

$MgSO_4$ + Zeolite based composite thermochemical energy stores (TCES) integrated with vacuum flat plate solar thermal collectors (VFPC) for seasonal thermal energy storage

Daniel Mahon, Paul Henshall & Philip Eames

CREST Loughborough University

Introduction

•Thermochemical Energy Storage offers a solution for storing heat indefinitely almost loss free.

 \cdot MgSO₄ is a prime candidate

•Cost effective (£61/Ton), Widely available, High energy density 2.8GJ/m³ (778kWh/m³), Non-Toxic.

•Problems – Material difficult to work with in powder form, agglomeration occurs reducing cycle stability, permeability and power output.

Creation of Zeolite + $MgSO₄$ Composites

 \bullet In order to alleviate MgSO₄ issues a composite material is created using Zeolite •Zeolite – Can be used as a sorption heat store

•Typically highly porous, high surface area and very absorbent

•Around 750J/g energy density.

•Higher surface are = larger reaction area = should result in higher power output

BET Surface Area Comprison of TCESM's

Creation of Zeolite + $MgSO₄$ Composites

•Composite materials do not suffer from agglomeration after hydration.

- •Graph shows DSC dehydration of composite materials (hydrated at 56%RH & 20˚C)
- •Majority of endothermic heat flow below 150˚C = Ideal for VFPC

Composites Enthalpy

•35wt% composite has a dehydration enthalpy, taking sensible losses into account, of \sim 950J/g using only 56% RH at 20 $^{\circ}$ C •Increasing wt% results in decreasing sensible component %. I.e. less wasted energy $({\sim}14\%$ for 35wt%)

oughborough.

University

Enthalpy DSC Data for Zeolite + $MgSO_a$ Composite Materials

Vacuum Flat Plate Solar Thermal Collectors

• Conventional flat plate solar thermal collectors

oughborough.

University

- Vacuum flat plate solar thermal collector.
	- Absorber fills up more of the installed collector area in comparison to evacuated tube solar thermal collectors
	- Vacuum provides greater insulation in comparison to convectional flat plate collectors

Vacuum Flat Plate Solar Thermal Collectors

Vacuum flat plate solar thermal collectors can operate efficiently at temperatures (100 \degree C - 150 \degree C) compatible with the dehydration of MgSO₄

Feasibility Study

- •Feasibility of VFPC+TCES system calculated.
- •Solar irradiance + ambient temperature calculated using CREST Integrated Electrical and Thermal Energy Demand model - Data generated stochastically
- •All systems modelled with 8m² of VFPC
- •Energy density (J/g) and *effective* heat capacity calculated from DSC tests.
- •Main Assumptions:
	- •3 months (summer) charge time.
	- •Remaining 9 months the VFPC solar gains are utilised.
	- •Inflation and £/kWh rise calculated from historic data.
	- •TCES only used throughout winter months.

Feasibility Study

•MgSO₄ and 35wt% composite dehydrated to 150 °C - able to store \sim 30% of winter space heating demand.

•Store size of MgSO₄ and 35 $wt\%$ composite = 2.09 and 4.75 m^3 , respectively.

System Payback

•Graph shows the system payback with time. \cdot MgSO₄ dehydrated to 80°C and 150°C as well as 35wt% dehydrated to 150˚C are viable.

System Payback with time / Savings against standard Energy Costs (VFPC +TCES)

UK CO₂ Savings

•Graph shows the amount of CO_2 saved, in the UK, using each of the different systems over a 30 year lifetime.

•It assumes the systems are completely 0 carbon and 10% of all UK households have a system.

UK CO₂ Savings

•Graph shows the amount of CO_2 saved, in the UK, using each of the different systems over a 30 year lifetime.

•It assumes the systems are completely 0 carbon and 10% of all UK households have a system.

Social Savings

•The graph shows the "social savings" from the reduction in the $CO₂$ emissions.

•Assuming the systems are completely carbon free and 10% of all UK households have a system.

•~£4 250 million savings over 30 years

Social Savings

•The graph shows the "social savings" from the reduction in the $CO₂$ emissions.

•Assuming the systems are completely carbon free and 10% of all UK households have a system.

•~£14 000 million savings over 30 years

Cost/kWh

•Graph shows the Cost/kWh of energy produced from the VFPC+TCES systems.

- \cdot 14p/kWh = current electricity cost
- •5p/kWh = current average space heating cost
- •£/kWh will only increase over time from traditional source's

kWh cost for each material (assuming use of energy from VFPC at 8m^2)

Loughborough
University Integration of VFPC+TCES

Conclusion

•Huge potential for a VFPC + TCES system along side existing DHW and space heating solutions.

•Potential to dramatically reduce energy consumption from typical (dirty) sources.

- •Feasibility study suggests the MgSO₄ and 35wt% (dehydrated to 150˚C) pay for themselves after around 25 years of use.
- •Potential to make huge social savings for the UK economy (in the order of +£460 million/year)

EPSRC funded project: High Performance Vacuum Flat Plate Solar Thermal Collectors for Hot Water and Process Heat (EP/K009915/1)

This Research is funded by:

