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Abstract

We consider the problem of helping a decision maker (DM) choose from a set of multiat-
tributed objects when her preferences are “concavifiable”, i.e. representable by a concave value
function. We establish conditions under which preferences or preference intensities are concav-
ifiable. We also derive a characterization for the family of concave value functions compatible
with a set of such preference statements expressed by the DM. This can be used to validate dom-
inance relations over discrete sets of alternatives and forms the basis of an interactive procedure.
We report on the practical use of this procedure with several DMs for a flat-choice problem and
its computational performance on a set of project-portfolio selection problem instances. The use
of preference intensities is found to provide significant improvements to the performance of the
procedure.

1 Introduction

The general problem motivating this paper is that of multicriteria choice, where a decision maker
(DM) is faced with selecting from a number of alternatives evaluated on different criteria (or at-
tributes). The alternatives may be too many to list explicitly, or even be infinite in number. More-
over, the DM cannot readily articulate her preferences by specifying a value function, but she can
answer specific questions asked of her by an analyst or a decision support system. Such interac-
tion is a learning process, by which the DM reflects, deliberates and constructs her own preferences
(see Phillips, 1984; Vanderpooten, 1989, Roy, 1993). This problem has a long history and has been
tackled by many researchers over the last several decades.
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Perhaps the most fundamental differences among existing approaches relate to their assump-
tions about the underlying preferential model, e.g. the value function specification and the types
of preferential information that the model permits. One family of approaches employ additively
separable value functions. Within this family there are clear methodologies for incorporating infor-
mation about intensity of preference. Another family of approaches employ quasi-concave value
functions, based on the assumption of preference-convexity: an average (convex combination) of
two alternatives is assumed to be at least as attractive as the least preferred of the two. Within
this family it is not standard to use preference intensity information, and indeed it is unclear how
one could combine it with the quasi-concavity of the value function. On the other hand, an ap-
pealing feature of these approaches is that preference-convexity is in many settings a more natural
condition than the preferential-independence conditions which underlie the additive model. In-
deed, the quasi-concavity of the value function has come to be viewed as a relatively standard
assumption (particularly in the field of economics).

In this paper we introduce an approach for the multicriteria choice problem, for the case where
the DM’s preferences are concavifiable, i.e. representable by a concave value function. We call our
idea CUT, for Concave UTility by analogy with the procedure UTA (Jacquet-Lagrèze and Siskos,
1982), which stands for UTilité Additive. Concavity can be an attractive alternative to both addi-
tivity and preference-convexity (though it is closely related to the latter). Firstly, it may be a more
natural assumption than additivity in some settings. For example, in the context of buying a house
characterized by square footage and distance from the city center, it may be that a DM has con-
cavifiable preferences in the sense that for every level of distance she has diminishing marginal
benefit for square footage and vice versa, but nevertheless she values square footage more when
she is close to the city center (e.g. because her flat will then be an attractive location for entertain-
ing or hosting visitors). Furthermore, concavifiability is not a particularly stronger assumption
than preference-convexity (we elaborate in Section 3), but it can allow for the elicitation and use of
preference intensities.

We demonstrate that our method has the following attractive features:

• theoretically, using CUT we can derive all information that can be inferred from a given set
of preference statements.

• empirically, asking the DM about preference intensities does improve the effectiveness of an
interactive procedure based on CUT, compared to using the same procedure with ordinal
preferences only. Crucially, this improvement can be realized without having to ask the
DM excessively demanding questions. This demonstrates an important potential for using
preference intensities in interactive procedures.

• for the purposes of practical application, our method provides the DM with information on
how much better one alternative can be than another, thus giving a measure of the potential
cost of prematurely terminating the interactive search.

We structure the paper as follows. In Section 2 we provide a literature review. In Section 3 we
introduce our modeling framework; we show that there are two distinct ways to make precise the
notion of “concavifiability”. In Section 4 we characterize the set of concave value functions com-
patible with a set of preferential statements and use that to validate dominance relations among
a set of alternatives. Section 5 describes the interactive use of CUT: we introduce an interactive
procedure and show that it is both practical and has attractive theoretic convergence properties.
Section 6 concludes.
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2 Literature Review

To frame our contribution, we structure our literature review under the two headings of Multiple
Criteria Decision Analysis (MCDA) and Interactive Multiobjective Programming (IMOP). In MCDA,
the analyst guides the DM through the construction of an explicit value model. This is exemplified
in the framework of Multiattribute Value Theory (Keeney and Raiffa, 1976; Dyer and Sarin, 1979).
To obtain an analytically tractable value function, the DM’s preferences are assumed to satisfy
a separability condition (preference/difference independence, see e.g. Dyer, 2005; Fishburn and
Wakker 1995), implying that the value function is of an additive form, or some generalization of
this, such as a multilinear or multiplicative form. By far the most common model used in practice
is the additive model. In all these models the DM is asked to make choices between objects, or
express judgments of preference intensity, as, for example, in the “weighting” question: “How
much do you care about the difference between alternatives a and b on criterion 1, relative to the
difference between alternatives c and d on criterion 2?”. The concept of preference intensity is
pervasive in this framework (see e.g. von Winterfeldt and Edwards, 1986 p. 210, Farquhar and
Keller 1989; Keeney and von Winterfeldt, 2007 p. 236) and its use in practice is widely accepted: for
example, the concept of “swing-weights” presented in MCDA textbooks (e.g. Belton and Stewart,
2002) is an intensity of preference concept.

Often in practice, DMs find it difficult to provide the precise answers required to parameterize
the model, but they may be able to provide other “incomplete information”, e.g. ranges for cri-
terion weights, holistic comparisons of alternatives, or qualitative preference intensity statements
(see Salo and Hämäläinen, 2010 for a recent survey). Several approaches are based on utilizing
such responses to deduce additional preferences and help focus decision maker search and reflec-
tion. We highlight those based on the well-known UTA method (Jacquet-Lagrèze and Siskos, 1982)
(see Siskos, Grigoroudis and Matsatsinis, 2005, and Greco et al. 2010 for surveys). Predominantly
these approaches use additive value functions, although there are exceptions: Greco, Matarazzo
and Slowinski (2001) and Angillela, Greco and Matarazzo (2010) consider the use of rough-set
and Choquet integral concepts. Nevertheless, how one works with preference information when
additivity is not an appropriate assumption is not a settled question in the MCDA literature.

In IMOP approaches the analyst progressively asks DMs to articulate their preferences and uses
that to guide the search. As in MCDA, a structural assumption about the value function is typically
made. In addition to the additive case (e.g. Stewart, 1987; Jacquet-Lagrèze, Meziani and Slowinski,
1987; Roy et al., 2008), the IMOP literature has also considered other value function specifications.
Geoffrion, Dyer, Feinberg (1972) and Zionts and Wallenius (1983) consider the case of a concave
value function. When a quasi-concave value function is assumed, a popular idea in IMOP is to
use “convex cones” to eliminate entire dominated regions in multiattribute space. Hazen (1983)
provides a rigorous analysis of this concept. Korhonen, Wallenius and Zionts (1984), Ramesh,
Karwan and Zionts (1988) and Prasad, Karwan and Zionts (1997) provide interactive procedures
utilizing convex cones. This idea has proved influential in the literature – Karsu, Morton and
Argyris (2012) cite 15 references using cones, a success we attribute to the modest and natural
appeal of the quasi-concavity assumption. We note here that IMOP procedures utilizing cones do
not allow for deducing all inferable pairwise dominances given a set of preference statements from
the DM (see e.g. Hazen, 1983, Korhonen et al. 1996).

In IMOP preference intensities are an unexplored concept: Shin and Ravindran (1991) review
eight modes of questioning in IMOP, none of which are based on intensity of preference. Yet,
preference intensities can be very useful in an IMOP setting (a claim we justify later in the paper).
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Indeed, Korhonen, Moskowitz and Wallenius (1986) (also Korhonen et al. 1993) suggested the
use of measurable value functions in IMOP, to ‘allow consideration not only of the question of
finding a better solution, but also of “how much better”’. However, there is no way to incorporate
preference intensities within the convex cones technology. In principle this is possible within the
method of Zionts and Wallenius (1983), but this is only by using a linear approximation of the
underlying (quasi-) concave value function (and, as is typically the case, a few ordinal comparisons
are already enough to over-determine the approximation).

The approach we introduce, called CUT, combines distinctive advantages of the existing ap-
proaches. When used with ordinal preferences, CUT is only slightly less general than approaches
based on quasi-concave functions (as we elaborate in the next section); but it has the advantage
of accommodating preference intensities as well. CUT allows for capturing all information that
can be derived from the DM’s expressed preferences (Section 4) and can also be used in an IMOP
context (Section 5). Particularly for the IMOP case, utilizing preference intensity information can
dramatically improve the effectiveness of an interactive procedure.

3 Modeling Framework

We consider a set of outcomes Z ⊆ R
p
+ and denote an outcome by z = (z1, ..., zp). We assume

that Z is convex, contains the origin 0 = (0, ..., 0) and is not a singleton. The preference relation
% orders outcomes in Z: z′ % z′′ is interpreted as “z′ is at least as good as z′′”. The preference
intensity relation (or strength-of-preference relation) %∗ orders pairs of outcomes in Z × Z: (z′ ←
z′′) %∗ (z′′′ ← z′′′′) means that the DM prefers z′′ to z′ more strongly than she prefers z′′′′ to
z′′′, (or feels that exchanging z′′ for z′ is at least as attractive as exchanging z′′′′ for z′′′). The
relation %∗ induces a binary preference relation % on Z as follows: z′ % z′′ ⇔ (z′ ← z′′) %∗

(z′′ ← z′′). The preference relation % is represented by an ordinal value function u(·) : Z → R, if:
z′ % z′′ ⇔ u(z′) ≥ u(z′′). All functions that represent % are strictly-increasing transformations
of one another. The preference intensity relation %∗ is represented by a cardinal value function, or
measurable value function u(·) : z→ R, if: z′ ← z′′ %∗ z′′′ ← z′′′′⇔ u(z′)− u(z′′) ≥ u(z′′′)− u(z′′′′)
(note that u(·) will also represent the induced ordinal relation %). All functions that represent
%∗ are positive linear transformations of one another. We assume that both %∗ and % satisfy
conditions sufficient for the existence of a representing function (these are well known, see e.g.
Krantz et al. 1971, Köbberling 2006).

