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Abstract 

Cupric oxide thin films were deposited onto soda-lime glass by the spin coating and subsequent 

annealing of copper nitrate dissolved in a glycerol-water solvent.  It was found that the solution 

consistently gave reproducible films with good adhesion on glass. A range of band gaps were 

estimated between 0.8 and 1.17 eV, showing that this material has potential as a photoabsorber.  

Resistivity was successfully reduced from 1.47 x 10
5
 Ω.cm to 7.02 Ω.cm by doping the films with 

sodium.  Dopant concentrations of 1 at. wt. % gave the lowest resistivity, showing that the ideal doping 

is 1% or less.  Film structure was found to improve with an increase in annealing time from 10 minutes 

to 1 hour, although this did not have any noticeable effect on either the electrical or optical properties 

of the films. 
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Introduction 

Over the last decade or so there has been an increasing interest in the use of photovoltaics (PV) for 

electricity generation.  At present, the vast majority of photovoltaic cells produced commercially are 

made from silicon
1
.  Although currently a more expensive power generation technology than more 

traditional fossil fuel techniques, the cost of electricity produced using PV is reducing rapidly
1
.  

Ultimately, for PV to be a competitive technology it needs to be cheaper in terms of cost per kilowatt-

hour (kWh) of electricity generated than fossil fuel sources.  Although the cost of silicon production is 

decreasing, material costs will be important in determining the final price, and hence competitiveness, 

of PV as an energy generation technology.  Whilst silicon is not a rare material, extracting it from silica 

(SiO2) is an energy intensive process
2
, which means that even when made in large quantities it is 

likely to be relatively expensive.  It is therefore important to investigate cheaper alternatives as 

candidates for PV cells.     



Cupric oxide (CuO) is one of two principal oxides of copper.  It is a naturally p-type semiconductor with 

a near-ideal band gap for solar photovoltaic applications
3
.  Despite this there have been relatively few 

studies on its use as a photovoltaic material, with most groups focussing instead on cuprous oxide 

(Cu2O).  Copper oxides are also a key component of the more successful p-type transparent 

conductive oxides
4–6

 (TCOs) due to the ability of copper ions to delocalise holes from oxide sites
6, 7

.  

Therefore in order to gain a better understanding of the conduction mechanisms and to look for ways 

of increasing the conductivity of p-type TCOs, characterisation of the copper oxides is important.  

Films for use in these areas can be deposited by a range of different processes.  Most groups working 

on copper oxides have used reactive sputtering from a copper metal target (eg,
8
).  However, this does 

not readily allow for film doping, and is a relatively expensive process.   

This work describes a process for the deposition of cupric oxide by spin coating from a chemical 

solution and provides an optical, electrical and structural analysis of films deposited by this method.  A 

comparison is made with films deposited by sputter deposition.  These data show that this material 

has potential as a cheap, readily processable alternative to other thin-film photoabsorbers.  The 

method described also allows for the incorporation of variable concentrations of a range of dopants.   

Experimental 

Films were deposited by spin coating solutions of copper nitrate dissolved in a glycerol/water solvent.  

Precursor solutions were formed by dissolving 0.5 g copper nitrate hexahydrate (99.99%, Sigma 

Aldrich) in a solution of 1 ml glycerol and 1 ml de-ionised water.  For sodium-doped films, sodium 

acetate (99.99%, Sigma Aldrich) was added to the precursor solution. Dopant concentrations were 

calculated as a percentage of atomic weight, and films were doped with 1, 2, 3, 5, and 20% sodium.  

