3D stereoscopic

stimulation is reviewed. The problems arising during the analysis of discomfort

are identified. Finally, the chapter summarises the limitations of previous studies.
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2.1 The evolution of 3D stimuli

The concept of reproducing the three dimensional visual sensations experienced

by humans in the natural environment is not novel. The very first device capa-

ble of creating 3D stimuli was invented by Sir Charles Wheatstone in 1833. His

invention showed that depth perception is a result of binocular disparity. The

device was named a stereoscope1 to reflect its ability to represent solid figures

(Wheatstone 1838). The stereoscope consisted of two mirrors at right angles and

two vertical picture holders where slightly di↵erent figures were presented. In

a later version each half of the instrument could be rotated to adjust the angle

of convergence (this principle is still used in an amblyoscope2)(Howard 2012).

Subsequent modifications of Wheatstone’s stereoscope by Sir David Brewster

(Brewster stereoscope), Oliver Wendell Holmes (Holmes stereoscope) and oth-

ers became very popular and fashionable in Europe and in the U.S.A. From the

middle of the nineteenth century the stereo cards photographically documented

the popular personalities and important events of the period (Lipton 1982, Zone

1996). In the later part of the century, with the advent of illustrated magazines

(Howard 2012) and motion pictures (Fehn 2005) the public lost interest in stereo-

scopic media. Moreover the stereoscope had some drawbacks. The illustration

could be viewed by only one person at a time. Often technical diligence was

poor (badly constructed stereoscopes, carelessly photographed views or improp-

erly mounted paper prints), which further decreased the level of the stereoscope’s

popularity (Lipton 1982).

The next phase of 3D technology was the presentation of 3D moving images.

The first stereo moving picture device was patented in 1852 by the Parisian op-

tician Jules Duboscq (Howard 2012). Several instruments for showing moving

stereoscopic images were subsequently constructed. In the period after 1870,

interest in stereoscopic moving images declined as modern cinematography was

developed (Howard 2012). At the beginning of the twentieth century new tech-

nologies for presenting 3D stereoscopic movies debuted. One of these was the

anaglyph technique, where two images projected through a red filter and a green

1stereoscope - from Greek conjoin of two words stereo and skopion “to see-solid”.
2amblyoscope - a device used primely for the diagnosis and treatment of strabismus.
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filter were superimposed on a screen. The audience wore glasses with red and

green lenses which partially separated the images for each eye. Another method of

presenting 3D images was the eclipsing shutter technique. The technique involves

shutters placed in front of both right and left projection lenses and shutters used

in the viewing device worn by the audience. When the right shutter was opened

at the projector, the right was opened at the viewing device and vice versa. In

this way two images were delivered to each eye separately. The main limitation

of this system was that it was not possible to present the left and right images

to the appropriate eye simultaneously.

The next notable achievement in terms of stereoscopy technology was the

application of polarising filters, patented by Edwin H Land in 1928, which led

to the development of the first full colour 3D (Zone 1996). In this technology

two di↵erent polarising filters were mounted in front of two projector lenses and

the audience wore polarised glasses to separate the two images. Thus the right

image was delivered only to the right eye and the left image was delivered only to

the left eye. It is worth noting that the polarised 3D system and shutter glasses

approach mentioned earlier are the two major 3D techniques currently in use.

In 1952 the movie Bwana Devil (the first colour 3D movie) started an ex-

pansion of the 3D industry. Between 1952 and 1954, Hollywood produced over

sixty-five 3D films. However, limited experience of stereoscopic techniques, inad-

equate quality control in the laboratories and badly operated projection systems

in the cinemas meant that the technology failed to arouse the audience’s enthu-

siasm. Furthermore, adverse symptoms such us eyestrain, and headaches quickly

discouraged people from watching 3D movies (Lipton 1982, Fehn 2005). Since

2005 the renaissance of 3D technologies has been observed in cinemas. In 2010

3D TV was brought to a wider audience showing its maturity by broadcasting

the World Cup Championship in 3D.

As shown above 3D stimulations have a long history. Despite technological

improvements in the field of production and delivery, some individuals continue

to report adverse e↵ects when viewing 3D content. It is important to investigate

this topic to identity the sources of these problems. At present, although the

di↵erences between the visual stimulus presented by 3D displays and that of the

real world are known, the relative e↵ects are not yet recognised (Howarth 2011).
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2.2 Current state of research

Over the last decade a number of investigations into potential adverse e↵ects

associated with the viewing of 3D stimuli have been conducted. Regardless of this

researchers have not reached conclusive findings. The following possible causes of

discomfort are the most frequently reported: vergence-accommodation mismatch,

visually induced motion sickness (VIMS), stereoscopic distortion. This section

describes the main terms and experiments which have been used to investigate

these issues. Problems associated with assessing discomfort are also discussed.

2.2.1 Visual discomfort

Visual discomfort experienced by some people whilst viewing 3D stereoscopic

stimulation is mentioned in the literature as the important health issue (Lambooij

et al. 2009). However, visual discomfort is not the only term that has been used to

describe a set of symptoms associated with viewing of 3D stimuli. It can be found

that visual discomfort is used interchangeably with visual fatigue or asthenopia.

Visual fatigue can be defined as a feeling of weariness resulting from a visual

task. It can have psychic, ocular or muscular origins. However, there does not

seem to be an objective proof of a reduction in vision aptitude (e.g. visual acuity)

accompanying visual fatigue (Millodot 2014). According to Howarth & Bullimore

(2005) vision cannot be fatigued and when people claim to have visual fatigue

it is not their vision that gets tired, but rather the person themselves. On the

other hand the term asthenopia is used to describe any symptoms associated with

the use of the eye (Millodot 2014). Sheedy et al. (2003) state that asthenopia

can be caused or induced by: glare from lighting, anomalies of binocular vision,

accommodative dysfunction, uncorrected refractive error, compromised quality

of viewed image such as poor contrast or legibility, less than optimal gaze angle,

flickering stimuli such as CRT computer displays and dry eye. Although the

first work in terms of adverse eye symptoms sensation was conducted in 1916

(Watten 1994) the mechanism of it is still not clear (Watten 1994, Sheedy et al.

2003). In the current work to describe a set of symptoms associated with vision

problems whilst viewing 3D stereoscopic stimulation, the term visual discomfort

will be used. Visual discomfort in this thesis is assessed subjectively by using
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questionnaires before and after viewing both 3D and 2D stimulation.

2.2.2 Vergence-accommodation mismatch

One of the di↵erences between normal viewing conditions and virtual 3D condi-

tions is the distance between the stimulus to accommodation and the stimulus

to vergence. In the natural viewing condition the stimulus to accommodation

and stimulus to vergence are determined by the their distance to the eye. Fig-

ure 2.1 illustrates this relationship. The accommodation required in dioptres

(D) is represented on the ordinate, and the vergence in prism dioptres (�) on

the abscissa. The Donders’ line represents the amount of vergence required for

each value of accommodation for equality between the two. Accommodation

and vergence distance are identical in natural viewing, and the responses are

neurologically coupled. Accommodation change evokes a change in vergence (ac-

commodative vergence) and vergence change evokes a change in accommodation

(vergence accommodation)(Fincham & Walton 1957). If the range of accommo-

dation is measured for various values of vergence and the range of vergence is

measured for various values of accommodation the data define a zone of single

clear binocular vision (ZSCBV). It is worth noting that the zone has a finite width

which demonstrates a tolerable “freedom range” of vergence from accommoda-

tion (Hofstetter 1945). This indicates that single binocular vision is possible even

if the stimulus to accommodation and stimulus to convergence are not coinci-

dent. The boundaries of the zone vary from one person to another, and take the

form of two straight, non-parallel lines. In figure 2.1 the right-hand grey-dashed

line represents the limit of convergence (eyes turning inwards), and the left-hand

grey-dashed line represents the limit of divergence (eyes turning outwards). The

convergence boundary of the zone is more slanted than the divergence bound-

ary, especially for higher values of accommodation, as more proximal vergence1

is introduced (Scheiman & Wick 2008). Several criteria have been proposed to

1proximal vergence - the component of vergence results from knowledge of nearness of the
target (Hung & Ciu↵reda 2002), in other words it is initiated by an awareness of a near object
(Millodot 2014, Grosvenor & Grosvenor 2007). Proximal vergence occurs automatically when
the observer attends to a particular stimulus. It is therefore not voluntary but it is evoked by
a voluntary change of attention from one object to another (Howard 2012).
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define the area over which not only single clear binocular vision is possible but

also comfortable vision is achievable. The most popular are Sheard’s criterion

and Percival’s criterion which are used clinically to determine comfortable opti-

cal correction.
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Figure 2.1: Zones of vision. The Donders line represents the accommodation
and vergence demands of stimuli at di↵erent distances in the natural viewing
condition. The dashed line indicates the Zone of Clear Single Binocular Vision
(ZCSBV). The yellow shaded area represents the individual (hypothesised) Zone
of Comfort within ZCSBV. The blue dotted line represents the accommodation
and vergence demand of a 3D display at a distance of 50 cm from the viewe [based
on Howarth (2011)].
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A stereoscopic 3D display provides each eye with a separate image. Both

images are displayed on a flat screen. The distance between the screen and eyes

does not change while watching 3D stereoscopic stimuli which results in the stim-

ulus to accommodation being fixed. However, parallax introduced between two

images allows for an object to be perceived in front or behind the screen. Under

such conditions the stimulus to vergence varies during stereoscopic stimulation.

Consequently, unlike in the real word, the stimulus to accommodation and stim-

ulus to vergence do not match. Figure 2.2 presents a schematic comparison of

conditions where the stimuli to accommodation and vergence do match (a) and

where they do not (b and c).
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Figure 2.2: Vergence and accommodation distance with real stimulus (a) and
stimulus presented on a 3D stereoscopic screen (b and c). In normal viewing, the
vergence stimulus and accommodation stimulus are always at the same distance
from the viewer’s eyes and therefore stimulus to vergence and accommodation
are equal. A 3D stereoscopic display produces a mismatch between stimulus
to accommodation and stimulus to vergence. The accommodation distance is
fixed, but vergence distance varies depending on the parallax used. If images are
presented with negative parallax, stimulus to vergence appears in front of the
screen (b), if images are presented with positive parallax, stimulus to vergence
appears behind the screen. [Terminology: parallax - refers to the separation
between left and right image presented on the 3D display; negative parallax - the
image on the screen is shifted to the right for the left eye and to the left for the
right eye; positive parallax - the image on the screen is shifted to the left for the
left eye and to the right for the right eye].
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In the literature many researchers assume that vergence-accommodation mis-

match produces discomfort during the viewing of 3D stereoscopic stimuli (Inoue

& Ohzu 1997, Ukai & Kato 2002, Ho↵man et al. 2008, Yang & Sheedy 2011, Yang

et al. 2012). However, empirical studies do not clearly support this hypothesis.

Yano et al. (2004) examined six participants who read text presented on a

3D stereoscopic display. During each experimental session the viewing distance

was fixed at the same distance of 108 cm (stimulus to accommodation). The

perceived position of stimulus varied from one experimental condition to another

and was determined by one of seven di↵erent parallaxes (0�, ±0.82�, ±1.36�,

±1.90�). Subjective discomfort was assessed by a 5 point scale. It was found

that on average severity of discomfort increased as positive (stimulus behind the

screen) and negative parallax (stimulus in front of the screen) increased. It was

also reported that some of the subjects did not experience visual discomfort while

others strongly experienced visual discomfort, and this was particularly apparent

for the maximum negative parallax. Based on the group data presented by Yano

et al. (2004) vergence-accommodation theory appears to be supported. However,

the di↵erences in discomfort reported by participants might be related to di↵er-

ences in response to the presented stimulus or to the participants’ capability to

converge1. For example participants with a narrow fusional convergence had to

put in more e↵ort to fuse the stimulus than participants with a wide fusional con-

vergence range. In this case participants with a narrow fusional range experienced

more discomfort than participants with a wide fusional range2. Furthermore in

this experiment symptoms were not assessed before the trial started. This ap-

proach does not show whether or not the discomfort was present from the outset,

or had been caused by the stimuli.

Ho↵man et al. (2008) investigated vergence-accommodation mismatch by us-

ing a volumetric stereoscopic display (figure 2.3) which allows control of vergence

and accommodation stimuli independently.

1Capability to converge quantified by positive fusional convergence.
2As the variability between participants’ capability to diverge is much smaller than the vari-

ability in participants capability to converge the di↵erence in discomfort between participants
were smaller when the image was presented with positive parallax than when the image was
presented with negative parallax(based on study conducted in Chapter 4).
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Figure 2.3: Volumetric stereoscopic display - optical instrument which can present
3D images for the left and the right eye without convergence and accommodation
mismatch. It is however possible to introduce vergence-acccommodation mis-
match by adding disparities between images. The set-up consists of: an LCD
screen, 3 sets of 2 semi-transparent mirrors and 2 sets of 2 periscopic mirrors.
Plane mirrors reflect images displayed on the screen towards the viewer. The
viewers plane of focus is located at the distance of the plane mirrors. Periscopic
mirrors allow for increased separation between the ocular axes and an adjustment
of pupil distance [based on Ho↵man et al. (2008)].

The advantage of this method is that it eliminates other di↵erences between

2D and 3D displays such as cross-talk and vertical parallax (the literature re-

lated to these parameters is shown in subsection 2.2.4). This method does not

require the wearing of 3D glasses (it has been reported that people complain

about discomfort of wearing 3D glasses (Pölönen et al. 2009)). In the experiment

eleven participants were exposed to a random dot stereogram in two sessions.

During the first one the stimuli to accommodation and the stimuli to vergence

were equal (2D condition) and in the second the stimuli to accommodation and

the vergence were mismatched in 2 out of every 3 trials (3D condition). In this
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study it was found that significantly higher levels of discomfort were experienced

by participants when a mismatch between stimuli to accommodation and stimuli

to vergence existed. These results, however are still questionable because only

post-test data were collected. Again, this methodological shortcoming prevents

assessment of the e↵ect of the 3D condition on viewers’ discomfort over the ses-

sion. Another limitation of this study is that only average data of discomfort are

shown. The average data mask the “real” number of participants a↵ected by the

stimulus presented.

The e↵ect of vergence-accommodation mismatch on visual discomfort was

also analysed by Howarth & Underwood (2011). In their experiment sixteen sub-

jects participated in four experimental conditions. Each experimental condition

had a di↵erent magnitude of vergence-accommodation mismatch; in one of them

there was no mismatch between stimulus to accommodation and stimulus to ver-

gence (a control condition). The viewing distance (stimulus to accommodation)

was 64.5 cm in all conditions. Visual discomfort was evaluated before and af-

ter each condition (duration 20 min.) with a six point scale. The collected data

revealed that on average visual discomfort increased as the magnitude of vergence-

accommodation mismatch increased. However, the individual data showed that

participants experienced discomfort unequally: some of them did not experience

visual discomfort even when the largest mismatch was produced. This indicates

that visual discomfort arises as a consequence of the visual response to the stim-

ulus, and not because of the stimulus itself1. In this case, the di↵erence between

the participants in response to the presented stimulus may reveal the reason for

the discomfort.

1The problem with the accommodation-convergence conflict theory is that the conflict is
present in the stimulus to the eyes, whereas it is the eyes response to the stimulus that will
determine whether symptoms occur. There is obviously an association between the conflict
and the symptom discrepancy but that does not prove causation, and evidence from optometry
quite clearly indicates that, for the normal eye, small amounts of conflict should not cause
symptoms Howarth (2011).

18



2.Literature Review

Yang & Sheedy (2011) and Yang et al. (2012) evaluated visual discomfort

symptoms and VIMS symptoms (VIMS is described in a subsection below) before

and after viewing of stimulus in a 2D and in a 3D condition. Twenty-one subjects

participated in the earlier study. In the experiment two commercially available

movies were presented, “Spy Kids” and “Lava Girl and Shark Boy” (duration 90

min., viewing distance of 200 cm from the screen). Each participant watched one

movie in 2D in one session and the other movie in 3D in the other session. In

the later study two hundred and three teenagers and adults were tested whilst

viewing a computer animated comedy entitled “Cloudy with a chance of meat-

balls” (duration 90 min., viewing distance 338 cm or 481 cm away from the TV)

in either a 2D or 3D condition. In both cases blurred vision, double vision and

floating/drifting image (the last symptom only in Yang & Sheedy (2011)) were

reported more frequently by the group where the 3D movie was watched than the

group where the 2D movie was watched. Yang & Sheedy (2011) suggested that

increases of those symptoms in the 3D condition compared with the 2D condi-

tion is related to greater variance in accommodation and vergence response while

viewing the 3D movie than while viewing the 2D movie. In the study conducted

by Yang et al. (2012) older viewers experienced greater visual symptoms in the

2D condition while younger participants reported greater visual symptoms in the

3D condition. It was suggested that double images observed during the view-

ing of 3D stereoscopic stimuli could be a result of an inappropriate/inadequate

vergence response or cross-talk observed on the screen. As the ability to fuse

stereoscopic images depends on the participant’s fusion range an inappropriate

vergence (or in other words a small fusion range) may in fact produce this kind

of problem. On the other hand, the problem with cross-talk which is perceived

as a ghost, shadows or double contours can be minimised by controlling contrast

of the image and its parallax. Previously, it was shown that the appearance of

cross-talk increases with increase in contrast and parallax (Pastoor 1995). More-

over, cross-talk can be caused by device technical imperfections (e.g. if an active

eyewear lens remains transparent for too long during each cycle) or incorrect head

positioning (e.g. passive linear polarisation glasses, auto-stereoscopic screen). In

this case an improvement in spectacle synchronisation or even appropriate in-

struction regarding head position should reduce the problem. In the experiment
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presbyopic participants reported less blurred and double vision than young (pre-

presbyopic) participants. In relation to this observation it was pointed out that

younger participants have more closely linked vergence-accommodation processes

than presbyopic individuals and because of this pre-presbyopic people experience

more vergence-and/or accommodation-related symptoms. The main limitation

of these experiments is that individual di↵erences in discomfort between 2D and

3D conditions was not analysed. The second weakness of these experiments is

that there is no information about the stimuli used in the experiment other than

the movie title and movie’s running time. It is not known whether only posi-

tive, negative or both parallaxes were used in the movies. And so the size of

vergence-accommodation conflict is not known.

The mismatch between the vergence and accommodation has been considered

by many other researchers (Inoue & Ohzu 1997, Ukai & Kato 2002, Okada et al.

2006, Torii et al. 2008, Fukushima et al. 2009) in a context of accommodation dis-

crepancy (accommodation overshoot). This issue is not analysed in this chapter

but it is presented in detail in chapter 6.
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2.2.3 Visually induced motion sickness

Another factor considered in the context of discomfort experienced during 2D and

3D stereoscopic stimulation is visual-vestibular conflict. Visual-vestibular conflict

or sensory conflict may produce visually induced motion sickness (VIMS), which

is a form of motion sickness produced when a stationary observer is exposed to

moving visual images (Diels & Howarth 2009). When visual motion is unac-

companied by physical self-motion, the mismatch between the self-motion cues

delivered by the visual system (i.e. vection) and the lack of coherent signals

from the vestibular and somatosensory systems is considered as a primary causal

factor of VIMS (Diels & Howarth 2013). Vection is defined as visually induced

perception of self-motion (Tschermak 1931), and is believed to be a major factor

explaining visually induced motion sickness characteristics (Bos et al. 2008). Un-

der natural conditions vection is often felt by one who is sitting on a motionless

train while watching another train moving nearby and in the widescreen cinema

Howard (2012). In general, visual movement can be perceived as either object

motion or self motion. When the environment appears to move, as in dynamic

displays, we are more inclined to attribute the relative movement to ourselves

instead of surroundings. On the other hand if we see individual objects or groups

move with respect to us the perceived relative motion is due to object moving

than our own movement (Diels 2008).

The sensory conflict theory is not the only theory, which tries to explain

the origin of VIMS. Other theories, which have been put forward in reference

to VIMS, are postural stability theory and eye movement theory. The postural

stability theory states that motion sickness results from prolonged instability

in the control of posture (Riccio & Sto↵regen 1991). According to this theory

poor postural control is not only a result of VIMS, but also precedes onset of

VIMS (Sto↵regen & Smart Jr 1998, Reed-Jones et al. 2008)). In term of the eye

movement theory which was proposed by Ebenholtz (1992) optokinetic nystagmus

(OKN) evoked by moving visual patterns can innervate the vagal nerve, and such

innervations lead to VIMS. For the purpose of this thesis, the work presented will

only consider motion sickness induced by conflicting inputs which is the most

widely accepted theory of motion sickness.
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People who experience VIMS su↵er from symptoms such as: dizziness; nausea;

headache; drowsiness; sweating; salivation, and in some cases, vomiting (Wilson

1996, Lawson et al. 2002, Howarth & Hodder 2008, Ujike et al. 2008, Bos et al.

2008, Kennedy et al. 2010, Häkkinen et al. 2006). These symptoms have been

reported in many virtual environments (VE), such as fight and automobile sim-

ulators (Sto↵regen et al. 2000, Lawson et al. 2002), moving-rooms (Sto↵regen

& Smart Jr 1998, Smart et al. 2002), head-mounted displays (HMD) (Howarth

& Costello 1997, Hill & Howarth 2000, Patterson et al. 2006, Merhi et al. 2007,

Sharples et al. 2008) or while viewing optic flow patterns (Diels & Howarth 2007,

2013). The same symptoms have also been observed outside the laboratory en-

vironment. In 2003 an incident of VIMS was reported at a junior high school in

Japan. Thirty-six students out of two hundred and ninety four, who watched a

20 minutes movie displayed on a large screen were taken to the hospital because

of VIMS symptoms. The movie shown was shot with a handheld video camera,

and was characterised by various types of image motion and vibration. The in-

cident described by Ujike et al. (2008) is a strong argument that the motion and

vibration in visual content can cause adverse symptoms among people exposed

to it.

With an increase of popularity of video game systems (e.g. X-box, PlaySta-

tion, PCs) many researchers have asked whether symptoms related to VIMS occur

when commercially available games are used. Sto↵regen et al. (2008), Dong et al.

(2011), Chang et al. (2012) assessed the incidence and the severity of motion

sickness during the playing of “o↵-the-shelf” console video games. The incidence

of motion sickness in their experiments was assessed at the end of exposure to the

stimuli. Each participant verbally stated their motion sickness status (yes/no).

Based on this statement, participants were divided into “Sick” and “Well” groups.

Symptom severity was measured using a Simulator Sickness Questionnaire (SSQ)

before and after exposure to the stimuli. In these experiments the incidence of mo-

tion sickness varied between 42.3% and 61%. Interestingly, in studies conducted

by Sto↵regen et al. (2008), Dong et al. (2011), Chang et al. (2012)) the statisti-

cally significant di↵erences in SSQ score (pre exposure - post exposure change)

were found in a group who reported motion sickness (“Sick”group) as well as in

a group who did not report motion sickness (“Well”group). This suggests that
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the total sickness score in the SSQ questionnaire should not be considered as

an indicator of motion sickness because it also assesses symptoms which can be

induced by di↵erent reasons (e.g. an increase of total sickness score can be the

result of a general discomfort or eyestrain). In other words playing 2D computer

game can give a rise to symptoms not necessarily related to motion sickness.

Anecdotal complaints of visual and nausea symptoms after the re-introduction

of the 3D stereoscopic format to the cinema raised questions about potential

adverse e↵ects during the viewing of 3D stereoscopic stimuli. From an academic

perspective, the reasons for reported adverse e↵ects remains unresolved.

As discussed earlier symptoms related to VIMS have been reported when 2D

stimuli were used. Ujike &Watanabe (2011) investigated whether 3D stereoscopic

stimuli are more e↵ective in inducing VIMS symptoms than 2D stimuli. In the

experiment thirty four adults watched visual stimuli for ten minutes in either a

2D condition or 3D condition. The computer graphics simulated travel along the

streets with various types of image motion. Before and after each session the SSQ

was completed by participants. In addition, viewing comfort was assessed (on a

five point category scale) each minute while viewers watched the visual stimulus.

From the results of SSQ, calculations were made for three clusters (nausea, ocu-

lomotor, disorientation) and a total score. The results showed a greater increase

in the 3D condition than the 2D condition, but statistically significant di↵erences

between 2D and 3D conditions were only found in the average score for nausea.

However, it is not clear whether the symptoms score increased in this sub-group

due to nausea or due to an increase score for di↵erent symptoms listed in this

cluster. For example, discomfort caused by an uncomfortable chair or uncom-

fortable 3D glasses has an influence on the overall symptoms score in the nausea

cluster (see table 2.1). Also, average values of comfort showed that discomfort

increased more in the 3D condition than the 2D condition. In this case however

it is not known whether the discomfort is related to vision, headache or motion

sickness symptoms. The same visual stimulus used by Ujike & Watanabe (2011)

was also used in an experiment conducted by Naqvi et al. (2013). In this study

nineteen participants watched stimuli in a 2D condition and twenty participants

watched stimuli in a 3D condition. The reported symptoms were higher for the

3D condition than for the 2D condition. Statistically significant di↵erences be-
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tween these two conditions were found in the average scores for nausea, dizziness

and the total score. However, in this experiment similar problems occurred in

term of sub-group results. These results could be influenced by symptoms un-

related to the cluster name. Furthermore in this case symptom measurement

before the trial was not performed. Thus there is not a clear picture whether

these symptoms were induced during the viewing of 3D stimuli or whether par-

ticipants experienced symptoms prior to the onset of the experiment. In the

experiments conducted by Ujike & Watanabe (2011) and by Naqvi et al. (2013)

similar numbers of participants took part. However when the SSQ was completed

only at the end of the session, more statistically significant di↵erences were found

than in an experiment where the SSQ were completed before and after the session

(Ujike & Watanabe 2011). The di↵erences between these two experiments show

how important the choice of method of symptom assessment is (questionnaire

completed only at the end of the session vs questionnaire completed before and

after the session).
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Table 2.1: SSQ symptoms and clusters. The SSQ questionnaire contains 16 symp-
toms (see left column). Symptoms are scored on a 4 point scale and then added
within each cluster (N - Nausea, O - Oculomotor, D - Disorientation). The scores
for each cluster are calculated from the sum of symptoms by conversion formulas
provided in Kennedy et al. (1993). A total symptom score is calculated by sum-
ming the three clusters and applying conversion formula provided in Kennedy
et al. (1993)

.

SSQ symptoms Clusters

N O D

General discomfort 7 7
Fatigue 7
Headache 7
Eyestrain 7

Di�culty focusing 7 7
Increased salivation 7

Sweating 7
Nausea 7 7

Di�culty concentrating 7 7
Fullness of head 7
Blurred vision 7 7

Dizzy (eyes open) 7
Dizzy (eyes closed) 7

Vertigo 7
Stomach awareness 7

Burping 7

N - Nausea, O - Oculomotor, D - Disorientation
7 - indicates which cluster each symptom belongs to

VIMS symptoms (e.g.dizziness, nausea) before and after viewing stimuli were

assessed in the experiments conducted by Yang & Sheedy (2011) and Yang et al.

(2012). In both cases symptoms related to motion sickness were reported more

frequently in the 3D condition than in the 2D condition. Furthermore in the

later experiment it was shown that the perception of the object moving and the

perception of oneself moving through space was higher in the 3D condition than

the 2D condition. Yang et al. (2012) also noted that women reported greater

motion sickness symptoms than men. Findings presented by Yang & Sheedy

(2011) and Yang et al. (2012) indicate that VIMS is an important factor in terms
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of further understanding discomfort experienced by participants whilst viewing

3D stimuli. However, as mentioned earlier these experiments did not present

individual di↵erences between VIMS reported in 2D and 3D conditions.

2.2.4 Stereoscopic image distortion

The image presented to each eye during 3D stereoscopic stimulation should ideally

reproduce the stimulus provided in the real word. However, imperfections of the

binocular image pair can occur. In the literature several types of stereoscopic

distortion have been described, these include:

• keystone distortion - this is caused by convergence (toed-in)1 camera con-

figuration. In this case the camera image sensors are facing towards slightly

di↵erent planes (IJsselsteijn et al. 2006). This generates an asymmetric im-

age and results in vertical parallax. The magnitude of vertical parallax is

greater at the corners of the image, decreasing convergence distance and

decreasing focal length. This type of distortion can be avoided by using a

parallel camera configuration (Woods et al. (1993)). Vertical parallax can

also be induced if there is vertical misalignment between cameras.

• depth plane curvature - this is a side e↵ect of toed-in camera configuration

and is linked with keystone distortion. Images at the corner of the image

appear further away from the viewer than images at the centre of the image.

