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ABSTRACT 

We investigated a custom Monte Carlo (MC) platform in the generation of opto-physiological models of motion artefact 
and perfusion in pulse oximetry.  With the growing availability and accuracy of tissue optical properties in literatures, 
MC simulation of light-tissue interaction is providing increasingly valuable information for optical bio-monitoring 
research.  Motion-induced artefact and loss of signal quality during low perfusion are currently the primary limitations in 
pulse oximetry.  While most attempts to circumvent these issues have focused on signal post-processing techniques, we 
propose the development of improved opto-physiological models to include the characterisation of motion artefact and 
low perfusion.  In this stage of the research, a custom MC platform is being developed for its use in determining the 
effects of perfusion, haemodynamics and tissue-probe optical coupling on transillumination at different positions of the 
human finger.  The results of MC simulations indicate a useful and predictable output from the platform. 
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1. INTRODUCTION 
Photoplethysmography (PPG) is an optical biomonitoring technique that non-invasively measures arterial pulsations in-
vivo.  Its ease of use and convenience make it an attractive area of research in the biomedical and clinical community.  
Among its applications, pulse oximetry—the determination of arterial oxygen saturation—is the most widespread thanks 
to its ability to alert the clinician of the presence of hypoxemia in real-time.1   

1.1. Current Pulse Oximetry  
Pulse oximetry has become a standard of patient monitoring during anaesthesia, in recovery rooms and under intensive 

care.2  However, oximeters have a number of factors that lead to inaccurate readings and limit their applicability.  As 
such, these are practable areas of research when attempting to increase the reliability and applicability of the technology. 

Commercial pulse oximeters convert the ratio of normalised pulsatile components into an equivalent arterial oxygen 
saturation by means of a look-up table which is determined by comparison of oximeter readings with invasive blood gas 
measurements.3  This calibration is generally applied with oxygen saturation values above 70% due to serious health 
risks encountered by test subjects for saturations below this point.  The limitation encountered due to health risks at 
saturations below 70% make it necessary for oximeter calibration schemes to rely on simulations and in-vitro 
measurements if precise calibration curves at low-saturation are required.4,5  A common source of PPG signal corruption 
is the inadvertent measurement of voluntary or involuntary movement of the patient.6  Motion artifact is a complex issue 
due to its contribution to the PPG signal being several orders of magnitude larger than that of the arterial pulsations, and 
to the spectral and temporal dependence of signal and artefact.7  In cases of low perfusion such as critically ill patients, 
the low signal-to-noise ratio (SNR) encountered under a lack of a strong pulsatile PPG signal component leads to 
inaccurate readings.2  Adequate knowledge of a patient’s oxygenation is especially useful under these circumstances.   

From an engineering perspective, most solutions to the above issues consist of additional characterisation of signal 
components.6-9  The success of these solutions depends heavily on the validity of the assumptions used to correlate the 
signals.  Also, the adverse effects of these issues are generally quantified according to the sensitivity and specificity of 
oximeters under the relevant scenarios, often overlooking the mechanisms leading to such inaccuracies.   
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1.2. Tissue Optical Modeling  
The operation principal of current pulse oximeters is commonly described using the Beer-Lambert model, where the 
measuring site is treated as a blood-filled cuvette with no scattering effects and the light sources are assumed to be 
monochromatic.10  The highly scattering nature of human tissue clearly contradicts these assumptions, but the model 
illustrates the common simplification process inherent in the area.   

Numerous models that predict photon transport in tissue have been developed,11 most of which are simplified forms 
of the radiation transfer theory (RTT). The latter is commonly accepted as a sufficiently strict mathematical description 
of continuous wave (CW) light propagation in a scattering medium12 and relies on the absorption and scattering 
coefficients µa and µs, and anisotropy factor g for an optical description of the medium.  The diffusion approximation of 
RTT, also known as the P1 approximation,13 assumes isotropic scattering, therefore relying on µa and transport scattering 
coefficient µs’, where µs’= µs(1-g).  Monte Carlo (MC) radiation transport techniques are based on the stochastic nature 
of radiation interactions, and in the context of tissue optics, they provide a numerical solution of the RTT equation and 
the P1 approximation.  As a finite element method, it is suited for complex geometries and is capable of achieving very 
high degrees of accuracy at the expense of heavy computational load.   

The accuracy of optical propagation models ultimately depends on that of the tissue optical properties.  In recent 
years, several substantial investigations have led to the determination of increasingly accurate optical properties of the 
constituents of PPG monitoring sites in a range of wavelengths.11-18   

1.3. Aims and Objectives of Study 
We propose the combination of optical properties and standardised models of human anatomy and physiology in MC 
simulations of light transport to deliver a characterisation of the mechanisms and consequent systematic reduction of the 
effects of issues with an adverse effect to pulse oximetry.  A MC platform has been created to perform light transport 
simulations on complex tissue geometries.  The current phase of the investigation aims to characterise the distribution of 
transmitted light around the finger at the standard wavelengths of pulse oximeters.  This data will be used to provide 
optimum source and sensor positions and will be the first step towards the characterisation of probe motion artefact in 
standard transmittance mode pulse oximetry. 