As is commonplace in the literature, we assume that the DM’s preferences are weakly monotonic,
i.e. z′, z′′ ∈ Z, z′′ ≥ z′ ⇒ z′′ % z′ (where z′′ ≥ z′ means that z′′ is at least as high as z′ in all p
dimensions). Weak monotonicity implies nondecreasingness of the representing value function.
We will also require the value function to be concave, i.e. u(λz′ + (1 − λ)z′′) ≥ λu(z′) + (1 −
λ)u(z′′) holds for any z′, z′′ ∈ Z and λ ∈ (0, 1) (when the inequality is strict the function is strictly
concave). There are two ways to approach concavifiability, depending on whether one accepts
preference intensities, or ordinal preferences only.

For the ordinal case, the additional condition to be imposed on % is (strict) convexity. Formally,
% exhibits (strict) convexity if for all z′, z′′ ∈ Z, z′ % z′′ ⇒ λz′ + (1 − λ)z′′ % z′′, λ ∈ (0, 1)
(resp. λz′ + (1− λ)z′′ � z′′ for strict convexity). A function that represents the (strictly) convex
% is called (strictly) quasi-concave. For the case where Z is an infinite set, convexity of % is not
sufficiently strong to ensure concavifiability in general (de Finetti, 1949; Fenchel, 1953). However
for case of finite Z we may state the following (a special case of a result of Kalandrakis, 2010).
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Figure 1: Geometrical intuition behind NII.

Proposition 1 Let % be a preference relation that admits an ordinal representation and assume further that
it exhibits weak-monotonicity and strict convexity. Then for any finite set Z ⊂ R

p
+, the restriction of % to

Z has a strictly concave representation.

This result shows that our approach is only slightly less general in its domain of application
than the convex cones approach (which assumes ordinary rather than strict convexity). The need
to work with a restriction of % to Z does not seem a material limitation, as we are mainly interested
in finding a representation over a (finite) reference set of points for which the DM has expressed
preferences.

For the case where the DM is able to express preference intensities and this concept is taken as
primitive, an alternative (and potentially easier) route into concavifiability than strict convexity is
the following condition of nonincreasing preference intensities (inspired by a condition called “non-
increasing tradeoffs”, introduced by Wakker 1988, p. 140 for the single-dimension case).

Definition 2 The relation %∗ exhibits nonincreasing preference intensities (NII) if for all z′, z′′ ∈ Z and
λ ∈ (0, 1), (z′′ + λ(z′ − z′′)← z′′) %∗ (z′ ← z′′ + (1− λ)(z′ − z′′)).

To get a sense of the meaning of the NII condition, consider how it might work in a biattribute
environment. There are essentially two cases, shown in the panels a. and b. of Figure 1. In a., when
λ < 1/2, monotonicity gives z′ % (z′′ + (1− λ)(z′ − z′′)) % (z′′ + λ(z′ − z′′)) % z′′. To satisfy NII,
the DM must accept that she prefers the vector-increment λ(z′ − z′′) more intensely at z′′ than at
the more preferred point z′′ + (1− λ)(z′ − z′′). From this point of view, NII appears as a familiar
diminishing marginal returns concept in a multiattribute environment. In b., point z′′ can be seen
to be high on z1 and low on z2 and for z′ the situation is reversed. To satisfy NII, the DM must
accept that however much she likes or dislikes the tradeoff λ(z′ − z′′) (a gain in z2 at the expense
of a loss in z1), when it is offered at z′′, she must like it less or dislike it more when it is offered at
z′′ + (1− λ)(z′ − z′′). Thus NII can be seen as a condition on preference intensities for different
tradeoffs along a ray in multiattribute space. These examples highlight the connection between
NII and concavifiability (via diminishing marginal returns). This is formalized in Proposition 3
(all proofs are in appendix C).

Proposition 3 For weakly-monotonic preferences and preference intensities which are representable by a
cardinal value function u(·), NII holds if and only if any representation of %∗ is concave.
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In the preceding we assumed that the dimensions of Z are continuous. Thus, the question
arises as to how to deal with discrete attributes. We do not provide a full treatment for this case
in this paper, but we do offer some ideas about how to proceed in theory and in practice. We
note first that while this case is not a natural environment for the NII assumption, the same is
true for preference-convexity (as Z is not convex). To motivate the discussion, consider an exam-
ple of a discrete scale, “Global Impact”, used to evaluate research projects by a national funding
body. Suppose the scale has three levels {0; 1; 2} defined as follows: “No significance”; “Na-
tional significance”; “International significance” (the scale is rather crude but it is sufficient for
the point we wish to make). It is obviously meaningless to talk of decreasing marginal benefit
over the interval [0, 2]. Nevertheless, a DM may be asked to support (or refute) the assertion that,
for any project, an improvement from 0 to 1 increases its value at least at much as one from 1 to
2. If so, we can construct a value function for “Global Impact” which is concave over the entire
[0, 2] interval. Further, we can attempt to ensure concavifiability via the scale construction itself.
For example, if the DM refutes the above assertion, we could replace the descriptor “National
Significance” with the more stringent descriptor “National and European Significance” (say for
a UK-based funding body), or, instead, introduce “European Significance” as a new intermediate
level (so the scale would be {0; 1; 2; 3}). Then we would ask the DM again (and possibly repeat). In
general, for a single attribute, the validity of the NII condition over a discrete numerical domain
is sufficient to ensure concavifiability over a containing interval. We conjecture that this is also
true for the multiple-attribute case (where some may be continuous), but we leave that open for
further research. Finally, the problematic case could be avoided when it is possible to construct
cardinal scales for individual attributes. For example, the worst and the best projects in terms of
“Global Impact” could be assigned scores of 0 and 100; then every number within this interval is
interpreted as a proportion of the benefit difference between these two projects (for that attribute).
In such a case we obtain continuous scales and it is then appropriate to consider whether value
exhibits diminishing marginal benefit over the product set of these attributes.

