
BioThreads: A novel VLIW-based Chip-Multi-Processor for

accelerating biomedical image processing applications

D. Stevens, A. Echiadis, V. Azorin-Peris, V. Chouliaras, J. Zheng and S. Hu

Abstract: We discuss BioThreads, a novel, configurable, extensible System-on-Chip multi-processor and its
use in accelerating biomedical signal processing applications such as imaging PhotoPlethysmoGraphy
(IPPG). BioThreads is derived from the LE1 open-source VLIW core and efficiently handles Instruction,
Data and Thread-level parallelism; In addition, it supports a novel mechanism for the dynamic creation, and
allocation of software threads to uncommitted processor cores by implementing key POSIX Threads
primitives directly in hardware. In this study, the BioThreads core is used to accelerate the calculation of the
oxygen saturation map of living tissue in an experimental setup consisting of a high speed image acquisition
system, connected to an FPGA board and to a host system. Results demonstrate near-linear acceleration of
the core algorithms of the target blood perfusion assessment. with increasing number of cores. The
BioThreads processor was implemented on both standard-cell and FPGA technologies; In the first case, full
real-time performance is achieved with UU cores whereas on a mid-range Virtex6 device near-real-time
performance is achieved with KKK cores

Introduction and Motivation

Real-time execution of biomedical signal processing codes in in-vitro and in-vivo assessment is a key

capability which allows clinicians to make important decisions and perform medical interventions safely,

accurately and quickly as these are based on hard facts, derived in real-time from physiological data [1, 2]. In

the area of Biomedical Image Processing, a number of imaging methods have been proposed over the past

few years including laser Doppler [3], optical coherent tomography [4] and more recently, imaging

PhotoPlethysmoGraphy (IPPG) [5, 6]; However, none of these techniques is able to attain its true potential

without a real-time biomedical image processing system based on Very Large Scale Integration (VLSI)

technology. This is an area where advanced computer architecture concepts, routinely utilized in high-

performance consumer and telecoms Systems-on-Chip (SoC), [7] can provide the required data streaming

and execution bandwidth to allow for the real-time execution of algorithms that would otherwise be executed

not in real time using more established techniques and platforms (sequential execution on a PC host).

Such SoC-based architectures typically include scalar embedded processor cores with a fixed

Instruction-Set-Architecture (ISA) which are widely used in standard-cell (ASIC) [8] and reconfigurable

(FPGA)-based embedded systems [9]. These processors present a good compromise for the execution of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288373294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

general-purpose code such as the user interface, low-level/bandwidth protocol processing, the embedded

Operating System (eOS) and occasionally, low-complexity signal processing tasks. However, they lack

considerably in the area of high-throughput execution and high-bandwidth data movement as often is

required by the core signal processing algorithms in most application domains. An interesting comparison of

the capabilities of three such scalar engines targeting Field-Programmable technologies (FPGAs) is given in

[10].

To relieve this constraint, scalar embedded processors have been augmented with DSP coprocessors

in both tightly-coupled [11] or loosely-coupled configurations [12] to target performance-critical inner loops

of DSP algorithms. A side-effect of this approach is the lack of homogeneity in the SoC platform

programmer's model which itself necessitates the use of complex ‘mailbox-type’ [13] communications and

the programmer-managed use of multiple address spaces, coherency issues and DMA-driven data flows,

typically under the control of the scalar CPU.

Another architectural alternative is the implementation of the core DSP functionality using custom

(hardwired) logic. Using established methodologies (register-transfer-level design, RTL) this task involves

long development and verification times and results in systems that are of high performance yet, they are

only tuned to the task at hand. Also, these solutions tend to offer little or no programmability making difficult

their modification to reflect changes to the input algorithm. In the same architectural domain, the synthesis of

such hardwired engines from High Level Languages (ESL synthesis) is an area of active research in

academia [14][15] (academic efforts targeting ESL synthesis of Ada and C-descriptions); Industrial tools in

this area have matured [16][17][18] (commercial offerings targeting C++, C and UML+C++ respectively) to

the point of competing favourably with hand-coded RTL implementations, at least for certain type of designs

[19-BDTI_study].

A potent solution to high performance VLSI systems design is provided by configurable, extensible

processors [20]. These CPUs allow the extension of their architecture (programmers model and ISA), and

microarchitecture (execution units, streaming engines, coprocessors, local memories) by the system architect.

They typically offer high performance, full programmability and good post-fabrication adaptivity to evolving

algorithms through the careful choice of the custom ISA and execution/storage resources prior to committing

to silicon. High performance is achieved through the use of custom instructions which collapse Data Flow

Graph (DFG) sub-graphs (especially those repeated many times [21]) into a single instruction node. At the

same time, these processors deliver better power efficiency compared to non-extensible processors, via the

reduction in the dynamic instruction count of the target application and the use of streaming local memories

instead of data caches.

All the solutions to developing high-performance digital engines for consumer and in this case,

biomedical image processing, mentioned so far suffer from the need to explicitly specify the

software/hardware interface and schedule communications across that boundary. This work proposes an

alternative, all-software solution, based on a novel configurable, extensible VLIW chip-multi-processor

(CMP) based on an open-source VLIW core [22, 23] and targeting both FPGA as well as standard-cell

(ASIC) silicon. The VLIW paradigm was chosen as VLIW architectures are very potent engines in exploiting

instruction-level (ILP)and data-level (DLP) parallelism, the former via the static (compile-time) specification

of independent RISC-ops (refered to in this text as a 'syllable' or RISCop) per VLIW instruction and the

former, via the automatic unrolling and pipelining of inner loops. Key to this is the use of advanced

compilation technologies such as Trimaran [24] for fully-predicated EPIC architectures or VEX [25] for the

partially-predicated BioThreads core used in this work. At the same time, the extensibility of the core LE1

engine permits the shifting of the hardware/software interface, exchanign performance for silicon area and

always supporting full programmability.

The key contributions of this work are summarized as follows: a) we have developed a highly

configurable, extensible, Chip-multi-processor based on an open-source VLIW CPU, capable of performing

PThread primitives directly in hardware. This is a unique feature of the LE1 (and BioThreads) processors and

uniquely differentiates them from other key research such as hardware primitives for remote memory access

[26] b) We advocate the use of such a complex processing engine in the biomedical signal processing domain

such as the real-time blood perfusion and demonstrate the effectiveness of our approach when computing key

algorithms. c) We have developed a unified, software-hardware development flow in which all algorithm

development takes place in MATLAB, followed by automatic C-code generation and its introduction to the

LE1 toolchain. This is a well encapsulated process which ensures that the biomedical engineer is not exposed

to the detail of real-time software development for a complex SoC platform; at the same time this

methodology results in a working embedded system directly implementing the algorithmic functionality

specified in the MATLAB input description. In the process, use of the best computer architecture practices

has taken place and a novel hardware mechanism has been researched and developed which allows the

exploration of thread-level (TLP) parallelism via supporting key PThread primitives directly in hardware. In

that respect, the BioThreads core can be thought of as a combination of OS and processor, delivering

services (execution bandwidth and thread allication) to a higher order system and enabling the real-time

execution of compute-bound biomedical signal processing codes. The very high scalability of the proposed

platform results in near-real-time performance when computing the XYZ.

The BioThreads CMP

The Biothreads CMP extends the LE1 open-source processor with execution primitives to support

high speed image processing and dynamic thread allocation and mapping to uncommitted CPU cores. This

section discusses briefly these key microarchitectural features.

I$Instruction

Cache

way select
mux

IFE

block register
PC Logic

DEC

Instruction
stream

I
$
ictrl

dec

IALU IALU IALU IALU

gprf gprf gprf gprf

gprf

bpass

gprf

bpass

gprf

bpass

gprf

bpass

LITROM

IALU IALU IALU

P
ip

e
_
c
tr

l

RF

EX1

RAM

IALU IALU IALU IALU

fprf

bpass

fprf

bpass

fprf

bpass

fprf

bpass

IALU IALU IALU

F
P

C
O

R
E

sc
o

re

LS
U

IF
Epi

p
e_

C
T

R
L

L
E

1
_

C
O

R
E

L
E

1

Scopei/scopeo

MEM/
EX2

EX3

IWB/
EX4

FPWB

E
14

_
b

o
ar

d E14_adapt_proc

E14 I/F

XBAR

fprf fprf fprf fprf

XBAR

Figure 1: LE1 Core

Fig. 1 depicts the basecase 8-stage pipelined LE1 processor core which is the heart of the BioThreads CMP:

• The CPU consists of the Instruction Fetch Engine (IFE), the execution core (LE1_CORE), the

pipeline controller (PCTRL) and the Load/Store Unit (LSU). The IFE can be configured with an

instruction cache or alternatively, a closely-coupled instruction RAM (IRAM). These are accessed

every cycle and return a long instruction word (LIW) consisting of multiple RISCops for decode and

dispatch. The IFE controller handles interfacing to the external memory for ICache refills, and stall

control whenever an LIW spans two IRAM locations. It also provides debug capability into the

ICache/IRAM. The IFE can also be configured with a branch predictor unit, currently based on the

2-bit saturating counter scheme (Smith predictor).

• The LE1_CORE includes the main execution datapaths of the CPU. There are a configurable number

of clusters, each with its own register set. Each cluster includes an integer core (SCORE) and

optionally, floating point (FPCORE) core. The figure depicts a single-cluster configuration with a 4-

wide SCORE and a 4-wide FPCORE. The integer and floating-point datapaths are of unequal

pipeline depth however, they maintain a common exception resolution point.

• PIPE_CTRL is the primary control logic. It is collection of interlocked, pipelined state machines,

I$Instruction

Cache

way select
mux

IFE

block register
PC Logic

DEC

Instruction
stream

I
$
ictrl

dec

IALU IALU IALU IALU

gprf gprf gprf gprf

gprf

bpass

gprf

bpass

gprf

bpass

gprf

bpass

LITROM

IALU IALU IALU
P

ip
e

_
c
tr

l

RF

EX1

RAM

IALU IALU IALU IALU

fprf

bpass

fprf

bpass

fprf

bpass

fprf

bpass

IALU IALU IALU

F
P

C
O

R
E

sc
o

re

LS
U

IF
Epi

p
e_

C
T

R
L

L
E

1
_

C
O

R
E

L
E

1

Scopei/scopeo

MEM/
EX2

EX3

IWB/
EX4

FPWB

E
1

4_
b

o
ar

d E14_adapt_proc

E14 I/F

XBAR

fprf fprf fprf fprf

XBAR

Figure 2: LE1 Core

which schedule the execution datapaths and monitor the overall instruction flow down the processing

and memory pipelines. PIPE_CTRL maintains the control registers of the CPU and handshakes the

host during debug operations.

• Finally, the LSU is the primary path of the LE1_CORE to the system memory. It allows for up to

ISSUE_WIDTH memory operations and directly communicates with the shared data memory

(STRMEM). The latter is a multi-bank, cross-bar solution and scales reasonably well (in terms of

speed and area) for up to 32 memory clients. This is depicted in Fig. 2:

Mem0

Mem1

Mem2

Memk-1

Arbiter
Channel 1

Channel C -1

XBar Access Demux
Channel 1

Channel C -1

Figure 2: Streaming Memory System of the BioThreads CMP

Finally,

to allow for the exploitation of shared-memory TLP, multiple processing cores can be instantiated in

CMP configuration as shown in Fig. 3. The figure depicts a dual-LE1 BioThreads system interfacing to the

common streaming data RAM.

