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Abstract: We discuss BioThreads, a novel, configurable, extensible System-on-Chip multi-processor and its  
use  in  accelerating  biomedical  signal  processing  applications  such  as imaging  PhotoPlethysmoGraphy 
(IPPG). BioThreads is derived from the LE1 open-source  VLIW core and efficiently handles Instruction,  
Data and Thread-level parallelism; In addition, it supports a novel mechanism for the dynamic creation, and 
allocation  of  software  threads  to  uncommitted  processor  cores  by  implementing  key  POSIX  Threads 
primitives directly in hardware. In this study, the BioThreads core is used to accelerate the calculation of the  
oxygen saturation map of living tissue in an experimental setup consisting of a high speed image acquisition  
system, connected to an FPGA board and to a host system. Results demonstrate near-linear acceleration of  
the  core  algorithms  of  the  target  blood  perfusion  assessment.  with  increasing  number  of  cores.  The  
BioThreads processor was implemented on both standard-cell and FPGA technologies; In the first case, full  
real-time performance is achieved with UU cores whereas on a mid-range Virtex6 device near-real-time  
performance is achieved with KKK cores   

Introduction and Motivation

Real-time execution of biomedical signal processing codes in in-vitro and in-vivo assessment is a key 

capability which allows clinicians to make important decisions and perform medical interventions safely,  

accurately and quickly as these are based on hard facts, derived in real-time from physiological data [1, 2]. In  

the area of Biomedical Image Processing, a number of imaging methods have been proposed over the past  

few  years  including  laser  Doppler  [3],  optical  coherent  tomography  [4]  and  more  recently,  imaging  

PhotoPlethysmoGraphy (IPPG) [5, 6]; However, none of these techniques is able to attain its true potential 

without  a  real-time biomedical  image processing system based on  Very Large Scale  Integration  (VLSI) 

technology.  This  is  an  area  where  advanced computer  architecture  concepts,  routinely  utilized  in  high-

performance consumer and telecoms Systems-on-Chip (SoC), [7] can provide the required data streaming 

and execution bandwidth to allow for the real-time execution of algorithms that would otherwise be executed  

not in real time using more established techniques and platforms (sequential execution on a PC host).

Such  SoC-based  architectures  typically  include  scalar  embedded  processor  cores  with  a  fixed 

Instruction-Set-Architecture (ISA) which are widely used in standard-cell  (ASIC) [8] and reconfigurable 

(FPGA)-based embedded systems [9]. These processors present a good compromise for the execution of  
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general-purpose code such as the user interface,  low-level/bandwidth protocol  processing,  the embedded 

Operating  System (eOS)  and occasionally,  low-complexity  signal  processing  tasks.  However,  they  lack 

considerably  in  the  area  of  high-throughput  execution  and  high-bandwidth  data  movement  as  often  is  

required by the core signal processing algorithms in most application domains. An interesting comparison of 

the capabilities of three such scalar engines targeting Field-Programmable technologies (FPGAs) is given in  

[10]. 

To relieve this constraint, scalar embedded processors have been augmented with DSP coprocessors 

in both tightly-coupled [11] or loosely-coupled configurations [12] to target performance-critical inner loops  

of  DSP  algorithms.  A side-effect  of  this  approach  is  the  lack  of  homogeneity  in  the  SoC  platform 

programmer's model which itself necessitates the use of complex ‘mailbox-type’ [13] communications and 

the programmer-managed use of multiple address spaces, coherency issues and DMA-driven data flows,  

typically under the control of the scalar CPU. 