4 Dominance and Efficiency

In this section we deal with the problem of exploiting a DM’s expressed ordinal preference and
preference intensity statements over a set of alternatives. Denote by R = {z1, ..., zn} ⊆ Z, a finite
reference set of alternatives where zj = (z1

j , ..., zp
j ), ∀j ∈ J = {1, ..., n}. Some of the alternatives could

be hypothetical and only included to help elicit preferences. The set R′ (with index set J′) contains
the ‘real’ alternatives and is a subset of R, a proper subset if there are hypothetical alternatives.

The general approach is standard in the literature. Let %∗R be a relation representing a finite
number of expressed preference intensity statements of the form:

(z′ ← z′′) %∗R (z′′′ ← z′′′′) z′, z′′, z′′′, z′′′′ ∈ R, (1)

obtained from the DM. We include any possible expressed ordinal preference statements z′ % z′′

by allowing z′′′ = z′′′′. Note that %∗R will not be complete (if it is, then it must equal %∗ and there
is no need for further analysis).

Let UCN (%∗R) be the set of all nondecreasing concave functions over Z that are consistent with
%∗R, by which we mean that u(z′)− u(z′′) ≥ u(z′′′)− u(z′′′′), whenever one of the statements in (1)
comprising %∗R holds. To avoid triviality, we take u(0) = 0, u(1) = 1, for each u(·) ∈ UCN (%∗R),
where 0 and 1 are vectors or zeroes and ones.
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Figure 2: Graphical representation of CUT.

In general, for any collection U of value functions over Z, it is common in the literature to say
that alternative z′ U−dominates z′′, if u(z′) ≥ u(z′′) for every u(·) ∈ U . Further, given a subset R′

of alternatives from R, an alternative z′ ∈ R′ is said to be U -efficient in R′ if there is some u(·) ∈
U for which u(z′) ≥ u(z) for every z ∈ R′. We shall be interested in characterizing efficiency and
dominance when U = UCN (%∗R). If z′ is UCN (%∗R)-efficient in R′, then it is potentially a maximal
element of R′ with respect to the underlying preferences %; otherwise it is certainly not maximal
and can be discarded. Further, if z′ UCN (%∗R)-dominates z′′ then it follows that z′ % z′′.

The way in which we derive this characterization is introduced graphically in Figure 2. Con-
sider four points: z0, z1, z2, z3. Each zj is mapped to a value score υj = wjzj + βj which is the
minimum over all mappings wjzk + βj. In the multidimensional case the lines are hyperplanes
and wj are p-vectors. Given this arrangement a concave nondecreasing value function that repro-
duces the value scores υj may be constructed as the pointwise minimum of a finite collection of
affine functions (defined by the hyperplanes), as shown with the solid bold line. Alternatively,
the boundary of the (extended) convex hull of the set of points (υj, zj) can be used as the graph
of a compatible value function, as indicated by the dashed bold line. The idea is that the set of all
possible collections of hyperplanes which can be described in this way defines the set of all value
assignments of interest.

In the general case, denote by υ = (υ1, ..., υn) a vector of value assignments to the alternatives
in z1, ..., zn, and let ΥCN (%∗R) denote the set of those υ that are consistent with %∗R. Formally, define
the polyhedron:

ΥCN (%∗R) =

υ ∈ Rn
+

∣∣∣∣∣∣∣∣
υj − υk ≥ υl − υm if (zj ← zk) %∗R (zl ← zm)
υj = 0, υk = 1 if zj = 0, zk = 1
υj ≤ wkzj + βk ∀ j, k ∈ J with equality when j = k
wj ∈ R

p
+, βj ∈ R ∀j ∈ J

 . (2)
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Here the first restriction guarantees consistency with %∗R; the third and fourth guarantee concavity.
In what follows we will regularly suppress the arguments of ΥCN . We note here that we have not
explicitly considered the possibility of strict preference statements expressed by the DM to keep
exposition simple. In fact, these can be included with little modification. As is commonplace in the
literature, strict ordinal preferences, denoted �R, can be included by introducing a small positive
+ε to the right-hand-sides of the corresponding constraints in (2). The value of ε can be considered
to be the minimum acceptable difference in any two value scores (given the scale normalization).
Strict preference intensities can be handled in an analogous way. We now state the fundamental
theorem.

Theorem 4 There is a one-to-one correspondence between value assignments υ ∈ ΥCN and the restrictions
u|R of functions u(·) ∈ UCN (%∗R) to alternatives in R. For corresponding υ and u(·) we have υj = u(zj)
for all zj ∈ R.

Theorem 4 makes it easy to characterize efficiency and dominance. For efficiency over a subset
R
′ ⊆ R, the following are equivalent:

a) Alternative zj′ is UCN (%∗R)-efficient in R
′
,

b) There is some u ∈ UCN (%∗R) such that u(zj′ ) ≥ u(zj) for each zj ∈ R
′
,

c) There is some υ ∈ ΥCN (%∗R) such that υj′ ≥ υj for each j ∈ J
′
, (invoking Theorem 4),

d) The set {υ ∈ ΥCN (%∗R)|υj′ ≥ υj for each j ∈ J
′} is nonempty.

