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ABSTRACT

This paper advocates disturbance observer based control (DOBC) for uncertain nonlinear systems. Within this

framework, a nonlinear controller is designed based on the nominal model in the absence of disturbance and un-

certainty where the main design specifications are to stabilize the system and achieve good tracking performance.

Then a nonlinear disturbance observer is designed to not only estimate external disturbance but also system un-

certainty/unmodelled dynamics. With described uncertainty, rigorous stability analysis of the closed-loop system

under the composite controller is established in this paper. Finally, the robust control problems of a missile roll

stabilization and a mass spring system are addressed to illustrative the distinct features of the nonlinear DOBC

approach.

1 Introduction

Robust control of uncertain nonlinear systems is deemed as one of the most crucial topics in modern control theory

[1–3]. High-gain feedback domination technique is a major design tool utilized for robust suppression of uncertainties in

nonlinear control theory [3]. However, it is generally claimed that most of existing robust control approaches are criticized

as worst case based design, that is, the objective of the controller design is to achieve best performance in the presenceof the
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worst uncertainties [4, 5]. Such a design philosophy involving in most of the existing robust control design methodologies

would result in the following two major obstacles for its practical applications [6]. On the one hand, excessive controlenergy

is usually required for the robust control to suppress the worst case uncertainties [5]. This would cause the waste of con-

trol energy as well as unreasonable selection of the actuator since powerful actuators are required to perform unnecessarily

excessive control action demanded by the robust controllers. To this end, the conventional robust controller in practical engi-

neering usually leads to input saturation problems [7–9]. On the other hand, the robustness performance of those controllers

are mostly obtained at a price of sacrificing the nominal control performance of the system because the control performance

in the nominal case is usually not considered in the objective function of robust control [4, 6]. However, most practical

systems are generally working around its nominal operationpoint and have a limited chance to operate far away from their

nominal operation point. Taking a flight control system as anexample, the flight envelop of the vehicle is generally around

its nominal flight conditions. The extremely severe flight environment will but rarely appear in the whole flight process.

The worst case based robust control design results in over conservative design. As such, a promising and practical robust

controller should consider not only the robustness againstthe worst case of uncertainties but also the control performance

around the nominal operation points.

Disturbance observer based control (DOBC) provides an alternative approach for robust control of nonlinear systems

[10–13]. In the framework of nonlinear DOBC, the total uncertainties including external disturbances and internal model

uncertainties of nonlinear systems are estimated online and then compensated within the closed-loop systems. As a practi-

cal robust control approach, nonlinear DOBC has been utilized for uncertainty compensation in engineering practices,for

example, see altitude control of missile [14], speed regulation of motor drives [15, 16], tracking control of helicopter [18],

DC-bus voltage control of microgrid [19], and control of haptic feedback system [17] . A remarkable superiority of DOBC

against most of the existing robust control lies in that it isnot a worst case based design approach. In the context of DOBC,

a disturbance observer acting as a patch on the baseline controller is employed to estimate the uncertainties. In the absence

of uncertainties, the disturbance observer will not be activated and a baseline feedback controller maintains the nominal

control performances. In the presence of uncertainties, the disturbance observer is activated for uncertainty estimation and

compensation, which achieves the robustness against uncertainties without involving excessive control energy. In general,

the DOBC framework facilitates a good trade off between the nominal performance and robustness.

Stability of nonlinear DOBC for nonlinear systems subject to various disturbances (e.g. unknown constant [10], gener-

ated by an exogenous system [12] and with bounded variation rate) has been well established. However, it is not applicable

when DOBC is used as a robust control method to deal with uncertainties. In this case, different from disturbance, the influ-

ence of the uncertainties is actually a function of system states. As such, in spite of promising properties as demonstrated

in a number of applications and growing interests in DOBC, the rigorous qualitative robustness analysis on theoreticalside

lags far behind. It is not reasonable to ignore the coupling between the system dynamics and the observer dynamics when

investigating its stability. Recently, in the field of active disturbance rejection control known as another kind of disturbance

estimator based control, the robustness stability of the closed-loop systems under uncertainties are established butin the

context of linear nominal systems [5] and lower-triangularnonlinear systems [20].

The major contribution of this paper is to develop a general framework for establishing rigorous robust stability for
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uncertain nonlinear systems under the nonlinear DOBC approach. The nominal dynamics of the uncertain nonlinear systems

under consideration are nonlinear, which is different from[5, 20]. The Lyapunov stability theory is employed for stability

derivation and the results show that the exponentially stability of the uncertain nonlinear system under nonlinear DOBC is

guaranteed under certain condition. Simulation studies ona missile roll stabilization and a mass spring system are conducted

to show the effectiveness of the nonlinear DOBC approach. The relationship between the disturbance observer gains and

quantity of uncertainties are further explored via simulation studies.

2 Problem Formulation

In the presence of uncertainty and disturbance, a class of uncertain nonlinear systems may be represented as

ẋ= f (x)+△ f (x)+ [g(x)+△g(x)]u+g1(x)w (1)

wherex∈Rn, f (x),g(x) are smooth nonlinear functions,w∈Rm is the external disturbance,△ f (x) and△g(x) are the system

uncertainties, andu∈ Rm is the control input.

It is assumed that the influence of the uncertainty and disturbance can be equivalent to the input channel of the nonlinear

system

ẋ= f (x)+g(x)[△(x,u,w)+u] (2)

whereg(x)△ (x,u,w) =△ f (x)+△g(x)u+g1(x)w. That is, the disturbance and uncertainties satisfy the so called matching

condition.

In the context of DOBC approach, the influence of the uncertainty and the disturbance are lumped together and a

nonlinear disturbance observer is designed to estimate them. Lettingd =△(x,u,w), the system (2) becomes

ẋ= f (x)+g(x)(d+u) (3)

In the presence of the matched disturbance, the controlu in the DOBC is proposed in the following form

u= α(x)− d̂ (4)

whereα(x) is designed by any nonlinear control method based on the nominal plant, i.e. f (x). Normally, it is designed

to achieve stability and tracking/regulation specifications. The estimatêd of the uncertainties is utilized to compensate the

influence of lumped uncertaintiesd. In this paper, the nonlinear disturbance observer proposed in [10, 12] is adopted to

estimate the influence of uncertainties







d̂ = ξ+ p(x),

ξ̇ =−γl(x)g(x)ξ− γl(x)[ f (x)+g(x)u+g(x)p(x)],
(5)
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wherep(x) andl(x) satisfy the relationship

∂p(x)
∂x

= γl(x) (6)

andγ is a positive scalar to be designed. The block diagram of the nonlinear DOBC (4) for uncertain nonlinear system (1) is

shown by Fig. 1.
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Fig. 1. Block diagram of nonlinear DOBC.

As discussed above, in most cases, DOBC is regarded as a robust control method due to its promising robustness. As an

alternative methodology to robust control, DOBC can alleviate some shortcomings (most notably, worst case based design)

in robust control. This can be explained by using the basic diagram of DOBC as in Fig. 1 under the assumption of no

external disturbance. The inner disturbance observer loopacts as an adaption mechanism in the presence of uncertainty.

Rather than directly estimating the uncertain parameters as in many adaptive control algorithms [21], as shown in Eq. (2),

it estimates the total difference between the nominal modeland the physical system, which may include both structured or

unstructured uncertainty. So it is a “crude” adaptive control mechanism. Although it might not achieve the same control

performance as other adaptive control algorithms when the uncertainty is structured (e.g. represented by linear functions of

unknown parameters), it is morerobustthan most of adaptive control algorithms. On the other side,as the inner loop is not

activated when there is no difference between the nominal model and the physical system, the nominal tracking and regulation

performance is maintained. In the presence of uncertainty,the inner disturbance observer loop is activated to estimate and

attenuate the influence of the uncertainty. Compared with robust control methods based on the worst case design, the

robustness of DOBC may be not as good as them as these methods are designed to achieve best possible performance in the

presence of the worst uncertainty. So in the sense, DOBC can be regarded as a “refined” robust control method. However, it

provides a promise approach for trading off between the nominal performance and robustness. In summary, DOBC provides

an alternative approach to widely used robust control and adaptive control methods for dealing with uncertain (linear or

nonlinear) systems.

