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ABSTRACT: A novel approach for rapid and sensitive detection of matrilysin (MMP-7, a biomarker involved in the degradation 

of various macromolecules) based on polypeptide (JR2EC) functionalized reduced graphene oxide (rGO) field effect transistor 

(FET) is reported. MMP-7 specifically digests negatively charged JR2EC immobilized on rGO, thereby modulating the conduct-

ance of rGO-FET. The proposed assay enabled detection of MMP-7 at clinically relevant concentrations with a limit of detection 

(LOD) of 10 ng/mL (400 pM), attributed to the significant reduction of the net charge of JR2EC upon digestion by MMP-7. Quanti-

tative detection of MMP-7 in human plasma was further demonstrated with a LOD of 40 ng/mL, illustrating the potential for the 

proposed methodology for tumor detection and carcinoma diagnostic (e.g. lung cancer and salivary gland cancer). Additionally, 

excellent specificity of the proposed assay was demonstrated using matrix metallopeptidase 1 (MMP-1), a protease of the same 

family. With appropriate selection and modification of polypeptides, the proposed assay could be extended for detections of other 

enzymes with polypeptide digestion capability. 

Proteases are enzymes involved in the digestion of long pro-

tein chains into shorter fragments (a process known as prote-

olysis) by splitting the corresponding peptide bonds.
1,2

 Due to 

their significant roles in numerous physiological processes and 

involvement in several pathological conditions, proteases have 

attracted considerable attention recently.
3,4

 In particular, ma-

trix metalloproteinases (MMPs) have been intensively studied 

over past decades as the dysregulation of MMP can be related 

to cancer,
5,6

 AIDS,
7
 inflammation,

8
 etc. Discovered in 1988,

9
 

the matrix metalloproteinase matrilysin (MMP-7) was found 

to be involved in the degradation of various macromolecules.
10

 

This molecule plays a key role in the regulation of lung de-

fence 
11

 and acts as an indicator of certain cancers (e.g. lung 

cancer and salivary gland cancer).
12

 Also, it is believed that 

MMP-7 contributes to invasive growth and metastasis of tu-

mors and carcinomas.
13,14

 Due to its various roles in physio-

logical processes, MMP-7 has attracted intensive attention and 

various sensing approaches have been developed. Currently, 

sensing approaches for MMP-7 include western blot 

analysis,
15

 enzyme-linked immunosorbent assay (ELISA),
16

 

and Förster resonance energy transfer  (FRET) analysis.
17

 

Nevertheless, these approaches have their respective limiting 

factors: ELISA suffers from limited throughput due to its re-

source intensive nature (sophisticated instrument and well-

trained personnel required);
18

 western blot analysis is a non-

quantitative method which provides limited information on the 

concentration of analyte targeted; FRET are limited by con-

cerns such as photo-bleaching of probes and toxicity of quan-

tum dots.
19

 Recently, Chen et al. described a colorimetric de-

tection of MMP-7 based on polypeptide functionalized gold 

nanoparticles.
19

 In this assay, the gold nanoparticles were 

functionalized with synthetic polypeptides containing recogni-

tion/cleavage sites for MMP-7. Cleavage of the polypeptides 

induced nanoparticle aggregation and a concomitant color 

shift that enabled a direct and quantitative measurement of the 

concentration and activity of MMP-7. However, the limit of 

detection (LOD) achieved by this assay was 5 nM, approxi-

mately equivalent to the critical level of MMP-7 related to 

salivary gland cancer.
12

 Moreover, performance of this MMP-

7 assay in clinical sample matrices was not demonstrated. 

Graphene-based field-effect transistors (FETs) have been 

widely used as sensing platforms for ultra-sensitive and label 

free molecular detections.
20-23

 As a single layer of sp
2
 hybrid-

ized carbon atoms, graphene has emerged to be an exciting 

class of nanomaterials for biosensing applications in virtue of 

its absolute 2D structure, as well as superior electrical and 

physical properties.
24,25

 FET is a transistor based on semicon-

ducting material and the conductivity of the channel for charge 

carrier(either electron or hole) is controlled by an external 

electric field (gate voltage). FETs are ideal platforms for elec-

Page 1 of 7

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

tronic assays as any changes in the physical parameters (such 

as charge density and electrical double layer composi-

tion/extension) of the graphene-based material induced by 

attachment of target molecules could have a significant effect 

on the source-drain current and generate detectable signals.
26

 

To date, graphene based FET devices have been widely ex-

plored in electronic detections of DNA,
27

 enzymes,
28

 proteins 
29,30

 and ions.
31

 

In this article, a novel approach for rapid (lag time < 5 min) 

and sensitive electronic detection of MMP-7 using FETs based 

on polypeptide functionalized reduced graphene oxide (rGO), 

a p-type semiconductor,
32,33

 is described. In brief, rGO was 

deposited on Si/SiO2 surface and then the electrodes were de-

posited using thermal evaporation through a mask. The poly-

peptide was attached to the rGO surface via a pyrene-

maleimide linker. A small voltage bias (Vd) of 10 mV was 

applied between the source electrode and the drain electrode, 

the current (Id) flowing through the transducing layer was 

recorded while sweeping the gate voltage (Vg) from - 600 mV 

to 0 mV. The rGO films obtained via GO reduction by hydra-

zine were deposited on Si/SiO2 substrate, as reported previous-

ly.
34

 To achieve high sensitivity and specificity, the rGO was 

functionalized with a de novo designed synthetic polypeptide 

(JR2EC, sequence shown in Figure 1). Consisting of 42 amino 

acids, this polypeptide exhibits two recognition and digestion 

sites (Ala-Leu and Ala-Gln-Leu, as shown in Figure 1) for 

MMP-7.
35

 It has been shown that immobilized polypeptides 

could be hydrolyzed by MMP-7, resulting in decreased size, 

and more importantly, reduced net charge of the polypeptide 

from -5 to -1  upon hydrolysis, as schematically shown in Fig-

ure 1.
19

 As a result of the significantly reduced net charge car-

ried by polypeptides, the source-drain current (Id) of the rGO-

FET device decreased drastically and the change in Id could be 

readily detected in real time. It was observed that the change 

in Id is dependent on the concentration of MMP-7, thus ena-

bling a quantitative monitoring of the concentration and activi-

ty of this protease. The principle of the proposed assay is illus-

trated in Figure 1. The results revealed that the detection using 

the proposed assay was rapid (lag time < 5 min) and highly 

sensitive. The LOD achieved for MMP-7 in buffer was 10 

ng/mL (400 pM), which was one order of magnitude higher 

than the LOD of the colorimetric detection based on gold na-

noparticles functionalized with the same polypeptide.
19

 Indeed, 

the sensitivity of the proposed assay is comparable to ELISA 

assay 
36

 and optical assays (e.g. surface enhanced Raman scat-

teringbased assay 
37

 and the fluorescence-based assay 
38

). Also, 

a LOD of 40 ng/mL was achieved upon detection of MMP-7 

in human plasma. Additionally, this assay exhibited excellent 

specificity as matrix metallopeptidase 1 (MMP-1), a protease 

of the same family, did not trigger any significant changes in 

Id as compared to MMP-7. In virtue of these advantages, the 

proposed assay shows a great potential for development into a 

diagnostic tool used for tumor detection, cancer diagnostic and 

other point-of-care applications. 

RESULTS AND DISCUSSION 

Figure S2 shows the FESEM image of the rGO flakes deposit-

ed on the Si/SiO2 substrate. The bright regions are the sub-

strate, while the dark regions are deposited rGO flakes. As-

prepared rGO devices were incubated with pyrene maleimide 

for 30 min and rinsed with PBS, followed by PEG passivation 

and incubation with JR2EC for 30 min. 

Before kinetic measurements, the immobilization of JR2EC 

with pyrene maleimide as linker molecule was investigated 

with two control groups. In Group I (red), the rGO-FET device 

was passivated with PEG and incubated with JR2EC directly. 

In Group II (blue), the rGO-FET device was incubated with 

pyrene maleimide, passivated with PEG and then incubated 

with JR2EC. As shown in Figure 2(a), device in Group II ex-

hibited a significant Id response as compared to that of device 

in Group I, demonstrating that the immobilization of JR2EC 

was achieved with pyrene maleimide as linker molecule. Fig-

ure 2(b) shows the transfer characteristics (Id vs.Vg) of the 

rGO-FET devices before and after polypeptide functionaliza-

tion. As observed, device before polypeptide functionalization 

exhibited a typical semiconductor behavior and polypeptide-

functionalized device generated an Id-Vg curve similar to that 

of non-functionalized device, demonstrating that both non-

functionalized devices and polypeptide-functionalized devices 

showed typical FET responses. 

For kinetic measurements in buffer, MMP-7 at different con-

centrations was measured using the method described previ-

ously. The leakage current of the FET device is typically very 

small (1-10 µA). In addition, the effect of varying leakage 

current was accounted for by normalizing the current (normal-

ized current = (drain current-leakage current)/leakage current 

× 100%), Figure 3. As shown in Figure 3a, Id decreased as a 

result of incubation with MMP-7 and the magnitude increased 

exponentially with the concentration of MMP-7 (Figure 3b). 

The results indicated that MMP-7 could be quantitatively 

measured by the proposed methodology. The limit-of-

detection (LOD) calculated using the 3σ/S approach 
39 (see 

supporting information) was 10 ng/mL (400 pM), which is one 

order of magnitude higher than the LOD achieved by the col-

orimetric approach reported.
19 The high sensitivity could be 

attributed to the significantly reduced net charge (from 5 nega-

tive charges per peptide to 1 negative charge per polypeptide, 

at pH 7) carried by the immobilized polypeptides, as well as 

reduction of polypeptide size caused by MMP-7 digestion. 