• shear distortion - this occurs in a stereoscopic display that allows only

one correct viewing position (IJsselsteijn et al. 2006) e.g. autostereoscopic

display). Sideways movements of the viewer result in the object in front

of the screen appearing to move in the same direction as the viewer; and

the object behind the screen appearing to move in the opposite direction to

the viewer. In this case the object distance can be wrongly perceived and

a false motion impression can be induced.

• cross-talk - this is perceived as ghost, shadow or double contours. It can

be caused by: imperfect image separation techniques by which the right-

1toed-in - a point of convergence is chosen by joint inward rotation of the left and right
cameras
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eye view leaks through to the left-eye view and vice versa; presentation (a

problem with the display), device defect (e.g. active eyewear lens remains

open too long during each cycle) or incorrect head positioning (e.g. in linear

polarisation technique, auto-stereoscopic display). Pastoor (1995) showed

that cross-talk increases with increasing contrast and parallax1.

In a study conducted by Kooi & Toet (2004) twenty four participants viewed

a stationary 3D stimulus which was subject to 35 di↵erent transformations. The

modifications which were applied to the stimulus included: rotation, scaling and

deformation operations (some of the stimuli were combinations of two types of

modification). The stimuli were presented to each participant in three steps: step

one - 3.5 s presentation of the original stimulus; step two - a short break; step three

- 5 s presentation of manipulated stimulus. Following this task, participants were

asked to compare the modified stimulus with the original stimulus using a 5 point

scale. Kooi & Toet (2004) concluded that the distortions which a↵ect viewing

comfort the most are: cross-talk and blur. However, it has been questioned

whether 5s (the stimulus exposure time used in their study) is long enough for

discomfort to develop in response Howarth (2011).

Vertical parallax can also be induced when the viewers head is not upright

(e.g. if a viewer whilst viewing a 3D movie rests their head on their partners

shoulder). This issue was analysed by Kane et al. (2012) who hypothesised that

the vertical vergence eye movements required to fuse stereoscopic images when

the head is rolled cause visual discomfort. To test this hypothesis a head roll

was simulated (i.e. the stimulus was rotated rather than moving viewers head, to

allow better control). The experiment consisted of three subsections where the

unrolled stimulus (0� of stimulus rotation) was compared with rolled stimuli (10�,

20�, 30� of stimulus rotation). Each stimulus was presented for one minute and

after that participants completed a comparison questionnaire. The questionnaire

included seven questions (e.g. which session was more uncomfortable for your

eyes?), which were assessed by participants on a 9 point scale (where 5 indicated

that the sessions were equally uncomfortable). Data analysis found that viewing

3D stereoscopic stimulation when the head was rolled (i.e. vertical parallax was

1parallax - distance between two matching parts of stereoscopic image pair
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present) was more uncomfortable than when the head was upright (no vertical

parallax). On average visual discomfort increased with the amount of stimulus

roll and with the magnitude of on-screen horizontal disparity. The key problem

with this experiment is that only average scores of discomfort are shown. The

average data do not indicate how many participants experienced more discomfort

when the modified stimulus was used. This way of presenting data masks the true

number of participants a↵ected by the modified stimulus. As the response to the

presented stimulus (not the stimulus itself) is the cause of discomfort, individual

ability to fuse vertically separated images will contribute to di↵erent levels of

discomfort.
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2.2.5 Limitations of existing research

The literature presented has shown that there is a general lack of consistency in

methods for assessing discomfort. Di↵erent researchers have used di↵erent meth-

ods to assess the e↵ect of watching 2D and 3D stimuli and some of the methods

have been criticised for a number of reasons. Furthermore, in some experiments,

artificial (laboratory - created) stimuli were used. In others, commercially avail-

able games and movies were presented to participants. Utilisation of a movie

or game without any objective knowledge of its parameters (e.g. positive paral-

lax, negative parallax, vertical parallax) makes it impossible to assess the actual

impact of content - specific factors on the participant. Moreover, the lack of in-

formation about the movies’ parameters makes comparison between the results

of di↵erent experiments impossible (e.g. some movies may contain only positive

parallax, while others may contain positive and negative parallax). The advan-

tage of the laboratory created stimuli lies in the fact that all of the parameters

are known and under the control of the experimenter. However, artificial stimuli

do not reflect the whole spectrum of e↵ects that are observed in commercially

available games and movies. Also the level of engagement of participants is not

the same as for commercially available games/movies.

To sum up the main methodological limitations of previous studies are pre-

sented below:

• In many experiments only post-session data were collected. This approach

does not give a clear picture whether symptoms were induced during the

viewing of 2D or 3D stimuli or whether the participant experienced symp-

toms at the onset of the experiment. This approach was criticised by

Howarth (2011) and assessing symptoms in this way was recognised as

a methodological error of Visual Display Unit (VDU) users in the past

(Howarth & Istance 1985). However this problem is still observed in more

recent studies (Yano et al. 2004, Ho↵man et al. 2008).

• As all potential causes of 2D discomfort are also present during the watching

of 3D stimuli, assessment of 3D discomfort should, in fact, take into account

the di↵erence between 2D and 3D discomfort. So far only the discomfort
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di↵erences between groups have been analysed (e.g. group A - watched

3D stereoscopic stimuli, group B - watched 2D stereoscopic stimuli), but

not individual di↵erences between 2D and 3D discomfort (e.g. Ujike &

Watanabe (2011), Yang et al. (2012). Even if the same participants watched

2D and 3D stereoscopic stimuli (e.g. Yang & Sheedy (2011)) individual

di↵erences in discomfort between these two conditions have not been taken

into consideration.

It is important to analyse change of discomfort experienced in 2D and 3D

conditions by each of participants. Comparison of a 2D and 3D group

average discomfort will mask significant changes that can occur in the visual

function of individual participants.

• Another drawback of group averaging is that this way of presenting data

hides the actual number of participants a↵ected by the stimulus. For ex-

ample some participants could experience discomfort whilst others did not,

but by averaging the data the appearance is that all did. At this point

it should be highlighted that it is not the stimulus itself which produces

discomfort, but the response to it. As the response to a presented stim-

ulus may vary between participants the amount of reported discomfort is

also likely to vary. This drawback can be simply eliminated by presenting

distribution of the data (e.g. a histogram), which provides information on

how di↵erently di↵erent people were a↵ected. However many researchers

missed this information.

• In many studies (e.g. Yang & Sheedy (2011), Yang et al. (2012) partici-

pants were exposed to commercially available movies or games, however in

these experiments there is no information about the size of horizontal par-

allax utilised in the movies and therefore no information about the size of

vergence-accommodation mismatch. Furthermore, if the movie is not CGI

(Computer-generated imagery) stimuli it is likely that vertical (unwanted)

parallax is present.

Some of the movies also contain a positive parallax which exceeds the

viewer’s inter-pupillary distance. The lack of information about the mag-
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nitude of parallaxes (horizontal and vertical) in the movies prevents this

being excluded as a reason for discomfort whilst viewing 3D stereoscopic

stimulation. It can be presumed that the e↵ect of the magnitude of par-

allaxes used in the movies will not be equal for each participant as it will

be dependant on viewer’s capacity for divergence, convergence and to fuse

vertically separated images.

• To asses the side e↵ects of watching 2D and 3D movies the SSQ (Simulator

Sickness Questionnaire) was widely used. However, several problems have

been noted in terms of the use and interpretation of this questionnaire.

For example Clemes (2004) commented that the cluster names in the SSQ

may produce confusion and lead to incorrect assumptions that participants

experience problems related to the name of the cluster. Similar observations

were made in terms of total SSQ score. Chang et al. (2012) pointed out

that the SSQ assesses many symptoms which can occur in the absence of

motion sickness (e.g. headache, eyestrain, fatigue) which may produce an

increase in total sickness scores when in fact participants do not experience

motion sickness.

2.2.6 Improvement of current knowledge

As discussed above there are many limitations in previous studies. Because of

these limitations, only an association and not causation of the problem can be

shown. For a better understanding of the e↵ect of 3D stereoscopic stimulation on

visual response and visual discomfort, several hypotheses are tested in this thesis.

Literature specific to each of the tested hypotheses is presented separately at the

beginning of each chapter.
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Chapter 3

Heterophoria adaptation during

the viewing of 3D stereoscopic

stimuli

Purpose: The current chapter aims to examine subjective and objective visual

change as a result of playing a computer game under 2D condition versus 3D

condition. The subjective indicator of visual change used here was a pre- and

post- questionnaire, and the objective indicator of visual change was a change in

horizontal phoria measured before and after playing the game.

In this experiment two hypotheses were tested. The first hypothesis was that

the viewing of 3D stereoscopic stimuli, which are located geometrically beyond

the screen on which the images are displayed, would induce exophoric heteropho-

ria (phoria) changes (adaptation). The second hypothesis was that participants

whose phoria changed as a consequence of adaptation during the viewing of the

stereoscopic stimuli would experience less visual discomfort than those people

whose phoria did not adapt.
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3.1 Introduction

Most adults have two eyes, separated by between 50 and 75 mm (Dodgson 2004).

A consequence of this separation is that each eye has its own view of an object,

and slightly di↵erent images fall on the two retinas. In order for us to have a

unified, single view of the world the neural signals from the two eyes are combined.

In the normal eye, the image of a fixated object will fall on the two foveas, and

since the foveas both have the same perceived direction the object will be seen as

single. Objects located elsewhere will also be seen as single when the eyes move to

fixate them, and thus single vision is achieved by both sensory and motor neural

activity. Overall, stereoscopic vision is a result of disparity information delivered

to the visual system from two viewing positions in a natural scene.

To produce a 3D e↵ect on a flat screen the disparity information has to be in-

duced artificially. To achieve this condition two cameras produce an image of the

same scene from slightly di↵erent positions. If the cameras are set up (adjusted)

properly, only horizontal (not vertical) parallax1 occurs on the screen. Positive

parallax causes the object to appear behind the screen, and negative parallax

causes the object to appear in front of the screen. Unlike the real world, a 3D

stereoscopic display produces a stimuli to accommodation provided by the image

on the screen, and a stimuli to convergence provided by geometrical location of

the image. (Rushton et al. 1994, Ukai & Howarth 2008, Ho↵man et al. 2008, Lam-

booij et al. 2009, Howarth 2011, Yang et al. 2012). The same situation, namely

a change in the relation between the accommodation stimulus and the vergence

stimulus, occurs when prism or decentered lenses are worn in front of the eyes

Ramsdale & Charman (1988). The image of an object which is viewed through a

base-out prism will be located geometrically closer than the object itself, and to

see it singly will require increased convergence. Similarly, base-in prisms will pro-

duce an image located further than the object, requiring decreased convergence.

In both cases the stimulus to accommodation remains the same with or without

the prism.

When the sensory information is removed, for example when one eye is cov-

ered, the eyes will take up a position of rest (heterophoria) (Maddox 1893).

1Parallax refers to the separation of the left and right images on the screen.
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Heterophoria equals the di↵erence between the positions of the eye when fusion

is prevented and when it is not allowed. Clinically it can be classified by the

direction of the deviation of the eye under cover such as esophoria (turing of the

eye inward from the active position when fusion is broken), exophoria (turning

of the eye outward from the active position when fusion is broken). Heterophoria

is not present when the position of the visual axes in the absence of stimuli to

fusion is the same as the position of the visual axes in the active position and this

condition is know as orthophoria (Millodot 2014). Figure 3.1 illustrates position

of the eye under cover (fusion - free position) in orthophoria (a), esophoria (b),

exophoria (c).

Figure 3.1: Classification of heterophoria deviation. Position of eye under cover
in orthophoria, the left eye not moved (a), position of the eye under cover in
esophoria, the left eye has deviated inward (b), position of the eye under cover in
exophoria, the left eye has deviated outward (c).

The position of heterophoria is determined by a number of factors, both im-

mediate and historical. The accommodation and vergence systems are neurolog-
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ically linked (Maddox 1893, Fincham & Walton 1957) and so immediate changes

in accommodation will alter the position of the eye under cover. When accom-

modation is steady, however, it is the past history of activity, which ultimately

determines the position of the eye. This position can be altered over time, and

this is commonly referred to as heterophoria (phoria) adaptation, prism adap-

tation, or vergence adaptation. The wearing of prisms will produce a change in

heterophoria (Mitchell & Ellebrock 1955, Schor 1979, North et al. 1990, North

& Henson 1992, Patel et al. 2003, Brautaset & Jennings 2005, 2006), as will the

wearing of lenses (Schor 1979, North et al. 1985, Jiang et al. 2007, Sreenivasan

et al. 2009), and sustained fixation on a physical target (Ehrlich 1987).

Several studies have shown that phoria adaptation can be reduced in sub-

jects with vergence disorders. North & Henson (1992) compared the ability to

adapt to prism - induced phorias in three groups of subjects: those with nor-

mal binocular vision, those with abnormal binocular vision and/or asthenopia

(selected from the University of Wales’ Orthoptic Clinic) and with subjects who

received orthoptic treatment (attending the Orthoptic Department of the Bristol

Eye Hospital). The normal binocular vision subjects presented a capability to

adapt to near and distant prism-induced phorias. The majority of participants

with abnormal binocular vision demonstrated reduced heterophora adaptation or

no adaptation. Ability to adapt to prism-induced heterophoria improved for the

group where subjects received orthoptic treatment (the orthoptic treatment took

8 weeks). Brautaset & Jennings (2005) showed that people with CI (convergence

insu�ciency1) have reduced and less complete adaptation to prisms. In their

next experiment (Brautaset & Jennings 2006) showed that CI patients improve

their ability to (perform) prism adaptation after oculomotor training (the home

based orthoptic treatment lasted 12 weeks). Nilsson & Brautaset (2011) mea-

sured heterophoria adaptation to prisms at 40 cm and 6 m. They showed that

subjects diagnosed with CE (convergence excess2) have reduced ability to adapt

to prisms at both near and far fixation. Changes in adaptation were also found

1CI - a reduced ability to converge on near objects. Usually associated with a high exophoria
at near and a relatively orthophoric condition at distance. It results in complaints of ocular
fatigue, astenopia, headache, blur and occasional diplopia, which are observed with near work.

2CE - A high esophoria at near, associated with a relatively orthophoric condition at dis-
tance. It gives the same symptoms as CI.
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after orthoptic treatment by Thiagarajan et al. (2010) (the orthophtic treatment

lasted 2 weeks).

Winn et al. (1991) compared adaptation to induced heterophoria between

presbyopic and prepresbyopic subjects. They found that older subjects had a

significantly reduced adaptation to prisms compared with the younger group.

However, these results were not confirmed by studies conducted by Rosenfield

et al. (1995) who noted no significant correlation between heterophoria adaptation

and age. Rosenfield (1997) explained that the di↵erence between the results

of these two studies may be caused by the di↵erences in the age range of the

subjects tested (Winn et al. (1994) tested participants up to 85 years of age,

whereas Rosenfield et al. (1995) tested participants up to 65 years of age), and

by the di↵erence in methodology of studies (Rosenfield et al. (1995) used higher

vergence demand than the earlier study.In terms of visual discomfort and phoria

adaptation Howarth (1996) found that when viewing a screen for 15 min through

low power prisms (< 4 prism dioptres) subjects showed prism adaptation without

an accompanying change in discomfort, but when higher powered prisms (6 prism

diopters) were employed some subjects reported an increase in discomfort. This

is consistent with the expectation based on the Zone of Clear Single Binocular

Vision (ZCSBV) (Howarth 2011).

The first question we asked in this study is whether the viewing of stereo-

scopic 3D images produces phoria adaptation in the same way as is seen when

objects are viewed through a prism. The second question we asked relates to

the link between adaptation and discomfort. It is reasonable to assume that

vergence adaptation is an integral part of the normal visual system (Patel et al.

2003, Winn et al. 1994) and that people who are less adaptable could experience

more binocular di�culties. With that in mind, we considered the possibility that

heterophoria adaptation is a mechanism which serves to maintain clear binocular

vision without excessive visual discomfort. We expected, therefore, that subjects

in our experiment whose phorias did change as a consequence of adaptation during

the viewing of the stereoscopic stimulus would experience less visual discomfort

than people whose heterophoria did not adapt. To examine these issues we evalu-

ated changes in comfort as well as adaptation over twenty minute periods, during

which participants played a 3D stereoscopic computer game.
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3.2 Methods

3.2.1 Procedure

Participants played a computer game on two occasions. On one the game was

presented stereoscopically in 3D, and on the other it was in 2D. This latter con-

dition acted as a control. Each condition was employed on di↵erent days, with

half of the participants experiencing the 2D condition first, and the other half

the 3D condition first. In each case the game was played for 20 min. Subjective

symptoms and heterophoria were assessed both before and after the playing of

the game, to allow for the evaluation of any changes.

3.2.2 Participants

Twenty people, all of whom were either sta↵ or students at Loughborough Uni-

versity participated in the experiment. The only criterion to take a part in the

study was stereoscopy vision, on which 3D stereoscopic technology depends. Par-

ticipants were aged between 19 and 45 (mean age: 26.9 ± 7.2 years) and all had

normal, or corrected to normal, vision. They all also had normal binocular vision,

enabling them to fuse the two images produced by the game. All participants

were fully informed of the procedure, and of their right to withdraw, in accor-

dance with the study approval granted by the Loughborough University Ethical

Committee and the tenets of Helsinki.

3.2.3 Stimulus

The game chosen was entitled Ziro (by Kokakiki; www.kokakiki.com) which was

displayed on an Acer GD245HQ computer screen using an NVIDIA GeForce

GTX580 graphics card (www.nvidia.com). In this game dice are moved around a

board. Two conditions were employed, one with a normal 3D stereoscopic view,

and the other (control) with a 2D view.

This game was selected for two reasons. First, the game has only positive

parallax (uncrossed retinal disparity) and geometrically all portions of the image

are either in the plane of the screen or behind it. Second, the game does not pro-
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duce the sensation of vection so it is unlikely to produce visually-induced motion

sickness (VIMS) which has been suggested as one of the causes of complaints by

people watching 3D stereoscopic films (Howarth 2011, Yang & Sheedy 2011).

In the 3D condition the parallax between images was fixed at 48 mm. The

depth of the dice (which were all on the same plane) was 150 cm behind the screen

representing a depth of 9.6 prism dioptres beyond the plane of the screen for a

testing distance of 50 cm. To produce the stereoscopic sensation of depth, images

for the right and left eyes were alternated on the screen at a refresh rate of 120

Hz. This display was viewed through active shutter glasses (www.nvidia.com).

The lenses in these glasses darken and lighten alternately in synchrony with the

computer screen, providing a separate image for each eye at a refresh rate of 60

Hz (Figure 3.2 ).

Figure 3.2: Shutter glasses working principle: to the naked eye the screen is
showing two overlapping images, but these are actually alternating rapidly and
the synchronous lightening and darkening of the lenses allows each eye to see the
image designed for it.
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3.2.4 Heterophoria measurement

Horizontal near heterophoria was measured using a modified Thorington tech-

nique (Rainey et al. 1998, Escalante & Rosenfield 2006) at a distance of 50 cm,

which was the distance used when playing the game. Previous studies have shown

that the modified Thorington technique provides good repeatability (Rainey et al.

1998, Escalante & Rosenfield 2006). The magnitude of the phoria was quantified

using a tangent scale which consisted of a horizontal row of numbers, each of

which is 10 mm apart (i.e. equivalent to 2� at a distance of 50 cm), separated by

dots to produce a 1� scale. Each of the numbers was approximately 5 mm high.

The amount of deviation was measured in prism diopter [�] (see figure 3.3).

Apex

1 cm

Base

normal

100 cm100 cm

1 cm

Apparent direction 
of image

Light ray from
distant object

Refracted ray

Figure 3.3: Diagram demonstrating definition of prism dioptre. One prism dioptre
shifts the light by 1.0 cm in a distance of 100 cm from prism. To refixate the
shifted image, the eye must rotate 0.57�

During measurement a red Maddox rod1 was introduced in front of the right

eye, and a white light positioned below the screen then produced the appearance

of a vertical red line. The left eye saw the scale, and the participant was instructed

to report where the line crossed the scale (see figure 3.4).

1A Maddox rod consists of a series of glass or plastic rods mounted in a trial lens ring. Each
rod acts as a strong convex cylindrical lens and these convert the image of a spot of light into
a line of light perpendicular to the axis of the rod.
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LCD screen
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Maddox rod

H - Heterophoria
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H

LED diode

Maddox rod

Figure 3.4: Schematic drawing of the apparatus.

Two precautions were employed during this process. First, to avoid confusion,

the numbers on the exophoric side of the scale were even, whilst those on the

esophoric side were odd. Second, to avoid learning e↵ect bias during heterophoria

measurements the two di↵erent scales shown in (figure 3.6) were presented to

participants (a) before and (b) after the trial. The second of these (b) had six

added to each value shown in (a). This precaution was taken to ensure that the

responses were not influenced by memory of the value provided earlier, and the

true value was obtained subsequently by simply subtracting six from the number

reported. A chin rest and brow bar were employed to keep the participants head

in the correct position.
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14 12 10 8 6 4 2 1 3 5 7 9 11 13

20 18 16 14 12 10 8 7 9 11 13 15 17 19

(a)

(b)

a)

b)

Figure 3.5: Heterophoria measurement scales. To avoid the participants being
influenced by their previous result, the scale which was used second (b) had 6
added to each value of (a) (and 6 was subsequently subtracted during the data
analysis).

Interpretation of appearance of a red line when the eyes are dissociated by

the use of a Maddox rod are schematically summarised in figure 3.6.

a) b)

H

H

c)
H

H

Figure 3.6: A Maddox rod in testing position for horizontal heterophoria a) - the
line passes through the spotlight; the patient has no heterophoria, b) - the line
is to the left of the spotlight; the participant has an exophoria, c) - the line is to
the right of the spotlight; the participant has an esophoria.
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3.2.5 Symptom measurement

To evaluate visual discomfort a questionnaire based on a design by Howarth &

Istance (1985) was used (see table 3.1). with zero representing absence of the

symptom. During analysis the first eight questions were considered as priming

questions, which allowed the person to integrate the symptoms themselves and

to then produce a single number which provided an overall rating of their general

visual discomfort (Q:9). This approach has been found to be more sensitive than

analysing the responses to individual questions (Howarth et al.).

Table 3.1: Symptom Questionnaire

N SL M S

1 Do your eyes feel tired ? 0 1 2 3 4 5 6
2 Are your eyes sore or aching ? 0 1 2 3 4 5 6
3 Do your eyes feel irritated ? 0 1 2 3 4 5 6
4 Are your eyes watering or runny ? 0 1 2 3 4 5 6
5 Do your eyes feel dry ? 0 1 2 3 4 5 6
6 Do your eyes feel hot or burning ? 0 1 2 3 4 5 6
7 Does your vision feel blurred ? 0 1 2 3 4 5 6
8 Do you have double vision ? 0 1 2 3 4 5 6

9
Do you have any feeling of general
visual discomfort ?

0 1 2 3 4 5 6

N - none, SL - slight, M - moderate, S - severe.
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3.2.6 Data analysis

All data were analysed using SPSS Statistica 19 (www.ibm.com / SPSS Statis-

tics). A Shapiro - Wilks test was used to evaluate the normality of the heteropho-

ria changes, and as none were found to be outside the required limits the use of

Students t - test for dependent variables was appropriate. The discomfort data

were treated non - parametrically, using a Wilcoxon signed rank test and the

relationship between each heterophoria change and discomfort change was tested

using Spearmans correlation test.

Table 3.2: Test of normality

Heterophoria Shapiro Wilk test (p)

2D heterophoria pre 0.105
2D heterophoria post 0.064
2D heterophoria di↵erence 0.081
3D heterophoria pre 0.052
3D heterophoria post 0.303
3D heterophoria di↵erence 0.483

if: p < 0.05 distribution is abnormal, p > 0.05 distribution is normal.
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3.3 Results

3.3.1 Heterophoria

Following the viewing of the 2D stimuli, heterophoria changes were observed

in both an eso (five subjects) and an exo (eight subjects) direction, whilst the

remaining seven participants showed no change. The mean heterophorias were

in the exo direction, 3.70 (S.E. = 0.83) and 4.20 (S.E. = 1.04) in pre and post

stimuli, respectively (figure 3.7). The small exophoric shift over the trial for the

group as a whole was not statistically significant (p = 0.16, df = 19; t - test).
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Figure 3.7: Mean heterophoria before and after 2D stimuli. Error bars indicate
± 1 S.E.

Following the viewing of the 3D stimuli, heterophoria changes were again

observed in both an eso (four subjects) and an exo (13 subjects) direction, whilst

the remaining three participants showed no change. The mean heterophorias

were in the exo direction, 4.55 (S.E. = 0.77) and 6.05 (S.E. = 0.83) in pre and

post stimuli, respectively, and the change seen over these trials was statistically

significant (p = 0.007, df = 19; t - test) (figure 3.8).
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Figure 3.8: Mean heterophoria before and after 3D stimuli. Error bars indicate
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Figure 3.9 shows the change in heterophoria for 2D conditions (left), and

3D conditions (middle), and the di↵erence between them (right). The increased

exophoric change in the 3D condition, in comparison with the 2D condition, was

statistically significant (p = 0.035, df = 19; t - test).
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tions (middle), and the di↵erence between them (right). Error bars indicate ± 1
S.E.
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3.3.2 Discomfort

Following the playing of the game in the 2D condition, half of the participants

(10 people) reported no di↵erence in general visual discomfort from that reported

before playing it. However, four people reported a slight (1 scale point) increase

in general visual discomfort, four reported a moderate ( > 1 scale point) increase

in general visual discomfort (figure 3.10). Interestingly two participants reported

decrease in visual discomfort. This can be explained by random variation in the

data. An alternative explanation for these findings is that TV is watched for

pleasure and relaxation. For example we had a student who came to participate

in experiment before an exam as he wanted relax before it. Overall the values

of the discomfort medians were 0.0 (IQR = 1.0) and 1.0 (IQR = 2.0) in pre

and post stimuli, respectively. This increase was significant (p = 0.032, df = 11;

Wilcoxon).
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Figure 3.10: Changes in general visual discom-
fort for 2D condition (left), 3D condition (mid-
dle), and the di↵erence between them (right).

There was no significant cor-

relation between heterophoria

change and discomfort change

(r
s

= - 0.14, p = 0.56; Spear-

mans correlation test). These

results are presented in the top

panel of figure 3.11, which shows

scatter plots of change in het-

erophoria and change in dis-

comfort. Eight of the partic-

ipants reported the same level

of general visual discomfort be-

fore and after playing the game

in 3D stereoscopic mode. Seven

people reported a slight (1 scale

point) increase in general visual

discomfort, five reported a mod-

erate ( > 1 scale point) increase

in general visual discomfort and

46



3.Heterophoria adaptation and 3D stimuli

no - one reported a decrease (figure 3.10). The values of the discomfort medians

were 0.0 (IQR = 1.0) and 2.00 (IQR = 2.0) in pre and post stimuli, respectively.

This overall increase was significant (p = 0.002; df = 12; Wilcoxon). There was

no significant correlation between heterophoria change and discomfort change (r
s

= - 0.04, p = 0.85; Spearmans correlation test). These results are shown in the

middle panel of figure 3.11.

Any causal factors of discomfort unrelated to the stereoscopic aspects of the

3D displays should be present in both the 2D and 3D sessions. Consequently

any di↵erence between the amounts of discomfort reported in the two conditions

will be either because of the disparity present, or else through random variation.

Of the 20 participants, eight showed a greater amount of discomfort in the 3D

condition and twelve did not, three of whom showed a lesser amount (figure 3.10).

The increased discomfort change in the 3D condition in comparison with the 2D

condition was statistically significant (p = 0.031, df = 10; Wilcoxon). There was

no significant correlation between heterophoria change and discomfort change (r
s

= 0.03, p = 0.90; Spearmans correlation test), as seen in the bottom panel of

(figure 3.11).
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Figure 3.11: Visual discomfort and heterophorias. 2D condition (top) 3D stereo-
scopic condition (middle) and the di↵erence between these (bottom). Symbols:
square - one participant, triangle - two participants, cross - three participants.

3.3.3 Discomfort and heterophoria

If we group participants according to the di↵erence in discomfort change between

the two conditions (figure 3.12 ) we can dichotomise them as those who did (Group

1) and those who did not (Group 2) perceive a greater change in discomfort in

the 3D stereoscopic condition than in the 2D condition. If we then examine the

di↵erence between the groups in a number of aspects of their heterophoria, we

find no significant di↵erence between the groups (table 3.3).
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Figure 3.12: The number of participants showing each amount of di↵erence in
change in discomfort between the 2D and 3D conditions.