Another architectural alternative is the implementation of the core DSP functionality using custom 

(hardwired) logic. Using established methodologies (register-transfer-level design, RTL) this task involves 

long development and verification times and results in systems that are of high performance yet, they are 

only tuned to the task at hand. Also, these solutions tend to offer little or no programmability making difficult 

their modification to reflect changes to the input algorithm. In the same architectural domain, the synthesis of  

such  hardwired  engines  from  High  Level  Languages  (ESL synthesis)  is  an  area  of  active  research  in 

academia [14][15] (academic efforts targeting ESL synthesis of Ada and C-descriptions); Industrial tools in 

this area have matured [16][17][18] (commercial offerings targeting C++, C and UML+C++ respectively) to 

the point of competing favourably with hand-coded RTL implementations, at least for certain type of designs  

[19-BDTI_study]. 

A potent solution to high performance VLSI systems design is provided by configurable, extensible  

processors  [20]. These CPUs allow the extension of their architecture (programmers model and ISA), and 

microarchitecture (execution units, streaming engines, coprocessors, local memories) by the system architect. 

They typically offer high performance, full programmability and good post-fabrication adaptivity to evolving 

algorithms through the careful choice of the custom ISA and execution/storage resources prior to committing 

to silicon. High performance is achieved through the use of custom instructions which collapse Data Flow 

Graph (DFG) sub-graphs (especially those repeated many times [21]) into a single instruction node. At the 



same time, these processors deliver better power efficiency compared to non-extensible processors, via the 

reduction in the dynamic instruction count of the target application and the use of streaming local memories 

instead of data caches. 

All  the  solutions  to  developing high-performance digital  engines for  consumer and in  this case,  

biomedical  image  processing,  mentioned  so  far  suffer  from  the  need  to  explicitly  specify  the 

software/hardware interface  and  schedule communications across that boundary. This work proposes an 

alternative,  all-software  solution,  based  on  a  novel  configurable,  extensible  VLIW chip-multi-processor 

(CMP) based on an open-source VLIW core [22, 23] and targeting both FPGA as well as standard-cell  

(ASIC) silicon. The VLIW paradigm was chosen as VLIW architectures are very potent engines in exploiting 

instruction-level (ILP)and data-level (DLP) parallelism, the former via the static (compile-time) specification  

of independent RISC-ops (refered to in this text as a 'syllable' or RISCop) per VLIW instruction and the  

former,  via  the  automatic  unrolling  and  pipelining  of  inner  loops.  Key  to  this  is  the  use  of  advanced 

compilation technologies such as Trimaran [24] for fully-predicated EPIC architectures or VEX [25] for the 

partially-predicated BioThreads core used in this work. At the same time, the extensibility of the core LE1 

engine permits the shifting of the hardware/software interface, exchanign performance for silicon area and 

always supporting full programmability.

The key contributions  of  this  work are  summarized as  follows:  a)  we have developed a  highly 

configurable, extensible, Chip-multi-processor based on an open-source VLIW CPU, capable of performing 

PThread primitives directly in hardware. This is a unique feature of the LE1 (and BioThreads) processors and 

uniquely differentiates them from other key research such as hardware primitives for remote memory access  

[26] b) We advocate the use of such a complex processing engine in the biomedical signal processing domain  

such as the real-time blood perfusion and demonstrate the effectiveness of our approach when computing key 

algorithms. c) We have developed a unified, software-hardware development flow in which all algorithm 

development takes place in MATLAB, followed by automatic C-code generation and its introduction to the 

LE1 toolchain. This is a well encapsulated process which ensures that the biomedical engineer is not exposed 

to  the  detail  of  real-time  software  development  for  a  complex  SoC  platform;  at  the  same  time  this 

methodology results  in a working embedded system directly  implementing the algorithmic functionality 

specified in the MATLAB input description. In the process, use of the best computer architecture practices 

has taken place and a novel  hardware mechanism has been researched and developed which allows the 



exploration of thread-level (TLP) parallelism via supporting key PThread primitives directly in hardware. In 

that  respect,  the  BioThreads  core  can  be thought  of  as  a  combination  of  OS and processor,  delivering 

services (execution bandwidth and thread allication) to a higher order system and enabling the real-time 

execution of compute-bound biomedical signal processing codes. The very high scalability of the proposed  

platform results in near-real-time performance when computing the XYZ.