For dominance, the following are equivalent:

e) zj is UCN (%∗R)-dominates zk,

f) u(zj) ≥ u(zk) for each u ∈ UCN (%∗R),

g) υj ≥ υk for each υ ∈ ΥCN (%∗R), (invoking Theorem 4),

h) min{υj − υk| υ ∈ ΥCN (%∗R)} ≥ 0.

Of course, the conditions in statements d) and h) can each be checked by solving a linear pro-
gram.

By Theorem 4, the feasibility of (2) is a necessary and sufficient condition for the representabil-
ity of %∗R by a concave and nondecreasing function. Kohlberg (1983) gives alternative conditions to
ours in (2), but it is difficult to see how these can operationalize efficiency and dominance checks.
For an alternative condition, effectively derived by “dualizing” (2), see Richter and Wong (2004).

5 Interactive Procedure

In this section we develop and interactive procedure for two types of multicriteria choice prob-
lems, namely: multicriteria discrete choice problems (i.e. problems of single choice from a set of
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explicitly listed alternatives) and 0-1 multicriteria optimization problems (i.e. optimization prob-
lems with only binary variables). The structure of the procedure is the same for both cases, so we
introduce it using the generic problem of choosing from some feasible set of alternatives X, where
each alternative in X is scored across several criteria via criterion functions f i : X → Zi. We then
detail how to implement the procedure when X takes the respective form for the two problems
considered. For brevity, we use F(x) = ( f 1(x), ..., f p(x)) and F(X) = {F(x)|x ∈ X}.

The general structure of the interactive procedure is standard. At every iteration t, the DM has
expressed preferences denoted %∗t over a set of alternatives Rt (with index set Jt) and has identi-
fied an incumbent alternative zinc

t = F(xinc
t ) (for simplicity, we use j′ to denote the index value of

the incumbent alternative across all iterations). She is then asked to compare the incumbent to a
challenger and declare her preference or indifference; then the cycle repeats. The critical idea is the
way in which the challenger is generated: by identifying an alternative z∗o ∈ F(X) which maxi-
mizes the value difference with the incumbent across all value functions in UCN (%∗t ). By invoking
Theorem 4, this can be done by solving the following problem in (3), for which the optimal value
is denoted by A∗t (we use asterisk-superscripts to denote optimal solutions in the ensuing).

max
{

υo − υj′ | υ ∈ ΥCN (%∗t ), υo ≤ wjzo + βj ∀j ∈ Jt, zo ∈ F(X)
}

. (3)

The solution of this problem is the only difference between the application of the procedure
in the two problem types considered, and we describe this in the following two subsections. The
full details for implementing the procedure outlined above are as follows. The reference set and
the incumbent are initialized as R1 = {0, 1} and zinc

1 = 1. As already remarked, the procedure
continues by solving problem (3) at every iteration. At that point the optimal value A∗t is examined.
If A∗t = 0 then the procedure terminates (there can be no alternative which would be strictly
preferred to the incumbent). Otherwise we increment t, augment the reference set Rt with the
new challenger alternative z∗o , ask the DM to compare the incumbent and challenger alternatives
and state whether zinc

t−1 � z∗o , zinc
t−1 ∼ z∗o or z∗o � zinc

t−1. Accordingly, we update %∗t with the new
preference statement (which translates to additional constraints on ΥCN ). If the DM states that
z∗o � zinc

t−1, then we also update the information on the incumbent by setting zinc
t = z∗o .

5.1 The case of discrete choice problems

In discrete choice problems alternatives are explicitly listed. Thus X = F(X) and the constraints
zo ∈ F(X) in (3) simply imply zo ∈ X = {x1, x2, ..., xs}. Fixing zo = xo for some xo ∈ X, the
problem in (3) reduces to the following linear program in (4), which can be solved separately for
all xo ∈ X:

max
{

υo − υj′ | υ ∈ ΥCN (%∗t ), υo ≤ wjxo + βj ∀j ∈ Jt

}
. (4)

The alternative x∗o for which the value of problem (4) is maximal (with an arbitrary choice in case
of ties) is the new challenger. In addition, alternatives for which the identified optimal value is
nonpositive can be discarded (by Theorem 4, they are dominated by the incumbent). In section 5.4
we report on the use of this implementation in an application context.
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5.2 The case of 0-1 multicriteria optimization problems

For the case of 0-1 multicriteria optimization problems, the f i are linear: f i(x) = ∑
q=1,...,m

ci
qxq, and

X is defined by linear inequalities: X = { x ∈ {0, 1}m| Dx ≤ b}. The second set of constraints in
(3) can be written as: βj + wjzo = βj + ∑

q,i
ci

qwj
i x

q
o . Each nonlinear term wj

i x
q
o , the product of a binary

and a continuous variable, can be linearized (details are in appendix A) and the problem converts
to a standard mixed-integer program. In section 5.5 we report the computational results of this
implementation for a set of 0-1 multicriteria optimization problems.

5.3 Convergence

We consider here whether the procedure based on solving problem (3) converges. Specifically,
denote by u̇(·) the “true” value function which represents %∗ and by u̇max = maxz∈F(X) u̇(z) the
“true” maximal attainable value. We consider whether u̇(zinc

t ) converges to u̇max. For this we
assume that the DM’s responses are always consistent with %∗. In actual practice a DM is unlikely
to be consistent in this way (see e.g. Korhonen, Moskowitz and Wallenius 1990), but that should
not stop us exploring such a scenario from a theoretic point of view. We report on how we dealt
with inconsistent responses in practice in sub-section 5.4.