Films were formed by spin-coating these solutions on 50 mm by 50 mm precleaned soda-lime glass 

slides for 90 seconds at 1000 - 2000 rpm.  Samples were then dried at 220°C in air and subsequently 

annealed at 450°C in air under a fume hood to oxidise the nitrate films.  Anneal times were initially 

kept to 10 minutes.  A second set of films containing 1, 3, 5 and 20% sodium were annealed for 60 

minutes.  Film characterisation included transmission, Hall mobility, sheet resistance, film thickness 

measurements and SEM.  Material band gaps were calculated from the transmission.  Transmission 

measurements were taken using a Varian Cary 5000 spectrophotometer and covered the spectrum 

from 2000 to 200 nm.  Measurements were taken every 10 nm.  Hall measurements were taken using 

an Ecopia HMS 3000 Hall Mobility system.  Thickness measurements were carried out using an 

Ambios XP2 stylus profilometer.      

Sputtered films were deposited from a single stoichiometric ceramic target using an AJA International 

Orion 8HV sputter coater equipped with an AJA International 600 Series radio frequency power 

supply.  Deposition pressure was kept at 1 millitorr, with an argon flow rate of 7 standard cubic 

centimetres per minute (SCCM) and a 1% oxygen in argon flow rate of 1 SCCM.  Power was kept at 

120 watts.  Films were deposited at room temperature and deposition time was 2 hours.   

Discussion 

It was found that the spin coating method described consistently produced good films of a range of 

thicknesses up to around 500 nm.  Film thickness was determined by the spin rate, with thicker films 

forming at slower speeds.  Thicker films were found to be significantly less homogenous.  This is most 

likely due to non-linear evaporation of the solvent during the drying step.  Because of this variation, 

doping experiments were run using a spin rate of 2000 rpm, which gave films of a thickness of around 

120 – 150 nm as measured by stylus profilometer.   



Films show high transmission in the infra-red, with a cut-off starting around 800-900 nm.  Figure1 

shows transmission curves for undoped and doped spin coated films as well as an undoped sputtered 

film for comparison.   

 

Figure 1:  Transmission curves for undoped and 5 and 20% doped spin coated films and an undoped sputtered film for 

comparison   

None of the films measured showed significant interference fringes.  Band gaps were estimated using 

the absorption coefficient, which was calculated using Equation 1:   

1) (E)] ln[T 
d

1
 -=(E) normalised  

Where α is the absorption coefficient, d  is the thickness, E is the photon energy and Tnormalised is the 

normalised transmission for light of that photon energy.  They were found to be indirect, and varied 

from around 0.8 eV to 1.17 eV (Fig. 2), which is slightly lower than previously reported experimental 

data
3
, but is in good agreement with the calculated theoretical band gap

9
.   

 

Figure 2:  Estimated band gap against doping concentration 

Film resistivities were found to vary from highly insulating for undoped films to 7 Ω.cm for 1% sodium 

doping and 10 minutes anneal time.  Figure 3 shows resistivity against dopant concentration for both 

10 minute and 1 hour anneal times. 



 

Figure 3:  Log-normal graph of resistivity against dopant concentration for both 10 minute and 1 hour anneal times 

The reduction in resistivity for even a small dopant concentration is noticeable, with the exception of a 

doping level of 5% and 10 minute anneal time.  The general trend is for resistivity to increase with 

doping concentrations above 1%.  The exception to this is for films doped with 20% sodium.  This 

suggests that the ideal sodium dopant level is around 1% or less, and that higher levels cause 

increasing amounts of crystal distortion.  For a doping level of 20%, it would normally be expected that 

the crystal structure would be so distorted that the film would be highly insulating, however when 

compared with films with a much lower dopant concentration using SEM (Fig. 4) there is no apparent 

change in crystallinity.  The resistivity was similar to that of less highly doped films.  It is possible that 

for dopant concentrations this high the cupric oxide structure rejects the majority of the dopant, with 

only a small proportion being incorporated into the individual grains.  The rest is then either burnt off 

along with the acetate group, or is pushed into the grain boundaries.  This type of behaviour has been 

observed in other materials (eg,
10, 11

).  For concentrations of 1 and 3%, increasing annealing time to 

one hour didn’t appear to alter the resistivity significantly, implying that for lower concentrations the 

dopant is more readily accepted into the crystal structure.   