The BioThreads CMP 

The Biothreads CMP extends the LE1 open-source processor with execution primitives to support  

high speed image processing and dynamic thread allocation and mapping to uncommitted CPU cores. This  

section discusses briefly these key microarchitectural features.
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Figure 1: LE1 Core



Fig. 1 depicts the basecase 8-stage pipelined LE1 processor core which is the heart of the BioThreads CMP:

• The CPU consists  of  the  Instruction  Fetch  Engine  (IFE),  the  execution  core  (LE1_CORE),  the 

pipeline controller (PCTRL) and the Load/Store Unit (LSU). The IFE can be configured with an 

instruction cache or alternatively, a closely-coupled instruction RAM (IRAM). These are accessed 

every cycle and return a long instruction word (LIW) consisting of multiple RISCops for decode and 

dispatch. The IFE controller handles interfacing to the external memory for ICache refills, and stall 

control whenever an LIW spans two IRAM locations.  It  also provides debug capability into the  

ICache/IRAM. The IFE can also be configured with a branch predictor unit, currently based on the 

2-bit saturating counter scheme (Smith predictor). 

• The LE1_CORE includes the main execution datapaths of the CPU. There are a configurable number 

of  clusters,  each  with its  own register  set.  Each cluster  includes  an integer  core  (SCORE)  and 

optionally, floating point (FPCORE) core. The figure depicts a single-cluster configuration with a 4-

wide  SCORE and  a  4-wide  FPCORE.  The  integer  and  floating-point  datapaths  are  of  unequal 

pipeline depth however, they maintain a common exception resolution point.

• PIPE_CTRL is the primary control logic. It is collection of interlocked, pipelined state machines,  
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Figure 2: LE1 Core



which schedule the execution datapaths and monitor the overall instruction flow down the processing 

and memory pipelines. PIPE_CTRL maintains the control registers of the CPU and handshakes the 

host during debug operations.

• Finally, the LSU is the primary path of the LE1_CORE to the system memory. It allows for up to 

ISSUE_WIDTH  memory  operations  and  directly  communicates  with  the  shared  data  memory 

(STRMEM). The latter is a multi-bank, cross-bar solution and scales reasonably well (in terms of 

speed and area) for up to 32 memory clients. This is depicted in Fig. 2: 
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Figure 2: Streaming Memory System of the BioThreads CMP

Finally, 

to allow for the exploitation of shared-memory TLP, multiple processing cores can be instantiated in 

CMP configuration as shown in Fig. 3. The figure depicts a dual-LE1 BioThreads system interfacing to the 

common streaming data RAM. 
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Figure 3: dual shared-memory BioThreads CMP
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Figure 4: BioThreads engine in hybrid mode



Signal Processing Methodology

The application area selected to investigate the feasibility of deploying a VLIW-based CMP engine for  

real-time  biomedical  signal  processing  was photoplethysmography (PPG),  which  is  the  measurement  of 

blood volume changes in living tissue using optical means. PPG is widely used primarily in Pulse Oximetry 

for the point-measurement of oxygen saturation. In this application, PPG is instead implemented from an 

area measurement. The basic concept of this implementation, termed imaging PPG (IPPG), is to illuminate 

the tissue with a homogeneous light source and to detect the light leaving the tissue with a 2D sensor array.  

This  yields  a  sequence  of  images  from which  a  map  of  the  blood volume changes,  and  hence  of  the 

physiological function, can be generated for the target tissue.  The use of multiple wavelengths in the light 

source enables the reconstruction of blood volume changes at different depths of the tissue, which can yield a  

3D map of the tissue function. This is the principle of operation of the Oximap Real-Time Tomographer [27-

OXIMAP].  Such  functional  maps  have  numerous  applications  in  clinical  diagnostics,  including  the 

assessment of the severity of skin burns or wounds, of cardiovascular surgical interventions and of overall  

cardiovascular function.



Figure 4: Schematic diagram of IPPG setup including the dual wavelength LED ringlight, lens,  

CMOS camera and subject hand.

A reflection–mode IPPG setup was put together for the validation experiment in this investigation, 

the  basic  elements  of  which  are  a  ringlight  illuminator,  a  lens  and  a  high  sensitivity  camera  [28-

MIKROTRON CAMERA Mikrotron Eosens CL, Germany] as the detecting element, and the target skin 

tissue  as  defined  by  its  optical  coefficients  and  geometry.  The  introduction  of  the  fast  digital  camera  

facilitates  the  non-contact  measurement  at  a  sufficiently  high  sampling  rate  to  allow  PPG  signal  

reconstruction from a large and homogeneously illuminated field of view at more than one wavelength, as  

shown in Fig. 3.  The illumination unit is synchronised with the camera acquisition system by means of a  

micro-controller (PIC16F876A, Microchip) in order to perform multiplexed acquisition of a sequence of  

images of the  area  of interest,  exposed to  red 660nm LED ([29-RED_LED],  infra-red 880nm LED[30-

IR_LED].  Ambient light is kept to a minimum during acquisition for optimum signal quality, 



By employing  the  same principles  relating  to  photoplethysmography (PPG),  the  ultimate  scope  of  this 

experiment was to detect blood volume changes in living tissue and to generate a map of blood perfusion 

using the BioThreads engine as the signal processing platform. This blood perfusion map was generated  

from the power of the PPG signal in the frequency domain. The acquired image frames were processed as  

follows:

a. N frames were recorded with the acquisition system (DAVID state No of frames, frame size M x N 

depth of resolution).

b. The average fundamental frequency of the PPG signal was manually extracted (1.4Hz). 

c. Data were streamed to the BioThreads platform and the 64-point Fast Fourier Transform (FFT) of 

each  pixel  (or  if  clusters  of  pixels  were  used,  please  state  size  [n  x  m]  -  FOR DAVID) was 

calculated.  This  was done by taking the pixel  values  of  all  image frames for  a  particular  pixel  

position to form a pixel value vector in the time domain. 

d. The Power of the FFT tap corresponding to the PPG fundamental frequency was copied into a new 

matrix at the same coordinates of the pixel (or cluster) under processing. In the presence of blood 

volume variation at that pixel (or cluster) the power would be larger than if there was no blood  

volume variation. 

Repeating (d) for all the remaining pixels (or clusters) provides a new matrix (or image) whose elements  

(or pixels)  values  depend on the detected blood volume variation power.  This  technique allows the  

generation of a blood perfusion map,  as a high PPG power can be attributed to high blood volume 

variation and ultimately to blood perfusion. Figure 5 illustrates a simplified diagrammatic representation 

of the algorithm used and Fig. 6 shows the   
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Results and discussions

This study set out to investigate the plausibility of using advanced SoC platforms for real-time biomedical  

assessment. This section presents the results of our study and is split into two major sections: a) Performance  

(real-time) results, pertaining to the real-time calculation of the oxygen map and b) SoC platform results. The  

latter include data such as area, maximum frequency, when targeting a Xilinx Virtex6 LX240T FG1156 [31] 



FPGA and a mainsteam 0.13 um standard-cell process .

Perfromance Results

Table 1: Performance evaluation

ISSUE_WIDTH=4 FPGA Results (83.3 MHz) ASIC Reults (300 MHz)

Cores
Data Memory 

Banks
Cycles

Real 
time 
(sec)

Speedup
Real time 

(sec)
Speedup

1 1 7577892295 91.30 1.00 25.26 3.61

2 1 4213364285 50.76 1.80 14.04 6.50

2 2 3975026166 47.89 1.91 13.25 6.89

4 1 2818934706 33.96 2.69 9.40 9.72

4 2 2191319372 26.40 3.46 7.30 12.50

4 4 2031370670 24.47 3.73 6.77 13.48

8 1 2648732585 31.91 2.86 8.83 10.34

8 2 1499754926 18.07 5.05 5.00 18.26

8 4 1135227771 13.68 6.68 3.78 24.13

8 8 1031422437 12.43 7.35 3.44 26.56

To be able to confirm or deny this, two outcomes will be examined. Firstly the execution time of the 

code, and finally how the use of threads has affected execution time.