Stability and performance of the DOBC under various external disturbances have been investigated in [10, 12]. However,

so far there is no rigorous stability and performance analysis when the DOBC is applied to deal with uncertainties. This paper

focuses on the stability analysis of DOBC under uncertainties. To this end, in the following of this paper, only the influence

of the uncertainties is considered, i.e.d =△(x). The key challenge in investigating the stability of DOBC is, different from
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the external disturbance which is independent of the system, the influence of the uncertainty depends on the state of the

nonlinear system.

3 Main Results

Define the estimation error

ed = d− d̂ (7)

Substituting the nonlinear controller (4) and the nonlinear disturbance observer (5) into the uncertain system (3) gives the

closed-loop system







ẋ= f (x)+g(x)α(x)+g(x)ed,

ėd =−γl(x)g(x)ed + ḋ
(8)

Let

ẋ= fc(x) = f (x)+g(x)α(x) (9)

be the nominal closed-loop dynamics. Based on the definitionof d, the dynamics ofd can be represented by

ḋ = ∂△
∂x ẋ

= ∂△
∂x ( fc(x)+g(x)ed) = L fc △ (x)+Lg△ (x)ed,

(10)

Inserting Eq. (10) into Eq. (8) obtains







ẋ= fc(x)+g(x)ed,

ėd = [−γl(x)g(x)+Lg△ (x)]ed +L fc △ (x),
(11)

We will provide the stability proof for the proposed approach. To this end, Lemma 1 will be firstly introduced.

Lemma 1 [22] (see p. 368) Consider the nonlinear system ˙x= ψ(x,α), whereψ(x,α) is continuously differentiable and

the Jocobian matrices satisfying|| ∂ψ(x,α)
∂x || ≤ L1 and|| ∂ψ(x,α)

∂α || ≤ L2||x|| for all (x,α) ∈ D×Γ,D △
= {x∈ Rn | ‖x‖< r }. Let

k,λ, r0 be positive constant withr0 < r/k and defineD0 = {x ∈ Rn| ||x|| < r0}. Assume that the trajectory of the system

satisfies||x(t)|| ≤ k||x(0)||e−λt , ∀x(0) ∈ D0,α ∈ Γ, t ≥ 0. Then there is a functionV : D0×Γ → R such that the following

conditions hold

b1||x||2 ≤V(x,α)≤ b2||x||2,

∂V
∂x ψ(x,α)≤−b3||x||2,

|| ∂V
∂x || ≤ b4||x||, || ∂V

∂α || ≤ b5||x||2.
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wherebi (i = 1, · · · ,5) is positive constant. Moreover, if all the assumptions hold globally (in x), thenV(x,α) is defined and

satisfies the above conditions onRn×Γ.

In this paper, the following assumptions are imposed to the nonlinear system (1) and the nominal controller in (4):

(A1) △(0) = 0.

(A2) f ,g,α,△, ∂△
∂x are all continuously differentiable.

(A3) fc(0) = 0, ẋ= fc(x) is exponentially stable.

Assumption A1 is for the purpose of convenience and not necessary. As a matter of fact, if△(0) 6= 0, the uncertainties

△(x) can be separated into two parts as△(x) = △̄(x)+△(0) with △̄(x) =△(x)−△(0) and△̄(0) = 0. In this case, only

the term△̄(x) has to be considered and the term△(0) can be simply merged into the external disturbance term. Assumption

A2 is a necessary condition for robustness analysis of DOBC when tackling uncertainties, which has also been employed in

related disturbance estimation based control for uncertainties compensation, for example see [5, 20]. Assumption A3 is a

basic condition that shall be fulfilled by all successful nonlinear control design.