I$Instruction

Cache

way select
mux

block register
PC Logic

I
$
ictrl

IALU IALU IALU IALU

gprf gprf gprf gprf

gprf

bpass

gprf

bpass

gprf

bpass

gprf

bpass

IALU IALU IALU

P
ip

e
_
c
tr

l

IALU IALU IALU IALU

fprf

bpass

fprf

bpass

fprf

bpass

fprf

bpass

IALU IALU IALU

F
P

C
O

R
E

sc
o

re

IF
Epi

p
e

_C
T

R
L

L
E

1
_C

L
U

S
T

E
R

L
E

1

Scopei/scopeo

XBAR

fprf fprf fprf fprf

Rdaddr2_i
Rden2_i
Pc2_ir

Wren6_i
Cwren6_i

fWren8_i

d
e
c

L
S

U

I$Instruction

Cache

way select
mux

block register
PC Logic

I
$

ictrl

IALUIALUIALUIALU

gprfgprfgprfgprf

gprf

bpass

gprf

bpass

gprf

bpass

gprf

bpass

IALUIALUIALU P
ip

e
_
c
trl

IALUIALUIALUIALU

fprf

bpass

fprf

bpass

fprf

bpass

fprf

bpass

IALUIALUIALU

F
P

C
O

R
E

s
c

o
re

IF
E

p
ip

e_C
T

R
L

L
E

1
_

C
L

U
S

T
E

R

L
E

1

Scopei/scopeo

XBAR

fprffprffprffprf

Rdaddr2_i
Rden2_i
Pc2_ir

Wren6_i
Cwren6_i

fWren8_i

d
e
c

L
S

U

Mem0

Mem1

Mem2

Memk-1

Arbiter
Channel 1

Channel C -1

XBar Access Demux
Channel 1

Channel C -1

Figure 3: dual shared-memory BioThreads CMP

Biomedical

SYSTEM0

Multi-ported
LSU

CONTEXT0 / HYPERCONTEXT0

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT0 / HYPERCONTEXT1

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT1 / HYPERCONTEXT0

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT1 / HYPERCONTEXT1

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

1PRAM

1PRAM

1PRAM

1PRAM

SYSTEM1

Multi-ported
LSU

CONTEXT0 / HYPERCONTEXT0

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT0 / HYPERCONTEXT1

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALU IALU IMULT

VCORE

VALU VPERM VMULT

FPCORE

FALU FALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATE VECTOR_STATE

X_SCALAR_STATE X_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT1 / HYPERCONTEXT0

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CONTEXT1 / HYPERCONTEXT1

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

CLUSTER

SCORE

IALUIALUIMULT

VCORE

VALUVPERMVMULT

FPCORE

FALUFALU

CSCORE

CSDP

CVCORE

CVDP

CFPCORE

CFDP

SCALAR_STATEVECTOR_STATE

X_SCALAR_STATEX_VECTOR_STATE

FP_STATE

X_FP_STATE

1PRAM

1PRAM

1PRAM

1PRAM

Q Q

Figure 4: BioThreads engine in hybrid mode

Signal Processing Methodology

The application area selected to investigate the feasibility of deploying a VLIW-based CMP engine for

real-time biomedical signal processing was photoplethysmography (PPG), which is the measurement of

blood volume changes in living tissue using optical means. PPG is widely used primarily in Pulse Oximetry

for the point-measurement of oxygen saturation. In this application, PPG is instead implemented from an

area measurement. The basic concept of this implementation, termed imaging PPG (IPPG), is to illuminate

the tissue with a homogeneous light source and to detect the light leaving the tissue with a 2D sensor array.

This yields a sequence of images from which a map of the blood volume changes, and hence of the

physiological function, can be generated for the target tissue. The use of multiple wavelengths in the light

source enables the reconstruction of blood volume changes at different depths of the tissue, which can yield a

3D map of the tissue function. This is the principle of operation of the Oximap Real-Time Tomographer [27-

OXIMAP]. Such functional maps have numerous applications in clinical diagnostics, including the

assessment of the severity of skin burns or wounds, of cardiovascular surgical interventions and of overall

cardiovascular function.

Figure 4: Schematic diagram of IPPG setup including the dual wavelength LED ringlight, lens,

CMOS camera and subject hand.

A reflection–mode IPPG setup was put together for the validation experiment in this investigation,

the basic elements of which are a ringlight illuminator, a lens and a high sensitivity camera [28-

MIKROTRON CAMERA Mikrotron Eosens CL, Germany] as the detecting element, and the target skin

tissue as defined by its optical coefficients and geometry. The introduction of the fast digital camera

facilitates the non-contact measurement at a sufficiently high sampling rate to allow PPG signal

reconstruction from a large and homogeneously illuminated field of view at more than one wavelength, as

shown in Fig. 3. The illumination unit is synchronised with the camera acquisition system by means of a

micro-controller (PIC16F876A, Microchip) in order to perform multiplexed acquisition of a sequence of

images of the area of interest, exposed to red 660nm LED ([29-RED_LED], infra-red 880nm LED[30-

IR_LED]. Ambient light is kept to a minimum during acquisition for optimum signal quality,

By employing the same principles relating to photoplethysmography (PPG), the ultimate scope of this

experiment was to detect blood volume changes in living tissue and to generate a map of blood perfusion

using the BioThreads engine as the signal processing platform. This blood perfusion map was generated

from the power of the PPG signal in the frequency domain. The acquired image frames were processed as

follows:

a. N frames were recorded with the acquisition system (DAVID state No of frames, frame size M x N

depth of resolution).

b. The average fundamental frequency of the PPG signal was manually extracted (1.4Hz).

c. Data were streamed to the BioThreads platform and the 64-point Fast Fourier Transform (FFT) of

each pixel (or if clusters of pixels were used, please state size [n x m] - FOR DAVID) was

calculated. This was done by taking the pixel values of all image frames for a particular pixel

position to form a pixel value vector in the time domain.

d. The Power of the FFT tap corresponding to the PPG fundamental frequency was copied into a new

matrix at the same coordinates of the pixel (or cluster) under processing. In the presence of blood

volume variation at that pixel (or cluster) the power would be larger than if there was no blood

volume variation.