Table 3.3: Category classification for visual discomfort score change. The degree
of freedom for each category is 18

Susceptible to visual
discomfort

Not susceptible
to visual discomfort

Independent t-test

Mean S.E Mean S.E p sig.(2-tailed)

Heterophoria 3D change - 2D change 0.75 0.65 1.17 0.61 0.66
Initial heterophoria 2D 4.88 1.55 2.92 0.90 0.26
Initial heterophoria 3D 5.13 1.67 4.17 0.71 0.61
Final heterophoria 2D 5.38 1.78 3.42 1.26 0.37
Final heterophoria 3D 6.38 1.59 5.83 0.95 0.76
Change in heterophoria 2D 0.50 0.60 0.50 0.44 1.00
Change in heterophoria 3D 1.25 0.75 1.67 0.68 0.69
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3.4 Discussion

We have tested the hypothesis that the viewing of a stereoscopic 3D image lo-

cated geometrically 9.6 prism dioptres further away than the screen on which the

images are displayed will induce (exophoric) heterophoria adaptation, and found

this to be the case. In order to maximise our chances of detecting heterophoria

adaptation, we chose to have our participants play a computer game in which all

disparities present were uncrossed, and of the same magnitude. The image we

used was placed at a fixed distance behind the screen, producing a stimulus to the

visual system similar to that which would be seen were the screen to be viewed

through base-out prisms (which would be expected to produce prism adaptation

of the heterophoria). In the conducted experiment four out of twenty partici-

pants experienced esophoria adaptation after viewing a 3D stereoscopic image. It

is most likely this reflects noise in the data therefore this observation is considered

as not significant. If we take the entire group into account the e↵ect is significant

in the exophoric direction (as expected).

In considering this result in the context of the eyes’ response to 3D stereoscopic

films and television, we must not forget that there is usually a subtle di↵erence be-

tween the alteration to the normal visual world produced by prisms and by other

types of stereoscopic displays. The prismatic change is of a fixed magnitude for

prism wear, but the disparities present in the display can be of di↵erent sizes

(and may even be in di↵erent directions) at di↵erent times during the viewing of

film and television programmes. To ensure that factors other than the disparity

did not contaminate our results, we compared the change found under the 3D

stereoscopic conditions with those found in the 2D control condition. Although

we might have expected a slightly larger amount of heterophoria adaptation in

the control condition than was measured, in all likelihood some adaptation oc-

curred before the initial measurement of the heterophoria took place because the

participants were sat in front of the screen whilst the experiment, and the game,

were explained to them.

In the conducted experiment the increase of visual discomfort was significant

in 2D condition (p = 0.032) and in 3D condition (p = 0.002). Interestingly in the

2D condition 10% of participants reported decrease in visual discomfort. This
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observation can be explained by random variation in the data. An alternative

explanation for these findings is that TV is watched for pleasure and relaxation.

For example we had a student who came to participate in experiment before an

exam, as he wanted relax before it. This decrease in discomfort however is not

considered as significant as it was observed only in 2 participants and was only

slight (1 scale point). Furthermore it should be highlighted that not everyone

experienced more visual discomfort during the viewing of the 3D stimulus than

during the viewing of 2D stimulus, and for those who did it is not at all clear that

the discrepancy between the stimulus to accommodation and the stimulus to con-

vergence was in any way a causal factor. Nine of the twenty participants reported

the same level of visual discomfort in the 2D and 3D conditions, three reported

less discomfort in the 3D condition, and eight reported more. The results are

consistent with the hypothesis that for most people playing this type of game the

di↵erence in the stimuli to accommodation and to convergence should be within

tolerance limits (Lambooij et al. 2011, Howarth 2011) but that some individuals

with weak binocular vision systems could show symptoms. This distinction is

lost if averaged data for a group of subjects are examined (Ho↵man et al. 2008,

Shibata et al. 2011). To explore the di↵erence between those participants who

experienced more discomfort when viewing the game stereoscopically, and those

who did not, we dichotomised the results on that basis. No significant di↵erence

was measured between these groups in terms of their initial heterophoria, final

heterophoria, or change in heterophoria. There was clear variability in the mag-

nitude of the heterophoria adaptation between individuals during the watching

of the 3D stimuli, but no causative link between the heterophoria change and the

visual discomfort change was apparent.

Although our results are clear, we recognise that the picture seen may change

under di↵erent experimental conditions. It is quite possible that a longer viewing

time, such as the 1-2 hours people spend watching a film, could have produced

more symptoms. On the other hand, it is possible that adaptation may improve

matters. A further limitation, in terms of the generality and applicability of our

results to a real-world context, is that we only employed uncrossed disparity and

this is not necessarily what would be found in a 3D stereoscopic film or television

programme. Nevertheless, the adaptation we have found under our conditions
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is consistent with previous work showing heterophoria adaptation when other

stimuli were employed.
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Chapter 4

Vergence-accommodative

mismatch and visual-vestibular

mismatch during viewing of 3D

stimuli

Purpose: The aim of the current chapter was to compare the di↵erence in sever-

ity of symptoms reported by participants when viewing commercially available

movies in 3D versus 2D conditions.

In this experiment two hypotheses were tested. The first hypothesis was that

a greater mismatch between stimuli to accommodation and to vergence would

produce greater symptoms in visual discomfort of viewing in 3D conditions when

compared to the discomfort of viewing in 2D conditions. The second hypothesis

was that 3D stimuli produce a greater sense of vection increasing the conflict

between the visual and vestibular systems and thus produce greater VIMS symp-

toms compared to 2D viewing conditions.

Both hypotheses were tested in terms of movie content (the size of parallax

in the presented movies), seating position (2m and 4m from the screen), gender

and participants’ age (participants below 40 years of age and participants aged

40 and over).

In addition, the analysis of the magnitude of vergence-accommodation mis-
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match was conducted for the movies presented in the experiment.
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4.1 Introduction

3D stereoscopic technology provides an additional dimension to the viewing of

visual content. This allows greater immersion in the content, which intensifies

the viewer’s experience. Additional information associated with image depth is

derived from stereoscopic techniques and utilises binocular disparity as (depth)

cue. This occurs when there is a parallax between images. Parallax can be either

negative, when the stimulus is presented in front of the screen or positive, when

the stimulus is presented behind the screen (see figure 2.2). The presence of paral-

lax in the content produces a vergence-accommodation mismatch in the stimulus,

which has been suggested as a reason for discomfort during the viewing of 3D

stereoscopic stimuli (Ho↵man et al. 2008, Yang et al. 2012, Inoue & Ohzu 1997,

Ukai & Kato 2002). In addition, moving images in 3D technology are created and

displayed to achieve motion and action while viewers remain stationary. Expo-

sure to this kind of stimuli signals sensations from the visual system which do not

match those from the vestibular system. The conflict between these signals has

been suggested as an additional reason for people complaining about discomfort

while watching 3D stereoscopic stimuli (Howarth 2011, Yang et al. 2012).

As described above, two possible reasons for discomfort whilst viewing 3D

stereoscopic stimuli are considered here. So far a number of studies have analysed

these problems, however there were methodological limitations in these. The

limitations were discussed in the literature review sections (see subsection 2.2.5).

In this study, to exclude these limitations, each participant was exposed to 2D

stimuli as well as 3D stimuli. The di↵erence in discomfort of viewing 3D stimuli

and 2D stimuli reported by each individual participant was assessed instead of the

di↵erence between groups of participants. Based on mean and maximum parallax

used in the movies an analysis of the accommodation - vergence mismatch in terms

of seating position was conducted. The parallax of each movie was calculated by

CS MSU Graphics & Media Lab (Lomonosov Moscow State University, Russia)

team. Afterwards these data were analysed in terms of accommodation - vergence

conflict.
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In the present experiment the following hypotheses are tested:

• On the basis of the vergence-accommodation mismatch theory it is expected

that greater mismatch between stimuli to accommodation and stimuli to

vergence will produce greater symptoms of visual discomfort during the

viewing of 3D stimuli. This hypothesis was tested in two ways. Firstly,

based on the mean vergence-accommodation mismatch in presented movies

(see figures 4.4 and 4.5), and secondly by comparing visual discomfort at

di↵erent viewing distances.

For the first case it was expected that the group who watched the movie

with the smallest vergence-accommodation mismatch would experience less

visual discomfort than the group who watched the movie with the largest

vergence-accommodation mismatch.

For the second case it was expected that participants, who watched the

movie with a closer seating position would experience more visual discom-

fort than participants sitting farther away. Figures 4.4 and 4.5, where the

magnitude of vergence-accommodation mismatch decreases with increasing

viewing distances, suggest such a hypothesis to be valid.

Furthermore, as people age, the amplitude of accommodation decreases

(Donders & Moore 1864) resulting in presbyopia1. Because of this, older

people decouple the accommodation-vergence response in their everyday

lives. It is therefore presumed that changing vergence without changing

accommodation is a natural viewing condition for presbyopic participants

in contrast to pre-presbyopic participants. In this case, while viewing 3D

stereoscopic stimuli, the mismatch between stimulus to accommodation and

stimulus to vergence is the same despite the participants age, but the re-

sponse to the presented stimuli di↵ers.

Consequently, is expected that older participants (40 years old and above)

will experience less visual discomfort than younger participants whilst view-

ing 3D stereoscopic stimuli. Furthermore, the absence of accommodation

1The onset of presbyopia occurs when the amplitude of accommodation decreases to 5.00D
or less, and this level is reached approximately at the age of 40. After that the accommodation
amplitude continues to decrease to 0.00 D around the age of 75 (Donders & Moore 1864).
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responses in the presbyopic group eliminates other potential reasons of vi-

sual discomfort related to the accommodation response (e.g. accommoda-

tion overshoot or accommodation undershoot).

• In terms of visual-vestibular conflict theory it is expected that 3D stimuli

would increase the sensation of self-motion while the participant remains

physically stationary. This would then increase the sensory conflict, and

thus it is expected that more VIMS will be experienced in the 3D condition

than in the 2D condition.

Furthermore, it is expected that greater VIMS symptoms will be expe-

rienced by participants at the closer seating position as a larger part of

the visual field is stimulated, compared with those at the farther seating

position, where a relatively small part of the visual field is being stim-

ulated. This hypothesis is partly also based on the fact that peripheral

motion gives a greater sense of self-motion (vection) than central motion

(Bos et al. 2008). Furthermore, this hypothesis is consistent with previous

observations, where the size of the screen influenced the amount of VIMS

(Howarth & Harvey 2007).

• On average, females have smaller inter-pupillary distance (62.3±3.6 [SD])

than males (64.7±3.6 [SD]) Dodgson (2004). It can be predicted that this

3.7% di↵erence in inter-pupillary distance might have an impact on per-

ceived position of the observed object. In terms of vergence-accommodation

mismatch the size of the mismatch will be larger for females than for males

(figure 4.1). So, more discomfort can possibly be expected for females than

males. In terms of VIMS and gender some previous studies have reported

females to be more susceptible than males to VIMS (Clemes & Howarth

2005, Yang et al. 2012), but others have not found any significant di↵er-

ences (Cheung & Hofer 2003, Woodman & Gri�n 1997).
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Stereoscopic LCD

negative parallax

Stereoscopic LCD

positive parallax

pd pd

Figure 4.1: On average females have smaller inter-pupillary distance (pd) than
males (blue eyes). As the virtual position of the objects increases (farther from
the screen) with decreasing inter-pupillary distance, it can be expected that the
accommodation-vergence mismatch will be larger in terms of females than males.

In this chapter it was also asked whether headache is reported during 3D

stereoscopic stimulation and whether the headache whilst exposed to 3D stereo-

scopic stimulation is more severe than headache whilst exposed to 2D stimulation.

Furthermore, in the conducted study, the question was asked whether the

same factors contribute to visual discomfort, headache and VIMS whilst watching

3D stereoscopic stimuli. This was mainly motivated by the fact that symptoms

caused by e.g. vergence-accommodation mismatch or binocular vision problems

are likely to be associated with visual discomfort and headache Scheiman & Wick

(2008)(not necessary with VIMS). Therefore a correlation between visual discom-

fort change and VIMS would be expected. On the other hand it is expected that

symptoms caused by vection are likely to correlate with VIMS symptoms and

headache Wilson (1996), Lawson et al. (2002), Howarth & Hodder (2008), Ujike

et al. (2008), Kennedy et al. (2010)but not necessarily with visual discomfort.

Furthermore, it is apparent from the literature that eye problems only very rarely
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produce VIMS type symptoms. Therefore correlation between visual discomfort

change and VIMS change would not be expected. To test this, the relation-

ship between the di↵erent symptoms is analysed. In each case, the di↵erence in

symptom change between the 2D and 3D conditions is used in the analysis.

In the experiment three commercially available movies were presented to par-

ticipants. A description of stimuli details relevant to the specific hypotheses

tested are presented in subsection 3.2.3.
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4.2 Methods

4.2.1 Procedure

Three variables were examined using a balanced experimental design in which

participants were recruited to view one of three commercially available movies

(Grand Canyon Adventure [2008], Avatar [2009] or Pirates of the Caribbean: On

Stranger Tides [2011]). Each movie was watched in two sessions with a 15 minute

break.

• Variable (1) 2D vs 3D: participants were divided in two groups: one watched

the first part of the movie in 2D and the second part in 3D, the other

watched them in reverse order.

• Variable (2) viewing distance: Participants were seated either 2m (31 of

visual angle) or 4m (16 of visual angle) from the screen, changing position

during the break in the movie.

• Variable (3) age: the complete sample was divided into two groups on the

basis of age (participants aged below or above 40 years old).

In order to evaluate di↵erences between the conditions, symptoms of visual

discomfort, headache and VIMS were assessed by questionnaire before and after

the viewing of the movie on both sessions.

During the current experiment participants wore 3D glasses regardless of the

conditions (2D or 3D). In the 2D condition the 3D mode of the glasses was

switched o↵. This approach minimises the di↵erences between the two viewing

conditions. The discomfort related to the 3D glasses (weight or additional set of

correction glasses) has the same e↵ect on discomfort reported by participants in

the 2D and 3D condition.

4.2.2 Participants

Ninety six people (48 female, 48 male) were recruited to participate in the exper-

iment. They were aged between 21 and 70 (average age: 37 ± 13.8 years). The

only criteria to take part in the present study was stereoscopy vision, this was
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tested using a 3D stereoscopic TV. During the study participants wore their own

optical correction as needed. All subjects signed a consent form voluntarily after

a full explanation of the experiment.

In the experiment 3% (n=3) of potential participants were unable to see the

3D e↵ect because they lacked binocular vision, on which 3D technology depends,

and so they did not participate in the study.

4.2.3 Stimulus

One of three commercially available movies: Grand Canyon Adventure [2008],

Avatar [2009] or Pirates of the Caribbean: On Stranger Tides [2011] was shown

to each participant on a Panasonic Viera VT20, 50” plasma screen, using a

”BlueRay” disc player. The movie was watched through active shutter glasses

synchronised to the 3D TV with an infrared signal. To produce the stereoscopic

sensation of depth, images for the right and left eyes were alternated on the

screen at a refresh rate of 120 Hz. Figure 4.2 presents the mean horizontal paral-

lax of each movie. The largest mean negative parallax was observed in the Grand

Canyon Adventure movie and the largest positive parallax was observed in the

Avatar movie. Figure 4.3 presents the mean vertical (unwanted) parallax1, which

is the largest for the Grand Canyon Adventure movie.

Table 4.1: Overview of movies used in the experiment.

Movie Year Running time Genre

Grand Canyon Adventure 2008 44 min. documentary \adventure
Avatar 2009 162 min. science fiction \fantasy \adventure \action

Pirates of the Caribbean: On Stranger Tides 2011 137 min. fantasy \adventure \action

1vertical parallax - is generated by misalignment of the cameras, imperfectness of the lenses,
zoom discrepancy, photographic mismatches in focus.
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 Positive parallax (uncrossed retinal disparity)  
           [virtual object behind the screen]

                     Negative parallax (crossed retinal disparity)
                           [virtual object in front of the screen]

Mean horizontal parallax [mm] (scaled for Panasonic Viera VT20; 50'')

Avatar [2009]

mean negative 
parallax 

mean positive
parallax

maximum 
negative parallax

maximum 
positive  parallax Pirates of the Caribbean 4  [2011]

Grand Canyon Adventure [2008]

−150 −100 −50 0 50 100

Figure 4.2: Mean and maximum horizontal parallax in the following movies:
Grand Canyon Adventure [2008], Avatar [2009], Pirates of the Caribbean: On
Stranger Tides [2011]. Based on data delivered by CS MSU Graphics & Media
Lab team (Lomonosov Moscow State University, Russia).
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Figure 4.3: Mean vertical parallax in the following movies: Grand Canyon Adven-
ture [2008], Avatar [2009], Pirates of the Caribbean: On Stranger Tides [2011].
Based on data delivered by CS MSU Graphics & Media Lab team (Lomonosov
Moscow State University, Russia).
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In most 3D stereoscopic movies and games the separation of the left and

right images on the display screen (parallax) is not fixed but rather varies over

the time. The increase or decrease of the horizontal parallax in the movie/game

changes the perceived position of the stimuli and so changes the value of vergence-

accommodation mismatch. On our request the CS MSU Graphics & Media Lab

team selected the movie frames with high horizontal parallax in the movies used

during the current experiment. Table 4.2 presents examples of the frames with

high negative parallax (perceived image in front of the screen) and table 4.3

presents an example of the frames with high positive parallax (perceived image

behind the screen). In tables 4.2 and 4.3 the middle column presents the anaglyph

frames, where the distance in between the red and blue objects (yellow arrow)

indicates the parallax. The right column in each table (see tables 4.2 and 4.3)

shows 2D visualisation of anaglyph frames. As presented in tables 4.2 and 4.3 it

is important to highlight that in one single frame of the movie some objects are

presented in front of the screen and others behind the screen. This observation

shows that parallax in a movie varies not only in time, but also varies within a

single frame.

These data (see figure 4.2) are used to analyse the magnitude of vergence-

accommodation mismatch in the movies presented during the current experiment.

The results of this analysis are further used to test the vergence-accommodation

mismatch theory.

63



4. Mismatch during viewing of 3D stimuli
T
ab

le
4.
2:

H
ig
h
n
eg
at
iv
e
p
ar
al
la
x
ob

se
rv
ed

in
m
ov
ie
s.

M
ov
ie

N
eg
at
iv
e
p
ar
al
la
x

G
ra
n
d
C
an

yo
n
A
d
ve
nt
u
re

A
va
ta
r

P
ir
at
es

of
th
e
C
ar
ib
b
ea
n
:

O
n
S
tr
an

ge
r
T
id
es

T
h
e
le
ft

h
an

d
co
lu
m
n
sh
ow

s
th
e
an

ag
ly
p
h
s
of

a
fr
am

e
w
it
h
h
ig
h
n
eg
at
iv
e
p
ar
al
la
x
ta
ke
n
fr
om

ea
ch

m
ov
ie
.
T
h
e
d
is
ta
n
ce

b
et
w
ee
n

th
e
re
d

an
d

b
lu
e
ob

je
ct
s
(t
h
e
ye
ll
ow

ar
ro
w
)
in
d
ic
at
es

p
ar
al
la
x.

T
h
e
ri
gh

t
h
an

d
co
lu
m
n

sh
ow

s
2D

vi
su
al
is
at
io
n

co
rr
es
p
on

d
in
g
an

ag
ly
p
h
fr
am

e.
In

th
e
to
p
le
ft

co
rn
er

of
ea
ch

an
ag

ly
p
h
fr
am

e
d
et
ai
ls

ab
ou

t
th
e
m
ag

n
it
u
d
e
of

p
ar
al
la
x
ar
e

sh
ow

n
[m

et
ri
c
va
lu
e
=

%
of

fr
am

e
w
id
th
].

64



4. Mismatch during viewing of 3D stimuli
T
ab

le
4.
3:

H
ig
h
p
os
it
iv
e
p
ar
al
la
x
ob

se
rv
ed

in
th
e
m
ov
ie
s

M
ov
ie

P
os
it
iv
e
p
ar
al
la
x

G
ra
n
d
C
an

yo
n
A
d
ve
nt
u
re

A
va
ta
r

P
ir
at
es

of
th
e
C
ar
ib
b
ea
n
:

O
n
S
tr
an

ge
r
T
id
es

T
h
e
le
ft

h
an

d
co
lu
m
n
sh
ow

s
th
e
an

ag
ly
p
h
s
of

a
fr
am

e
w
it
h
h
ig
h
p
os
it
iv
e
p
ar
al
la
x
ta
ke
n
fr
om

ea
ch

m
ov
ie
.
T
h
e
d
is
ta
n
ce

b
et
w
ee
n

th
e
re
d

an
d

b
lu
e
ob

je
ct
s
(t
h
e
ye
ll
ow

ar
ro
w
)
in
d
ic
at
es

p
ar
al
la
x.

T
h
e
ri
gh

t
h
an

d
co
lu
m
n

sh
ow

s
2D

vi
su
al
is
at
io
n

co
rr
es
p
on

d
in
g
an

ag
ly
p
h
fr
am

e.
In

th
e
to
p
le
ft

co
rn
er

ea
ch

of
ea
ch

an
ag

ly
p
h
fr
am

e
d
et
ai
ls

ab
ou

t
th
e
m
ag

n
it
u
d
e
of

p
ar
al
la
x

ar
e
sh
ow

n
[m

et
ri
c
va
lu
e
=

%
of

fr
am

e
w
id
th
].

65



4. Mismatch during viewing of 3D stimuli

4.2.4 Symptom measurement

As was presented in the introduction, di↵erent approaches have been taken in

the past to assess the e↵ect of 2D and 3D stimulation on viewing comfort. In the

present experiment the symptom changes during each movie session was assessed

in accordance with the method proposed by Howarth & Istance (1985). In this

method individual symptoms prime the participants to answer an overall question,

which delivers a single number to represent their condition. In terms of assessing

the subjective change during the session, the approach of analysing an overall

question has been found to be more sensitive than analysing the responses to

individual questions (Howarth et al. n.d.).

The questionnaire used in the present experiment consists of three groups

of symptoms: group A - contains the symptoms related to visual discomfort

(based on Howarth & Istance (1985)), group B - contains the symptoms related

to headache and group C - contains the symptoms related to VIMS (based on

topical symptoms related to VIMS, see chapter 2.2.3). The questionnaire was

constructed in such a way that each participant could at first rate a number of

symptoms, and then give the overall rating of their visual discomfort, headache

and VIMS. The structure of this questionnaire is shown in table 4.4.

It is important to highlight that people who experience symptoms associated

with visual discomfort (group A) and VIMS (group C) can also experience symp-

toms associated with headache (group B). To the best of the author’s knowledge,

people who experience symptoms associated with vection (the feeling of self-

motion which gives rise to VIMS) do not su↵er from visual discomfort from the

same cause. The symptoms associated with visual discomfort relate to eye prob-

lems (have ocular origin). It is only in very rare circumstances the eye problems

may produce some symptoms associated with VIMS (e.g. vertical heterophoria1

or divergence insu�ciency2).

The questions were assessed on a seven point rating scale, where zero rep-

resents an absence of symptoms and seven represents severe symptoms. The

1association but not necessary causation between vertical heterophoria and motion sickness
was reported by Jackson & Bedell (2012).

2based on Scheiman & Wick (2008) divergence insu�ciency is a very uncommon condition,
but causes significant symptoms
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4. Mismatch during viewing of 3D stimuli

questionnaire was completed before and after the 2D and 3D sessions.

Because all causes of 2D discomfort are also present during 3D stimuli, the

primary measure of interest was not the symptoms change over the 2D session

(2D post exposure score - 2D pre exposure score) session or the 3D session (3D

post exposure score - 3D pre exposure score), but rather the di↵erence between

the changes in these two sessions.
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4. Mismatch during viewing of 3D stimuli

Table 4.4: Symptom Questionnaire

N SL M S

Group A

Tired eyes 0 1 2 3 4 5 6
Sore or aching eyes 0 1 2 3 4 5 6

Irritated eyes 0 1 2 3 4 5 6
Dry eyes 0 1 2 3 4 5 6

Hot or burning 0 1 2 3 4 5 6
Blurred vision 0 1 2 3 4 5 6

Di�culty focussing 0 1 2 3 4 5 6

Overall how much visual discomfort
are you experiencing ?

0 1 2 3 4 5 6

Group B

Headache at the sides of head 0 1 2 3 4 5 6
Headache at the front of head 0 1 2 3 4 5 6
Headache at the back of head 0 1 2 3 4 5 6

Fullness of head 0 1 2 3 4 5 6
Heaviness of head 0 1 2 3 4 5 6

Overall how much headache
are you experiencing?

0 1 2 3 4 5 6

Group C

Nausea 0 1 2 3 4 5 6
Dizziness 0 1 2 3 4 5 6
Drowsiness 0 1 2 3 4 5 6
Sweating 0 1 2 3 4 5 6
Salivation 0 1 2 3 4 5 6

Overall how much sickness
are you experiencing ?

0 1 2 3 4 5 6

N - none, SL - slight, M - moderate, S - severe
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4. Mismatch during viewing of 3D stimuli

4.3 Results

The results section is organised as follows. First the vergence-accommodation

mismatch, in terms of movie shown and seating position is analyzed (section

4.3.1). Next, the results of the di↵erence in discomfort between stimuli presented

in the 2D condition and 3D condition is demonstrated (sections 4.3.2 - 4.3.3).

4.3.1 Analysis of vergence-accommodation mismatch

The aim of the current section was to analyse the magnitude of the vergence-

accommodation mismatch produced by horizontal parallax in the movies used

in the experiment. Based on the horizontal parallax presented in figure 4.2 a

calculation of vergence-accommodation mismatch was conducted. The virtual

position of the image was calculated from the formula established from the figure

presented in appendix A . Accommodation and vergence stimuli are expressed in

dioptres [D] (dioptre = 1
d

, where d is the distance between the stimuli and eyes

in metre). Vergence-accommodation mismatch was calculated as the di↵erence

between the stimulus to vergence and the stimulus to accommodation in dioptres

[D].

Negative values express vergence-accommodation mismatch for images per-

ceived in front of the screen, positive values express vergence-accommodation

mismatch for images perceived behind the screen. Figure 4.4 presents the aver-

age size of the vergence-accommodation mismatch and figure 4.5 presents the size

of vergence-accommodation mismatch for high parallax in the movies presented

during the experiment. The size of vergence-accommodation mismatch in figures

4.4 and 4.5 has been calculated in terms of the viewing position for each movie

separately and was scaled for Panasonic Viera VT20;50”. In the present exper-

iment the distance between viewers and TV screen was either 2m or 4m (grey

area in figures 4.4 and 4.5), which are not untypical viewing distances within the

home environment. The others viewing distances presented in figures 4.4 and 4.5

indicate the mismatch which would be predicted at other viewing distances.

As shown in figures 4.4 and 4.5, the average size of vergence-accommodation

conflict with both negative parallax (top row) and positive parallax (bottom row)

decreased as viewing distance increased in a non-linear manner. The largest av-
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4. Mismatch during viewing of 3D stimuli

erage vergence-accommodation mismatch with negative parallax was observed

in the movie entitled Grand Canyon Adventure [2008] and with positive par-

allax was observed in the movie entitled Avatar [2009]. The smallest average

vergence-accommodation mismatch with negative as well as with positive paral-

lax was observed in the movie Pirates of the Caribbean [2011]. The average size

of vergence-accommodation mismatch was < 0.1 D (at the closer seating position

(2m from screen)) when the image was perceived in front of the screen as well as

when the image was perceived behind the screen.

Based on frames with high parallax the smallest accommodation-vergence

mismatch was observed in the movie Pirates of the Caribbean [2011], for neg-

ative as well as positive parallax. For negative parallax the largest vergence-

accommodation mismatch was observed in the movie Avatar [2009]. For positive

parallax the largest vergence-accommodation mismatch was observed in the movie

Grand Canyon Adventure [2011]. The analysis of vergence-accommodation mis-

match based on a frame with high negative and positive parallax showed that

the mismatch in both cases did not exceed 1D at the closer seating position (2m

from screen).

As presented in figure 4.4 and 4.5 for all investigated movies vergence-accommodation

mismatch was observed when the image was perceived in front of the screen as

well as when it was presented behind the screen.

Based on the analysis it was expected that:

• less visual discomfort would be experienced in the group who watched the

movie Pirates of the Caribbean [2011] (the smallest mismatch between stim-

ulus to accommodation and stimulus to vergence in the positive as well

as the negative parallax) than in the two other groups, where the movies

Avatar [2009] and Grand Canyon Adventure [2008] were presented.

• participants seated closer to the screen (larger vergence-accommodatiom

mismatch) would experience more visual discomfort than participants seated

farther away (smaller vergence-accommodatiom mismatch).
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4. Mismatch during viewing of 3D stimuli

4.3.2 Influence of movie type on discomfort

To check whether movie content a↵ects comfort whilst viewing 3D and 2D stimuli,

the results were pooled across distances for all three movies. The balance of the

experiment design allows conditions to be pooled. Figures 4.6 - 4.8 show the

di↵erences between 3D and 2D conditions in terms of visual discomfort, headache

and VIMS for each movie.