Theorem 1. Suppose that Assumptions A1-A3 are satisfied. The closed-loop system (11) under the proposed controller (4)

and (5) is exponentially stable if the observer gain l(x) is selected such thatėd =−γl(x)g(x)ed is exponentially stable for all

x∈ Br
△
= {x| ||x||< r}, whereγ > 0 is parameter that can be chosen sufficiently large.

Proof: Define a Lyapunov function candidate

V0(ed) = e2
d/2,

for the observer error dynamics in (11). Taking the derivative ofV0(ed) along the dynamics (11) gives

V̇0(ed) = [−γl(x)g(x)+Lg△ (x)]e2
d +L fc △ (x)ed,

≤ −εe2
d + |ed| · |L fc △ (x)|,

(12)

whereε > 0 andγ are chosen such that

γ ≥
(

max
x∈Br

|Lg△ (x)|+ ε
)

/min
x∈Br

l(x)g(x). (13)

It further follows from (12) that

V̇0(ed) ≤ −ε(1−θ)e2
d, ∀ |ed| ≥

|L fc△(x)|
εθ , (14)

where 0< θ < 1, which shows that the disturbance estimation error dynamics are input-to-state stable by takingL fc △ (x)

as an input anded as a state. As such, the response of the disturbance estimation error at an initial stateed(0) = e0
d satisfies

ed(t) ∈ Bρ and

ρ = max{λ1|e
0
d|,λ2max

x∈Br
|L fc △ (x)|},
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whereλ1 andλ2 are positive constants.

For the reduced-order nominal system ˙x= fc(x), it follows from Assumption A3 that there exists a Lyapunov function

V(x) such that [22]

c1||x||2 ≤V(x)≤ c2||x||2,

∂V
∂x fc(x)≤−c3||x||2,

|| ∂V
∂x || ≤ c4||x||.

(15)

for all x∈ Br0, r0 ≤ r.

The exponential stability of the nonlinear disturbance observer regardless ofx (that is,ėd = −γl(x)g(x)ed is exponen-

tially stable) implies that there exists ak> 0 andλ > 0 such that the trajectory of the observer error dynamic system satisfies

||ed(t)|| ≤ k||ed(0)||e−λt , ∀ed(0) ∈D0,x∈ Γ, t ≥ 0 whereD0 = {ed ∈ Rn| ||ed||< ρ0} with ρ0 < ρ/k. It follows from Lemma

1 that there exists a functionW(ed,x) : D0×Γ → Rsuch that

a1||ed||
2 ≤W(ed,x)≤ a2||ed||

2,

∂W
∂ed

(−l(x)g(x)ed)≤−a3||ed||
2,

|| ∂W
∂ed

|| ≤ a4||ed||, ||
∂W
∂x || ≤ a5||ed||

2.

(16)

for all ed ∈ D0.

Define a Lyapunov function candidateΦ(x,ed) for closed-loop system (11) as

Φ(x,ed) =V(x)+W(ed,x).

Taking the derivative ofΦ(x,ed) along the trajectory of the closed-loop system (11), one canobtain

Φ̇ = ∂V
∂x ẋ+ ∂W

∂x ẋ+ ∂W
∂ed

ėd

= ∂V
∂x ( fc(x)+g(x)ed)+

∂W
∂x ( fc(x)+g(x)ed)

+ ∂W
∂ed

([−γl(x)g(x)+Lg△ (x)]ed +L fc △ (x))

≤ −c3||x||2+( ∂V
∂x +

∂W
∂x )g(x)ed +

∂W
∂x fc(x)− γa3||ed||

2

+ ∂W
∂ed

Lg△ (x)ed +
∂W
∂ed

L fc △ (x).

(17)

In addition, based on Eqs. (15) and (16), we can obtain the following inequalities.