2. MATERIALS AND METHODS 
The structure and operation of the platform developed for MC raytracing of complex tissue geometries are illustrated in 
this section.  An accurate 3D anatomical model (Zygote Media Group, USA) of a male adult finger composed of bones, 
tendons, nerves, arteries, veins and outer skin was hired in this investigation (see Fig. 2).  The platform can be sectioned 
into three phases, each of which rely on an available software package (Fig. 1).  3D Studio MAX v.9.0 (Autodesk, USA) 
was employed to make modifications to the base model prior to simulation.  These included the creation of five-layer 
skin in accordance to the skin model described by Tuchin et al.,18 the creation of subcutaneous fat as a filler between the 
skin layers and all other internals, as well as the generation of separate files for each of the objects in the model.  MC 
raytracing was performed by OptiCAD 10.0 (Opticad Corporation, USA).  Post-processing was performed in MATLAB 
7.1 (Mathworks Co., USA) algorithms customised for the output data of OptiCAD. 

 

 

 

 

 

 

 

Figure 1.  Block diagram of MC raytracing platform. 
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2.2. Tissue Optical Properties for Monte Carlo 
OptiCAD treats the imported components of the 3D model as solids and allows the volumetric optical properties 
(absorption coefficient µa, scattering coefficient µs, and anisotropy factor g) of each to be defined.  Transport scattering 
coefficients µs’ at 633 nm, derived from µs’= µs(1-g), are used for all media in the model to significantly reduce 
raytracing time.  While a range of sources contained optical properties of human tissues at 633 nm, those at 850 nm were 
scarce in the literature.  A series of ratios were taken from a range of sources which allowed the derivation of coefficients 
at 850 nm by means of scaling those at 633 nm. This process aimed to ensure that the derived coefficients emulated the 
experimental conditions used in the determination of the readily available 633nm coefficients.  Only the surface optical 
properties of bone were considered, namely its diffuse reflectance and transmission.  The absorption and scattering 
coefficients used in this simulation can be found in table I.   

All raytraces were performed using a spherical light source with a lambertian intensity distribution.  Reflection and 
refraction at interfaces resulting from refractive index mismatches are neglected.  This ensures minimisation of 
inaccuracies due to the inherently difficult task of modeling the microscopic textures of interfaces, which pose a 
significant level of complexity in contrast to their minor contribution to the output.  Sobol Sampling20 (Quasi-Monte 
Carlo Sampling) was used in order to increase the convergence rate of raytraces.   

Table I: Optical properties used for elements of finger model in MC raytraces, sources of data, and ratios used to determine the 
coefficients at 850 nm. 

2.3. Post-Processing 
Several algorithms were generated for the post-processing of output data from OptiCAD, all of which have been 
optimised in terms of speed, memory usage and large data handling capability.  The core function is in charge of 
performing an intersect analysis on a specific component of the 3D model (e.g. arteries, plexus superficialis).  This 
algorithm allows the labeling of rays whose intensity has been modulated by any medium in the model.  For instance, in 
the case of artefact-free PPG, this information distinguishes localised light intensities that will vary due to the 
cardiovascular cycle from those that are static.  The algorithm determines the changes in intensity ∆Iart of a ray due to 
absorption by a medium and stores the total change in intensity Σ∆Iart due to the selected medium, as is the case when a 
ray traverses the medium several times.  Determination of the exit points (x,y,z) of all traced rays and their corresponding 
intensities Iend is also performed.  The following relationships are derived from this output data:  When a ray does not 
traverse a time-varying medium, its intensity only contributes to the DC intensity at the measuring site, thus It(DC)=Iend.  
When a ray does traverse such a medium, its intensity contributes both to DC and AC intensities at the measuring site, 
where It(AC) reaches its maximum and minimum values during diastole and systole respectively.  To define It(AC), it is 
assumed that arterial absorption at systole and diastole are both proportional to the total arterial absorption, resulting in 
two separate equations, It(AC)(sys)= αΣ∆Iart and It(AC)(dia)= βΣ∆Iart, where α and β are the ratios of systolic and diastolic 

  633 nm 850 nm  
  µa (mm-1) µs' (mm-1) µa (mm-1) µs' (mm-1) References 
Epidermis 0.43 2.25 0.22 1.69 
Dermis 0.27 3.37 0.14 2.52 
Dermis with plexus superficialis 0.33 3.46 0.12 2.59 
Dermis 0.27 3.37 0.14 2.53 
Dermis with plexus profundus 0.34 3.49 0.12 2.62 

Tuchin12 
µs(850)’= 0.75µs(633)’14 
µa(850)= 0.50µa(633)