General visual discomfort

p=0.217

worse in 3D than 2D (1-2 scale points)
no difference
better in 3D than 2D (1-2 scale points)

  Grand Canyon 
Adventure [2008]
         (n=32)

   Avatar [2009] 
        (n=32)
      

   Pirates of the
 Caribbean [2011]
        (n=32)
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Visual discomfort 3D  -  Visual discomfort 2D 

Figure 4.6: The di↵erences in visual discomfort
between the 3D condition and the 2D condition
in term of the movie presented.

The largest number of par-

ticipants (41%) who reported

a greater amount of vision dis-

comfort change (VD post -

VD pre) in the 3D condition

in comparison to the visual

discomfort change (VD post

- VD pre) in the 2D con-

dition was observed for the

movie Grand Canyon Adven-

ture. For movies Avatar, and

Pirates of the Caribbean, a

greater amount of visual dis-

comfort change in the 3D con-

dition was reported by 22%

and 28% of participants, re-

spectively. For each of the

movies more than 50% of par-

ticipants reported the same

change of visual discomfort in

the 2D and 3D conditions.

Some participants reported a lesser amount of visual discomfort change in the

3D condition compared to the 2D condition. This was reported by 6% to 18% of

participants depending on the movie presented. The comparison showed that dif-
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ferences in visual discomfort were not statistically significant between the movies

(p=0.217; Kruskal-Wallis Test).

Headache

p=0.932

worse in 3D than 2D (3-4 scale points)
worse in 3D than 2D (1-2 scale points)
no difference
better in 3D than 2D (1-2 scale points)

    Pirates of the
 Caribbean [2011]
        (n=32)

Headache 3D - Headache 2D 
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         (n=32)
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Figure 4.7: The di↵erences in headache between
the 3D condition and the 2D condition in term
of the movie presented.

Results for headache change

between the 3D and 2D con-

ditions were very similar in

terms of movie presented as

shown in figure 4.7. A greater

amount of headache change (H

post - H pre) in the 3D con-

dition than the 2D condition

was reported by 22% of partic-

ipants in case of movie Avatar,

by 28% of participants in case

of movie Grand Canyon Ad-

venture, and by 22% of the

participants in case of movie

Pirates of the Caribbean. The

same change of headache in

the 3D condition as well as in

the 2D condition was reported

by 59% to 69% of participants.

A lesser amount of headache

change in the 3D condition compared with the 2D condition was reported by 9%

to 13% of participants depending on the movie presented. Comparison showed

that the di↵erences reported in headache were not statistically significant between

the movies (p=0.932; Kruskal-Wallis Test).
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VIMS

p=0.829

worse in 3D than 2D (3-4 scale points)
worse in 3D than 2D (1-2 scale points)
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better in 3D than 2D (1-2 scale points)
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Figure 4.8: The di↵erences in VIMS between the
3D condition and the 2D condition in term of the
movie presented.

The results of VIMS change

between the 3D and 2D con-

dition in terms of presented

movie are shown in figure 4.8.

A greater amount of VIMS

change (VIMS post - VIMS

pre)in the 3D condition than

the 2D condition was reported

by 16% of participants for

the movie Grand Canyon Ad-

venture, by 22% of partici-

pants for the movie Avatar

and by 12% of participants

for the movie Pirates of the

Caribbean. The same level

of VIMS change for the 2D

and the 3D condition was re-

ported by 75% to 88% of par-

ticipants. A lesser amount of

VIMS change in the 3D con-

dition than the 2D condition of was reported by 0% to 3% depending on the

movie presented. Di↵erences in VIMS were not statistically significant between

the movies (p=0.829; Kruskal-Wallis Test).

The analysis of the data in terms of movie watched show that di↵erences in

visual discomfort, headache and VIMS were not statistically significantly di↵erent

between the movies. Consequently, the data from the three movies were pooled

and presented in the following subsections (4.3.6 - 4.3.5).
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4. Mismatch during viewing of 3D stimuli

4.3.3 The influence of viewing distance on discomfort

In the following subsection the e↵ect of viewing distance on discomfort is analysed.

In this study two viewing positions were investigated: 2m (closer seating position)

and 4m (farther seating position) from the screen. Half of participants (n=48)

watched a movie at a closer seating position and the other half (n=48) watched a

movie at a farther seating position in either the 2D condition or the 3D condition.

Figures 4.9 - 4.11 compare the di↵erences in discomfort reported by the two groups

of participants (group 1: participants who watched 3D in a closer seating position

and 2D in a farther seating position, group 2: participants who watched 3D in a

farther seating position and 2D in a closer seating position).

General visual discomfort

3D at closer seating position/
2D at farther seationg position
                   (n=48)

3D at farther seating position/
2D at closer seating position
                (n=48) 

3D closer / 2D farther vs 3D farther / 3D closer; p=0.919

worse in 3D than 2D (1-2 scale points)
no difference
better in 3D than 2D (1-2 scale points)
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Figure 4.9: The e↵ect of seating position on vi-
sual discomfort.

In the group who watched

3D at a closer seating position

and 2D at a farther seating po-

sition 15% of participants re-

ported a lesser amount of vi-

sual discomfort in the 3D con-

dition than in the 2D condi-

tion. 56% of participants re-

ported no di↵erence between

visual discomfort in the 3D

condition and the 2D condi-

tion and 29% of participants

reported a greater amount of

visual discomfort in the 3D

condition than 2D condition

(see the right bar in figure 4.9).

In the group who watched

3D at a farther seating posi-

tion and 2D at a closer seating position 13% of participants reported a lesser

amount of visual discomfort in the 3D condition, than in the 2D condition. 56%
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of participants reported no di↵erence between visual discomfort reported in the

3D condition and the 2D condition and 31% of participants reported a greater

amount of visual discomfort in the 3D condition than the 2D condition (see the

right bar in figure 4.9).

The di↵erence between the two seating position groups was not statistically

significant (p=0.919; Mann-Whitney test).

Headache

3D at closer seating position/
2D at farther seationg position
                  (n=48)

3D at farther seating position/
2D at closer seating position
                 (n=48) 

3D closer / 2D farther vs 3D farther / 3D closer; p=0.969

worse in 3D than 2D (3-4 scale points)
worse in 3D than 2D (1-2 scale points)
no difference
better in 3D than 2D (1-2 scale points)
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Figure 4.10: The e↵ect of seating position on
headache.

In terms of headache, in

the group who watched 3D

at a closer seating position

and 2D at a farther seating

position 10% of participants

reported a lesser amount of

headache in the 3D condition

than in the 2D condition. The

same level of headache was

experienced for the 2D and

3D condition by 67% of par-

ticipants and an increase in

headache for the 3D condition

compared with the 2D condi-

tion was reported by 23% of

participants (see the left bar in

figure 4.10).

In the group who watched

3D at a farther seating position and 2D at a closer seating position 10% of par-

ticipants reported a lesser amount of headache in the 3D condition than in the

2D condition. The same level of headache was experienced for the 2D and 3D

condition by 65% of participants and an increase in headache for the 3D condition

compared with the 2D condition was reported by 25% of participants (see the

right bar in figure 4.10).

The di↵erence between the two seating position groups was not statistically
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significant (p=0.969; Mann-Whitney test).

VIMS

3D at closer seating position/
2D at farther seationg position
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3D at farther seating position/
2D at closer seating position
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Figure 4.11: The e↵ect of seating position on
VIMS.

In the case of VIMS in the

group who watched 3D from

the closer seating position and

2D from the farther seating

position 75% of participants

reported no di↵erence between

visual discomfort in the 3D

condition and the 2D condi-

tion. 25% of participants re-

ported a greater amount of vi-

sual discomfort in the 3D con-

dition than in the 2D condi-

tion (see the left bar in figure

4.11).

In the group who watched

3D from the farther seating

position and 2D from the

closer seating position 4% of participants reported a lesser amount of visual

discomfort in the 3D condition than in the 2D condition. 88% of participants

reported no di↵erence between visual discomfort in the 3D condition and the 2D

condition and 8% of participants reported a greater amount of visual discomfort

in the 3D condition than the 2D condition (see the right bar in figure 4.11). The

di↵erence between the two seating position groups was statistically significant

(p=0.010; Mann-Whitney test).
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4.3.4 The e↵ect of gender on discomfort

In the following section the e↵ect of gender on discomfort was analysed. The

average age for female participants was 39 ± 13 years and for males was 39 ±
14 years. 25% of females and 42% of males watched the movie Grand Canyon

Adventure, 35% of females and 31% of males watched the movie Avatar, and

40% of females and 27% of males watched the movie Pirates of the Caribbean.

The analysis of symptoms reported by females and males was conducted in terms

of visual discomfort (see figure 4.12), headache (see figure 4.13) and VIMS (see

figure 4.14).
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Figure 4.12: The e↵ect of gender on visual dis-
comfort.

When comparison was made

between the change in symp-

toms which were reported

when watching a 2D movie

(symptoms before compared

with symptoms after) and the

change reported when watch-

ing the 3D movie 27% of fe-

males and 33% of males re-

ported a greater change in

symptoms for the 3D condi-

tion than the 2D condition.

For 58% of females and 54%

of males symptom change was

the same in the 2D and 3D

conditions. A greater change

in symptoms for the 2D condi-

tion than the 3D condition was

reported by 15% of female and

13% of male participants (see figure 4.12). No statistically significant di↵erences

between females and males were found (p=0.42; Mann-Whitney test).
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Figure 4.13: The e↵ect of gender on headache.

When comparing the change

between the two sessions (head-

ache in the 2D condition

against headache in the 3D

condition) a greater change of

symptoms for 3D compared to

2D was reported by 25% of fe-

males and 23% of males. No

change in the level of symp-

toms was reported by 63% of

females and 69% of males. A

greater change in symptoms

for the 2D condition than the

3D condition was reported by

12% of females and 8% of

males (see figure 4.13). No sta-

tistically significant di↵erences

between females and males

were found (p=0.88; Mann-

Whitney test).
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Figure 4.14: The e↵ect of gender on VIMS.

When comparison was made

between the change in symp-

toms which was reported when

watching a 2D movie (symp-

toms before compared with

symptoms after) and the change

reported when watching a 3D

movie 17% of females and 17%

of males reported a greater

change in symptoms for the 3D

condition than 2D condition.

No change in level of symp-

toms was reported by 81% of

both females and males and

a decrease in symptoms was

reported by 2% of both fe-

males and males (see figure

4.14). No statistically signif-

icant di↵erences between fe-

males and males were found

(p=0.98; Mann-Whitney test).
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4.3.5 Does age have an influence on discomfort ?

In the following subsection the e↵ect of age on discomfort was analysed. Partic-

ipants were divided into two groups on the basis of age (group 1: participants

below 40 years of age, group 2: participants aged 40 and over). The groups were

equal in terms of number of participants, with 48 in each. In each age group one

third of participants watched each movie: Avatar (n=16), Grand Canyon Ad-

venture (n=16) and Pirates of the Caribbean (n=16). The comparison between

age groups was conducted in terms of visual discomfort(see figure 4.15), headache

(see figure 4.17) and VIMS (see figure 4.18).
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Figure 4.15: The e↵ect of gender on visual dis-
comfort.

When considering 2D and

3D conditions, 44% of partic-

ipants in the group less than

40 years old and 17% of par-

ticipants in the group 40 years

old and older reported greater

change in visual discomfort for

the 3D condition than the 2D

condition. For 43% of younger

participants (< 40 yrs) and for

68% of older participants (�
40 yrs) symptoms change was

the same for the 2D and 3D

condition. A lesser amount

of visual discomfort in the 3D

condition than the 2D condi-

tion was reported by 13% (<

40 yrs) and by 15% (� 40 yrs).

These results are presented in

figure 4.15. The di↵erence between the two groups (< 40 yrs and � 40 yrs) was

statistically significant (p=0.020; Mann-Whitney test). There was a significant
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correlation between participant age and di↵erence in the level of visual discomfort

between the 3D and 2D condition (r
s

= - 0.223, p = 0.029; Spearmans correlation

test),(see figure 4.16).
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Figure 4.16: Relationship between visual discomfort di↵erence reported by par-
ticipants across two sessions (3D-2D) and participants’ age.
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Figure 4.17: The e↵ect of gender on headache.

When considering the change

in headache over the two ses-

sions, 33% of participants in

the group less than 40 years

old and 15% of participants

in the group 40 years old and

older reported greater change

in visual discomfort for the 3D

condition than the 2D condi-

tion. For 58% of younger par-

ticipants (< 40 yrs) and for

73% of older participants (�
40 yrs) symptom change was

the same for the 2D and 3D

condition. A lesser amount

of visual discomfort in the 3D

condition than in the 2D con-

dition was reported by 8% (<

40 yrs) and by 12% (� 40 yrs).

These results are presented in figure 4.17. The di↵erence between the two groups

(< 40 yrs and � 40 yrs) was not statistically significant (p=0.072; Mann-Whitney

test). There was no significant correlation between participant age and di↵erence

in the level of headache between the 3D and 2D conditions (r
s

= - 0.199, p =

0.052; Spearmans correlation test),(see figure 4.19).
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Figure 4.18: The e↵ect of gender on VIMS.

When comparing symptom

change over the 2D and 3D

sessions, 25% of the partici-

pants in the group less than

40 years old and 8% of partici-

pants in the group 40 years old

and older reported a greater

change in VIMS after the

3D session than after the 2D

session. For 73% of the

younger participant group and

for 90% of the older partici-

pant group symptoms change

was the same for the 2D and

3D condition. A lesser amount

of VIMS in the 3D condition

than the 2D condition was

reported by 2% in both age

groups. These results are pre-

sented in figure 4.18. The di↵erence between the two groups (< 40 yrs and �
40 yrs) was not statistically significant (p=0.06; Mann-Whitney test). There was

no significant correlation between participant age and di↵erence in the level of

VIMS between the 3D and 2D condition (r
s

= - 0.122, p = 0.236; Spearmans

correlation test),(see figure 4.20).
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Figure 4.19: Relationship between headache di↵erence reported by participants
across two session (3D-2D) and participants age.
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Figure 4.20: Relationship between VIMS di↵erence reported by participants
across two sessions (3D-2D) and participants’ age.
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4.3.6 Changes in severity of symptoms reported for the

2D condition, the 3D condition, and the di↵erences

between them

In the current subsection changes in discomfort for the 2D condition, 3D condition

and the di↵erences between them are reported. The comparison for each condition

was conducted in terms of visual discomfort (see figure 4.21), headache (see figure

4.22) and VIMS (see figure 4.23).
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     change   
      (n=96)

3D discomfort change -
2D discomfort change
            (n=96)

                                      2D vs 3D; p=0.005                                   

moderate increase
slight increase
no change
slight decrease
moderate decrease
worse in 3D than 2D (1-2 scale points)
no difference
better in 3D than 2D (1-2 scale points)

N
um

be
r 

of
 p

ar
tic

ip
an

ts
 (%

)

0%

20%

40%

60%

80%

100%

Visual discomfort

Figure 4.21: Changes in general visual discom-
fort for 2D condition (left), 3D condition (mid-
dle), and the di↵erence between them (right).

After watching a movie in

the 2D condition, 73% of par-

ticipants reported no di↵er-

ence in general visual discom-

fort from that reported before

watching the movie. However,

20% of participants reported

a slight increase, and 7% re-

ported a slight decrease in gen-

eral visual discomfort (see fig-

ure 4.21; the left column).

This overall increase was sig-

nificant (p=0.019; Wilcoxon).

After viewing a movie in

the 3D condition, 53% of par-

ticipants reported the same

level of general visual discom-

fort as before the movie. An

increase in general visual dis-

comfort was reported by 39%

of participant, and a decrease

was reported by 8% of partici-

pants (see figure 4.21; the middle column). This overall increase was significant
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(p=0.001; Wilcoxon).

When comparing discomfort change between the two sessions, it was found

that 56% of participants showed the same change of visual discomfort in the 3D

condition as in the 2D condition. A greater amount of visual discomfort was

reported by 30% of participants and a lesser amount of visual discomfort was

reported by 14% of the participants for the 3D condition (see figure 4.21; the

right column). The increase in discomfort for the 3D condition in comparison

to the increase in discomfort for the 2D condition was statistically significant

(p=0.005; Wilcoxon).
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Figure 4.22: Changes in headache for 2D condi-
tion (left), 3D condition (middle), and the di↵er-
ence between them (right).

In terms of headache, after

viewing a movie in the 2D con-

dition no change in symptoms

between pre- and post- view-

ing was reported by 79% of the

participants. An increase of

headache was reported by 14%

of the participants and a slight

decrease in headache was re-

ported by 7% of participants

(see figure 4.22; the left col-

umn). This overall increase

was not statistically significant

(p=0.180; Wilcoxon).

After watching a movie in

the 3D condition, 65% of the

participants did not report any

di↵erence in headache between

pre- and post- viewing. How-

ever, 29% of participants re-

ported a slight increase, and
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6% of participants reported a slight decrease in headache (see figure 4.22; the

middle column). This overall increase was significant (p=0.001; Wilcoxon).

When comparing change between the two sessions, 66% of the participants

reported the same amount of headache in both conditions 3D and 2D. A greater

amount of headache was reported by 24% participants, and a lesser amount of

headache was reported by 10% of participants for the 3D condition (see figure

4.22; the right column). The change between the two conditions was statistically

significant (p=0.013; Wilcoxon).
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Figure 4.23: Changes in VIMS for 2D condition
(left), 3D condition (middle), and the di↵erence
between them (right).

In terms of VIMS symp-

toms, 92% of participants re-

ported no change in symptoms

level after watching the movie

in 2D compared to symptom

level before, 2% of participants

reported an increase in symp-

toms and 6% of participants

reported a decrease in symp-

toms (see figure 4.23; the left

column). The di↵erence be-

tween pre- and post- viewing

was not statistically significant

(p=0.132; Wilcoxon).

After viewing the movie

in the 3D condition, 82% of

the participants showed the

same level of VIMS as they re-

ported before the movie, 17%

of the participants showed an

increase and 1% of the partici-

pants reported a decrease of VIMS compared with that reported before watching
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the movie (see figure 4.23; the middle column). The di↵erence between pre- and

post- viewing was statistically significant (p=0.001; Wilcoxon).

The same level of VIMS was experienced for the 2D and 3D conditions by

81% of participants, an increase in VIMS for the 3D condition was reported by

17% of participants, and a decrease was reported by 2% (see figure 4.23; the right

column). The change between the two conditions was statistically significant

(p=0.001; Wilcoxon).

Relationship between changes in di↵erent symptoms

Figure 4.24 shows the relationships between di↵erent symptoms in terms of 3D

symptoms change - 2D symptoms change. The left panel shows visual discomfort

di↵erence (3D change - 2D change) against headache di↵erence (3D change - 2D

change). A statistically significant positive correlation between these two discom-

fort symptom groups was observed (r
s

= 0.32, p = 0.002; Spearmans correlation

test). The middle panel compares visual discomfort di↵erence (3D change - 2D

change) with VIMS di↵erence (3D change - 2D change). No statistically signifi-

cant correlation between these two symptom groups was observed (r
s

= 0.14, p =

0.175; Spearmans correlation test). The right panel shows VIMS di↵erence (3D

change - 2D change) against headache di↵erence (3D change - 2D change). A sta-

tistically significant positive correlation between these two discomfort symptom

groups was observed (r
s

= 0.35, p = 0.001; Spearmans correlation test).
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4.4 Discussion

The experimental section of the present chapter was split into two parts. In

the first, analysis of the magnitude of vergence-accommodation mismatch was

conducted. In the second part the di↵erence in severity of symptoms reported

by participants watching a movie in a 3D condition versus a 2D condition was

analysed.

The dominant theory in the literature, regarding the reason for discomfort

whilst watching 3D stereoscopic movies, is accommodation-vergence mismatch

theory. Because of this it is important to analyse the magnitude of vergence-

accommodation mismatch present in movies available to the public. To the best

of our knowledge, no studies have provided information about the magnitude

of vergence-accommodation conflict. In the current experiment three “o↵ the

shelf” movies were presented to participants (Grand Canyon Adventure [2008],

Avatar [2009] and Pirates of the Caribbean: On Stranger Tides [2011]). Based

on horizontal parallax, the magnitude of vergence mismatch was calculated for

each of the investigated movies, and the following observations were made:

• In the movies presented in this study the mismatch between stimuli to ac-

commodation and stimuli to vergence was present with both negative (im-

age in front of the screen) and positive parallax (image behind the screen).

The magnitude of vergence-accommodation mismatch varied between the

movies. However, the average vergence-accommodation mismatch did not

exceed 0.1D (negative and positive parallax) at the closer seating position

(2m from screen). In terms of the magnitude of vergence-accommodation

mismatch, for frames with high parallax, there were no films in which the

magnitude of vergence-accommodation mismatch exceeded 1D (negative

and positive parallax) at the closer seating position (2m from screen).

• The magnitude of vergence-accommodation mismatch decreases as the view-

ing distance increases. Based on this observation (in terms of vergenceac-

commodation mismatch theory) it can be expected that participants with

a closer seating position would report more visual discomfort than partici-

pants sitting further away during the viewing of 3D stimuli.
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In the present study accommodation-vergence mismatch theory and visual-

vestibular conflict theory were examined. Therefore, the experiment was con-

structed in such a way, that di↵erent conditions (i.e. viewing distances, the

average magnitude of vergence-accommodation mismatch), or di↵erent partici-

pant groups (i.e. participants below 40 years of age, participants aged 40 and

over) were compared to find evidence to support or disprove these hypotheses.

On the basis of the accommodation-vergence mismatch theory it was expected

that a greater mismatch between a stimulus to accommodation and a stimulus

to vergence would produce greater symptoms in visual discomfort whilst viewing

in the 3D condition.

In the experiment there were two ways in which this expectation was tested,

and in neither case was the outcome as predicted on the basis of theory. The

first way of analysing this hypothesis was to compare visual discomfort di↵erence

between the 3D and 2D condition reported by three groups of participants. Each

group watched di↵erent movie, and so were exposed to a di↵erent amount of

mismatch between stimulus to vergence and stimulus to accommodation.

The comparison in terms of vergence-accommodation mismatch between the

movies showed that the smallest mismatch in the positive parallax as well as

negative parallax was observed in the movie Pirates of the Caribbean [2011] (see

figures 4.4 and 4.5). Based on this comparison it was expected that less visual

discomfort would be experienced by the group who watched this movie than the

two other groups where the movies Avatar [2009] and Grand Canyon Adven-

ture [2008] were presented. As shown in figure 4.6 there were no statistically

significant di↵erences in visual discomfort between the 3D condition and 2D con-

dition in relation to the watched movie. In the group who watched Pirates of the

Caribbean [2011] fewer people reported an increase in visual discomfort in the

3D condition compared to the 2D condition than for those who watched Grand

Canyon Adventure [2008]. However, in the group who watched the movie Avatar

[2009], slightly fewer people reported an increase of symptoms in the 3D condi-

tion over the 2D condition when compared with Pirates of the Caribbean [2011].

This observation indicates that di↵erences in vergence-accommodation mismatch

between the movies (an across movie comparison) can not be considered as an

indicator of visual discomfort reported by participants.
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4. Mismatch during viewing of 3D stimuli

The second way of examinating this hypothesis was to compare visual dis-

comfort di↵erence between the 3D and 2D conditions reported by participants at

di↵erent viewing distances. As shown in figures 4.4 - 4.5 the mismatch between

the stimulus to accommodation and stimulus to vergence decreases as viewing dis-

tance increases, and hence it was expected that participants seated closer to the

screen would experience more visual discomfort than participants seated further

away. Despite di↵erent exposure to vergence-accommodation mismatch at di↵er-

ent viewing distances no statistically significant di↵erences in visual discomfort

were reported by participants (see figure 4.9 - 4.11).

Based on these observations it can be concluded that during the viewing of

the commercially available movies (where the distance between the participant

and the screen is 2m or more) a decrease in mismatch between the stimuli to

accommodation and the stimuli to vergence does not a↵ect visual comfort during

the watching of 3D stereoscopic stimuli.

In the experiment three di↵erent movies were presented to the participants.

The largest number of participants who reported a greater visual discomfort in the

3D condition compared to the 2D condition was observed for the movie “Grand

Canyon Adventure” [2008]. This observation could be attributed to the vertical

(unwanted) parallax which was larger in this movie. This speculation is consistent

with the data presented by Kooi & Toet (2004), Woods et al. (1993). The alter-

native explanation relates to the extreme positive parallax, which in this movie

slightly exceeded the average human inter-pupillary distance. The adverse e↵ect

of positive parallax on discomfort cannot be supported by the average positive

parallax value, which was smaller in this movie than in “Avatar”. However, it

should be noted that by averaging parallax values, some information on paral-

lax variability is lost. Additional measures of parallax dynamic properties (e.g.

rate of change) might provide more detailed information on the characteristics

of stimulation. This factor was not investigated in this thesis, due to resource

limitations, and may be a valid subject for future work.

In our experiment more younger viewers (21 to 39 years old) then older view-

ers (40 years old and older) reported a greater change in visual discomfort for

the 3D condition than the 2D condition. A statistically significant di↵erence in

visual discomfort between these two groups was found (p=0.02). However it has
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4. Mismatch during viewing of 3D stimuli

to be noted that the increase of visual discomfort in the 3D condition compared

to the 2D condition did not extend beyond 2 scale points in both age groups. It

is known that the amplitude of accommodation declines with age, therefore older

people have a decoupled accommodation vergence response in everyday life. As a

consequence changing vergence without changing accommodation could be easier

or more e�cient for presbyopic, than for prepresbyopic people. An alternative

explanation of these findings may be related to the accommodation response. In

the literature (Inoue & Ohzu 1997, Ukai & Kato 2002, Okada et al. 2006, Torii

et al. 2008, Fukushima et al. 2009) it can be found that some people experience

accommodation overshoot whilst viewing 3D stereoscopic stimuli. The e↵ect of

accommodation overshoot on visual discomfort during the viewing of 3D stereo-

scopic stimuli will be analysed in chapter 6. However, presbyopic people have a

reduced ability to accommodate, and so it is unlikely that this issue will have an

impact on their comfort in contrast to pre-presbyopic participants. Therefore it

can be assumed, that the visual system’s response to the stimulus, rather than

the stimulus itself is a reason for discomfort whilst watching a 3D stereoscopic

stimulus.

In terms of visual-vestibular mismatch theory it was expected that 3D stimuli

would produce a greater sense of vection, increasing the sensory conflict and

thus producing greater VIMS. In our experiment participants did indeed report

an increase in motion sickness symptoms in the 3D condition compared to the

2D condition (see figure 4.23). Furthermore, participants with a closer seating

position reported more VIMS symptoms than participants seated further away

whilst viewing 3D stimuli. This observation is consistent with a study conducted

by Howarth & Harvey (2007). In the current experiment and in the experiment

conducted by Howarth & Harvey (2007), a larger part of the visual field was

stimulated and more VIMS was reported. Based on these observations it can

be concluded that the amount of visual field stimulated during 3D presentation

a↵ect VIMS, and so viewing distance, is an important factor in terms of viewing

comfort.

In this study the production of headache by the viewing of 3D stereoscopic

stimuli on headache was assessed. When comparing the change between two

sessions a statistically significant increase of headache in the 3D condition com-
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pared with the 2D condition was observed. Moreover, the di↵erence in headache

symptoms (3D-2D) reported by participants correlated with the di↵erence in vi-

sual discomfort (3D-2D) and VIMS symptoms di↵erence (3D-2D) (figure 4.24).

This suggests that headache whilst viewing in 3D might be caused by the same

factors which lead to visual discomfort and VIMS. On the other hand, no sta-

tistically significant correlation was found between visual discomforts di↵erence

(3D-2D) and VIMS di↵erence (3D-2D). This suggests that the factors causing

visual discomfort might be di↵erent from those which lead to VIMS.

The results were also analysed in terms of gender. Because females have on

average a smaller inter-pupillary distance, it was expected that they would expe-

rience larger vergence-accommodation mismatch and so more visual discomfort

than males. Furthermore, as the virtual image would be positioned slightly far-

ther from the screen in such a case, females may experience greater immersion in

the presented content when compared to males. As presented in the figures 4.12

- 4.14 no statistically significant di↵erences between these two groups were found

in terms of visual discomfort, headache or VIMS. These observations however are

not consistent with data presented by Yang et al. (2012) who found a gender ef-

fect for visual discomfort and VIMS. However,Yang et al. (2012) pointed out that

there is no known gender di↵erence in visual abilities, and they were therefore

unable to explain these di↵erences.