( ∂V
∂x + ∂W

∂x )g(x)ed ≤ (|| ∂V
∂x ||+ || ∂W

∂x ||)||g(x)|| · ||ed||

≤ (c4||x||+a5||ed||
2)||g(x)|| · ||ed||

≤ c4||x||G||ed||+a5||ed||
3G

(18)
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whereG
△
= max

x∈Br
‖g(x)‖. The third term of the right hand side of (17) is estimated as

∂W
∂x fc(x) ≤ || ∂W

∂x || · || fc(x)||

≤ a5||ed||
2 ·L3||x||

= d1||ed||
2||x||

(19)

whereL3 = max
x∈Br

|| ∂ fc(x)
∂x || andd1 = a5L3. Based on Eq. (16), it is obtained that

∂W
∂ed

Lg△ (x)ed ≤ || ∂W
∂ed

|| · ||Lg△ (x)|| · ||ed||

≤ a4||ed|| ·L1 · ||ed||

≤ a6||ed||
2

(20)

whereL1 = max
x∈Br

||Lg△ (x)|| anda6 = a4L1. Based on similarly reason, we can also obtain

∂W
∂ed

L fc △ (x) ≤ || ∂W
∂ed

|| · || ∂△(x)
∂x || · || fc(x)||

≤ a4||ed|| ·L2 ·L3||x||

≤ a7||ed|| · ||x||

(21)

whereL2 = max
x∈Br

|| ∂△(x)
∂x || anda7 = a4L1L3.

Inserting Eqs. (18)-(21) into (17) obtains

Φ̇(x,ed) ≤ −c3||x||2+ c4G||x|| · ||ed||+a5G||ed||
3

+d1||ed||
2 · ||x||− γa3||ed||

2+a6||ed||
2+a7||ed|| · ||x||

(22)

For alled ∈ Bρ0, d1||ed||
2||x|| ≤ d̃1||ed||||x||, a5G||ed||

3 ≤ ã5G||ed||
2, whered̃1 = d1ρ0 andã5 = a5ρ0. Then Eq. (22) satisfies

Φ̇(x,ed) ≤ −c3||x||2+(c4G+a7+ d̃1)||x|| · ||ed||

+(−γa3+ ã5G+a6)||ed||
2

≤ −c3||x||2+
c3
2 ||x||

2+ c8||ed||
2+(−γa3+ ã5G+a6)||ed||

2

= − c3
2 ||x||

2− (γa3− ã5G−a6− c8)||ed||
2

(23)

wherec8 = (c4G+a7+ d̃1)
2/(2c3). This implies that the exponential stability of the closed-loop system under the proposed

controller is guaranteed by choosing a sufficiently largeγ such that

γ > (ã5G+a6+ c8)/a3.

A general design procedure of nonlinear DOBC for robust control of nonlinear system is summarized as follows:

Step 1) Design a baseline nonlinear controllerub = α(x) for the nominal system (1) in the absence of disturbances anduncer-

tainties to obtain satisfied stability and other performance specifications.
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Step 2) Design a nonlinear disturbance observer to estimatethe disturbances and uncertainties online. Select the observer gain

l(x) such that the observer error dynamics is exponentially stable. Tune the observer scalarγ to achieve satisfactory

estimation accuracy.

Step 3) Integrate the baseline nonlinear control with the disturbance compensation raised by nonlinear disturbance observer to

formulate the composite control law.

4 Simulation Studies

4.1 Roll Stabilization for Precision Guided Munitions Class Missiles

The roll stabilization for PGM (precision guided munitions) class missiles is investigated to illustrate the proposed

method in this paper. The dynamics of a PGM clsass missile in roll plane, ignoring the flexible mode, is described as follows

[23]

φ̈ =Cα sin4φ−wRRφ̇+Kδδa+ δ fCα sin4φ (24)

whereφ andφ̇ is roll angle and roll rate of PGM missiles,δa is fin deflection;Cα, wRR, andKδ is the nominal disturbance

coefficient, roll rate bandwith and fin effectiveness;δ f is parameter perturbation coefficient of nominal disturbance. The

nominal parameters are chosen asCα = 70, wRR= 5 andKδ = 1450. Lettingx1 = φ, x2 = φ̇ andu= δa, the dynamic model

(24) can be written in state-space form as

ẋ1 = x2

ẋ2 = Cα sin4x1−wRRx2+Kδu+ δ fCα sin4x1

(25)