The reduction of charges (Figure S3) leads to a reduction of 

electrostatic potential/gate voltage in the FET device. Besides 

kinetic measurements in buffer, detections of MMP-7 of dif-

ferent concentrations in human plasma were also demonstrated 

using the proposed assay. Note that before introduction of 

MMP-7, the sensing surface was thoroughly washed to re-

move free polypeptide in solution. This is critical, as free pol-

ypeptides in solution affects the sensitivity of the assay.  The 

results indicated that Id decreased as a result of incubation with 

MMP-7 (Figure 3c) and the response increased exponentially 

with the concentration of MMP-7 (Figure 3d). The LOD of 

plasma test calculated using the 3σ/S approach was 40 ng/mL. 

Sensitivities of the proposed assay for detection of MMP-7 in 

both buffer and human plasma are higher than that of the col-

orimetric approach reported previously
19

 and comparable to 

ELISA and optical assays.
36-38 Additionally, LODs achieved 

by this assay are within clinically relevant ranges (e.g. 0.1~5 

µg/mL for salivary gland cancer 
19

 and 1~10 ng/mL for blad-

der cancer patients 
40

). Therefore, the proposed assay shows a 

great potential for applications in tumor detection and carci-

noma diagnostic.  

In addition to the kinetic measurements, three control experi-

ments were also designed and conducted to validate the mech-

anism of the proposed assay and the results are shown in Fig-
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ure 4. In the first experiment (control group A), no polypep-

tides were immobilized on rGO prior to device incubation 

with MMP-7 in order to investigate the non-specific binding 

of MMP-7 on rGO films. No significant Id responses were 

triggered byMMP-7 in the absence of polypeptides, demon-

strating that non-specific binding is minimized by PEG surface 

passivation. In the second experiment (control group B), the 

polypeptide-functionalized rGO devices were incubated with 

deactivated (realized by heating at 100 °C for 10 min) MMP-7. 

The device showed negligible responses to deactivated MMP-

7, indicating that the proposed assay is capable of providing 

essential information on the activity of MMP-7. In the third 

experiment (control group C), the polypeptide-functionalized 

rGO devices were incubated with MMP-1to investigate the 

specificity of the polypeptide proposed. Negligible Id respons-

es as compared to the responses in kinetic measurements were 

observed, demonstrating that the polypeptide is specifically 

digested by MMP-7. 

In virtue of the robustness of the synthetic polypeptides used 

and possible miniaturized structure (a portable electronic cir-

cuitry) of the FET platforms, the proposed assay could be em-

ployed for point-of-care diagnostic applications. It is also en-

visioned that the proposed approach could be extended for 

detections of other polypeptide-digesting enzymes upon ap-

propriate selection or modification of polypeptides. 

CONCLUSIONS 

A novel approach for rapid (lag time < 5 min) and sensitive 

(LOD in buffer = 10 ng/mL, equivalently 400 pM) detection 

of MMP-7 based on polypeptide functionalized rGO-FET is 

reported. The superior sensitivity could be attributed to the 

significant reduction of net charge of the polypeptides induced 

by MMP-7 digestion. More importantly, detection of MMP-7 

in human plasma has been demonstrated by the proposed as-

say with LOD = 40 ng/mL. Additionally, this assay enables 

detection of both activity and concentration of MMP-7 and 

excellent specificity of the proposed assay was demonstrated 

using MMP-1, a protease of the same family. Hence, the pro-

posed assay shows a great potential for applications in tumor 

detection and carcinoma diagnostic. 

ASSOCIATED CONTENT 
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Figure 1. The working principle of the proposed assay.
41

 The presence of target molecules (MMP-7) leads to cleavage of polypep-

tides immobilized on the rGO surface, resulting in reduced size and net charge of the immobilized polypeptides. Therefore, de-

creases in Id could be detected. The cleavage sites for MMP-7 are the 11
th
 and the 26

th
 amino acids. 

 

 

Figure 2. (a) Id responses of the proposed rGO-FET in two control groups. In Group I (red), the PEG-passivated rGO-FET device 

was incubated with JR2EC; in Group II (blue), the rGO-FET device was incubated with pyrene maleimide, PEG and JR2EC con-

secutively (Error bars refer to the standard deviations of data collected on n devices, n > 3). (b) Transfer characteristics (Id vs.Vg) of 

the rGO-FET devices before and after polypeptide functionalization. 
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Figure 3. (a) Kinetic measurements of MMP-7 at different concentrations (0.01 µg/mL, 0.05 µg/mL, 0.1 µg/mL, 0.5 µg/mL and 

1µg/mL) in buffer; (b) Id response of rGO device vs. MMP-7 concentration in buffer tests using devices from different batches 

(n>3); (c) Kinetic measurements of MMP-7 at different concentrations (0.01 µg/mL, 0.05 µg/mL, 0.1 µg/mL, 0.5 µg/mL and 

1µg/mL) in human plasma; (d) Id response of rGO device vs. MMP-7 concentration in plasma tests using devices from different 

batches (n>3). Error bars are the standard deviation of at least three repetitive experiments. 

 
Figure 4. Id responses to three control groups as compared to that of kinetic measurements: Control group B = non-functionalized 

rGO device incubated with active MMP-7; Control group B = JR2EC functionalized rGO device incubated with deactivated MMP-
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7; Control group C = JR2EC functionalized rGO device incubated with MMP-1. (Error bars are the standard deviation of at least 

three repetitive experiments) 
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