In summary, the present study has shown:

• no statistically significant di↵erence in visual discomfort change between 3D

stereoscopic movies with di↵erent magnitude of vergence-accommodation

mismatch

• no statistically significant di↵erence between visual discomfort (3D visual

discomfort - 2D visual discomfort) experienced when viewing movie at dif-

ferent distances

• statistically significant di↵erence between VIMS (3D VIMS - 2D VIMS)

experienced when viewing 3D stereoscopic movie at di↵erent distances

• a clear age e↵ect on visual discomfort (3D visual discomfort - 2D visual

discomfort)
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4. Mismatch during viewing of 3D stimuli

• no influence of gender on viewing comfort was observed

• a correlation between visual discomfort and headache, and between VIMS

and headache, but not between VIMS and visual discomfort

• greater discomfort in the 3D condition compared with the 2D condition

(reported by 30% of participants in terms of visual discomfort, by 24% of

participants in terms of headache and by 17% of participants in terms of

VIMS).

Overall, the experiment has shown multiple causative factors of discomfort

during the viewing of 3D stimuli. It has to be noted that not all participants are

equally susceptible to these factors.
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Chapter 5

The impact of participants’

fusion capacity on discomfort

whilst watching movies in 3D

versus 2D condition

Purpose: The study presented in this chapter aims to examine participants’

fusion1 capacity measured by their fusional reserve and to determine whether this

component has an impact on discomfort reported during watching movies in 3D

versus 2D conditions.

In the previous chapter the severity of symptoms reported by participants

while viewing commercially available movies in 2D and 3D conditions was anal-

ysed. This chapter follows on this analysis but in relation to participants’ fusion

range. As horizontal parallax presented on the 3D stereoscopic screen evokes

fusional vergence it can be expected that di�culty in fusion may lead to visual

discomfort. Furthermore, the parallax in the 3D stereoscopic movie may exceed

the limit of a viewer’s fusion range, especially when a strong e↵ect in the 3D movie

is intended. It was hypothesised that participants with limited fusion range would

experience more visual discomfort than participants with a wide fusion range. The

1Fusion - refers to vergence movement made by the eyes in response to retinal disparity and
resulting in images being located on corresponding retinal points (motor fusion). This process
allows the images in each retina to be synchronised into a single percept (sensory fusion).
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5.Fusional Vergence

hypothesis was analysed in terms of positive fusional reserve (PFR), negative fu-

sional reserve (NFR) and total fusional reserve (FR=PFR+NFR). Additionally,

the impact of individual fusional range on headache and VIMS was analysed.
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5.1 Introduction

A 3D stereoscopic stimulus (e.g. movie, game, etc.) is made of two images of the

same scene captured from two horizontally o↵set viewpoints. As a consequence

our eyes receive two slightly di↵erent images which may stimulate disparate (non-

corresponding) retinal points. The distance from the fovea for of each these

non-corresponding retinal points is defined as retinal disparity1. When retinal

disparity is detected by the visual system, fusional vergence provides inward eye

movement (convergence) or outward eye movement (divergence). These move-

ments eliminate the disparity, as the images of the fixated points fall on the

foveas.

If the stimulus on the screen is displayed with negative parallax2 the images

fall temporal to the fovea and the binocular disparities are classified as crossed.

This condition gives rise to the perception that the image is nearer than the

screen and fixation on the stimulus produces convergent eye movement. On

the other hand, if the stimulus on a 3D stereoscopic screen is displayed with

positive parallax3 the images fall nasal to the fovea and the binocular disparities

are classified as uncrossed. This condition gives rise to a perception of the image

being farther than the screen and fixation on the stimulus is produced by divergent

eye movement. These two conditions are presented in figures 5.1.

1retinal disparity occurs when the object is located in front of, or behind the fixation point
2negative parallax - the image on the screen is shifted to the right for the left eye and to

the left for the right eye
3positive parallax - the image on the screen is shifted to the left for the left eye and to the

right for the right eye
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crossed
 retinal disparity

crossed
 retinal disparity

3D shutter glasses

Stereoscopic LCD
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uncrossed
 retinal disparity

uncrossed
 retinal disparity

3D shutter glasses

Stereoscopic LCD

DIVERGENCE

a) b)

negative parallax positive parallax

Figure 5.1: Fusional vergence eye movement when the two images are displayed
on a 3D steroscopic screen with a) negative parallax b) positive parallax.

A clear perception of single stereoscopic depth can be only achieved for a

limited range of binocular retinal disparities. Too large a parallax on the 3D

stereoscopic screen would exceed this range and image fusion will then fail. In

consequence an image which should be seen as single appears as double. This

condition is know as diplopia. The disparity range within which single vision can

be obtained is defined as Panum’s fusional area (PFA). The angular subtense of

this area is not constant over the retina and can be a↵ected by many factors e.g:

spatial frequency content of the stimulus1 eccentricity2 size of the stimulus3. Dis-

similar images falling in Panum’s fusional area do not fuse but exhibit binocular

rivalry, in which we see two images in alternation.

1PFA is greater for blurred (low spatial frequency) targets than for sharp (high spatial
frequency targets (Schor et al. 1984).

2PFA increases with retinal eccentricity of fusional stimuli i.e. with increasing horizontal
distance from the fovea (Hampton & Kertesz 1983).

3PFA increases as size of stimulus increase to include peripheral retinal regions (Ogle 1950,
Kertesz 1981).

100



5.Fusional Vergence

Fusional vergence has been measured since 1948 (Rowe 2010, Fray 2013).

Based on data collected over more than half of a century it is however still di�cult

to determine the “normal” fusional vergence value. This issue arises from the

fact that metrological techniques (particularly stimulus and viewing distances)

a↵ect this binocular parameter in di↵erent ways. According to Scobee (1952)

“no single value is either normal or abnormal in studies of muscle balance, but

each measurement must be considered in relation to the entire examination”.

So far, there is no “golden” method of assessing fusional vergence. In clinical

practice fusional vergence is usually measured with a Risley prism (rotary) or

prism bar (Evans et al. 2007, Elliott 2013). It can also be measured with the

use of vectograms or computer generated anaglyphic random dot stereograms

(Feldman et al. 1989). Several researchers have shown that fusional reserves

increase when measured in near fixation compared to those obtained in a distant

fixation (Rowe 2010, Antona et al. 2008, Fray 2013, Von Noorden & Campos

2002). Furthermore, the size of a presented stimulus also has an impact on the

fusional reserve range. In a study conducted by Feldman et al. (1993) the e↵ect

of stimulus size and the level of detail on fusional vergence was analysed. It was

found in this study that positive fusional vergence and negative fusional vergence

increase with the width and length of stimulus which was an unfilled square.

However this was not observed when only the width of stimulus increased. No

e↵ect was seen when the square was filled with details, and the maximum fusional

range was independent of the details pattern size and complexity. Feldman et al.

(1993) concluded that the main factor which determines fusional vergence is the

amount of retinal area contained within the boundary edges, rather than the area

of direct retinal stimulation or the amount of detail a stimulus has. More recently

Rowe (2010) also found larger fusional vergence values when a larger target was

used. This was particularly observed for positive fusional vergence and for near

distance. It is also suggested that targets which stimulate the peripheral retinal

area (large targets) are more e↵ective in terms of binocular vision (fusion) therapy

(Kertesz 1982, Feldman et al. 1993). Fray (2013) showed that encouragement1

during the measurement of fusional vergence has an impact on achieved results in

1Encouragement in terms of fusion reserve measurement relates to exhorting participants
to keep two separate lines as a single line for as long as possible.
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the case of positive fusional range (PFR) but not negative fusional range (NFR).

Sheedy (1983) pointed out that at a constant accommodation level a di↵erence

of 10 � from one fusional vergence range measurement to another is not unusual

unless rigorous controls are applied. Even a low dose of alcohol reduces positive

and negative fusional reserve (Watten & Lie 1996).

As discussed, fusional vergence is a highly variable parameter of binocular

vision. In the context of 3D stereoscopic stimulation it can be expected that a

specific combination of the stimulus and viewing distance may increase viewers’

e↵ort to fuse images presented on a 3D stereoscopic screen. The purpose of the

present study, however is not to show this, but rather to identify whether the

person’s fusional capability, as measured by their fusional reserves (the limits

of their ability to converge and diverge their eyes) has an association with dis-

comfort experienced whilst watching 3D stereoscopic stimulation. Furthermore,

the parallax in 3D stereoscopic movies may exceed the limit of a viewer’s fusion

reserve especially when a strong 3D e↵ect in the movie scene is intended. The

closer one is to one’s limits the more likely it is that stress or discomfort will

occur. A hypothesis can be proposed that viewers with limited fusion vergence

have to put more e↵ort to fuse images on a 3D stereoscopic screen than viewers

with a wider fusion range. If this is the case then participants with a wider fusion

range will experience less visual discomfort than those with a narrower fusion

range. Symptoms associated with fusional vergence problems are detailed in ta-

ble 5.1. Furthermore abnormality of vergence eye movement (e.g. convergence

insu�ciency decreased positive fusional vergence) can be associated with dizzi-

ness presumably because of blurred or double vision when looking at a nearby

object (Furman et al. 2010).
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Table 5.1: Symptoms associated with clinical problems of convergence insu�-
ciency, divergence insu�ciency and fusional vergence disfunction.

convergence
insu�ciency

divergence
insu�ciency

fusional vergence
dysfunction

eyestrain
headache

blurred vision
double vision
sleepiness

di�culty concentrating on reading material
loss of comprehension over time

a pulling sensation around the eye
movement of the print

double vision
headache
eyestrain
nausea
dizziness

train and car sickness
blurred vision

di�culty focussing from far to near
sensitivity to light

eyestrain
headache

inability to attend and concentrate
problems with reading comprehension

excessive tearing
blurred vision

Scheiman & Wick (2008)

It can be seen (table 5.1) that some of these symptoms are those reported

during the viewing of 3D stimuli. From clinical evidence it is known that fusional

vergence is an important indicator of binocular vision status (Elliott 2013). Be-

cause of this it is expected that a limitation in fusional vergence may intensify

adverse visual symptoms whilst watching 3D stereoscopic stimuli.

The expectation that the viewer’s fusional vergence has an influence on dis-

comfort whilst watching 3D stereoscopic stimuli is also consistent with what is

know about the zone of clear, comfortable, single binocular vision (ZCSBV)(Hofstetter

1945) (see figure 2.1 ).
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5.2 Methods

5.2.1 Procedure

At the beginning of the experiment fusional vergence was measured. After that

participants watched one of three “o↵-the shelf” movies (Grand Canyon Adven-

ture [2008], Avatar [2009] or Pirates of the Caribbean: On Stranger Tides [2011]).

Each movie was presented in two sessions with a 15 minute break. Participants

were divided into two groups. The first group watched the initial part of the

movie in 2D and the final part in 3D. Participants from the second group did the

opposite. They watched the initial part in 3D and the final part in 2D. People

participating in the study from each group were seated either 2m or 4m from the

screen, swapping position during the break in the movie. In this way four sets of

participants were created to ensure that the experiment was balanced. Subjective

symptoms were assessed before and after watching each half the movie.

5.2.2 Participants

In this experiment the same individuals participated as in the study presented

in chapter 4. Ninety nine people were recruited to participate in the experiment,

of which three were excluded. The reason for the exclusion of participants from

the experiment was their lack of binocular vision on which the 3D technology

depends. People who participated in the full-length study (n=96) were aged

between 21 and 70 (average age: 37 ± 13.8 years), 50% of them were female. The

participants were ethnically diverse. During the study participants wore their

habitual optical correction as needed. All subjects signed a consent form after a

full explanation of the experiment.

Whilst watching the movies, the participants wore 3D glasses regardless of

present conditions (3D and 2D). In the 2D condition the 3D mode was switched

o↵. In previous studies, it was reported that some participants complained about

the poor quality of the glasses (their weight, their use with another set of correc-

tion glasses) (Pölönen et al. 2009). Hence, this approach was used to minimise

the di↵erence between conditions where 3D glasses are required and conditions

where 3D glasses were not needed.
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5.2.3 Stimulus

One of three commercially available movies: Grand Canyon Adventure [2008],

Avatar [2009] or Pirates of the Caribbean: On Stranger Tides [2011] was presented

to the participants. All details in terms of equipment used (screen, blue-ray

player and glasses type) to show the movies were as presented in section 4.2.3.

All specific aspects of the movies (horizontal parallax, vertical parallax, running

time) were also presented in section 4.2.3.

5.2.4 Fusion reserve measurements

Fusional reserve was assessed by the test developed by in our laboratory (see

appendix B). The test consists of two yellow vertical columns displayed against a

green background on the 3D stereoscopic screen (Acer GD245HQ) at a distance of

1 m. These colours were chosen following pilot investigation to limit the impact of

cross-talk. The angular size subtense of each vertical column was 0.14� in width

and 9� in height. The test was created with the use of Image J software.

The fusional range examination was conducted with the use of 3D glasses,

which allowed us to provide two distinct (separate) images for each eye on the

same screen. The refresh rate for each eye was 60 Hz. As presented in figure 5.3a

during the measurement of PFR the yellow column on the screen was shifted to

the right for the left eye and to the left for the right eye. In the case of NFR

measurement the yellow column on the screen was shifted to the left for the left

eye and to the right for the right eye (see figure 5.3b). During testing the distance

between two columns increased as required from the participant’s convergent or

divergent eye movement to maintain bifoveal fixation. The amount of fusional

vergence was measured in prism dioptres [�], see figure 3.3). For example, if the

distance between two vertical columns was 13 cm it was equivalent of 13 � at the

testing distance of 1 metre. The vergence demand increased slowly and smoothly

at pace of 1 � per second and incremental steps of 0.5 �. The maximum testing

range was 50 �.

A chin rest and brow bar were employed to keep the participants head in the

correct position. Participants were instructed to keep the target single as long as

possible and to report when the target became doubled. Two separate vertical
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columns visible by the participant on the screen indicated that the fusion was

broken and no longer possible. The point at which diplopia was first reported

was noted as the maximal fusional range.

1 
m

crossed
 retinal disparity

crossed
 retinal disparity

3D shutter glasses

Stereoscopic LCD

CONVERGENCE

1 
m

uncrossed
 retinal disparity

uncrossed
 retinal disparity

3D shutter glasses

Stereoscopic LCD

DIVERGENCE

a) b)

Figure 5.2: The working principle of the fusion reserve test. The two lines on the
screen are seen by the separate eyes, and the single geometric image is located
nearer or farther, than the screen. a) PFR test requires the patient to converge to
maintain bifoveal fixation, b) NFR test requires the patient to diverge to maintain
bifoveal fixation.

5.2.5 Symptom measurement

Discomfort symptoms were measured as described in section 4.2.4. As in chapter

4 and chapter 5 the same individuals participated. Changes in the severity of

symptoms reported for the 2D condition and 3D condition were presented in the

previous chapter.
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5.2.6 Data analysis

All data were analysed using SPSS Statistica 19 (www.ibm.com / SPSS Statis-

tics). The discomfort data were tested non-parametrically using a Wilcoxon

signed rank test. The relationship between fusional range (PFR, NFR, PFR+NFR)

and discomfort (visual discomfort, headache, visual induced motion sickness) was

tested using Spearmans correlation test. A Shapiro-Wilks test was used to evalu-

ate the normality of the fusional reserve (see table 5.2). The di↵erences in visual

discomfort between groups: susceptible and not susceptible to discomfort in rela-

tion to PFR and FR (PFR + NFR) were examined with the use of an independent

t-test (data normally distributed). In the case of NFR the Mann-Whitney test

as the nonparametric equivalent of the independent t-test was used.

Table 5.2: Test of normality

Fusional reserve Shapiro - Wilk test (p)

PFR 0.117
NFR 0.001

RR=PFR+NFR 0.334

if: p < 0.05 distribution is abnormal,
p > 0.05 distribution is normal.

5.3 Results

The main aim of this section was to investigate whether the persons’ fusional

range has an impact on visual discomfort whilst watching 3D stereoscopic stimu-

lation. Additionally, an analysis of the impact of an individual fusional range on

headache and VIMS whilst watching 3D stereoscopic stimulation was conducted.

Figure 5.3 shows the mean values for fusional vergence. In terms of positive

fusional vergence the mean value was 24.8 [�] (S.D.=11.2). In terms of negative

fusional vergence the mean value was 6.3 [�] (S.D.=2.4). If we look at the PFR

and the NFR together, the total fusional vergence was 31.2 [�] (S.D.= 12.0).
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Figure 5.3: Mean fusional vergence. Errors bars indicate S.D, triangles represents
the maximum (4) and minimum (r) values.

5.3.1 Correlation between discomfort and fusional ver-

gence

The aim of the current section is to analyse the correlation between the discom-

fort change reported by participants in the 2D condition, the 3D condition, the

di↵erence in discomfort between among two session and PFR, NFR, FR (PFR +

NFR).

Figure 5.4 presents the relation between the change in visual discomfort re-

ported in the 2D condition (2D post � 2D pre) and PFR (a), NFR (b) and FR

(c). In the case of maximal convergent eye movement (figure 5.4a) there was no

significant correlation between the change in visual discomfort reported in the

2D condition and PFR (r
s

= 0.034, p = 0.744; Spearmans correlation test). In

terms of maximal divergent eye movement (figure 5.4b) there was no significant

correlation between the change in visual discomfort reported in the 2D condition

and NFR (r
s

= 0.130, p = 0.208; Spearmans correlation test). If we look at

the maximal convergent and divergent eye movement all together (figure 5.4c)

there was also no significant correlation between the change in visual discomfort

reported in the 2D condition and FR (PFR + NFR) (r
s

= 0.064, p = 0.536;

Spearmans correlation test).
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Figure 5.5 presents the relation between the change in visual discomfort re-

ported in the 3D condition (3D post � 3D pre) and PFR (a), NFR (b) and FR

(c). In the case of maximal convergent eye movement (figure 5.5a) there was no

significant correlation between the change in visual discomfort reported in the

3D condition and PFR (r
s

= - 0.190, p = 0.063; Spearmans correlation test).

In terms of the maximal divergent eye movement (figure 5.5b) there was no sig-

nificant correlation between the change in visual discomfort reported in the 3D

condition and NFR (r
s

= 0.011, p = 0.918; Spearmans correlation test). If we

look at the maximal convergent and divergent eye movement all together (figure

5.5c) there was also no significant correlation between the change in visual dis-

comfort reported in 3D condition and FR (PFR + NFR) (r
s

= - 0.175, p = 0.089;

Spearmans correlation test).
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5.Fusional Vergence

Figure 5.6 shows the relation between the visual discomfort di↵erence among

two sessions (3D discomfort change - 2D discomfort change) and PFR (a), NFR

(b) and FR (c). The increase of discomfort for the 3D condition in comparison

to the increase of discomfort for the 2D condition was statistically significant

((p=0.005; Wilcoxon), see figure 4.21; the right column). In case of the maximal

convergent eye movement (figure 5.6a) there was a significant negative correlation

between visual discomfort and the PFR (r
s

= - 0.215, p = 0.035; Spearmans

correlation test). In terms of the maximal divergent eye movement (figure 5.6b)

there was no significant correlation between visual discomfort and NFR (r
s

=

- 0.058, p = 0.577; Spearmans correlation test). If we look at the maximal

convergent and divergent eye movement all together (figure 5.6c) there was a

significant negative correlation between visual discomfort and FR (PFR + NFR)

(r
s

= - 0.216, p = 0.035; Spearmans correlation test).

With regard to headaches and VIMS symptoms there was no statistically

significant correlation between these and PRF, NFR or FR in any of the viewing

conditions. These results are presented in table 5.3.

Table 5.3: Correlation between discomfort and fusional range examined by Spear-
man’s rank correlation test.

PFR NFR FR=PRF+NFR

r
s

p sig. (2-tailed) r
s

p sig. (2-tailed) r
s

p sig. (2-tailed)

2D visual discomfort change 0.034 0.744 0.130 0.208 0.064 0.536
3D visual discomfort change -0.190 0.063 0.011 0.918 -0.175 0.089

3D visual discomfort - 2D visual discomfort -0.215 0.035 -0.058 0.577 -0.216 0.035

2D headache change -0.007 0.946 -0.015 0.886 -0.009 0.929
3D headache change -0.130 0.207 -0.067 0.515 -0.126 0.219

3D headache change - 2D headache change -0.104 0.311 -0.070 0.500 -0.100 0.333

2D VIMS change -0.013 0.903 0.062 0.545 -0.005 0.964
3D VIMS change -0.096 0.350 -0.172 0.094 -0.109 0.290

3D VIMS change - 2D VIMS change -0.057 0.581 -0.130 0.205 -0.068 0.508

r
s

- Spearman correlation coe�cient, p - probability value
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5.Fusional Vergence

5.3.2 Susceptibility to discomfort and fusional vergence

Based on the di↵erence in discomfort change between the 2D and 3D conditions,

participants were divided into two groups; those who did (Group 1) and those

who did not (Group 2) report a greater symptoms increase in the 3D condition

than the 2D condition (Figures 5.7 - 5.9). The di↵erence between the groups in

relation to PFR, NFR, FR (PRF+NFR) are shown in tables 5.4 - 5.6.

General visual discomfort

In terms of visual discomfort (table 5.4), the average fusional reserve (FR)

was higher in the group not susceptible to visual discomfort than in the group

susceptible to visual discomfort. The di↵erence between these two groups was

statistically significant (p = 0.008; the independent t-test). If we look at the PFR

and the NFR independently, the PFR was significantly higher in the group not

susceptible to visual discomfort (p = 0.01; the independent t-test). The NFR

was also slightly higher in the group not susceptible to visual discomfort, but this

di↵erence was not statistically significant (p = 0.44; the Mann - Whitney test).

Headache

With regard to headache (table 5.5), the total fusional reserve (RF) was higher

in the group not susceptible to headaches. However, this di↵erence was not sta-

tistically significant (p = 0.16; the independent t-test). The PFR was also higher

in the group not susceptible to headache, but again this was not statistically sig-

nificant (p = 0.15; the independent t-test). The NFR was similar in both groups;

no statistically significant di↵erences were found (p = 0.63; the Mann - Whitney

test).

VIMS

In the case of VIMS (table 5.6) the total fusional reserve (RF) was slightly

higher in the group not susceptible to VIMS. However, these di↵erences were not

statistically significant (p = 0.34; the independent t-test). The PFR and NFR

were also slightly greater in the group not susceptible to VIMS, but in both cases

the di↵erence between the groups was again not statistically significant (p = 0.43

[PFR; the independent t-test], p = 0.22 [NFR; the Mann - Whitney test]).
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Not susceptible to visual discomfort (Group1; N=67)
Susceptible to visual discomfort (Group 2; N=29)
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Figure 5.7: The number of participants showing each amount of di↵erence in
change in visual discomfort between the 2D and 3D conditions.

Table 5.4: Category classification for visual discomfort score change

Susceptible to visual
discomfort

Not susceptible
to visual discomfort

Mean SD Mean SD p sig.(2-tailed)

PFR 20.4 10.8 26.7 11.0 0.01 independent t-test
NFR 5.9 2.1 6.5 2.4 0.44 Mann-Whitney test

PR=PFR+NFR 26.3 11.5 33.2 11.5 0.008 independent t-test

PFR - positive fusional reserve, NFR - negative fusional reserve,
FR - total fusional reserve (FR=PFR+NFR)
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Not susceptible to headache  (Group1; N=73)
Susceptible to headache  (Group 2; N=23)
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Figure 5.8: The number of participants showing each amount of di↵erence in
change in headache between the 2D and 3D conditions.

Table 5.5: Category classification for headache score change

Susceptible
to headache

Not susceptible
to headache

Mean SD Mean SD p sig.(2-tailed)

PFR 21.9 10.2 25.8 11.5 0.15 independent t-test
NFR 6.3 2.9 6.3 2.2 0.63 Mann-Whitney test

PR=PFR+NFR 28.2 10.4 32.1 12.3 0.16 independent t-test

PFR - positive fusional reserve, NFR - negative fusional reserve,
FR - total fusional reserve (FR=PFR+NFR)
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Not susceptible to VIMS (Group1; N=80)
Susceptible to VIMS (Group 2; N=16)
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Figure 5.9: The number of participants showing each amount of di↵erence in
change in VIMS between the 2D and 3D conditions.

Table 5.6: Category classification for VIMS score change

Susceptible to
VIMS

Not susceptible
to VIMS

Mean SD Mean SD p sig.(2-tailed)

PFR 22.8 10.7 25.2 11.4 0.43 independent t-test
NFR 5.7 2.0 6.5 2.4 0.22 Mann - Whitney test

PR=PFR+NFR 28.5 10.6 31.7 12.1 0.34 independent t-test

PFR - positive fusional reserve, NFR - negative fusional reserve,
FR - total fusional reserve (FR=PFR+NFR)
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5.4 Discussion

The main aim of this study was to determine whether the participants’ fusional

capability, as measured by their fusional reserve has an impact on discomfort

whilst watching 3D stereoscopic stimulation.

The magnitude of the parallax in commercially available movies in not fixed

but rather varies over the time of the movie’s duration. Hence the viewer is

required to continuously change vergence (convergence and divergence) to keep

perceiving a singular image. Too large a parallax may exceed the viewers’ fusion

range, especially when a strong 3D e↵ect in the movie scene is intended. In our

experiment it was hypothesised that participants with a limited fusion reserve

will have to put more e↵ort to fuse the images on a 3D stereoscopic screen than

the participants with a wider fusion range. It was assumed that the participant

with the narrower fusion range would experience more visual discomfort than the

participant with a wider fusion range.

The first observation which can be made from the results of this experiment

is that there are large di↵erences in the fusional range between participants. This

was observed in case of PFR as well as NFR, however the range of PFR was much

wider than the range of NFR as one would expect.

There was no significant correlation between visual discomfort whilst watching

2D and 3D movies and PFR, NFR or FR (PFR + NFR). On the other hand,

when the di↵erence in visual discomfort between the 3D condition and the 2D

condition was taken into account a significant correlation was found between

visual discomfort di↵erence (3D VD � 2D VD) and both PFR and total FR (PFR

+ NFR). However, there was no statistically significant correlation between the

visual discomfort change (3D VD � 2D VD) and NFR.

In the next step of our analysis, participants were split into those who did

and those who did not show a greater change in visual discomfort in the 3D

condition. Analysis of this data shows that participants not susceptible to visual

discomfort had statistically significantly higher PFR and FR than participants

not susceptible to visual discomfort.

The overall conclusion of the study is that participants’ capability to vergence

has a significant impact on visual comfort. Interestingly, this was found only in
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5.Fusional Vergence

the case of convergent but not divergent eye movement. A likely explanation of

these findings is that the presented stimuli required more convergent eye move-

ment and less divergent eye movement. Participants were possibly less frequently

required to fuse images presented behind the screen than in front of the screen.

Another explanation is that the variability between participants in terms of NFR

was much smaller than in terms of PFR. Hence, the e↵ect of NFR on visual dis-

comfort was more di�cult to observe. On the other hand, as was mentioned in the

introduction, reduced PFR can suggest that some nonstrabismic binocular vision

anomalies occurred. It can be speculated that symptoms associated with this

binocular vision disorder (see table 5.1) intensify while viewing 3D stereoscopic

stimuli in relation to symptoms reported while watching 2D stimuli.

The results are consistent with knowledge of the zone of clear, comfortable,

single binocular vision (ZCSBV). Based on this it can be predicted that partici-

pants with normal binocular vision will not experience visual discomfort during

the viewing of 3D stereoscopic stimulations, as long as apparent parallax does not

exceed their fusional range (comfort zone)(Howarth 2011). On the other hand,

vision training/orthoptic exercises have been shown to improve the strength of

positive fusional reserves and reduce symptoms related to asthenopia (Scheiman

et al. 2005a,b, Scheiman & Wick 2008, Cooper & Feldman 2009). It can be ex-

pected that watching 3D stereoscopic stimuli (e.g. movies, games etc.) can also

have a positive impact on fusional reserve.

Additionally, the impact of individual fusional range on headache and VIMS

was analysed. This was mainly motivated by the fact that some of the symptoms

associated with binocular vision problems are related to headache and VIMS (see

table 5.1). In this case however we failed to find any correlation between fusion

range and headache or between fusion range and VIMS. Furthermore, there was

no statically significant di↵erence in terms of fusional reserve between participants

susceptible and not susceptible to headache and between participants susceptible

and not susceptible to VIMS. Based on this it can be concluded that the increase

of headache or VIMS in the 3D condition compared with the 2D condition is not

related to participants’ fusion capability.