The nonlinear disturbance observer for system (25) is designed as:

d̂ = ξ+ γx2

ξ̇ = −γξ− γ(Cα sin4x1−wRRx2+Kδu+ γx2)
(26)

The baseline nonlinear controller for system (25) is designed as

α(x) =−
1
Kδ

(Cα sin4x1−wRRx2+KPx1+KDx2) (27)

ParametersKP, KD are the controller gains and designed asKP = 225, andKD = 15. The nonlinear DOBC for system (25) is

finally designed as

u= α(x)−
1
Kδ

d̂ (28)

The following simulation scenarios as listed in Table 1 are implemented to illustrate the main results of this paper.
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Table 1. Simulation Scenarios Setting of Roll Stabilization

Case I γ = 10 δ f 1 = 0.5, δ f 2 = 1, δ f 3 = 1.8

Case II δ f = 0.9 γ1 = 1, γ2 = 10, γ3 = 100

4.1.1 Robustness of DOBC with Determined Observer Parameters

Firstly, we will investigate the robustness of the DOBC withfixed controller and observer parameters. This simulation

scenario setting is based on the consideration that the DOBCwith fixed control parameters in general have limited robustness

performances, that is, the closed-loop system with fix control parameters possibly becomes unstable in the presence of some

extremely severe uncertainties. The robustness of the DOBCwith observer scalarγ = 10 is investigated under different

parameter perturbation coefficients:δ f 1 = 0.5, δ f 2 = 1, δ f 3 = 1.8 in this subsection. The response curves of roll angle, roll

rate, and fin deflection under DOBC withγ = 10 in the presence of uncertainties ofCase Iare shown by Figs. 2.

As shown by Fig. 2, the DOBC with given control parameters could effectively compensate the plant uncertainties of

δ f1 = 0.5 andδ f2 = 1. However, the closed-loop system becomes unstable once the uncertainty is up toδ f3 = 1.8. As a result,

it is concluded from the above analysis that the DOBC with determined parameters have limited robustness performances.

In the next subsection, we will investigate how to tune the parameters of DOBC so that the closed-loop system could cover

a larger stability region.

4.1.2 Robustness of DOBC with Different Observer Scalars

In this subsection, the simulation studies are conducted for the roll stabilization for PGM class missiles with fixed

uncertainties ofCase II: δ f = 0.9 under DOBC with different observer scalars. The purpose ofthose simulation studies is to

show how the observer scalarγ can be tuned to achieve better robustness and performances in the presence of uncertainties.

The variable responses of the roll stabilization system under DOBC in the presence of uncertainties described by Case IIare

shown by Figs. 3.

In the presence of uncertaintyδ f = 0.9, it can be observed from Fig. 3 that the closed-loop system is unstable with an

observer scalarγ = 1. By increasing the observer scalar toγ = 10, it is shown by Fig. 3 that the output of closed-loop system

converges to its desired reference asymptotically. As shown by Fig. 3, the variable response curves of the roll stabilization

system under DOBC with an observer scalarγ = 100 is much closer to the nominal control system, indicatinga much better

transient control performance, which is referred to as transient performance recovery in [2]. In conclusion, the simulation

results in this subsection reveal that a larger observer scalar generally indicates a larger stability region, which confirms the

theoretic results presented in Section 3.
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Fig. 2. Response curves of the roll stabilization system (25) under DOBC (28) with γ = 10 in the presence of various cases of uncertainties

δ f (Case I): (a) roll angle, (b) roll rate, (c) fin deflection.
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Fig. 3. Response curves of the roll stabilization system (25) under DOBC (28) with various observer scalar γ in the presence of uncertainties

δ f = 0.9 (Case II): (a) roll angle, (b) roll rate, (c) fin deflection.
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4.2 Displacement Tracking for Nonlinear Spring MechanicalSystem