Repeating (d) for all the remaining pixels (or clusters) provides a new matrix (or image) whose elements

(or pixels) values depend on the detected blood volume variation power. This technique allows the

generation of a blood perfusion map, as a high PPG power can be attributed to high blood volume

variation and ultimately to blood perfusion. Figure 5 illustrates a simplified diagrammatic representation

of the algorithm used and Fig. 6 shows the

[V1 V2 V3 … VN]

Acquired Frames
m rows x n columns

FFT Calculation

Po
w

er

Frequency
1

2
3

...
 N

n

m

Pixel Values in
Time Domain

V1
V2 V

3 …
 V

N

P1

Perfusion Map
P1

Repeat for
all pixels

Figure 5: High-level view of the signal processing algorithm

Frequency 1.4HzMean ACOriginal imageOriginal image

A) B) C)

Mean AC Frequency 1.4Hz

Figure 6: The original image. (b) Corresponding ac map. (c) Corresponding ac power map at HR

= 1.3 Hz

Results and discussions

This study set out to investigate the plausibility of using advanced SoC platforms for real-time biomedical

assessment. This section presents the results of our study and is split into two major sections: a) Performance

(real-time) results, pertaining to the real-time calculation of the oxygen map and b) SoC platform results. The

latter include data such as area, maximum frequency, when targeting a Xilinx Virtex6 LX240T FG1156 [31]

FPGA and a mainsteam 0.13 um standard-cell process .

Perfromance Results

Table 1: Performance evaluation

ISSUE_WIDTH=4 FPGA Results (83.3 MHz) ASIC Reults (300 MHz)

Cores
Data Memory

Banks
Cycles

Real
time
(sec)

Speedup
Real time

(sec)
Speedup

1 1 7577892295 91.30 1.00 25.26 3.61

2 1 4213364285 50.76 1.80 14.04 6.50

2 2 3975026166 47.89 1.91 13.25 6.89

4 1 2818934706 33.96 2.69 9.40 9.72

4 2 2191319372 26.40 3.46 7.30 12.50

4 4 2031370670 24.47 3.73 6.77 13.48

8 1 2648732585 31.91 2.86 8.83 10.34

8 2 1499754926 18.07 5.05 5.00 18.26

8 4 1135227771 13.68 6.68 3.78 24.13

8 8 1031422437 12.43 7.35 3.44 26.56

To be able to confirm or deny this, two outcomes will be examined. Firstly the execution time of the

code, and finally how the use of threads has affected execution time.

The figures of interest from the simulation runs which are important to this study are the ‘Total Cycles’. This

value is the number of cycles, including stalls and waits, for the entire code to run. As mentioned previously

the simulator is cycle-accurate and all values output are considered valid as if the code were running on the

LE1 hardware.

The execution time which is of interest is calculated using the ‘Total Cycle’ count and the theoretical speed

of the LE1 processor. For this study it has been assumed that the LE1 will run at a speed of 200MHz. (The

execution time is calculated by dividing the ‘Total Cycle’ count by the speed of the processor.)

[Table showing the results from the simulations.]

The data input for the study is 2 seconds worth of data, so the acquisition time for the data is 2

seconds. For the output to be considered ‘real-time’ it is required that the execution of the code can

be performed in a 2 second window also. This so that with each acquisition there is an output image

available for display. As can be seen in the table above [#] the execution times get faster, but none

are near the 2 seconds which is the target. In order for the execution time to be 2 seconds the total

cycles would need to be in the range of 400 million cycles.

It is possible to analyse the data above and extrapolate the data to work out how many threads/memory banks

would be required to perform the task in 2 seconds.

The table above [#] displays the the total cycles for each configuration along with the speed up

values, compared to a 1 thread with 1 memory bank configuration. As can be seen the speed up of

adding extra hardware (thread number with an equal number or memory banks) shows a near linear

speed up. The reason for the speed up being not as positive when there it not maximum memory

banks is due to the memory conflicts which result in stall cycles and therefore greater total cycles.

[The graph above displays the speed up values.]

As can be seen in the above graph [#] and discussed earlier, the speed up when viewing memory

banks equal to the number of threads is near linear. Due to this near liner speed up it is possible to

extrapolate the data collected to consider the hardware required to execute this code in ‘real-time’.

To calculate this configuration we take the ‘Total Cycles’ taken to execute the code with 1 Thread

and 1 Memory Bank and divide by the required number of cycles. As mentioned earlier this

required number of cycles is 400 Million.