The experiment conducted was mainly focused on the level of discomfort ex-

perienced (3D-2D) and the participants fusion capacity. However, in the further
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analysis of this problem it would be useful to see whether discomfort experienced

by participants is acceptable to them and whether the viewers, despite experi-

enced discomfort, can enjoy the 3D movie. The answer to this question might

be useful in two ways. Firstly, this information can be helpful to determine the

amount of parallax, which give participants an enjoyable 3D experience. Secondly,

it can determine whether vision training based on 3D stereoscopic technology can

by enjoyable for people with binocular vision problems . The next issue, which

is worth considering in terms of further research, relates to the findings from the

previous study (please see figure 4.6). In the previous study it was observed that

the largest number of participants who reported a greater visual discomfort in the

3D condition compared to the 2D condition was observed for the movie Grand

Canyon Adventure [2008]. This observation could be attributed to the vertical

(unwanted) parallax, which was larger in this movie. Therefore in the further

analysis of the e↵ect of 3D stereoscopic stimuli on discomfort it is important to

analyze not only the e↵ects of vertical parallax on discomfort but also the e↵ect

of participants vertical capacity to vergence and discomfort.

To measure fusional reserve a 3D stereoscopic test developed by the author

was used. The main motivation behind creating this test was to stimulate the

convergent and divergent eye movement in the same way as happens during the

watching of 3D stereoscopic movies or games. Moreover, the technique used in

this study eliminates problems which occur when Risley prisms or a prism bar are

used (chromatic aberrations, large steplike changes of prismatic power especially

in terms of prism bar) and allows examination of fusional reserve in much wider

range than when standard methods are used. Based on our observations it can

also be concluded that 3D stereoscopic technology can be easily adapted for

binocular vision measurement, allowing the measure of fusional reserve up to 50

�.
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Chapter 6

Accommodation discrepancy

whilst viewing 3D stereoscopic

stimuli

Purpose: Stereoscopic 3D displays provide each eye with two slightly di↵erent

images produced on a flat screen. The horizontal separation (parallax) between

the left and the right image allows stimuli to be perceived in front of, or behind

the screen. Change in the amount of horizontal parallax causes the displayed

stimulus to change its position. Viewing a stimulus whose position alters pro-

duces a change in the stimulus to vergence, but no change in the stimulus to the

accommodation system (the distance between the screen and the viewer is fixed).

However, the accommodation and vergence systems are coupled and the stimu-

lus to vergence response also drives the accommodation response. Similarly the

stimulus to accommodation response also drives the vergence response. Ramsdale

& Charman (1988) have shown that convergence input does influence accommo-

dation response. Moreover, target proximity (awareness of the nearness of the

object of regard) also has an influence on the oculomotor system (PIA - proxi-

mally induced accommodation1, PIV - proximally induced vergence) (Rosenfield

1Proximal accommodation - proximally induced accommodation (PIA). Is the amount of
accommodation induced by an individuals awareness of the proximity of an object (Keirl &
Christie 2007). For example the viewer may accommodate at the distance at which they believe
the target to be located. Proximal accommodation is not voluntary although it is evoked when
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6. Accommodation discrepancy and 3D stimuli

et al. 1991). As a consequence accommodation response may not be equal to the

accommodation stimulus during the viewing of 3D stereoscopic stimuli.

More recent studies reported that substantial inter-subject variation in the

accommodative response occurs during the viewing of 3D stereoscopic stimuli.

The following variations were observed: accommodation overshoot, oscillation

and a stable accommodation response (Inoue & Ohzu 1997, Ukai & Kato 2002,

Okada et al. 2006, Torii et al. 2008, Fukushima et al. 2009).

The current chapter aimed to examine the response of the accommodation

system to the change in the 3D stimulus position and to determine whether

any of the changes would account for the visual discomfort reported during the

viewing of 3D stimuli.

a person voluntarily changes gaze from an object at one apparent distance to an object at
another apparent distance (Howard 2012).
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6. Accommodation discrepancy and 3D stimuli

6.1 Introduction

In the real world the stimulus to accommodation and the stimulus to convergence

are identical. By contrast the 3D stereoscopic display produces a stimulus to ac-

commodation provided by the image on the screen, and a stimulus to convergence

provided by the geometrical location of the image (Rushton et al. 1994, Ukai &

Howarth 2008, Ho↵man et al. 2008, Lambooij et al. 2009, Howarth 2011, Yang

et al. 2012). Modelling of the accommodation and convergence system suggests

that the accommodation response consists of two components: fast - driven by

binocular disparity (the stimulus to convergence), and slow - driven by the blur

in the retinal image (Khosroyani & Hung 2002). The fast component response

to the step target disparity1 with an open-loop movement nearly reaches the de-

sired level, and then the slow component uses closed-loop feedback to reduce the

residual error and provide an accurate steady-state response (Hung & Ciu↵reda

2002). When the fast component is active, the slow component is disabled and

vice versa (Khosroyani & Hung 2002). Ho↵man et al. (2008) suggested that dur-

ing the viewing of 3D stimulus the fast and slow components attempt to drive

accommodation to di↵erent values because stimuli to accommodation and stimuli

to convergence do not match. The disparity-driven component produces a rapid

response to the accommodation state that does not minimise blur. Subsequently

the slow component senses the error and feeds the cross-coupled system to cor-

rect the overshoot or undershoot produced in the initial phase (or by the initial

response).

A number of studies have shown substantial inter-subject variation in the ac-

commodative response during the viewing of 3D stereoscopic stimulus. Three

forms of dynamic accommodation response were reported in previous studies.

These are: accommodation overshoot, oscillation and a stable response (Inoue &

Ohzu 1997, Ukai & Kato 2002, Okada et al. 2006, Torii et al. 2008, Fukushima

et al. 2009). Moreover, occasionally an initial erroneous direction of accommo-

dation response was observed (Torii et al. 2008). Table 6.1 presents an overview

of similar experiments reported in the literature. Figure 6.1 schematically illus-

trates accommodation overshoot when stimulus changes from being on the screen

1disparity does not change (increase/decrease) smoothly/progressively but in steps.
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6. Accommodation discrepancy and 3D stimuli

to being in front of it.

Table 6.1: An overview of previous experiments where accommodation overshoot
was observed with stimulus changed from being on the screen to being in front
of it (negative parallax).

Researchers
target
used

no. of participants
in the experiment

no. of participants
experiencing

accommodation
overshoot

Inoue & Ohzu (1997) 3 1

Ukai & Kato (2002) 3 1

Okada et al. (2006) 5 ?

Torii et al. (2008) 7 4

Fukushima et al. (2009) 8 3
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Figure 6.1: An illustration of accommodation overshoot for initial accommodation
response with the stimulus change from on the screen to in front of it.

Inoue & Ohzu (1997) used an infrared optometer (Nidek AR-1100) to measure

the accommodation response during the viewing of a visual target (a white-filled

square with crossed lines) displayed on a CRT monitor with shutter system. In

the experiment, after the target changed from being located at the position of

the screen to being located in front of it, accommodation overshoot was observed.

In the experiment only three participants were tested and the analysis of results

took into account only one of them.

Ukai & Kato (2002) used a video refractor (PR-1000,Topcon, Japan) to mea-

sure accommodation response during the viewing of a visual target (a cross and
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6. Accommodation discrepancy and 3D stimuli

a circle, which subtend a visual angle of 1.0� surrounded by four squares that

have no disparity) displayed on a LCD monitor via an image splitter. In the

experiment accommodation overshoot and oscillations were observed when the

target moved from being located at the position of the screen to being located in

front it. Again data only for one participant were presented in the study.

Okada et al. (2006) used a modified autorefractor (Shin-Nippon, Japan) to

measure dynamic accommodation response during the viewing of a black Mal-

tese Cross displayed against a white background on a stereoscopic liquid crystal

display. The display had a parallax barrier, which generated two images pre-

sented to each eye separately. They hypothesised that the static accommoda-

tion response during the viewing of the 3D stimulus is the balance point between

convergence-driven accommodation that pulls accommodation toward the viewer,

and defocus-driven accommodation that pulls it to stay at the screen position (this

is consistent with the earlier findings of Ramsdale & Charman (1988)). Their par-

ticipants viewed a Maltese Cross target at three levels of Gaussian blur1 (0 - no

blur, 16 and 32 minutes of arc). The perceived position of the Maltese Cross

moved between being located at the position of the screen to being located in

front of it (negative parallax). Researchers reported that static accommodation

was closely matched to the screen position when the target was sharp and closely

matched to the convergence stimulus when the target was blurred. The results

of Okada et al. (2006) are presented schematically on figure 6.2. It was also re-

ported that accommodation overshoot was observed when the target had a high

or a medium spatial frequency. However, the magnitude of overshoot was not

clear due to di�culties in aligning the refractor during convergent eye movement.

1Gaussian blur is a low pass filter. It removes high spatial frequency components from the
image. Mathematically Gaussian blur is equivalent to the “weighted average” of each pixel’s
neighbourhood.
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Target blur 

0 (arc min) 16 (arc min) 32 (arc min)

Figure 6.2: Accommodative static responses when viewing 3D stereoscopic image
depends on the target blur (based on Okada et al. (2006)). The static accom-
modation response during the viewing of the 3D stimulus is the balance point
between convergence-driven accommodation that pulls accommodation toward
the viewer, and defocus-driven accommodation that pulls it to stay at the screen
position

Torii et al. (2008) used a modified video refraction unit (PR-1000, Topcon,

Japan) to measure the dynamic accommodative response during the viewing of a

black Maltese Cross displayed against a white background on a stereoscopic liquid

display with parallax barrier. The perceived position of the Maltese Cross moved

repeatedly in a step-wise manner from being located at the position of the screen

to being located in front of the screen. The Maltese Crosses were presented

with the following levels of Gaussian blur: 0 (no blur), 16 and 32 minutes of

arc (min arc). For comparison, the responses were compared with responses to

stimuli presented in non-stereoscopic mode1 (2D stimulus presented with use of

a semi-transparent mirror).

1In non-stereoscopic mode the parallax barrier was switched o↵.
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The hypothesis proposed was again that the transient response to step stim-

uli is initiated by convergence-driven accommodation and subsequently followed

by the slow component of accommodation modulated by blur. Accommodation

overshoot was evident in four out of seven subjects when the stimulus was pre-

sented in stereoscopic mode and in the case of one subject when the stimulus was

presented in non-stereoscopic mode. One participant experienced accommoda-

tion oscillation when the target was sharp. Torii et al. (2008) also showed that

the static accommodation response grew with an increase of target blur in the

case of four participants and did not change with an increase of target blur in the

case of two participants.

In terms of the overshoot maximum no clear trend was observed. One par-

ticipant showed a decrease of overshoot peak with an increase of target blur; one

participant presented the opposite e↵ect; three participants showed a decrease of

overshoot peak for 16 min arc Gaussian blur, but an increase of overshoot peak

for 32 min arc Gaussian blur. Convergence-accommodation in this experiment

was not measured.

The experiments of Okada et al. (2006) and Torii et al. (2008) have been

expanded by Fukushima et al. (2009) who used the same experimental setup to

measure accommodation response while viewing 3D stimuli as Torii et al. (2008).

In their experiment a sharp, black Maltese Cross on a white background (high

contrast) was presented in stereoscopic mode and in non-stereoscopic mode. In

the stereoscopic mode the perceived position of Maltese Cross moved between

being located at the position of the screen to be located in front of it. They

hypothesised that the accommodation overshoot is influenced by the CA/C ra-

tio1 as follows: “an initial convergence response, induced by proximity of the 3D

stereoscopic image, generates convergence-driven accommodation proportional to

CA/C ratio; the associated transient defocus subsequently decay to a balanced po-

sition between defocus-induced and convergence-induced accommodation”. The

researchers found a positive correlation between CA/C ratio and accommodation

overshoot when the stimulus was presented only in stereoscopic mode. In this

experiment accommodation overshoot of at least 0.3 D was observed in three out

1The CA/C ratio is defined as the amount of accommodation that is stimulated by conver-
gence (CA - convergence accommodation) per unit change in convergence (C).
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of eight participants when the 3D stereoscopic stimulus was presented.

Based on the results of these experiments it appears that dynamic accom-

modation response during the viewing of the 3D stimulus is characterised by

temporary accommodation overshoot for some people (approximately one third

of participants (see table 6.1)).

The results of previous studies have led to the idea that people with a high

CA/C ratio during the initial accommodation, respond more strongly to con-

vergence stimuli than people with a low CA/C ratio which produces temporary

accommodation overshoot. The amount of accommodation overshoot may also

be expected to be influenced by the spatial-frequency content of the stimulus,

but this issue is not clear.

In all of these studies, the only response that has been studied is to a change

in the geometric position of the stimulus from “on the screen” to “in front of

it”. If we change the position of the stimulus from being located “in front of the

screen” to being located “on the screen”, a decrease of accommodation should be

expected. In this situation there is a mismatch between the stimulus to accom-

modation and the stimulus to convergence at the starting point but there is no

mismatch when the stimulus returns to the 2D position. Because there is no con-

flict there is perhaps no expectation of a consistent accommodation overshoot or

undershoot. On the other hand, there is a fast change of the image from the con-

flicting position, which could also have an influence on the initial accommodation

response. In these circumstances accommodation undershoot may be expected

among participants. In the past, this direction of stimulus change was only briefly

discussed by Torii et al. (2008). An additional consideration here is that all of the

above studies have only used a stimulus which moves from the screen to a position

in front of it (negative parallax). However, the data in chapter 4 show that films

can contain both negative parallax (image perceived in front of the screen) and

positive parallax (image perceived behind the screen)(see figure 4.2). To date, no

research has been done on accommodation responses when the stimulus is moved

to a position behind the screen (positive parallax).

In the current experiment it is hypothesised that when the perceived position

of the stimulus changes from being located at the position of the screen to being

located behind the screen, an accommodation undershoot will be observed. Con-
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sequently, when the perceived position of the stimulus changes from being located

behind the screen to being located at the position of the screen, accommodation

overshoot should be observed. Additionally, the e↵ect of the spatial-frequency

content of the stimulus on accommodation discrepancy will be analysed.

The final question to be addressed relates to the link between accommodation

discrepancy and visual discomfort. It is clear that when the distance between

the viewer and the screen is small, accommodation plays an important role when

viewing 3D stereoscopic stimuli (as it does with 2D stimuli). Whether an im-

precision in accommodation response can, in itself, produce visual discomfort is

not known. Accommodation overshoot was observed (as was described above)

as a temporary excessive response to stimuli presented in front of the screen. In

the literature it can be found that people who experience accommodative excess

su↵er from blurred vision; headache; eyestrain, and; di�culty focusing from far

to near (Scheiman & Wick 2008). It can be seen that some of these symptoms

are those reported during the viewing of 3D stimuli. However in our experiment,

a transient excessive response (accommodation overshoot), not all accommoda-

tion responses are analysed. It is not known what number of accommodation

overshoots participants may experience whilst viewing 3D stereoscopic movies.

However, the characteristics of changes in perspective during the viewing of 3D

movies suggests that participants (with high CA/C ratio) may experience a cor-

respondingly high number of accommodation overshoots.

To sum up, this chapter addresses the following questions:

• Is accommodation discrepancy observed when the stimulus position changes

from “on the screen” to “in front of the screen”?

• Is accommodation discrepancy observed when the stimulus position changes

from “in front of the screen” to “on the screen”?

• Is accommodation discrepancy observed when the stimulus position changes

from “on the screen” to “behind the screen”?

• Is accommodation discrepancy observed when the stimulus position changes

from “behind the screen” to “on the screen”?
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• Does the spatial-frequency content of the stimulus have an influence on

accommodation discrepancy?

• Is accommodation response discrepancy influenced by individual CA/C ra-

tio?

• Do participants who experience accommodation response discrepancy also

report more visual discomfort during the viewing of a 3D movie than those

who do not?

To answer these questions the experiment was split into two parts. In the first,

the response of the accommodation system to a change in stimulus location was

measured and accommodation discrepancy was calculated. In the second part

the same group of participants watched a movie. Experienced discomfort was

then assessed. Finally the participants’ discomfort was evaluated in the context

of the participants accommodation discrepancy.
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6.2 Methods

6.2.1 Apparatus

The stimuli were presented on an Acer GD245HQ computer screen using a NVIDIA

GeForce GTX580 graphic card (www.nvidia.com). The display was viewed through

active shutter glasses. The lenses in these glasses darken and lighten alternately

in synchrony with the computer screen, providing a separate image for each eye

at a refresh rate of 60 Hz.

Accommodative responses were measured dynamically at a rate of 25 Hz using

the PowerRefractor. The PowerRefractor operates on the principle of eccentric

photorefraction. It consists of video camera and rows of infrared LEDs arranged

eccentrically to the optical axis of the camera (figure 6.3 ).

Figure 6.3: The PowerRefractor camera.

The infrared from the photorefractor is reflected from the retina and forms a

brightness profile along the vertical meridian of the pupil. Based on the slope of

the profile the accommodation state of the eye is determined (Schae↵el et al. 1993,

Wol↵sohn et al. 2002). If the eye is accurately focused at the camera distance,
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no reflected rays enter the camera aperture and the pupil is flatly illuminated

(figure 6.4 a). However, if the eye is focused in front of camera the reflected light

is divergent and only rays from the bottom of the pupil can enter the camera

aperture (because the lower part of camera apertures is occluded by a black

mask). A luminance gradient is created in the pupil with most light in the bottom

of the pupil (figure 6.4 b). Consequently, if the eye is focused more distant than

the camera, only rays from the top of the pupil can enter the camera aperture.

A luminance gradient is created in the pupil with most of the light in the top of

the pupil (figure 6.4 c).

a)                                        b)                                        c)

Figure 6.4: Topical reflexes observed in eccentric photorefraction a) the eye is
focused on the camera lens, b) the eye is focused closer than the camera, c) the
eye is focused more distant than the camera.

During the experiment the photorefraction camera was attached to the top

of the 3D stereoscopic screen which was located 1 metre from the subject (figure

6.5). The participant’s head position was stabilised using a chinrest. PC num-

ber 1 generated the sequences of 3D stimuli on the screen. PC number 2 was

used to control correctness of the adjustment of the experimental setup. If the

adjustment was correct a green frame appeared around the pupil, whereas if the

adjustment was not correct a red frame appeared around the pupil (see figure

6.8). Measurement failed if the pupil size was smaller than < 3.7± 1.0 mm, if

the pupil was covered by the eyelid or if the light reflection occurred on the 3D

glasses. PC number 2 was also used to acquire the experimental data. Image
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analysis was carried out using dedicated software developed in LabView 2010.

PC 1 PC 2

Stereoscopic LCD

Stimulus 
image

3D shutter 
glasses

Data
acquisition
PC

PowerRefractor
1m

Figure 6.5: Schematic drawing of the apparatus

134



6. Accommodation discrepancy and 3D stimuli

Figure 6.6: Experimental setup

Figure 6.7: A participant positioned to
perform the experiment, his head was
stabilised using a chin rest.

Figure 6.8: PC 2 used to control correct-
ness of adjustment of the experimental
setup.
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6.2.2 Stimuli

6.2.2.1 Maltese cross

Two variants of a Maltese Cross were presented on the 3D stereoscopic computer

screen: a black Maltese Cross displayed against a white background and a yellow

Maltese Cross displayed against a green background. The second target was

generated specifically to limit the impact of cross-talk. The angular subtense of

each Maltese Cross was 6.5� in both width and height. The targets were created

in Autodesk 3DS Studio Max software (see appendix C). The Maltese Crosses

were presented with two levels of Gaussian blur. Blurred images were created by

applying a Gaussian filter to originals. Image processing was followed in Image

J software package. Gaussian blur levels used in the experiment were 0 (no blur)

and 19 min arc. Figures 6.9 and 6.10 show examples of sharp and blurred targets.

Figure 6.9: Black Maltese crosses displayed against a white background a) no
blur b) 19 min arc Gaussian blur.
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Figure 6.10: Yellow Maltese crosses displayed against a green background a) no
blur b) 19 min arc Gaussian blur

6.2.2.2 3D/2D Movies

Thirteen fragments of popular movies (see table 6.2) were selected and shown to

the participants on two separate occasions. On one the movies were presented

stereoscopically in 3D, and on the other it was in 2D (as a control condition). Each

condition was applied on a di↵erent day, with half of the participants viewing the

3D condition first, and other half the 2D condition first. In each case the movies

were watched for 36 minutes 12 seconds. As can be seen in figure 6.11 some of

the movies had a much wider range of parallax than others. Fragments of various

3D movies were selected to create a credible representation of parallax range and

to remove the e↵ect of movie-specific content on discomfort. Selected fragments

also di↵ered in terms of type of movie (fantasy, comedy, science fiction, action,

adventure, thriller, romantic). The movie fragments used were relatively short

and in isolation should not have a significant e↵ect on discomfort measurement. In

the experiment discomfort was measured after viewing the whole series of movies.

Moreover, some of the movies had been originally created in 3D (live action

footage, CGI) while the others had been synthetically converted from 2D format

to 3D format (table 6.2). In our experiment we did not target di↵erences between

di↵erent 3D content creation technologies, and for that reason, the amount of
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native 3D and 2D!3D converted movies was balanced.

If we treat all the movie fragments as one stimulus then the mean negative

parallax was 2.77±1.88mm and the mean positive parallax was 6.38±3.38mm.

The maximum negative parallax was 62.32mm (Rio (2011)) and the maximum

positive parallax was 42.86mm (Immortals (2011)) (figure 6.11). Parallax in the

movies has been analysed by CS MSU Graphics & Media Lab team (Lomonosov

Moscow State University, Russia)

Table 6.2: Movies presented in the experiment

Movies Time Technique

Gulliver’s Travels (2010) a 1min 48sec 2D-3D conversion
Gulliver’s Travels (2010) b 1min 28sec 2D-3D conversion
I, Robot (2012) a 3min 45sec 2D-3D conversion
I, Robot (2012) b 1min 20sec 2D-3D conversion
Ice Age (2009) a 1min 56sec Created in 3D
Ice Age (2009) b 2min 22sec Created in 3D
Immortals (2011) 4min 14sec 2D-3D conversion
Avatar (2009) 6min 38sec Created in 3D
Prometheus (2012) 2min 48sec Created in 3D
Rio (2011) 3min 32 sec Created in 3D
The Darkest Hour (2011) 1min 33sec Created in 3D
The Chronicles of Narnia (2010) 2min 43sec 2D-3D conversion
Titanic (2012) 2min 2D-3D conversion
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6.2.3 Measurement of CA/C ratio

The CA/C ratio is defined as the amount of accommodation that is stimulated

by convergence (CA - convergence accommodation) per unit change in conver-

gence (C). In 1940, Fry defined convergence accommodation as “the amount of

accommodation which is fully associated with convergence when the need for ex-

act focusing has been eliminated”. The procedure of measurement of CA/C ratio

requires an adequate means of opening the accommodation loop while conver-

gence is stimulated. Opening the accommodation loop can be done by making

blur-driven accommodation ine↵ective. This may be achieved by looking through

a pinhole (an artificial pupil) (Ward & Charman 1987, Winn et al. 1991). Pin-

holes 6 0.5 mm produce a large depth of focus and so there is no blur feedback

to guide the accommodation response. An alternative method of opening the

accommodation loop is by stabilising the blur stimulus to accommodation us-

ing the di↵erence of Gaussian (DoG) target (Kotulak & Schor 1987, Tsuetaki

& Schor 1987, Baker & Gilmartin 2002). Several studies have verified that DoG

target with 0.2-0.1 c/deg do not provide a stimulus to blur driven accommodation

(Tsuetaki & Schor 1987, Rosenfield 1989, Baker & Gilmartin 2002).

In this study, to open the accommodation loop a 0.1 c/deg, di↵erence of

Gaussian target (DoG) was used (figure 6.12). The target was generated using

Octave software package (see appendix E). The DoG target subtended an angle

of 16.8� in both width and height at 1m.

10 o

1 cycle

Figure 6.12: An observer’s eye looking at a 0.1 c/deg DoG target, which resemble
a bright, blurred, vertical bar with a dark, blurred vertical bar on either side.
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Two DoG targets were displayed on the 3D stereoscopic screen (the same

screen as the one used to display the Maltese Crosses and the movies). One DoG

target was displayed for the right eye and one DoG target for the left eye figure

(6.13). Targets were viewed through active shutter glasses. The vergence of the

DoG targets was controlled by horizontal parallax between the targets. When

these were presented with negative parallax three magnitudes were used 3,6 and

8 cm (equivalent to 3,6 and 8 4 base-out). When targets were presented with

positive parallax two magnitudes were used: 3, 6 cm (equivalent to 3 and 6 4
base-in).

The DoG target does not stimulate the accommodation system, and so when

the parallax was introduced the stimulus to convergence changed but stimulus

to accommodation remained constant. Thus any change in accommodation state

must have been a consequence of a change in convergence-driven accommodation.

Accommodation was measured using the same instrument (see figure 6.5) as

those used to measure dynamic accommodation responses. For each convergence

stimuli the accommodative response was measured for 5 s.
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CA

3D shutter glasses

Stereoscopic LCD

DoG

parallax

Figure 6.13: Measurement of CA/C ratio. Convergence accommodation (CA)-
accommodation induced directly by a change in convergence (C).

6.2.4 Measurements of accommodation discrepancy re-

sponse

The accommodation discrepancy response was measured under two conditions

(four variants in total). Figure 6.14 presents the schematic drawing of each con-

dition.

In condition one the stimulus was presented with negative parallax (crossed

retinal disparity) which produces a single image located geometrically “in front

of the screen”. In this situation the image is shifted to the right for the left eye

and to the left for right eye (see 6.14 top row, middle column).

In condition two the stimulus was presented with positive parallax (uncrossed

retinal disparity) which produces a single image located “behind the screen”. In
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this situation the image is shifted to the left for the left eye and to the right for

the right eye. (see 6.14 top row, middle column).

For each condition the stimulus was changed from 2D format (i.e. the right

and left eye images being located at the same position on the screen) to 3D

format (i.e. di↵erent locations, as described above) (2D!3D) and then changed

back from 3D format to 2D format (3D!2D). During the initial six seconds of

measurement the stimulus was presented in 2D format, from the sixth to twelfth

seconds the stimulus was presented in 3D format, and for the last six seconds the

stimulus was presented in 3D format. In the first set of trials (condition 1 in figure

6.14) the stimulus was shown firstly with negative parallax with values 40mm,

56mm, 72mm in turn. The second set of trials (condition 2 in figure 6.14) used

positive parallax with values: 40mm, 56mm, 72mm. The stimuli were presented

in the same order for all participants.
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2D 2D3D

time [s]0 6 12 18

START END

Uncrossed disparity

Positie parallax

C
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N
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 2

variant C

Negative parallax

Crossed disparity

C
O

N
D
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N
 1

variant A

variant B

variant D

Figure 6.14: Measurement procedure for accommodation discrepancy response.

6.2.5 Participants

Fourteen pre-presbyopic people participated in the experiment. They were aged

between 19 and 34 (mean age: 23.7 ± 4.9 years). All participants had normal

144



6. Accommodation discrepancy and 3D stimuli

vision and did not report binocular vision anomalies. Participants were requested

to maintain, if possible, binocular single vision during all trials.

92.9% of participants were able to fuse the Maltese Cross target when the neg-

ative parallax (crossed retinal disparity) was used and 71.4% of the participants

were able to fuse the Maltese Cross target when the positive parallax (uncrossed

retinal disparity) was used.

Two potential participants were excluded from the experiment because their

pupil size was too small which prevented accommodation measurement. All sub-

jects signed a consent form after a full explanation of the experiment.

6.2.6 Analysis of accommodation response discrepancy

Analysis of accommodation discrepancy was conducted using the method pre-

sented by Fukushima et al. (2009). In the current experiment the accommodation

discrepancy was measured in four variants.

In the first variant the perceived position of the stimulus changed from being

located at the position of the screen to being located in front of the screen (see

figure 6.14 - variant A). In this situation the accommodation discrepancy was

termed accommodation overshoot.

In the second variant the perceived position of the stimulus changed from

being located in front of the screen to being located at the position of the screen

(see figure 6.14 - variant B). In this situation the accommodation discrepancy

was termed accommodation undershoot.

In the third variant the perceived position of the stimulus changed from being

located at the position of the screen to being located behind the screen (see figure

6.14 - variant C). In this situation the accommodation discrepancy was termed

accommodation undershoot.

In the fourth variant the perceived position of the stimulus change from being

located behind the screen to being located at the position of the screen (see figure

6.14 - variant D). In this situation the accommodation discrepancy was termed

accommodation overshoot.

The accommodation discrepancy was calculated as the di↵erence between ini-

tial response peak and static response (initial response peak - static response).
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If the accommodation discrepancy was negative, over/under-accommodation was

not observed. Figure 6.15 shows the schematic diagram used for calculations of

accommodation overshoot when the stimulus changes from being on the screen

to being in front of it (negative parallax).
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initial response peak
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accommodation 
      overshoot

2D 3D

Figure 6.15: Accommodation discrepancy calculation with stimulus change from
being on the screen to being in front of it. The accommodation discrepancy was
defined as (accommodation overshoot)=(initial response peak)-(static response).
Blue shaded area - response delay zone.