14 

Subcutaneous fat 0 1.2 0 0.98 Tuchin12 
µs(850)’= 0.82µs(633)’14 

Nerve fibre 0.06 1.8 0.08 1.7 Tuchin12 
Muscle 0.1 0.53 0.05 0.35 Tuchin12 

Whole blood (SaO2=97%, hct=0.41) 0.66 1.7 1.3 1.58 
Tuchin12 

µs(850)’= 0.75µs(633)’15 
µa(850)= 1.97µa(633)

19 

  Reflection 
(%) 

Absorption 
(%) 

Reflection 
(%) 

Absorption 
(%)  

Bone 0.54 0.22 0.54 0.18 Ugnell17 
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absorption to total arterial absorption respectively.  The DC intensity at the measuring site is corrected by defining it as 
It(DC)=Iend-(It(AC)(dia) - It(AC)(sys)) / 2. 

 

 

 

 

 

 

 

 

Figure 2.  Outer skin model with central finger axis highlighted and resultant plot after conversion of transmitted ray coordinates, 
where the light source position is marked by a star. 

Several data conversion algorithms map the distribution of ray exit points (x,y,z) as can be seen on a flattened outer 
skin surface (x,y).  This is achieved by generating a central axis in 3D coordinates along the center of the finger model 
and converting the cross-sectional coordinates into equivalent angles, thus resulting in a surface plot of position along 
length in mm. versus position along circumference in degrees (Fig. 2).  Surface analysis algorithms split these ray 
surfaces into square intensity buckets of arbitrary size and collect the total intensity of all rays within each bucket, thus 
producing an intensity distribution surface (Fig. 2).  The static and dynamic intensity surfaces are defined as 

    

        ,      (1) 

 
 ,     (2) 

              

               .     (3) 

 

Here, xa= x0-d, ya= y0-d, xb= x0+d and yb= y0+d, where (x0, y0) is the position on the flattened finger surface and d is 
the square bucket half-size.  Equations (1-3) yield the ratio of ratios R as a function of surface position: 

 

               .   (4) 

 

3. RESULTS 
Simulation results are representative of the in-vivo measurement of a transmission-mode pulse oximeter on a measuring 
site with an arterial oxygen saturation of 97%.  Sensor responses were generated by scanning a square bucket of arbitrary 
size in 0.1mm steps from -1 to 1 mm longitudinally and from 0 to 360º circumferentially.  All results are averaged over 
the longitudinal axis. 

The SNR in a photoplethysmographic signal is proportional to the peak-to-peak AC intensity.  Examination of figure 
3 shows that the strongest pulsatile signals can be found at ±60º to 90º of the light source position, being approximately 3 
times those found at the standard sensor position of transmission pulse oximetry (±180º).   
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Figure 3.  Normalised peak-to-peak AC signals, 2 mm sq. sensor size. 

Figure 4 shows the ratio of ratios R generated from both a 2mm sq. and a 4mm sq. sensor and scaled to 97% SpO2 
(R=0.5).  A scaling factor S=α/β≈0.46 was required to achieve the required saturation.  It can be seen that R drops by up 
to 0.2, representing a 5% increase in SpO2.  This reflects the expected unreliability of oxygen saturation readings between 
±45º of the light source position due to the simulation only taking into account the pulsatility of the main blood vessels.  
Conversely, saturation readings show stability at 97% with an error of ±2.5% for the 2mm sensor and of ±1% for the 
4mm sensor in the remaining circumference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Normalised AC/DC ratios (2mm sq. sensor) and ratio of ratios for data scaled to 97% SpO2 (R=0.5) 

4.DISCUSSION AND CONCLUSION 
Figure 3 shows a clear asymmetry in the AC responses due to a 1mm-2mm offset of the light source with respect to the 
axis of symmetry of the finger, amounting to a 20% difference in peak intensity.  This is indicative of a potentially 
significant effect of lateral light-source motion.  If quantified, such an effect could be used to characterise motion artefact 
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in pulse oximetry.  The AC/DC ratios in figure 4 show the same asymmetry seen in figure 3.  However, the variability of 
R can be seen to be inversely proportional to the peak-to-peak AC amplitudes, where greater R instability exists within 
±20º of the standard transmission-mode sensor position and the maximum R stability coincides with the peaks of figure 
3.  This indicates optimum sensor positions at ±60º to 90º of the light source position in relation to signal quality. 

The results of the MC simulation provide insight into the use of multiple sensors in transmittance-mode pulse 
oximetry for MA characterisation and cancellation.  The realistic nature of the results provide support towards the 
general use of MC simulations in arbitrary geometries to seek useful information into light propagation in optical 
biomonitoring.  However, optimisation of simulation time is essential for the method to be practicable to its full 
potential.   

Empirical validation of the platform presented here is a necessary and forthcoming step in the investigation.  Upon its 
completion, the derivation of equations to characterise changes in light-source and sensor positions as well as changes in 
optical propertieas and anatomical geometry will be attempted. 
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