7,577,892,295 / 400,000,000 = 18.944...

The results in the theoretical number of threads needed to be 19. Following the trend seen above this would

also require 19 memory banks. This is only a theoretical value as this number of threads has yet to be

examined.

VLSI Platform results

This section details the VLSI implementation of a number of configurations on both standard-cell

(TSMC0.13 um 1P8M) and FPGA (Xilinx Virtex6 LX240T-FF1156-1).

Standard-cell (TSMC0.13LV process)

 For the TSMC runs, 2-wide (2 ALUs, 1 Mult, 1 LSU channel) and 4-wide (4 ALUs, 1 Mult, 1 LSU channel)

configurations were used as the basic building blocks of single, 2-way, 4-way and 8-way shared-memory

multiprocessors. Each CPU included a private IRAM block (64K) with all configurations sharing a 128K

single-bank data block.

Power consumption (post-route)

60

70

80

90

100

110

120

130

140

150

160

SYSTEMS=1 SYSTEMS=2 SYSTEMS=3 SYSTEMS=4

Configuration (LE1 Cores)

P
o

w
er

 (
m

W
)

2-w ide LE1 Post-route pow er (2 w ide, 1 CPU active) 4-w ide LE1 Post-route pow er (4 w ide, 1 CPU active)

Figure 1. VLSI power consumption (statistical and post-route)

A scripting mechanism automatically modified the RTL configuration, executed RTL (pre-synthesis)

SYST EMS=1 SYST EMS=2 SYST EMS=3 SYST EMS=4 SYST EMS=8

0

50

100

150

200

250

Post-route power (2
wide, 1 CPU ac tive)
Pos t-route power (4
wide, 1 CPU ac tive)

regression tests, performed front-end synthesis and executed post-synthesis simulations. Following that, the

internal node activity file was re-imported into the synthesis tool to produce a final post-synthesis power

figure and statistical power consumption was also recorded. These steps were re-run after the synthesized

configuration was automatically placed-and-routed on Cadence Encounter, with full post-route simulations

(including timing and parasitics information) to produce a final power figure. In the post-route case, only one

CPU was executing the application code.

Fig. 8 depicts the power consumption (both statistical and post-route) of the CPU configurations

used in the campaign. The 4-wide single-CPU system consumes 6.7% more power with that number

reaching 13.2% for 4-CPU systems. This asymptotic increase in power consumption is attributed to the

crossbar complexity with increasing number of processors in the single-bank shared data memory. These

figures are obtained with only CPU0 executing the benchmark code. No data exist for an 8-processor 8-wide

multiprocessor due to synthesis issues.

Figure 2. VLSI campaign area (um sq.)

Fig. 9 shows the post-route (real silicon) area of the configurations studied. In this case, the 4-wide is only

15.6% larger than the 2-wide processor with that number increasing to 19%. The non-linear increase in the

area is due primarily to the use of the single shared memory in the multiprocessor.

SYSTEMS=1 SYST EMS=2 SYST EMS=3 SYSTEMS=4 SYSTEMS=8

0

5000000

10000000

15000000

20000000

25000000

30000000

Area (2-wide)
area (4-wide)

IFE_0
(64 KB)

IFE_1
(64 KB)

IFE_2
(64 KB)

IFE_3
(64 KB)

STRMEM
(128 KB)

4-way banked

IF
E

_
0

(6
4

 K
B

) IF
E

_2
(6

4
 K

B
)

IFE_1
(64 KB)

STRM EM
(128 KB)

8-w ay banked

Xilinx Virtex6 LX240T-FF1156-1

To provide further insight on the use of very advanced system FPGAs [VIRTEX6] when

implementing a CMP platform, the BioThreads processor was re-targeted to a mid-range device of the latest

Virtex6 devices from Xilinx Inc. For these configurations, the following systems were studied: 2-wide

configurations: X1, X2, X4 and X8 BioThread cores, each with a private 128KB IRAM and a shared 256KB

DRAM, for a total memory of 384KB, 512KB and 1024KB respectively. 4-wide configurations implemented

a X1, X2 and X4 BioThread cores with the same amount of IRAM and DRAM, for the same total on-

processor memory. Both 2-wide and 4-wide configurations included a Microblaze 32-bit scalar processor

system, with a 32-bit single PLB backbone, to interface to the camera, stream-in frames, initiate execution on

the BioThreads processor and extract the proceesed results (Oxygen map) from the CMP, upon completion.

Finally, the calculated Oxygen map was returned to the host system for display purposes.