The figures of interest from the simulation runs which are important to this study are the ‘Total Cycles’. This 

value is the number of cycles, including stalls and waits, for the entire code to run. As mentioned previously  

the simulator is cycle-accurate and all values output are considered valid as if the code were running on the  

LE1 hardware.

The execution time which is of interest is calculated using the ‘Total Cycle’ count and the theoretical speed  

of the LE1 processor. For this study it has been assumed that the LE1 will run at a speed of 200MHz. (The  

execution time is calculated by dividing the ‘Total Cycle’ count by the speed of the processor.)



[Table showing the results from the simulations.]

The data input for the study is 2 seconds worth of data, so the acquisition time for the data is 2 

seconds. For the output to be considered ‘real-time’ it is required that the execution of the code can 

be performed in a 2 second window also. This so that with each acquisition there is an output image 

available for display. As can be seen in the table above [#] the execution times get faster, but none 

are near the 2 seconds which is the target. In order for the execution time to be 2 seconds the total 

cycles would need to be in the range of 400 million cycles.

It is possible to analyse the data above and extrapolate the data to work out how many threads/memory banks  

would be required to perform the task in 2 seconds.

The table above [#] displays the the total cycles for each configuration along with the speed up 

values, compared to a 1 thread with 1 memory bank configuration. As can be seen the speed up of 

adding extra hardware (thread number with an equal number or memory banks) shows a near linear 

speed up. The reason for the speed up being not as positive when there it not maximum memory 

banks is due to the memory conflicts which result in stall cycles and therefore greater total cycles. 

[The graph above displays the speed up values.]



As can be seen in the above graph [#] and discussed earlier, the speed up when viewing memory 

banks equal to the number of threads is near linear. Due to this near liner speed up it is possible to 

extrapolate the data collected to consider the hardware required to execute this code in ‘real-time’. 

To calculate this configuration we take the ‘Total Cycles’ taken to execute the code with 1 Thread 

and  1  Memory  Bank  and  divide  by  the  required  number  of  cycles.  As  mentioned  earlier  this 

required number of cycles is 400 Million.

7,577,892,295 / 400,000,000 = 18.944...

The results in the theoretical number of threads needed to be 19. Following the trend seen above this would 

also require 19 memory banks. This is only a theoretical  value as this number of threads has yet to be  

examined.

VLSI Platform results

This  section  details  the  VLSI  implementation  of  a  number  of  configurations  on  both  standard-cell  

(TSMC0.13 um 1P8M) and FPGA (Xilinx Virtex6 LX240T-FF1156-1).

Standard-cell (TSMC0.13LV process)

 For the TSMC runs, 2-wide (2 ALUs, 1 Mult, 1 LSU channel) and 4-wide (4 ALUs, 1 Mult, 1 LSU channel)  

configurations were used as the basic building blocks of single, 2-way, 4-way and 8-way shared-memory 

multiprocessors. Each CPU included a private IRAM block (64K) with all configurations sharing a 128K 

single-bank data block. 
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Figure 1. VLSI power consumption (statistical and post-route)
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regression tests, performed front-end synthesis and executed post-synthesis simulations. Following that, the 

internal node activity file was re-imported into the synthesis tool to produce a final post-synthesis power  

figure and statistical power consumption was also recorded. These  steps were re-run after the synthesized  

configuration was automatically placed-and-routed on Cadence Encounter, with full post-route simulations 

(including timing and parasitics information) to produce a final power figure. In the post-route case, only one 

CPU was executing the application code.