 

Figure 4:  SEM photomicrographs showing spin coated films with 3% doping (a) and 20% doping (b) 

Increasing the anneal time had a significant impact on film density and structure.  SEM images show 

that films annealed for 10 minutes contain more gaps and holes than those annealed for 1 hour (Fig. 

5).  Crystal sizes for both sets of films are very similar, and are typically arranged in large rounded 

clusters.  This is significantly more pronounced for films annealed for 1 hour, with the clusters typically 

becoming more regular in both size and shape (Fig. 5).  The only major change in crystallinity is 

between the undoped films and the doped films.  Undoped films annealed for 10 minutes are 



reasonably compact, and are comparable to the doped films after annealing for 1 hour although the 

individual crystals are smaller (Fig. 6).  Dopant concentration does not obviously impact on film 

growth, with more highly doped films not showing any greater degree of disruption than those with 

lower dopant concentrations.  However it is possible that the changes are too difficult to see at this 

level, and would require the use of a TEM to observe. 

 

Figure 5:  SEM photomicrographs of spin coated films with 3% doping, annealed for 1 hour (a) and 10 minutes (b) 

 

Figure 6:  SEM photomicrographs of spin coated films with 3% doping, annealed for 1 hour (a) and undoped, annealed 

for 10 minutes (b) 

It was found that the optical properties of the spin coated films were largely the same as those of the 

sputtered films.  Sputtered film band gaps were estimated to be between 0.8 and 0.9 eV, which is 

within the range found for the spin coated films.  Film thicknesses were similar, with sputtered films 

being between 150 and 160 nm.   

Sputtered films were found to have resistivities of around 1.5 x 10
3
 Ω.cm, which is two orders of 

magnitude lower than undoped spin coated films.  The reason for this is unknown.  Because CuO is a 

p-type oxide, depositing the film in a more oxygen-rich environment should increase the conductivity 

as more copper vacancies are formed.  The spin coated films, being deposited in air, were formed in 

the presence of a much higher oxygen partial pressure than the sputter coated films.  It is possible that 

the evaporation of the solvents and removal of nitrate from the films during the heating and annealing 

steps reduced the amount of oxygen in the film sufficiently to counteract the effects of the increased 

oxygen in the deposition atmosphere.  Although undoped spin-coated films showed significantly higher 



resistivities, doped films showed resistivities that were up to three orders of magnitude lower than 

those of the sputtered films.  This suggests that with the incorporation of the right amount of sodium 

dopant, cupric oxide films deposited using non-vacuum techniques can be as good as or better than 

sputtered films in terms of electrical properties. 

Structurally, sputtered and spin coated films were found to be quite different.  Sputtered films appear 

very smooth and dense, with few if any gaps or pinholes.  The crystals are much larger, being around 

50 nm in size, as opposed to around 20 nm for the doped and 10 nm for the undoped spin coated 

films.  The crystal shapes are also slightly different, with the spin coated films showing small blocky 

crystals.  Those in the sputtered films are more plate like and slightly elongated (Fig. 7). 

 

Figure 7:  SEM photomicrographs showing a spin coated film with 1% doping and 1 hour annealing time (a) and a 

sputtered film (b) for comparison 

Conclusions 

A reliable low cost method for producing cupric oxide thin films has been demonstrated.  Films 

produced using this method have been successfully doped with sodium using a range of dopant 

concentrations.  This has been shown to reduce film resistivity from 1.47 x 10
5
 Ω.cm to 7.02 Ω.cm, 

with dopant concentrations of 1 at. wt. % giving the lowest resistivity.  Increasing post-formation 

annealing time was found to improve film quality without having any apparent effect on the optical or 

electrical properties.  Optical properties of spin coated films were found to be comparable to those of 

films sputtered in a relatively low oxygen environment.  Although undoped spin coated films showed 

inferior electrical properties to those of sputtered films, doping the films was found to improve them 

significantly.  The best doped spin-coated films showed resistivities three orders of magnitude less 

than that showed by the sputtered films.  Based on SEM images sputtered films were found to be of 

higher structural quality. 
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