We show that the procedure, which we label CUT-interactive, converges. Further, this is true
not only for the two problem types of problems considered above, but for a very general class of
problems. Of course, in the general case the problem in (3) is nonlinear, even when the description
of F(X) is not. Thus, in cases where F(X) is linear and for which any existing approaches do not
rely on nonlinear problems, the procedure would not be a contender. Nevertheless, these would
be special cases to which our result applies. Further, the result would also apply to nonlinear mul-
ticriteria problems (see e.g. Miettinen 1999). The general class of problems is defined as follows.
We assume that X and F(X) are non-empty and compact and that Z = R

p
+. We also assume that

there exists a positive r so that z ≥ r1, ∀z ∈ F(X). We underline that we make no assumption
regarding convexity for X and F(X).

Theorem 5 In the procedure CUT-interactive, u̇(zinc
t ) converges to u̇max as t→ ∞.

5.4 User Tests

We conducted a series of user tests based on a flat-choice problem with seven subjects, who were
all professional analysts. We framed the problem as choosing a flat in Paris to stay for six months,
from a list of 100 flats based on data from a flat-rental website (33 flats were dominated, but were
kept in for the benefit of detecting satiation). Flats were characterized by number of bedrooms, av-
erage size of bedrooms, distance from place of work (operationalized as estimated leisure time af-
ter work and commute) and cost (operationalized as monthly net income). To create a value scale,
we used two artificial flats: the ideal and the nadir, constructed using the maximum/minimum
value across all flats in each criterion, and assigned value scores of 0 and 100.

At each iteration, we showed users a new flat (challenger), asked them to compare to the best
flat they had seen so far (incumbent) and declare their preference (or indifference). Their responses
generated preference constraints as in (2) (but also adding an ε = 0.01 to the right-hand-sides
for the case of strict preferences). We also asked them whether the intensity of their preference
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was “weak”, “moderate” or “strong”. These responses generated weak preference-intensity con-
straints as in (2). For example, if a subject declared “moderate” preference for za over zb and
“strong” preference for zc over zd, the constraint was: υc − υd ≥ υa − υb. Optionally, subjects were
asked to rank the challenger amongst previously ranked alternatives. The questioning was fol-
lowed by a brief pause (a few seconds) for computations, to conduct a set of inconsistency checks,
discard dominated alternatives and compute a new challenger (as discussed in Section 5.1). We
then shared with users the computed maximum value difference between unseen alternatives and
the incumbent and asked them if they wanted to continue, in which case the process would repeat.
Where judgements exhibited inconsistency, we shared the reason for the inconsistency with users
and asked them whether they wanted to revise (or even discard) any of their previous judgments,
or terminate the procedure. In appendix B we describe the inconsistency checks and provide de-
tails of the iteration-by-iteration evolution of the procedure for a representative subject.

We emphasized to subjects that they could stop at any time and for any reason, including
boredom or frustration. All continued to the point where a most preferred alternative was demon-
strably reached, i.e. when the maximum value difference between unseen alternatives and the
incumbent reached 0 (convergence). The procedure was experienced as progressive: later choices
were experienced as being more difficult because search had narrowed to a set of reasonably good
alternatives (“you can see that the choices are getting reduced . . . and that the choices converge to
something.”). The number of iterations ranged from 13 to 28 (averaging 21) for completion and
from 3 to 16 (averaging 10) for reaching the most preferred alternative. Completion times were
between 25 minutes and an hour, with an average of 43 minutes.

Subjects always responded to the choice and preference intensity questions. They found it most
natural to rank objects that fell within the top five of those already seen, as their interest focused
on the most attractive options. Four subjects reported finding the intensity of preference question
harder and the other three found ranking harder. Several subjects remarked that a visual scale for
the alternatives would have made it easier to answer these questions.

Responses exhibited between 1 and 5 inconsistencies, averaging 2 per subject. Predominantly,
these took the form of a contradiction between ranking and intensity judgements: e.g. subjects
might indicate that they preferred a to b strongly and a to c weakly, but also preferred a to b to c. On
all occasions, subjects chose to revise their intensity judgements accordingly. Two subjects gave
responses that directly contradicted the concavifiability of the combined ranking and intensity
judgments; this occurred twice for one of the subjects and once for the other. On these occasions we
discussed with them the normative implications of the NII assumption and asked them whether
they wanted to proceed. Both subjects chose to discard their latest ranking response, as they were
not bothered about the rank of a non-preferred alternative. The former of these two users pointed
out, after completion, a possible explanation for the inconsistencies: he was using a cut-off value
for the number of rooms. In practice this situation can by avoided by pre-filtering the alternatives
(e.g. as in all web-based tools for flat search). No other types of inconsistency were observed, i.e.
ranking and intensity judgments were always internally consistent with concavifiability.

The degree of enthusiasm for the procedure varied from highly enthusiastic (“this is a lot more
intuitive” than scoring and weighting) to cautious interest (one multicriteria practitioner accepted
that DMs could holistically compare 4 attributes, but doubted their ability to handle substantially
greater numbers). All subjects could imagine using the procedure for a real decision. Indeed, one
subject commented “last year I bought a flat, this is much easier [than unsupported choice]”.
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5.5 Computational Tests

To explore the computational behavior of the interactive procedure for 0-1 multicriteria optimiza-
tion problems, we applied it to a project-portfolio selection (knapsack) problem. Computations
were performed on a PC with an Intel E8300 2.83GHz processor and 3.25GB of memory, using
the CPLEX 12.4 mixed-integer programming solver. Results were validated by generating all non-
dominated solutions using a version of the algorithm by Captivo et al. (2003).