A mechanical system with a spring of nonlinear dynamics as shown in Fig. 4 is introduced to illustrate the proposed

method in this paper. The dynamical equation of the system isdescribed as follows [24, 25]

mẍ+ cẋ+ f1x+ f3x3 = ktu (29)

wherex, u, m, c andkt are the displacement, controller force, mass, damping and the torque constant, respectively.f1 and

f3 are the parameters to describe the characteristics of the nonlinear spring. The dynamic model (29) can be written in

uF

x

Fig. 4. Mass spring system

state-space form as

ẋ1 = x2

ẋ2 = − c
mx2−

f1
mx1−

f3
mx3

1+
kt
mu

(30)

wherex1, x2 andu are the displacement, velocity and controller force, respectively. There always exists some uncertainties

in the parameters of the nonlinear spring. Letδ f1 =
f1− f10

f1
andδ f3 =

f3− f30
f3

represent the uncertain parts off1 and f3, where

f10 and f30 denote the nominal values off1 and f3, respectively. The nominal parameters are referred to [24,25] and listed

in Table 2.

Table 2. Nominal Parameters of the Mass Spring System

Parameter m c f10 f30 kt

Unit kg Ns/m N/m N/m3 1

Value 1 5 100 500 000 1
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The nonlinear disturbance observer for system (30) is designed as:

d̂ = ξ+ γm
kt

x1

ξ̇ = −γξ− γ(u+ γm
kt

x1)+
γ
kt
(cx2+ f10x1+ f20x3

1)
(31)

The baseline nonlinear controller for system (30) is designed as

α(x) =
1
kt
(cx2+ f1x10+ f30x

3
1)+

m
kt



−KP(x1− x1d)−KDx2−KI

t∫

0

(x1− x1d)dt



 (32)

wherex1d is the reference signal of the displacementx1. ParametersKP, KI andKD are the controller gains to be determined,

which are designed asKP = 48,KI = 64 andKD = 12, respectively. The desired reference of displacement isset asx1d = 0.02.

The nonlinear DOBC for system (30) is finally designed as

u= α(x)−
m
kt

d̂ (33)

4.2.1 Robustness of DOBC Against Uncertainties

Table 3. Simulation Scenarios Setting of Robustness Test

Scenarios Observer Scalar Uncertainties

Case I γ = 6 δ f3 = 0, δ f1 =−40%, −84%, 84%

Case II γ = 6 δ f1 = 0, δ f3 =−8%, −13.5%, 13.5%

First, we will investigate the robustness of the DOBC against various uncertainties with fixed controller and observer

parameters. This simulation scenario setting is based on the consideration that the DOBC with fixed control parameters in

general have limited robustness performances, that is, theclosed-loop system with fixed control parameters possibly becomes

unstable in the presence of some extremely severe uncertainties. The robustness of the DOBC with observer scalarγ = 6 is

investigated under two cases of uncertainties (Case I: δ f1 =−40%, −84%, 84% andCase II: δ f3 =−8%, −13.5%, 13.5%,

as shown by Table 2) in this subsection. The response curves of displacement, velocity and control force under DOBC with

γ = 6 in the presence of uncertainties ofCase IandCase IIare shown by Figs. 5 and 6, respectively.

As shown by Fig. 2, the DOBC with given control parameters could effectively compensate the plant uncertainties of

δ f1 =−40% andδ f1 = 84%. However, the closed-loop system becomes unstable oncethe uncertainty is up toδ f1 =−84%.

It is observed from Fig. 3 that the DOBC approach with above parameters has achieved appropriate robustness against the

plant uncertainties ofδ f3 =−8% andδ f3 = 13.5%. When the uncertainty is up toδ f3 =−13.5%, it can be seen from Fig. 3

that the response curves of the mass spring system under DOBCbecomes oscillating. As a result, it is concluded from the

above analysis that the DOBC with determined parameters have limited robustness performances. In the next subsection,we

will investigate how to tune the parameters of DOBC so that the closed-loop system could cover a larger stability region.
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Fig. 5. Response curves of the mass spring system (29) under DOBC (33) with γ = 6 in the presence of various cases of uncertainties δ f1

(Case I): (a) displacement, (b) velocity, (c) control force.