The initial response peak was defined as the first local maximum to occur

later than 0.25 s after the stimulus change from being on the screen to being in

front of it (this is shown in figure 6.15 as the blue shaded area - the response

delay zone). The static response was defined as the average response between the

11th and 12th second of observation (accommodation just before the end of the

3D condition). This is shown as red lines in figure 6.15.

Figure 6.16 shows the schematic diagram used for calculating accommodation

undershoot with a stimulus change from being in front of the screen to being on

the screen.
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Figure 6.16: Accommodation discrepancy calculation with stimulus change from
being in front of the screen to being on the screen. The accommodation inaccu-
racy was defined as (accommodation undershoot)=(initial response peak)-(static
response). Blue shaded area - response delay zone.

The initial response peak was defined as the first local minimum to occur later

than 0.25 s after the stimulus change from being in front of the screen to being

on the screen. The static response was defined as the average response in the

last 1s of measurement/observation (accommodation just before the end of the

2D condition).

The same procedure was used to calculate accommodation discrepancy when

the perceived position of the stimulus changed from being located at the position

of the screen to being located behind the screen and back again.

The justification for assessing the first local maximum/minimum to occur

0.25s after stimulus change from 2D format to 3D format and from 3D format to

2D format (2D⌧3D) is based on convergence latency as defined in (Fukushima

et al. 2009) (0.2 s in Schor’s model (Schor 1992)).
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6.3 Results

6.3.1 Accommodation responses discrepancy

The results section is organised as follows. First the overall (pooled)1 data will be

examined. Second the e↵ect of target spatial frequency (blurred or sharp target)

will be determined. Third the e↵ect of individual CA/C ratio on accommodation

discrepancy will be examined. Fourth the e↵ect of accommodation discrepancy

on visual discomfort will be analysed.

In our experiment five di↵erent forms of dynamic accommodative responses

were seen during viewing of 3D stereoscopic stimuli. These were: stable response,

overshoot, undershoot, erroneous accommodative response and oscillation. Please

see figures 6.20 - 6.26.

Figure 6.17 shows the mean accommodation response discrepancy when the

stimulus was presented with negative parallax (top) and with positive parallax

(bottom).

Negative parallax

The mean accommodation overshoot seen when the stimulus changed from

“on the screen” to “in front of the screen” was 0.26±0.34 [SD] D (see figure 6.17

top, left), and the mean accommodation undershoot when the stimulus changed

from “in front of the screen” to “on the screen” was 0.04±0.19 [SD] D (see figure

6.17 top, right). One participant could not fuse the images when the maximum

parallax (72mm) was used.

1As will be shown, there is little e↵ect of blur or colour on accommodation discrepancy.
The same stimulus seen for all four variants will have only a small di↵erence in magnitude, so
pooling the results together for an initial analysis of the data will minimise the noise of the
data
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6. Accommodation discrepancy and 3D stimuli

Positive parallax

The mean accommodation undershoot seen when the stimulus changed from

being “on the screen” to being “behind the screen” was 0.00±0.17 [SD] D (see

figure 6.17 bottom, left), and the mean accommodation overshoot when the stim-

ulus changed from “behind the screen” to “on the screen” was 0.28±0.40 [SD] D

(see figure 6.17 bottom, right). Four participants could not fuse the images when

the maximum parallax was used and one participant when the medium (56 mm)

parallax was used.
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Figure 6.17: Mean accommodation response discrepancy for negative parallax
(top) and positive parallax (bottom). SMT - the stimulus moved towards the
viewer, SMA - the stimulus moved away from the viewer.

.

When the stimulus changed from “in front of the screen” to “on the screen”

and from “on the screen”to “behind the screen” some participants experienced an

anomalous initial accommodation response in the wrong direction, before chang-

ing in the correct direction. In both of these situations the stimulus moved away

from the person. An anomalous response was never seen when the stimulus moved

towards the person.
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6. Accommodation discrepancy and 3D stimuli

These responses are presented separately in figure 6.18. The mean erroneous

accommodation response was 0.99±0.48 [SD] D and 0.42±0.38 [SD] D for stim-

ulus change from “in front of the screen” to “on the screen” and from “on the

screen” to “behind the screen”, respectively. An initial accommodation response

in the wrong direction was observed frequently for four of the participants, occa-

sionally for four of the participants, and only once for the other four participants.

Data where the participants initially accommodated in the wrong direction are

excluded from further analysis in this chapter.
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Figure 6.18: Mean erroneous accommodation response for stimulus presented
with negative parallax (top) and presented with positive parallax (bottom). Next
to the plots examples of erroneous accommodation responses are shown. SMA -
the stimulus moved away from the viewer.
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6. Accommodation discrepancy and 3D stimuli

To sum up, five di↵erent forms of dynamic accommodative responses were seen

during the viewing of 3D stereoscopic stimuli. These were: stable response, over-

shoot, undershoot, erroneous accommodative response and oscillation. Figures

6.19 to 6.26 show examples of accommodation response in negative and positive

parallax.
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Figure 6.19: Stable accommodation response: Initial accommodation responses
when the stimulus changes from “on the screen” to “in front of the screen” are
almost identical to static accommodation response. When the stimulus changes
to a position from “in front of the screen” to “on the screen” very small accom-
modation undershoots are observed.
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“in front of the screen” to “on the screen” an initial accommodation response
increases in the opposite direction to expected and then decreases as expected.
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to “in front of it” there are accommodation overshoots followed by decreasing
accommodation oscillation.
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Figure 6.22: Erroneous accommodation response: Initial accommodation re-
sponses are in the opposite direction to that expected after the stimulus changes
from “on the screen” to “behind the screen”. Accommodation overshoots: There
are accommodation overshoots after the stimulus changes back to being “on the
screen”.
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Figure 6.23: Initial accommodation responses are in the expected direction after
the stimulus changes from “on the screen” to “behind the screen” and after the
stimulus returns to “on the screen”. Accommodation oscillations are larger at
the end of the trial than before (2D condition). Thus may suggest that these
individuals found the 3D task demanding.
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Figure 6.24: Oscillations: Large accommodation oscillation when the stimulus is
presented with the largest parallax (the red line). Oscillations can be explained
by di�culties in fusing the 3D stereoscopic image (Ukai & Kato 2002, Okada
et al. 2006, Torii et al. 2008). Accommodation oscillations are smaller when the
stimulus is presented with a smaller magnitude of parallax (42mm parallax - the
green line, 56mm parallax - the blue line).
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Figure 6.25: Erroneous initial accommodation responses and oscillations before
a stabilising accommodation response. Oscillations before the stabilising accom-
modative response indicate that the participant needed more time to fuse the
stimuli. Oscillation can also be seen when the stimulus returned to the 2D posi-
tion. In this case the participant reported problems with single vision when the
stimulus change from “behind” to being “on the screen”.
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Figure 6.26: The participant experiences an initial accommodation response in
the wrong direction for a stimulus presented with 40 mm parallax, while the di-
rection of an initial accommodation response is correct for a stimulus presented
with 56 mm parallax (an interesting observation). The erroneous initial accom-
modation response is discussed further in the discussion section.
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6.3.2 Accommodation response discrepancy and spatial

frequency

Figure 6.27 presents average accommodation response discrepancy observed for

participants stimulated by a black Maltese Cross displayed against a white back-

ground (B&W) and a yellow Maltese Cross displayed against a green background

(Y&G). Each of these stimuli have been presented in two variants: sharp (S) and

blurred (B).

• Negative parallax

The mean accommodation overshoot seen when a black Maltese Cross changed

from on the screen to in front of the screen was: 0.31±0.26 [SD] when a sharp

stimulus was used and 0.26±0.30 [SD] when a blurred stimulus was used. A

paired t-test showed that the di↵erence between sharp and blurred black Maltese

Crosses was not statistically significant (p=0.187). The mean accommodation

overshoot seen when a yellow Maltese Cross changed from on the screen to in

front of the screen was: 0.32±0.17[SD] when a sharp stimulus was used and

0.11±24 [SD] when a blurred stimulus was used. A paired t-test showed that

the di↵erence between sharp and blurred yellow Maltese Crosses was statisti-

cally significant (p=0.022). The mean accommodation undershoot seen when

a black Maltese Cross changed from in front to on screen was: 0.09±0.11[SD]

when a sharp stimulus was used and 0.01±0.16 [SD] when a blurred stimulus was

used. A paired t-test showed that the di↵erence between sharp and blurred black

Maltese Crosses was not statistically significant (p=0.128). The mean accommo-

dation undershoot seen when a yellow Maltese Cross changed from in front to on

screen was: 0.1±0.17 [SD] when a sharp stimulus was used and 0.01±0.11[SD]

when a blurred stimulus was used. A paired t-test showed that the di↵erence

between sharp and blurred black Maltese Crosses was not statistically significant

(p=0.167).
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• Positive parallax

The mean accommodation undershoot seen when a black Maltese Cross changed

from on the screen to behind the screen was: 0.02±0.11[SD] when a sharp stimu-

lus was used and 0.02±0.08[SD] when a blurred stimulus was used. A paired t-test

showed that the di↵erence between sharp and blurred black Maltese Crosses was

not statistically significant (p=0.844). The mean accommodation undershoot

seen when a yellow Maltese Cross changed from on the screen to behind the

screen was: 0.08±0.16[SD] when a sharp stimulus was used and -0.02±0.09[SD]

when a blurred stimulus was used. A paired t-test showed that the di↵erence

between sharp and blurred black Maltese Crosses was not statistically significant

(p=0.308). The mean accommodation overshoot seen when a black Maltese Cross

changed from behind the screen to on the screen was: 0.32±0.37[SD] when a sharp

stimulus was used and 0.39±0.47[SD] when a blurred stimulus was used. A paired

t-test showed that the di↵erence between sharp and blurred black Maltese Crosses

was not statistically significant (p=0.238). The mean accommodation overshoot

seen when a yellow Maltese Cross changed from behind the screen to on the

screen was: 0.14±0.13[SD] when a sharp stimulus was used and 0.17±0.21[SD]

when a blurred stimulus was used. A paired t-test showed that the di↵erence

between sharp and blurred black Maltese Crosses was not statistically significant

(p=0.511).
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Figure 6.27: Accommodation response discrepancy. SMT - the stimulus moved
towards the viewer, SMA - the stimulus moved away from the viewer. B&W
- a black Maltese Cross displayed against a white background,Y&G - a yellow
Maltese Cross displayed against a green background, S - sharp, B - blurred

6.3.3 Accommodation response discrepancy and CA/C

ratio

Figure 6.28 shows the relationship between accommodation response discrepancy

and CA/C ratio for stimulus presented with negative parallax (top row) and

positive parallax (bottom row). When the stimulus was presented with neg-

ative parallax there was a significant positive correlation between CA/C ratio

and accommodation response discrepancy (r = 0.62, p = 0.019, two-tailed; Pear-
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son’s correlation test), when the stimulus change from “on screen ! in front”

(2D!3D). There was no significant correlation between accommodation response

discrepancy and CA/C ratio when the stimulus changed back from “in front !
on screen” (p > 0.05, two-tailed; Pearson’s correlation test).

In the positive parallax, when the stimulus changed from “on screen ! be-

hind” (2D!3D) there was no significant correlation between CA/C ratio and

accommodation response inaccuracy (p > 0.05, two-tailed; Pearson’s correlation

test). When the stimulus change from “behind ! on screen” (3D!2D) there

was a significant positive correlation between accommodation response inaccu-

racy and CA/C ratio (r = 0.60, p = 0.023, two tailed; Pearson’s correlation test).
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Figure 6.28: The correlation between accommodation response discrepancy and
CA/C ratio for: negative parallax - crossed retinal disparity (top row), positive
parallax - uncrossed retinal disparity (bottom row).
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6.3.4 Discomfort

6.3.4.1 2D viewing condition

After viewing the movies in the 2D condition, seven participants reported no

di↵erence in general visual discomfort from that reported before watching the

movies. Four people reported a slight decrease in general visual discomfort (1 on

a scale of 6), three people reported a slight increase in general visual discomfort

(1 and 2 scale point). There was no significant di↵erence in visual discomfort be-

tween pre- and post- viewing in the 2D condition (p = 1.000; Wilcoxon). There

was no significant correlation between the mean accommodation response discrep-

ancy and visual discomfort change (r
s

= 0.148, p = 0.615; Spearman’s correlation

test).

Eleven people reported no change in level of headache between pre- and post-

viewing in the 2D condition. One subject reported a slight decrease in headache

and two subjects reported a slight increase of headache. There was no significant

di↵erence in headache between pre- and post- viewing in the 2D condition (p =

0.414; Wilcoxon).

Thirteen participants did not feel the di↵erence in VIMS between pre- and

post- viewing in the 2D condition. One subject reported a slight increase and

one subject reported a moderate increase. There was no significant di↵erence

in headache between pre- and post- viewing in the 2D condition (p = 0.317;

Wilcoxon).

6.3.4.2 3D viewing condition

After viewing the movies in the 3D condition, two participants reported no di↵er-

ence in general visual discomfort from that reported before watching the movies.
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One participant reported a slight decrease and eleven participants reported a

slight increase in general visual discomfort. The values of the discomfort medians

were 0.5 (IQR = 1.0) and 1.0 (IQR = 1.0) in pre- and post- stimuli, respec-

tively. There was a significant di↵erence in visual discomfort between pre and

post viewing in the 3D condition (p = 0.005; Wilcoxon). There was no signif-

icant correlation between the mean accommodation response discrepancy and

visual discomfort change (r
s

= - 0.119, p = 0.686; Spearman’s correlation test).

Eleven participants reported the same level of headache before and after view-

ing the movie in the 3D condition. Three participants reported a slight increase

in headache and nobody reported a decrease. The values of the headache medians

were 0.0 (IQR = 0.25) and 0.0 (IQR = 1.0) in pre- and post- stimuli, respectively.

There was no significant di↵erence in headache between pre- and post- viewing

in the 3D condition (p = 0.102; Wilcoxon).

Twelve participants did not feel any di↵erence in VIMS between pre and post

viewing in the 3D condition. One subject reported a slight increase and one

subject reported a moderate increase in VIMS. The values of the VIMS were 0.0

(IQR = 0.0) and 0.0 (IQR = 1.0) in pre- and post- stimuli, respectively. There

was no significant di↵erence in VIMS between pre- and post- viewing in the 3D

condition (p = 0.180; Wilcoxon).

6.3.4.3 Di↵erence in discomfort between the 2D and 3D conditions

When comparing the change in discomfort over two sessions, four participants

showed the same level of visual discomfort in the 3D condition as in the 2D con-

dition. Nine participants reported a greater amount of visual discomfort in the

3D condition, and one showed a lesser amount of discomfort in the 3D condition.

The increased discomfort change in the 3D condition in comparison with the 2D

condition was statistically significant (p = 0.013; Wilcoxon). There was no sig-

nificant correlation between averaged accommodation response discrepancy and

visual discomfort change (r
s

= - 0.275, p = 0.342; Spearman’s correlation test).
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With regard to headache, nine participants did not feel any di↵erence between

the 3D and 2D conditions. Three reported a greater amount of headache in the

3D condition, and two reported a lesser amount of headache in the 3D condition.

There was no significant di↵erence in headache between the 3D and 2D conditions

(p = 0.334; Wilcoxon).

In terms of VIMS twelve participants reported no di↵erence between the 3D

and 2D conditions. Two participants reported a greater amount of VIMS in the

3D condition and nobody reported a decrease. However, the di↵erence seen in

VIMS between the 3D and 2D conditions was not statistically significant (p =

0.180; Wilcoxon).

6.3.5 Discomfort and accommodation response discrep-

ancy

Research question: Do participants who experienced accommodation response dis-

crepancy also report more visual discomfort during the viewing of 3D movie than

those who do not ?

Based on the di↵erence in discomfort change between the 2D and 3D condi-

tions, participants were divided into two groups; those who did (Group 1) and

those who did not (Group 21) perceive a greater change in discomfort in the 3D

condition than in the 2D condition (figure 6.29).

1Group 2 - participants who experienced the same level of discomfort in the 3D condition
as in the 2D condition or participants who experienced less discomfort in the 3D condition than
the 2D condition.
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Figure 6.29: The num-
ber of participants showing
each amount of di↵erence
in discomfort between the
2D and 3D conditions.

The di↵erence between the groups in relation to accommodation response dis-

crepancy observed in a number of conditions have been examined. Table 6.3 shows

the category classification for visual discomfort change in terms of accommoda-

tion response discrepancy occurring when the stimulus is changed from 2D!3D

and back again. The accommodation response discrepancy was slightly higher in

the group susceptible to visual discomfort than in the group not susceptible to

visual discomfort, but this was not statistically significant.

Table 6.3: Category classification for visual discomfort score change.

Not susceptible to visual
discomfort

Susceptible to visual
discomfort

independent t-test

Parallax

Mean SD Mean SD p sig.(2-tailed)

on screen ! in front 0.25 0.32 0.27 0.16 0.871
Negative

in front ! on screen 0.02 0.15 0.03 0.08 0.858

on screen ! behind -0.04 0.11 -0.02 0.10 0.630
Positive

behind ! on screen 0.27 0.21 0.27 0.25 0.978

Average 0.13 0.09 0.18 0.21 0.600

Accommodation
response

inaccuracy [D]
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6.4 Discussion

The main aims of this study were to examine the response of the accommodation

system to the change in 3D stimuli position, and to determine whether accom-

modation discrepancy can have an influence on visual discomfort whilst viewing

3D stereoscopic stimuli.

In our experiment five di↵erent forms of dynamic accommodative response

were seen during the viewing of 3D stereoscopic stimuli. These are: stable re-

sponse, accommodation overshoot, accommodation undershoot, oscillations and

erroneous accommodative response. A striking feature of figures 6.19 - 6.25 which

show these responses is that the same subject showed the same response pattern

for all three parallax conditions, which indicates that the responses were not

simply random changes.

On the whole, accommodation discrepancy was larger when the stimulus

changed from “on the screen” to “in front of the screen” and when the stim-

ulus changed form “behind the screen” to “on the screen”. This suggests than a

fast stimulus moving towards the viewer has stronger e↵ect on accommodation

discrepancy than one moving away from the viewer.

When the stimulus changed from “in front of the screen” to “on the screen”

and from “on the screen” to “behind the screen” an erroneous initial accom-

modation response was sometimes observed. In other words an error was made

in choosing of the correct direction of the initial accommodation. Initial incor-

rect accommodation responses were previously observed under monocular viewing

conditions by Stark & Takahashi (1965), Bour (1981). Recently, Torii et al. (2008)

also reported initial erroneous responses (frequently in one subject when the stim-

ulus change from “in front of the screen” to “on the screen” under binocular

viewing conditions. Stark & Takahashi (1965), Bour (1981), Torii et al. (2008)

explained the initial incorrect accommodation response by suggesting that the

lack of monocular depth cues (linear perspective, relative size, light and shadows,

overlapping, texture gradient) can produce this kind of phenomenon.
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6. Accommodation discrepancy and 3D stimuli

The same mechanism could explain the results in the current study as the

stimulus was also free from any monocular depth cues. However, it is puzzling

that the vergence change of the stimulus produced an accommodation change

in the wrong direction, because one would expect the vergence-accommodation

signal to be an “odd-error”1 signal, unlike blur alone which is an “even-error”

signal.

In the current studies, accommodation oscillations were observed in both con-

ditions: when the stimulus was presented with either a negative or a positive par-

allax. Previously, accommodation oscillations were reported when the stimulus

was presented in front of the screen by Ukai & Kato (2002), Okada et al. (2006),

Torii et al. (2008). These researchers suggested that oscillations indicate di�-

culty in fusing images presented on the stereoscopic display. The ability to fuse

stereoscopic images depends on the participant’s fusion range and it is reason-

able to expect that, as the fusional range gets closer to its limits, accommodation

oscillations will occur. It was found that horizontal oscillations increased with

increasing parallax (see example on figure 6.24). This is consistent with the expec-

tation that accommodation oscillation increases with di�culty in fusing images.

Occasionally, accommodation oscillations were observed when the image returned

to the 2D position. In these cases participants reported temporary problems ob-

taining a single vision of the stimulus (see example on figure 6.25). (This may

suggest that an individual found the 3D task very demanding and more time was

needed for the accommodation response to return to normal). Moreover, it was

observed that more people (N=4) could not fuse the images when the maximum

positive parallax was used than when the maximum negative parallax (N=1) was

used. This is consistent with the previous study (see chapter 5), where it was

found that participants had a lower ability to fuse images by divergence than by

convergence (this is consistent with the norms for fusional reserve (Evans et al.

2007, Elliott 2013)). Fewer participants failed to fuse a blurred stimulus than a

sharp stimulus. This can be explained by the fact that Panum’s fusional area is

expanded at low spatial frequency (Schor et al. 1984) and so blurred images with

1An error signal with both magnitude and sign information is called “odd-error”signal. An
error signal with only magnitude and no sign information is called an “even-error” signal.

165



6. Accommodation discrepancy and 3D stimuli

large parallax are easier to fuse than sharp images with the same parallax.

In the experiment, the e↵ect of spatial-frequency content of the stimulus on

accommodation discrepancy was tested. It is worth remembering that the static

accommodation response during the viewing of a 3D stimulus balances between

convergence-driven accommodation which pulls accommodation toward the stim-

ulus and defocus-driven accommodation that pulls it to stay at the position of

screen (Ramsdale & Charman 1988, Okada et al. 2006). As the stimulus is more

blurred, the defocus - driven accommodation should become weaker and conver-

gence - driven accommodation should become stronger. Hence, when the stimulus

is blurred the accommodation overshoot is expected to be diminished, when com-

pared with the response to a sharp stimulus.

In the experiment conducted, when the stimulus changed its position from

“on the screen” to “in front of the screen”, it was found that the accommo-

dation overshoot was smaller when the blurred stimulus was used. However, a

statistically significant di↵erence between the sharp and the blurred stimulus was

only found in the case of a yellow Maltese Cross displayed against a green back-

ground (Y&G), and not in the case of a black Maltese Cross displayed against a

white background (B&W). An explanation for these di↵erences is that the Y&G

blurred Maltese cross is a weaker stimulus to defocus driven accommodation than

the B&W blurred Maltese Cross, because the contrast between the target and

background is smaller. It can be expected that more blur added to the B&W

stimulus would increase the di↵erence in accommodation overshoot between the

sharp and the blurred stimulus.

When the stimulus changes its position from “in front of the screen” to “on

the screen”, there is a mismatch between the stimulus to accommodation and the

stimulus to convergence at the starting point but not at the finishing point. In

this case, the accommodation discrepancy (undershoot) may be diminished only

if the static accommodation response depends on the spatial-frequency compo-

nent of the stimulus presented “on the screen”. From previous studies (Okada

et al. 2006, Torii et al. 2008) no e↵ect of the spatial-frequency component on ac-
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commodation was expected, when the stimulus was presented “on the screen”. In

the study conducted no statistically significant di↵erence in the magnitude of the

accommodation undershoot was found, between the sharp and blurred stimulus.

Under this condition, minimal accommodation discrepancies (undershoots) were

observed.

When the stimulus position changed from “on the screen” to the “behind

the screen”, it was expected that the accommodation discrepancy (undershoot)

would be smaller for the blurred than for the sharp stimulus. Collected data

revealed very small di↵erences between the responses to sharp and blurred stim-

ulus. Under this condition, minimal accommodation discrepancies (undershoots)

were observed.

When the stimulus position changed from “behind the screen” to “on the

screen”, the mismatch between the stimulus to accommodation and the stimu-

lus to convergence is only present at the starting point. There is no mismatch

between the stimulus to accommodation and the stimulus to convergence when

the stimulus returns to the 2D position. In this case, no e↵ect of the spatial-

frequency component on accommodation discrepancy (overshoot) was expected.

No statistically significant di↵erences in the magnitude of the accommodation

overshoot caused by the sharp and the blurred stimulus was seen.

Overall, the e↵ect of the spatial-frequency component on accommodation dis-

crepancy was only observed when the stimulus changed its position from “on the

screen” to “in front of the screen”. No significant di↵erence in the magnitude of

accommodation discrepancies was observed for the three other stimulus change

variants.

The e↵ect of the individual CA/C ratio on the accommodation response dis-

crepancy was tested. When the stimulus position changed from “on the screen”

to “in front of the screen”, and when it changed from “behind the screen” to

“on the screen”, the accommodation discrepancy increased with an increase of
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the CA/C ratio. However, a correlation between the accommodation discrep-

ancy and CA/C ratio was not found when the stimulus position changed from

“in front of the screen” to “on the screen” or when it changed from “behind the

screen” to “on the screen”. In other words accommodation discrepancy was cor-

related with the CA/C ratio when the stimulus changed its position in a direction

“towards” the viewer, but was not correlated with the CA/C ratio when the stim-

ulus changes its position in the direction “opposite” to the viewer. Previously,

Fukushima et al. (2009) reported that accommodation discrepancy (accommo-

dation overshoot) was correlated with CA/C ratio when the stimuli changed its

position from “on the screen” to “in front of the screen” (in Fukushima et al.

(2009) di↵erent conditions were not tested). Our results, combined with the

results presented by Fukushima et al. (2009) strongly indicate, that there is an

appreciable variability of accommodation discrepancy between individuals. More-

over, it can be concluded that accommodation discrepancy is influenced by the

viewer’s CA/C ratio but only when the the stimulus changes its position in a

direction “towards” the viewer. The lack of correlation between the CA/C ratio

and the accommodation discrepancy when the stimulus changes its position in the

direction “opposite” to the viewer can be explained by the fact that the process

of focusing from “near to far” di↵ers from the process of focusing from “far to

near”1. Focusing “from far to near” is an active process, whereas focusing “from

near to far” is a passive process. Hence the accommodation discrepancy, when

the stimulus changes its position in the direction “opposite” to the viewer may

not be associated with the CA/C ratio in the same way as when the stimulus

changes its position in the direction “towards” the viewer. It is worth noting

that the accommodation discrepancy observed was much smaller when the stim-

ulus changed its position in the direction “opposite” to the viewer than when the

stimulus changed its position in the direction “towards” the viewer. This also

indicates that the process of focusing from “from far to near” di↵ers from the

1The only active element in the process of accommodation is the ciliary muscle, whereas
all other elements act in a passive manner. Increase of accommodation: when focusing “from
far to near” the ciliary muscle contract. This process reduces the tension on the zonular fibres,
allowing the elastic lens to increase its curvature (the power of the lens increases). Decrease of
accommodation: when focusing from “from near to far” the ciliary muscle relax. This process
increases the tension on the zonular fibres causing the lens to flatten (the power of the lens
decreases).
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process of focusing “from near to far”.

Turning now to the relationship between visual discomfort and the viewing

of 3D stimuli, 64% of participants reported more visual discomfort when viewing

a 3D stimuli than a 2D stimuli. The increase of discomfort for 3D conditions

against the increase of discomfort in 2D conditions was slight (1,2 scale points).

The same level of visual discomfort in 2D and 3D conditions was reported by 29%

of participants and 7% reported a decrease of visual discomfort in 3D conditions

compared to 2D conditions.

In our experiment it was expected that people who experienced accommoda-

tion discrepancy during the viewing of 3D stimuli would experience more visual

discomfort when viewing 3D stimuli compared with 2D stimuli. To explore this

hypothesis participants were dichotomised into those who did and those who did

not show a greater change in discomfort in the 3D stereoscopic condition. Anal-

ysis of the data shows that accommodation discrepancy was slightly higher in

the group where the visual discomfort was reported, but the di↵erences were

not statistically significant. Therefore, accommodation anomalies (accommoda-

tion overshoot, accommodation undershoot) cannot account for the symptoms

reported when a 3D stereoscopic movie was viewed. In our experiment the ini-

tial, incorrect accommodation response was not considered a reason for visual

discomfort during the viewing of 3D stimuli. Commercially available 3D stereo-

scopic stimuli (movies, games, etc.) usually contain a lot of monocular depth

cues. It thus seems unlikely that during the viewing of 3D stereoscopic movie an

erroneous initial accommodation response will be observed.

Although, our experiment did not show a clear link between visual discomfort

and accommodation discrepancy, it is still possible that a relationship could exist

under di↵erent conditions. For example accommodation discrepancy may have a

stronger impact on visual discomfort when the distance between the participant

and the 3D device is small (e.g. Nintendo 3DS). However, it is not expected that

accommodation discrepancy may have a significant e↵ect on visual discomfort for
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larger distances (for example during the viewing of 3D television or 3D movies in

cinema).
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Chapter 7

Summary and conclusions

3D e↵ects are like sweet candies. Everyone likes chocolate, but we all get sick

if we eat too much at once. When you are cooking, you use sugar with caution.

There are some meals where you dont want any, there are some cakes that deserve

super-sugary frosting; and then, you dont serve them as a starter.

Phil McNally - leading pioneer of 3D animation

(Mendiburu 2011)

...and some people are diabetic

Purpose: The aim of this chapter is to summarise and highlight the main find-

ings from the research described in this thesis. The applications of the research

are also discussed.
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This thesis has presented the outcome of investigations undertaken to exam-

ine the e↵ect of 3D stereoscopic stimulation on visual discomfort. The essential

questions asked in this work were whether participants experienced more discom-

fort whilst watching 3D stereoscopic stimuli than whilst watching 2D stimuli,

and if so why. To answer these questions discomfort was assessed before and af-

ter both 2D and 3D viewing conditions. This approach eliminated two common

methodological limitations of previous studies. These limitations are:

• lack of pre-session data: collection of post-sessional data only does not give

a clear picture of whether symptoms arise during the viewing of stimuli or

whether participants were experiencing symptoms prior to the onset of the

experiment

• assessment of discomfort only in the 3D condition: as all potential causes

of 2D discomfort are also present during 3D stimulation, assessment of

3D discomfort should take into account the di↵erence between 2D and 3D

discomfort.

An additional limitation of previous studies has been the use of inappropriate

measurement tools (i.e. SSQ). This issue was addressed by employing redesigned

questionnaires to evaluate visual discomfort, headache, and visually induced mo-

tion sickness (VIMS).

The results produced fill the gap in terms of current knowledge of individual

di↵erences between discomfort reported in the 3D and 2D conditions. More

discomfort was reported in the 3D condition than the 2D condition (by 35% of

participants in terms of visual discomfort, by 24% of participants in terms of

headache and by 17% of participants in terms of VIMS) symptoms.

In the experiments conducted, several hypotheses were proposed relating to

the characteristics of presented stimuli and their expected physiological e↵ect on

participant eye response and reported discomfort.
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In the first experiment the stereoscopic stimuli (a game, Ziro) contained only

positive parallax. The advantage of using this game was that it does not produce

the sensation of vection so it was unlikely that viewers would experience visually-

induced motion sickness (VIMS).

Participants played the same game in the 3D format, and in the 2D format

as a control condition. The first hypothesis was based on the characteristics of

the stereoscopic condition, and it was expected that the viewing of 3D stereo-

scopic stimuli, located geometrically behind the screen, would induce exophoric

heterophoria changes. The second hypothesis was that those participants whose

heterophoria changed as a consequence of adaptation during the viewing of the

stereoscopic stimuli would experience less visual discomfort than those whose

heterophoria did not change. This study found:

• a statistically significant increase in visual discomfort change in the 3D

condition in comparison with the 2D condition

• a statistically significant change in heterophoria under the 3D condition

compared with the 2D condition

• appreciable variability in the magnitude of this adaptation among individ-

uals but no correlation between the amount of heterophoria change and

visual discomfort change

To conclude, the study revealed that heterophoria can change as a result of

viewing of 3D stereoscopic stimuli, however this change does not account for the

symptoms reported.

In the second experiment two theories of 3D symptom production (vergence-

accommodation mismatch theory and visual-vestibular mismatch theory) were

examined. Three commercially available movies were used as stimuli: “Grand

Canyon Adventure” [2008], “Avatar” [2009] and “Pirates of the Caribbean: On

Stranger Tides” [2011]. The vergence-accommodation mismatch theory predicts
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that a greater mismatch between the stimulus to accommodation and the stimulus

to vergence would produce greater symptoms in visual discomfort whilst viewing

in the 3D condition than in the 2D condition. To test this theory, analysis of the

magnitude of vergence-accommodation mismatch to the presented stimuli was

conducted. The analysis showed that:

• out of the three presented movies the smallest average vergence-accommodation

mismatch with negative as well as with positive parallax was found in the

movie “Pirates of the Caribbean” [2011].

• the size of vergence-accommodation conflict with both negative parallax

and positive parallax decreased as viewing distance increased

It was expected that the group who watched the stimulus with the smallest

vergence-accommodation mismatch would experience less visual discomfort than

the group who watched the stimulus with the largest vergence-accommodation

mismatch. However, this was not confirmed by the results as there were no statis-

tically significant di↵erences in visual discomfort between the 3D condition and

2D condition in relation to the watched movies. In the group who watched Pirates

of the Caribbean [2011] fewer people reported an increase in visual discomfort in

the 3D condition compared to the 2D condition than for those who watched

Grand Canyon Adventure [2008]. However, in the group who watched the movie

Avatar [2009], slightly fewer people reported an increase of symptoms in the 3D

condition over the 2D condition when compared with Pirates of the Caribbean

[2011]. This observation indicates that di↵erences in vergence-accommodation

mismatch between the movies can not be considered as an indicator of visual

discomfort reported by participants.

In the same experiment a larger proportion of younger viewers (21 to 39

years old) reported visual discomfort than was reported by older (40 years old

and above) viewers. In addition, the amount of discomfort reported by younger

viewers was higher.
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As the amplitude of accommodation declines with age (presbyopia), older

people have a decoupled accommodation-vergence response in everyday life. As a

consequence changing vergence without changing accommodation could be easier

or more e�cient for presbyopic, than for pre-presbyopic people. While viewing

3D stereoscopic stimuli, the mismatch between stimulus to accommodation and

stimulus to vergence is the same despite the participants’ age, but the response to

the presented stimuli di↵ers. The di↵erence in reported discomfort between the

two groups is consistent with the suggestion that it is the visual system’s response

to a stimulus, rather than the stimulus itself, that gives rise to the discomfort.

In terms of visually induced motion sickness theory it was expected that 3D

stimuli would produce a greater sense of vection, increasing the sensory con-

flict and producing greater VIMS symptoms. Participants with a closer seating

position reported more VIMS symptoms than these sitting further away whilst

viewing 3D stimuli. This observation is consistent with a study conducted by

Howarth & Harvey (2007). In the current experiment and in the experiment

conducted by Howarth & Harvey (2007), a larger part of the visual field was

stimulated and more VIMS was reported. Based on these observations it can

be concluded that the amount of visual field stimulated during 3D presentations

a↵ects VIMS, and so viewing distance is an important factor in terms of viewing

comfort.

A further finding was the increase of headache in the 3D condition compared

with the 2D condition. The di↵erence in headache symptoms correlated with

the di↵erence in visual discomfort and VIMS reported by participants in the

3D condition compared to the 2D condition. This suggests that headache whilst

viewing in 3D might be caused by the same factors which lead to visual discomfort

and VIMS.

The next hypothesis relates to the participants’ fusion capability as measured

by their fusional reserve. It was expected that participants with a limited fusional

range would experience more visual discomfort than participants with a wider fu-

sion range. The hypothesis was confirmed, but only in the case of convergent and
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not divergent fusional reserves. This can be explained by the fact that the diver-

gent eye movement was not required often enough to produce discomfort during

the movies. It is worth noting that only in one movie did the extreme positive

parallax exceed the participants inter-pupillary distance. Another explanation

is that the variability between participants in terms of negative fusional range

was much smaller than in terms of positive fusional range. Hence, the e↵ect of

negative fusional vergence on visual discomfort was more di�cult to observe. No

correlation was found between individual fusion range and VIMS or headache. It

was therefore concluded that the increase of headache or VIMS in the 3D condi-

tion when compared with the 2D condition was not related to participants’ fusion

capability.

The aim of the final experiment was to examine responses of the accom-

modation system to changes in 3D stimulus position and to determine whether

discrepancies (i.e. accommodation overshoot, accommodation undershoot) could

account for the visual discomfort experienced during 3D stereoscopic viewing.

The accommodation discrepancy seen was larger for perceived forward move-

ment than for perceived backward movement. The accommodation response dis-

crepancy was slightly higher in the group susceptible to visual discomfort than

in the group not susceptible to visual discomfort, but this was not statistically

significant. Although these accommodation anomalies were observed during 3D

stereoscopic stimulation, no evidence has been found to suggest that they explain

the symptoms reported.

To sum up, the research presented in this thesis has enhanced the knowledge

of visual discomfort caused by 3D stereoscopic stimuli. Visual discomfort whilst

viewing 3D stimuli is a complex issue and is influenced by many factors. However,

it should be highlighted that the knowledge about an increase of discomfort in the

3D condition compared with the 2D condition can be used in a positive way. This

aspect as well as other applications of the research will be further discussed in

section 7.1 The view of the discomfort genesis which dominates previous studies is

that it is caused by the conflict between the stimulus to accommodation and the

stimulus to vergence. Comparing the size of the conflict in various movies with
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optometric knowledge of the visual systems response indicates that this conflict

should not be a problem for most people. However, if a person has a reduced

ability to fuse disparate images (a lower capacity of their vergence system) they

would be expected to show symptoms.
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7.1 Application of research

There is a wide range of possible applications of findings from the research pre-

sented within this thesis. The most important of these are described below:

• Analysis of the data suggests that discomfort experienced by people during

3D stereoscopic stimulation may be indicative of binocular vision problems.

Therefore, 3D technology might be used as a screening method to diagnose

untreated binocular vision disorders. This could be especially important

for children whose binocular vision is not always checked during routine

eye examinations. Poor binocular vision (i.e. convergence insu�ciency)

may have a negative impact on health-related quality of life, potentially

interfering with reading and near work performed at school, at work, and/or

during leisure (Scheiman & CITT Study Group 2009). Visual discomfort

arising during 3D stimulation may therefore enable early recognition of

binocular vision problems and rapid initiation of relevant treatment which

is crucial for a successful outcome.

• The study presented in chapter 3 showed that heterophoria changes as a

result of viewing 3D stereoscopic stimuli. This knowledge can be applied to

further research to develop new ways of treating phoria.

Binocular vision therapy based on 3D technology is likely to be more engag-

ing and attractive especially to young participants. This might contribute

to better results than those achieved by standard treatment methods for

patients with binocular vision conditions.

• The experiment conducted in chapter 4 showed that participants with a

closer sitting position reported more VIMS symptoms than participants

sitting farther away whilst viewing 3D stimuli. This observation can be used

to reduce VIMS symptoms during 3D stereoscopic stimulation by educating

people to sit farther back if they are susceptible to VIMS or have previously

experienced VIMS symptom during 3D stereoscopic stimulation.
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• To test the hypotheses on which this work is based, special binocular vision

tests and stimuli were required and therefore developed by the author. The

tests were displayed on a 3D stereoscopic screen and viewed by participants

equipped with 3D stereoscopic glasses. This approach of assessing binoc-

ular vision eliminated many of the problems which occur when standard

examination methods are used (e.g. chromatic aberrations, large steplike

changes of prismatic power especially in terms of a prism bar). Moreover,

binocular vision tests presented on the 3D screen allowed examination of a

much wider range than standard methods. Studies conducted in this PhD

showed that 3D stereoscopic technology can be easily adopted to binocular

vision measurements and in the development of new types of binocular vi-

sion tests (for example to measure fusional vergence, heterophoria, fixation

disparity). Figure 7.1 present a schematic construction of these tests.
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Step 1 
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Figure 7.1: Schematic construction of tests, which can be used to measure binoc-
ular vision by using 3D stereoscopic technology. a) Horizontal heterophoria test.
The same principle can be used to measure vertical heterophoria b) Horizontal
fusional vergence test. The same principle can be used to measure vertical fusion
vergence. c) Fixation disparity test. To detect and measure fixation disparity
(e.g. by asking participants to align red markers).

• This research has contributed to the current knowledge about eye response

to 3D stereoscopic stimuli. Within this thesis it has been shown that as a

result of viewing 3D stereoscopic stimuli heterophoria and accommodation
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responses change. In terms of heterophoria change was observed in the exo

direction when the stimulus was presented behind the screen. It is expected

that if the stimulus was presented in front of the screen, heterophoria would

change in the eso direction. Further experimental work is required to con-

firm this hypothesis. In terms of accommodation responses it was shown

that there are five di↵erent forms of dynamic accommodation response dur-

ing the viewing of 3D stimuli. These are: stable response, accommodation

overshoot, accommodation undershoot, oscillation and erroneous accommo-

dation response. It was also observed that accommodation discrepancy was

larger when the stimulus changed from on the screen to in front of the screen

and when the stimulus changed from behind the screen to on the screen.

In terms of CA/C ratio and accommodation discrepancy it was found that

accommodation discrepancy was correlated with the CA/C ratio when the

stimulus changed its position in direction towards the viewer, but was not

correlated with the CA/C ratio when the stimulus changed its position in

the direction opposite to the viewer. Furthermore it was shown that par-

ticipants fusional vergence has an e↵ect on experienced visual discomfort.

• As was mentioned in the introduction, 3D technology su↵ers from a lack of

standardisation. There is a lack of agreement on definitions for technical

requirements for the creation of 3D stereoscopic content and there are no

objective tests which can be used to assess the quality of 3D content and

the quality of 3D enabled devices. Finally there are no formally agreed

procedures to test discomfort experienced by people exposed to 3D stim-

uli. Therefore the material presented in this thesis should be of interest to

standardisation bodies.
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Appendix A

Analysis of vergence-accommodation mismatch

Table 1: Description of parameters shown in figure 2

R(eye) right eye
L(eye) left eye
I(np) image with negative parallax
I(pp) image with positive parallax
ID(np) distance between screen and visual image (negative parallax)
ID(pp) distance between screen and visual image (positive parallax)
IE(np) distance between eyes and visual image (negative parallax)
IE(pp) distance between eyes and visual image (positive parallax)
SD distance between eyes and screen
pd pupillary distance
w screen width
p parallax

M(np) vergence-accommodation mismatch (negative parallax)
M(pp) vergence-accommodation mismatch (positive parallax)
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Figure 2: Schematic of visual system whilst viewing 3D steroscopic stimuli
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• Derivation of formula for the image presented with negative parallax

The distance between the screen and the virtual image (ID(np)) was calculated

using the formula shown below which was generated from figure 2.

ID(np) = f(SD, p, pd, w)

pd

2

SD � ID(np)
=

p

2

ID(np)

pd

SD � ID(np)
=

p

ID(np)

pd · ID(np) = p(SD � ID(np))

SD � ID(np) =
pd · ID(np)

p

SD = ID(np)

✓
pd

p
+ 1

◆

ID(np) =
SD⇣

pd

p

+ 1
⌘

The distance between the eyes and the virtual image (negative parallax) was

calculated using the formula:

IE
np

= f(SD, ID(np))

IE(np) = SD � ID(np)

Vergence - accommodation mismatch was calculated using the formula:

M(np) = f(IE
np

, SE)

M(np) = SD � IE(np)
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• Derivation of formula for the image presented with positive parallax

The distance between the screen and the virtual image (ID(pp)) was calculated

using the formula shown below which was generated from figure 2.

ID(pp) = f(SD, p, pd, w)

pd

2

SD + ID(pp)
=

p

2

ID(pp)

pd

SD + ID(pp)
=

p

ID(pp)

pd · ID(pp) = p(SD + ID(pp))

SD + ID(pp) =
pd · ID(pp)

p

SD = ID(pp)

✓
pd

p
� 1

◆

ID(pp) =
SD⇣

pd

p

� 1
⌘

The distance between the eyes and the virtual image (positive parallax) was

calculated using the formula:

IE
pp

= f(SD, ID(pp))

IE(pp) = SD + ID(pp)

Vergence - accommodation mismatch was calculated using the formula:

M(pp) = f(IE(pp), SE)

M(pp) = SD � IE(pp)
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Development of the fusional reserve test

To develop the 3D stereoscopic fusional reserve test the Image J software was

used. The core part of the Image J script is shown below (see script 1)

This script creates a single frame of the fusional reserve test. The script was

adjusted to create frames with the required position of the two columns displayed

in relation to the participant’s position.
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!
!
!
!
!
!
!
!
!
open("/Users/edyta/Desktop/green_background.png");!
!
//setTool("rectangle");!
makeRectangle(960,!250,!9,!600);!
run("Properties...!",!"name=[]!stroke=yellow!width=1!fill=yellow");!
run("Add!Selection...",!"stroke=yellow!width=1!fill=yellow");!
//setTool("rectangle");!
!
makeRectangle(960+1920,250,!9,!600);!
run("Properties...!",!"name=[]!stroke=yellow!width=1!fill=yellow");!
run("Add!Selection...",!"stroke=yellow!width=1!fill=yellow");!
run("Select!None");!
!
setColor(100,200,100);!
setFont("Arial",!80);!
x=1700;!y=1000;!
drawString("0",!x,!y);!
drawString("0",!x+1920,!y);!
!
saveAs("Jpeg",!"/Users/edyta/Desktop/Fusional!
reserve/000_fusional_reserve.jpg");!
close();!
!
!
!
!

Script 1: The core part of  the fusional reserve test.  
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Experimental setup to create specific 3D

stereoscopic stimuli

To create a setup with specific 3D stimuli the Autodesk 3ds Max and Image

J software was used. The Autodesk 3ds Max is a professional 3D computer

graphic software for creating 3D images, models and animations. The software

allows for determining and controlling camera separation, convergence distance,

convergence point, image geometry, image texture, image colours, scene lighting,

etc. An advantage of the computer generated 3D stimuli over “real world” 3D

stimuli (e.g. created by using physical cameras) is that the CGI are not biased by

alignment imperfections of a real stereographic camera rig. Figure 3 shows the

Autodesk 3ds Max interface. The workspace contains four windows: top view,

perspective view, right camera view, and left camera view. Right and left camera

images generated by Autodesk 3ds Max were blended together with use of a script

written in Image J to create stereographic JPEG files (see script 2). Nvidia 3d

viewer was used to present the generated stimuli to the participants.
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!
!
!
!
!
open("/Users/edyta/Documents/3dsMax/renderoutput/L_eye.png")
;!
open("/Users/edyta/Documents/3dsMax/renderoutput/R_eye.png")
;!
newImage("L+R",!"RGB!White",!3840,!1080,!1);!
!
selectWindow("R_eye.png");!
run("Select!All");!
run("Copy");!
selectWindow("L+R");!
makeRectangle(0,!0,!1920,!1080);!
run("Paste");!
!
selectWindow("L_eye.png");!
run("Select!All");!
run("Copy");!
selectWindow("L+R");!
makeRectangle(1920,!0,!1920,!1080);!
run("Paste");!
!
saveAs("PNG",!
"/Users/edyta/Documents/3dsMax/renderoutput/L+R.png");!
saveAs("JPEG",!
"/Users/edyta/Documents/3dsMax/renderoutput/L+R.jps");!
!
close();!
close();!
close();!
run("Close");!
run("Close");!
!
!
!
!
Script 2: Code written in Image J to blend right and left camera 

images.  
!
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Development of cross-talk free image

To develop an image which was free of cross-talk an analysis of a TN LCD screen

with a shutter glasses system was conducted. Based on the results of this analysis,

appropriate colours for background and stimulus were selected. Figure 4 illus-

trates the structure and operation principle of the TN LCD screen. Molecules of

liquid crystals, when placed in the electric field, change their orientation. This

changes the direction of light polarisation and when this change equals 90 degrees,

the majority of the backlight is transmitted to the front of the screen. When the

electric field disappears, the liquid crystal molecules relax. Horizontally polarised

backlight cannot pass through the vertical polariser at the front of the display.

In a colour LCD each pixel consist of three sub-pixels with a colour filter (red,

green, blue). The colour presented on the display and perceived by the human

eye depends on the level of transmission of three sub-pixels. The di↵erent levels

of brightness required to create a full colour image are achieved by changing the

voltage applied to the liquid crystals. The voltage is controlled by a thin film

transistor (TFT) for each sub-pixel separately.
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Figure 4: Device structure and operation principle of a TN LCD display. The
TN LCD is composed of: a backlight illumination source, a front and rear linear
polarizer (the polarising direction of rear polarizer is arranged at a right angle to
the polarising direction), liquid crystal sandwiched between two sheets of glass,
transparent thin film transistor (TFT) and electrodes deposited on the surface of
the glass sheets.

pixel sub-pixel

transistor 
TFT

Figure 5: Magnification of the LCD screen.

Pixels switching is much more complex when the time-sequential (shutter)

3D LCD is considered. In time-sequential 3D LCD the image on the screen is

refreshed 120 times per second. To achieve a black stimuli on the white back-

ground, the liquid crystal molecules have to be rotated from 90� to 0�. Because
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of the inertia of the liquid crystals, the time needed for molecules reorientation

is defined and is greater than 0. Taking into account the physical mechanisms

standing behind the 3D LCD display, it was expected that a reduction of the

di↵erence in transmission levels between the pixels creating a stimulus and pixels

creating the background would decrease the visibility of the cross-talk.

Under normal light conditions (photopic vision) the eye is most sensitive to 550

nm (green colour), therefore it was further expected that the cross-talk created

by variations in brightness of a green sub-pixel would be more noticeable than the

cross-talk created by the red or the blue sub-pixels. For this reason transmission

of a green sub-pixel was fixed at its maximum level for both background and

stimulus.

Red and blue sub-pixels transmissions were varied by 20% to test whether the

generated cross-talk di↵ered between them (see figure 6).

Pixel
Sub-pixel

R
100%

Sub-pixel
G

100%

Sub-pixel
B

80%

Pixel
Sub-pixel

R
80%

Sub-pixel
G

100%

Sub-pixel
B

100%

StimulusBackground

Brightness level

Figure 6: Example combinations of pixel transmissions producing a cross-talk
free image.

The results produced were comparable in terms of generated cross-talk and

contrast. While this operation reduced the visibility of cross-talk, it also reduced

192



Appendix D

contrast between the image and the background. The human eye is more sensitive

to a di↵erence in contrast than to a di↵erence in colour. For this reason the

next step was to improve the contrast between the stimulus and the background.

To achieve a di↵erence in contrast the sum of pixels transmission needed to be

di↵erent for the background and the stimulus (see figures 8 and 7).
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Figure 7: Example combinations of pixel transmissions producing a cross-talk
free image. Changing red sub-pixel transmission to 50% (a) in relation to the
background produced no cross-talk but also no contrast. Changing red sub-pixel
transmission to 75% (b) and to 100% (c) in relation to the background increased
contrast but not the visibility of cross-talk.
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Figure 8: Example combinations of pixel transmissions producing a cross-talk
free image. Changing blue sub-pixel transmission to 50% (a) in relation to the
background produced no cross-talk but also no contrast. Changing blue sub-pixel
transmission to 75% (b) and to 100% (c) in relation to the background increased
contrast but not the visibility of cross-talk.
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Even when the red/blue sub-pixel transmission was changed from 0% to 100%

no cross-talk was observed. Moreover, it was found that reducing red/blue pixel

transmission below 50% caused very little change in the colour of the stimulus,

but further improved contrast.

The red sub-pixel was chosen as a second active sub-pixel for the stimulus.

The main reason for this choice was that eye sensitivity to red colour is lower than

to blue colour, therefore the cross-talk created by the red colour should be less

visible. A second reason for choosing the red sub-pixel over the blue sub-pixel was

that this combination produced a slightly higher contrast between the stimulus

and background. To sum up R:0%, G:100%, B:0% sub-pixels were chosen as

optimal for the background and R:100%, G:100%, B: 0% sub-pixels were chosen

as optimal for the stimulus.
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Generation of Di↵erence of Gaussian (DoG)

target

The DoG target was generated by using Octave software package (an open-source

computer program for numerical computations and graphics, a free alternative to

MATLAB).

The DoG was obtained by subtracting a broad Gaussian luminance profile

from a narrow one (Wilson (1978)), using the following formula:

DOG(x) = 3exp(�x2/�
2
)� 2exp(�x2/2.25�2) + k

in which k is the mean luminance, � is the space contrast and the ratio of

space contrast of the broad Gaussian to the narrow one 1.5:1.0. The DoG target

was generated using script 3.

In the next step two DoG targets generated in Octave software were blended

together with use of a script written in Image J to create a stereographic JPEG

file (see script 4). The script was adjusted to create frames with the two DoG

positioned to achieve the desired parallax on the screen.
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!
function!DoG(r,!XX,!YY)!!

%r!2!width!of!stimulus!on!the!screen!
%XX!2!width!of!an!output!image!

%YY!2!height!of!an!output!image!
!
%set!value!of!sigma!

sig=1;!
!
%!calculate!step!size!

s=2*r*sig/XX;!
!

%!range!of!the!input!array!
x!=!2r*sig:!s!:r*sig;!
!

%!calculate!values!of!a!difference!of!Gaussian!blur!function!for!each!
argument!

y!=!3*exp(2(x.^2/sig.^2))!2!2*exp(2(x.^2/(2.25*sig.^2)));!
!
%rewrite!!results!from!the!vector!y!to!the!array!z!to!create!2D!image!

for!i!=!1:YY,!z(i,:)!=!y;!
end!

!
%!find!minimum!!value!of!the!z!array!
minVal!=!min(min(z))!

%shift!values!of!z!so!that!the!minimum!is!equal!to!zero!!
z=z2minVal;!
!

%!find!maximum!!value!of!the!z!array!
maxVal=max(max(z))!

%normalize!values!of!the!z!array!by!its!maximum!value!
z=z/maxVal;!
!

%!save!!plot!to!the!file!
imwrite(z,'test.png','png');!

endfunction!
!
!

!

Script 3: Code written in Octave software to generate DoG 
target.  

!

198



Appendix E

!
!
!
!
!
!
!
open("/Users/edyta/Desktop/DoG_background3840x1080.jpg");!
open("/Users/edyta/Desktop/DoG_20130422/DoG.jpeg");!
!
run("Select!All");!
run("Copy");!
close();!
!
selectWindow("DoG_background3840x1080.jpg");!
//setTool("rectangle");!
!
!
makeRectangle(628,!0,!664,!1080);!
run("Paste");!
run("Select!None");!
!
!
selectWindow("DoG_background3840x1080.jpg");!
//setTool("rectangle");!
!
!
makeRectangle(628+1920,!0,!664,!1080);!
run("Paste");!
run("Select!None");!
!
saveAs("Jpeg",!"/Users/edyta/Desktop/DoG_DoG/DoG_00.jpg");!
!
!
!
!
!

Script 4: Code written in Image J to blend DoG target for the 
left eye and DoG target for the right eye (an example frame). 

!
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Application of research

There is a wide range of possible applications for the findings of the research

presented within this thesis. The most important of these are described below:

• Analysis of the data suggests that discomfort experienced by people during

3D stereoscopic stimulation may be indicative of binocular vision problems.

Therefore, 3D technology might be used as a screening method to diagnose

untreated binocular vision disorders. This could be especially important

for children whose binocular vision is not always checked during routine

eye examinations. Poor binocular vision (i.e. convergence insu�ciency)

may have a negative impact on health-related quality of life, potentially

interfering with reading and near work performed at school, at work, and/or

during leisure (Scheiman & CITT Study Group 2009). Visual discomfort

arising during 3D stimulation may therefore enable early recognition of

binocular vision problems and rapid initiation of relevant treatment which

is crucial for a successful outcome.

• The study presented in chapter 3 showed that heterophoria changes as a

result of viewing 3D stereoscopic stimuli. This knowledge can be applied to

further research to develop new ways of treating phoria.
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Binocular vision therapy based on 3D technology is likely to be more engag-

ing and attractive especially to young participants. This might contribute

to better results than those achieved by standard treatment methods for

patients with binocular vision conditions.

• The experiment conducted in chapter 4 showed that participants with a

closer sitting position reported more VIMS symptoms than participants

sitting farther away whilst viewing 3D stimuli. This observation can be used

to reduce VIMS symptoms during 3D stereoscopic stimulation by educating

people to sit farther back if they are susceptible to VIMS or have previously

experienced VIMS symptom during 3D stereoscopic stimulation.

• To test the hypotheses on which this work is based, special binocular vision

tests and stimuli were required and therefore developed by the author. The

tests were displayed on a 3D stereoscopic screen and viewed by participants

equipped with 3D stereoscopic glasses. This approach of assessing binoc-

ular vision eliminated many of the problems which occur when standard

examination methods are used (e.g. chromatic aberrations, large steplike

changes of prismatic power especially in terms of a prism bar). Moreover,

binocular vision tests presented on the 3D screen allowed examination of a

much wider range than standard methods. Studies conducted in this PhD

showed that 3D stereoscopic technology can be easily adopted to binocu-

lar vision measurements and in the development of new types of binocular

vision tests.

• This research has contributed to the current knowledge about eye responses

to 3D stereoscopic stimuli and discomfort during 3D stereoscopic stimula-

tion. This can be further used in the development of standards relevant to

the creation of 3D stereoscopic content.

As was mentioned in the introduction, 3D technology su↵ers from a lack of

standardisation. There is a lack of agreement on definitions for technical

requirements for the creation of 3D stereoscopic content and there are no

objective tests which can be used to assess the quality of 3D content and

the quality of 3D enabled devices. Finally there are no formally agreed
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procedures to test discomfort experienced by people exposed to 3D stim-

uli. Therefore the material presented in this thesis should be of interest to

standardisation bodies.
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