The problem data (provided to us by Larry Phillips) come from a decision analysis at a high-
technology company that wanted to construct an R&D portfolio from a set of twenty-one projects.
Projects are evaluated on three criteria: “Revenue”, “Innovativeness” and “Strategic-fit”. The indi-
vidual criterion functions are assumed additive over projects (i.e. for each criterion the aggregate
portfolio score is the sum of the scores of the constituent projects). The feasible set of portfolios
consists of those that fall within budget. We considered three budget levels, corresponding to
25%, 50% and 75% of the total cost of all available projects. For the purpose of simulating the
DM we considered two value functions: U1(z) = mini{ f i(x)} and U2(z) = ∏i f i(x). Function U1

is concave. The preferences it represents are in fundamental disagreement with the preferential
independence conditions underlying additive-type value models. Function U2 is merely quasi-
concave. It was specifically chosen to illustrate that the interactive procedure may also be used in
the more “standard” setting of quasi-concave-representable preferences with no use of preference
intensity information, for problems with finite sets of alternatives (which can be, as in this case,
explicitly unknown and very large).

We examined several combinations of different types of preference information. In the most
basic scenario, labeled b, the DM is only asked to compare the challenger and incumbent at every
iteration and declare preference or indifference. In scenario r, the DM is asked to maintain a
ranking of alternatives encountered across iterations. This may require many comparisons, so we
also considered scenario r5, where the DM only maintains a ranking of the top five alternatives
she has seen so far (i.e. she disregards any challengers that do not make it into the top five). To
introduce preference intensities, we used scenario b− cl, where the DM compares the challenger
to the incumbent and declares weak/moderate/strong preference or indifference (this produces
three clusters of challenger-incumbent pairs which then define constraints as in (2)). In view of our
experience with the user tests, we used scenario r5− cl5, to specifically consider situations where
the DM’s preference intensity perception may vary across pairs of alternatives. We constructed
this by using the top-five ranking of scenario r5 and grouping the four pairs of successively ranked
alternatives into the three preference intensity classes (weak/moderate/strong preference).

In Table 1 we report the number of iterations and computer runtime (in seconds), as well as
the number of binary comparisons. Note that the scenarios including preference intensities also
require one qualitative intensity judgment per iteration. Results are reported for three events: a)
“Solution” (Sol.), the point at which a most preferred solution/alternative is discovered (one which
maximizes the true value function), even if this is not verifiable at that stage; b) “Satisfaction”
(Sat.), the point at which the value of optimization problem (3) falls below 10, indicating that at
worst the current incumbent cannot be more than 10 “vals” (units of value) worse than the true
most preferred point (a val is normalized as the value difference between the zero vector and unit
vector); c) “Completion” (Comp.), the point at which convergence to a most preferred alternative
has been verified. We emphasize the ability to provide information on “Satisfaction” as a particular
strength of CUT. This gives the DM a sense of the greatest possible value difference from the most
preferred point, and hence the opportunity cost of abandoning search. In all reported cases the
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Table 1: Performance of the interactive procedure for all scenarios.
U Budget Scenario Iterations Runtime (sec.) Comparisons

Sol. Sat. Compl. Sol. Sat. Compl. Sol. Sat. Compl.

U1 25%

b 5 9 15 2.82 11.53 63.46 4 7 14
r 5 9 13 1.93 9.75 41.20 7 13 34
r5 5 9 13 2.25 10.23 41.20 7 14 26
b− cl 5 9 10 2.59 10.80 14.60 4 7 9
r5− cl5 5 9 10 2.03 10.69 13.85 7 13 17

U1 50%

b 9 10 42 13.74 19.00 2813.70 8 8 41
r 9 11 21 12.00 22.71 147.25 16 17 66
r5 9 11 23 11.92 21.36 217.92 16 17 57
b− cl 9 10 24 13.98 19.22 423.48 8 8 23
r5− cl5 8 9 16 9.14 13.87 75.27 10 10 36

U1 75%

b 6 9 16 1.65 3.81 27.55 5 7 15
r 6 9 14 1.36 3.84 15.83 8 13 34
r5 6 9 14 1.26 3.99 16.26 8 13 30
b− cl 6 9 13 1.73 3.03 12.26 5 7 12
r5− cl5 6 9 13 1.9 4.57 13.17 8 13 29

U2 25%
b 1 15 25 0.12 45.32 255.61 15 13 24
r 1 10 19 0.12 15.71 116.83 10 17 82
r5 1 10 19 0.12 16.13 124.40 10 17 46

U2 50%
b 6 15 51 4.49 82.23 6446.46 5 13 50
r 4 13 25 1.50 49.48 455.37 3 30 131
r5 6 13 28 4.66 52.49 715.78 7 24 65

U2 75%
b 13 13 26 14.99 14.99 183.60 12 11 25
r 9 11 17 5.69 8.28 38.74 17 18 83
r5 9 11 17 6.46 9.52 33.70 17 18 84

10-val “Satisfaction” clause corresponded to less than 5% of the value of the “true” optimum.
Since we have identified the ability to inform the DM about “Satisfaction” and the capacity

to utilize preference intensities as two distinctive features of CUT relative to existing approaches,
a particularly interesting question is whether these prove useful in improving the overall effec-
tiveness of the interactive procedure. The results reported here indicate that this is indeed the
case.