Both 2 and 4-wide configurations achieved the requested opertaing frequnecy of 83 MHz (this is the

limit at which both the Microblaze platform and the BioThreads core operate with the external DDR3 – For

the case where only the on-board block RAM is used, this is significantly increased).

Targeting

Conclusions

This work discussed the methodology and evaluated the feasibility of using high performance Chip-multi-

processors for accelerating biomedical signal processing codes. Experts in the Biomedical Signal Processing

domain require advanced processing capabilities without having to resort to the expertise routinely utilized

in the consumer electronics and telecomunications domains were the silicon platform is designed by one

team, benchmarked and optimized by a second team and programmed by a third. We have made a deliberate

choice to stay within the reach of tools routinely utilized by Biomedical Signal Processing experts, such as

MATLAB, and designed our infrastructure to directly interface to this tool. In this way, we demonstrated the

capability of computing, in near-real-time the blood perfusion of living tissue, using algorithms developed in

the Embedded MATLAB subset of that tool; The autogenerated C code was passed on to our toolchain which

compiled it into an application binary and performed architectrure space evaluation to idenfity the best

BioThreads configurations. Following that, the code was loaded onto the CPU, residing on the FPGA

References

[1] K. Rajan, L.M. Patnaik, “CBP and ART image reconstruction algorithms on media and DSP processors”,
Microprocessors and Microsystems 25 (2001) 233-238

[2] Omkar Dandekar, R. Shekhar,“FPGA-Accelerated Deformable Image
Registration for Improved Target-Delineation During CT-Guided Interventions”, IEEE Transactions On Biomedical
Circuits and Systems, Vol. 1, No. 2, June 2007

[3] Wardell K. and Nilsson G.E., “Duplex Laser Doppler Perfusion Imaging,” Microvasc. Res., 52, pp. 171-182
(1996).
[4] Srinivasan S., Pogue B. W., Jiang S. D. Dehghani H., Kogel C., Soho S., Gibson J. J., Tosteson T. D., Poplack
S. P. and Paulsen K. D., “Interpreting haemoglobin and water concentration, oxygen saturation, and scattering measured
in vivo by near infrared breast tomography,” PNAS, 100(21), 12349-12354 (2003).
[5] S. Hu, J. Zheng, V. Chouliaras, and R. Summers, “Feasibility of imaging photoplethysmography” Proceedings
of the International Conference on BioMedical Engineering and Informatics, (Institute of Electrical and Electronics En-
gineers, NewYork, 2008), pp. 72-75.
[6] P. Shi, V. Azorin Peris A. Echiadis, J. Zheng, Y. Zhu, P. Y. S. Cheang, S. Hu, “Non-contact Reflection
Photoplethysmography towards Effective Human Physiological Monitoring”, J Med. Biol. Eng. J Med. Biolog. Eng.,
Vol.30 Iss 30 (2010): 161-167
[7] V. A. Chouliaras J. L. Nunez, D. J. Mulvaney, F. Rovati, D. Alfonso, ‘A Multi-standard Video accelerator
based on a vector architecture’, IEEE Transactions on Consumer Electronics, Vol. 51, Issue 1, Feb 2005, pp 160-167,
ISSN:0098-3063
[8] www.arm.com ARM1022ETM Technical Reference Manual. Retrieved June 2007
[9] www.xilinx.com, “MicroBlaze Processor Reference Guide”, Doc. UG081 (v10.3). Accessed January 2010

[10] D. Mattson, M. Christensson, “Evaluation of synthesizable CPU cores”, Master Thesis, Chalmers University
of Technology, Department of Computer Engineering, 2004. Accessed

February 2010

[11] V. A. Chouliaras, J. L. Nunez, “Scalar Coprocessors for accelerating the G723.1 and G729A Speech Coders”
IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3, Aug. 2003, pg. 703-710

[12] N. Theodoridis, G. Nikolaidis, S., “The ARISE Reconfigurable Instruction Set Extensions Framework”,
Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation, 2007. IC-SAMOS 2007. 16-19 July, 2007
[13] Xilinx XPS Mailbox V1.0a data sheet. Available from www.xilinx.com Accessed February 2010

[14] M. Dossis, “Custom Coprocessor Compiler”, Private Communication.
[15] NISC Toolset User Guide Version. 2007.07, Centre for Embedded Computer Systems, University of California
at Irvine, http://www.cecs.uci.edu/~nisc. Accessed February 2009
[16] Y. Guo, J. R. Cavallaro, “A Low Complexity and Low Power SoC Design Architecture for Adaptive MAI
Suppression in CDMA Systems”, Journal of VLSI Signal Processing 44, 195–217, 2006
[17] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. Cronquist, M. Sivaraman, “PICO: Automatically
designing custom computers”, IEEE Computer, September 2002, pg. 39-47
[18] Robert Thomson, Scott Moyers, David Mulvaney and V. Chouliaras, “The UML-based design of a hardware
H.264/MPEG 4 AVC video decompression core”. Proceedings of the 5th International UML-SoC Workshop (in
conjunction with 45th DAC, Anaheim Convention Center, USA, June 7th, 2008
[19-BDTI_STUDY]
[20] Leibson, S.; Kim, J, “Configurable processors: a new era in chip design”, IEEE Computer, July 2005, vol.38,
no.7, pp. 51-59

[21] N. Clark et al., “Automated custom instruction generation for domain-specific processor acceleration”. IEEE
Transactions on Computers Vol. 54, Issue 10. pp 1258 – 1270 Oct 2005.
[22] D. Stevens, V. A. Chouliaras, “LE1: A parameterizable VLIW Chip-Multiprocessor with hardware PThreads
support”, Proceedings of the 2010 IEEE Symposium in VLSI, ISVLSI 2010, Kefalonia, Greece

http://www.cecs.uci.edu/~nisc
http://www.xilinx.com/
http://www.xilinx.com/
http://www.arm.com/

[23] www.vassilios-chouliaras.com/le1 , accessed June 2010
[24] J. A. Fischer, P. Faraboschi, “Embedded Computing. A VLIW approach to architectures, compilers and tools”.
Morgan Kaufmann publishers, 2005
[25-TRIMARAN]

[26] Sotirios G. Ziavrasa,Ã, Alexandros V. Gerbessiotisb, Rohan Bafnaa, “Coprocessor design to support MPI
primitives in configurable multiprocessors”, INTEGRATION, the VLSI journal 40 (2007) 235–252
[27-OXIMAP]
[28-MIKROTRON CAMERA]
[29-RED_LED]
[30-IR_LED]

[31-VIRTEX6]

David Stevens was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt University,
Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior lecturer in
microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where he’s
leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set
design and Electronic System Level (ESL) design methodologies. He is the architect of the SS_SPARC multicore platform and a

founder of Axilica Ltd.

Angelos Echiadis was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt
University, Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design
engineer for INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior
lecturer in microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where
he’s leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set
design and Electronic System Level (ESL) design methodologies. He is the architect of the SS_SPARC multicore platform and a

founder of Axilica Ltd.

Vincent Azoris Peris was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt
University, Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design
engineer for INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior
lecturer in microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where
he’s leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set
design and Electronic System Level (ESL) design methodologies. He is the architect of the SS_SPARC multicore platform and a

founder of Axilica Ltd.

Vassilios Chouliaras was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt
University, Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design
engineer for INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior
lecturer in microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where
he’s leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set
design and Electronic System Level (ESL) design methodologies. He is the architect of the BioThreads platform and a founder of

Axilica Ltd.

J. Zeng was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt University,
Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior lecturer in
microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where he’s
leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set
design and Electronic System Level (ESL) design methodologies. He is the architect of the SS_SPARC multicore platform and a

founder of Axilica Ltd.

Sijung Hu was born in Athens, Greece in 1969. He received a B.Sc. in Physics and Laser Science from Heriot-Watt University,
Edinburgh in 1993 and a M.Sc. in VLSI Systems Engineering from UMIST in 1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor architect for ARC International. Currently, he is a senior lecturer in
microelectronics in the Department of Electronic and Electrical Engineering at the University of Loughborough, UK where he’s
leading the research in CPU architecture and microarchitecture, SoC modeling and software parallelization. His research interests
include CPU microarchitecture, high-performance embedded CPU implementations, performance modeling, custom instruction set

http://www.vassilios-chouliaras.com/le1

design and Electronic System Level (ESL) design methodologies. He is the architect of the SS_SPARC multicore platform and a founder of Axilica
Ltd.

	BioThreads: A novel VLIW-based Chip-Multi-Processor for accelerating biomedical image processing applications
	Introduction and Motivation
	The BioThreads CMP
	Finally,
	Signal Processing Methodology

	Results and discussions
	Perfromance Results
	VLSI Platform results
	Standard-cell (TSMC0.13LV process)
	Xilinx Virtex6 LX240T-FF1156-1

	Conclusions
	References