Fig. 8 depicts the power consumption (both statistical and post-route) of the CPU configurations 

used  in  the  campaign.  The  4-wide  single-CPU system  consumes  6.7%  more  power  with  that  number 

reaching 13.2% for 4-CPU systems. This  asymptotic increase in power consumption is attributed to  the 

crossbar complexity with increasing number of processors in the single-bank shared data memory. These 

figures are obtained with only CPU0 executing the benchmark code. No data exist for an 8-processor 8-wide  

multiprocessor due to synthesis issues.

Figure 2. VLSI campaign area (um sq.)

Fig. 9 shows the post-route (real silicon) area of the configurations studied. In this case, the 4-wide is only  

15.6% larger than the 2-wide processor with that number increasing to 19%. The non-linear increase in the  

area is due primarily to the use of the single shared memory in the multiprocessor. 

SYSTEMS=1 SYST EMS=2 SYST EMS=3 SYSTEMS=4 SYSTEMS=8

0

5000000

10000000

15000000

20000000

25000000

30000000

Area (2-wide)
area (4-wide)

IFE_0
(64 KB)

IFE_1
(64 KB)

IFE_2
(64 KB)

IFE_3
(64 KB)

STRMEM
(128 KB)

4-way banked

IF
E

_
0

(6
4

 K
B

) IF
E

_2
(6

4
 K

B
)

IFE_1
(64 KB)

STRM EM
(128 KB )

8-w ay banked



Xilinx Virtex6 LX240T-FF1156-1

To  provide  further  insight  on  the  use  of  very  advanced  system  FPGAs  [VIRTEX6]  when 

implementing a CMP platform, the BioThreads processor was re-targeted to a mid-range device of the latest  

Virtex6 devices  from Xilinx  Inc.  For  these  configurations,  the  following systems were  studied:  2-wide 

configurations: X1, X2, X4 and X8 BioThread cores, each with a private 128KB IRAM and a shared 256KB 

DRAM, for a total memory of 384KB, 512KB and 1024KB respectively. 4-wide configurations implemented 

a X1, X2 and X4 BioThread cores with the same amount of IRAM and DRAM, for the same total on-

processor memory. Both 2-wide and 4-wide configurations included a Microblaze 32-bit scalar processor  

system, with a 32-bit single PLB backbone, to interface to the camera, stream-in frames, initiate execution on 

the BioThreads processor and extract the proceesed results (Oxygen map) from the CMP, upon completion.  

Finally, the calculated Oxygen map was returned to the host system for display purposes. 

Both 2 and 4-wide configurations achieved the requested opertaing frequnecy of 83 MHz (this is the  

limit at which both the Microblaze platform and the BioThreads core operate with the external DDR3 – For 

the case where only the on-board block RAM is used, this is significantly increased). 

Targeting 

Conclusions

This work discussed the  methodology and evaluated the feasibility of using high performance Chip-multi-

processors for accelerating biomedical signal processing codes. Experts in the Biomedical Signal Processing 

domain  require advanced processing capabilities without having to resort to the expertise routinely utilized  

in the consumer electronics and telecomunications domains were the silicon platform is designed by one 

team, benchmarked and optimized by a second team and programmed by a third. We have made a deliberate  

choice to stay within the reach of tools routinely utilized by Biomedical Signal Processing experts, such as 

MATLAB, and designed our infrastructure to directly interface to this tool. In this way, we demonstrated the 

capability of computing, in near-real-time the blood perfusion of living tissue, using algorithms developed in 

the Embedded MATLAB subset of that tool; The autogenerated C code was passed on to our toolchain which 

compiled it  into an application binary and performed architectrure space evaluation to idenfity  the best  

BioThreads configurations. Following that, the code was loaded onto the CPU, residing on  the FPGA     
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