DS-14-1436, Chen 15



(a)

0 1 2 3 4 5 6
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time(s)

D
is

pl
ac

em
en

t

 

 
Nominal system

System with δ f
3
=−8%

System with δ f
3
=−13.5%

System with δ f
3
=13.5%

(b)

0 1 2 3 4 5 6
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(s)

V
el

oc
ity

 

 
Nominal system

System with δ f
3
=−8%

System with δ f
3
=−13.5%

System with δ f
3
=13.5%

(c)

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

30

35

40

45

Time(s)

C
on

tr
ol

 in
pu

t

 

 

Nominal system

System with δ f
3
=−8%

System with δ f
3
=−13.5%

System with δ f
3
=13.5%
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4.2.2 Design Parameter Influence on Robustness of DOBC

Table 3. Simulation Scenarios Setting of Different DOBC parameters

Scenarios Uncertainties Observer Scalar

Case III δ f1 =−50%, δ f3 = 0 γ1 = 1.8, γ2 = 5, γ3 = 20

Case IV δ f1 = 0, δ f3 =−30% γ1 = 16.5, γ2 = 22, γ3 = 50

In this subsection, the simulation studies are conducted for the mass spring system with two cases of fixed uncertainties

(Case III: δ f1 = −50% andCase IV: δ f3 = −30%, as shown by Table 3) under DOBC with different observer scalars.

The purpose of those simulation studies is to show how the observer scalarγ can be tuned to achieve better robustness and

performances in the presence of uncertainties. The variable responses of the mass spring system under DOBC in the presence

of uncertainties described by Case III and Case IV are shown by Figs. 7 and 8, respectively.

In the presence of uncertaintyδ f1 = −50%, it can be observed from Fig. 7 that the closed-loop system is unstable with

an observer scalarγ = 1.8. By increasing the observer scalar toγ = 5, it is shown by Fig. 7 that the output of closed-loop

system converges to its desired reference asymptotically.As shown by Fig. 8, further increasing the observer scalar toγ = 20

brings a much better transient tracking performance including smaller tracking errors and shorter settling time. Similarly,

for the case of uncertaintyδ f3 = −30%, it is observed from Fig. 8 that the closed-loop system isunstable with a small

observer scalar ofγ = 16.5. As the scalar increased toγ = 22, it is shown by Fig. 8 that the uncertainty can be effectively

compensated from the closed-loop system. As shown by Fig. 8,the variable response curves of the mass spring system

under DOBC with an observer scalarγ = 50 is much closer to the nominal control system, indicating amuch better transient

control performance, which is referred to as transient performance recovery in [2]. In conclusion, the simulation results in

this subsection reveal that a larger observer scalar generally indicates a larger stability region, which confirms the theoretic

results presented in Section 3.

5 Conclusions

Robust control of uncertain nonlinear systems has been investigated in this paper via a nonlinear DOBC approach.

Rigorous robust stability analysis of uncertainties in nonlinear systems under nonlinear DOBC is established for matched

disturbances and uncertainties. Design guidance of nonlinear DOBC has been suggested with the help of the stability

analysis results. It has been shown that for certain given plant uncertainties, the nonlinear DOBC approach could achieve

asymptotical stability with certain large observer gainγ. Simulation examples of roll stabilization for PGM classical missiles

and a nonlinear mass spring mechanical system have been investigated to show the effectiveness of the nonlinear DOBC

approach and the interaction between the uncertain level and the observer gain in the nonlinear disturbance observer. The

simulation results have confirmed the theoretic results presented in the paper.
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Fig. 7. Response curves of the mass spring system (29) under DOBC (33) with various observer scalar γ in the presence of uncertainties

δ f1 =−50%(Case III): (a) displacement, (b) velocity, (c) control force.
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Fig. 8. Response curves of the mass spring system (29) under DOBC (33) with various observer scalar γ in the presence of uncertainties

δ f3 =−30%(Case IV): (a) displacement, (b) velocity, (c) control force.
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