In practice, DMs may be unwilling to engage with interactive procedures for an extended pe-
riod of time or many iterations, especially when they have no sense of how much better they
could do by continuing. Thus, reaching a good solution fast would be instrumental to the ap-
plicability of the procedure. These results indicate that the interactive procedure performs very
well on that account. For all scenarios, the procedure is very fast in reaching the most preferred
alternative (“Solution”). Perhaps more importantly, the procedure is also very fast in reaching
“Satisfaction”, where acceptable assurances can be given to the DM about the opportunity cost of
premature termination. In fact, for all these cases the DM would never do better by continuing
past “Satisfaction”, i.e. the incumbent at “Satisfaction” was always the “true” optimum.

The use of preference-intensity information provides significant performance improvements;
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and this is an important advantage of CUT compared to approaches which can only utilize ordinal
information. For the problems where the “standard” scenario b is performing adequately, the im-
provement gained from including preference intensities (or rankings) may be outweighed by the
increased judgemental burden to the DM. Nevertheless, the usefulness of preference intensities
clearly comes out in the “difficult” problems: for example, compared to b and r5 under U1 and a
50% budget level, scenarios b− cl and r5− cl5 respectively achieve reductions in time for “Com-
pletion” by factors of more than six and almost three. The improvements can be seen across the
three reported events. It is particularly appealing that in all cases much of the performance gains
can still be achieved when reducing the judgemental load: by asking the DM for top-five rankings
only and without insisting that her intensity of preference responses are reliable when comparing
alternatives outside the top-five ranking. These results are in agreement with our experience in
the user tests, in indicating that preference scenario r5 − cl5 provides a very attractive balance
between computational efficiency and judgemental burden to the DM.

6 Conclusion

This paper presented a way to handle a DM’s expressed (concavifiable) preferences of wide and
general applicability. We call this approach CUT. We have shown how CUT can be used to verify
dominance relations on a set of discrete alternatives. We introduced an interactive implementation
of CUT and showed that it does (from a theoretic point of view) converge. The practicality of the
approach was illustrated in a series of user tests for a flat-choice problem and a set of computa-
tional tests for a portfolio decision analysis problem.

The methods and ideas we presented raise several opportunities for practice and for research.
In practice, the additive value model is widely used to support decision making and implemented
in several user-friendly software packages. Often, these allow users to input ranges for the weights
and value scores, or qualitative judgments of relative magnitude, and make various extended
dominance checks. The tools developed here allow for computing similar dominance checks,
which exchange the additivity assumption for concavity. Regarding the application of procedure
in Section 5 to other problem types, an interesting question for research is whether an alternative
way of generating challengers can be found that preserves the procedure’s convergence proper-
ties. From a practical point of view, DMs may benefit more from a way to systematically explore
feasible alternatives. To that end it would be interesting to consider the use of different types of
preference information and alternative interactive designs: e.g. examine if it is possible to design
a procedure that only requires tradeoffs between two attributes (and whether it can converge),
or even examine the use of DM-specified local trade-offs (i.e. elicit values for different wj in (2)).
Finally, another interesting question is how to use CUT for problems of multicriteria choice un-
der uncertainty. The interpretation of concavity in this setting (risk-aversion) and the “natural”
cardinality of the environment, suggest that this would be a promising direction of research.
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Karsu, Ö, A. Morton, and N. Argyris. 2012. Incorporating Preference Information in Multicriteria
Problems with Equity Concerns. Working Paper, Management Science Group, Department of
Management, London School of Economics and Political Science, London.

Keeney, R. and H. Raiffa. 1993. Decisions with Multiple Objectives: Preferences and Value Tradeoffs.
Cambridge University Press, NY

15



Keeney, R. L. and D. von Winterfeldt. 2007. Practical Value Models. W. Edwards, R.F. Miles and
D. von Winterfeldt, eds. Advances in Decision Analysis. Cambridge, CUP.
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A Details about the linearization of Problem (3)

We detail here how the to linearize problem (3) for the 0-1 multicriteria optimization case. As
observed in section 5.2, the nonlinearity is limited to the quadratic terms wj

i x
q, where wj

i ≥ 0
and xq ∈ {0, 1} ∀(i, j, q) (note we have dropped the subscript o for simplicity – it was only used
to refer to a specific xo ∈ X). These can be linearized by applying a well known method (see
e.g. Glover 1975). Specifically, each term is linearized by the introduction of new variables yjq

i ≥
0, and three linear constraints for each of these variables which collectively ensure that yjq

i =

wj
i x

q ∀(i, j, q). Then we may add these constraints to problem (3) and replace all terms wj
i x

q with

yjq
i , thus transforming it into an mixed-integer program. The constraints to be added for each

term wj
i x

q are as follows: wj
i − (1 − xq) ≤ yjq

i ≤ wj
i + (1 − xq), and yjq

i ≤ Mxq, where M is

large enough to be a valid upper bound for all wj
i . It is easy to see that these constraints ensure

that yjq
i = wj

i when xq = 1 and yjq
i = 0 when xq = 0, i.e. that yjq

i = wj
i x

q as required. For
computational efficiency, the “big M’s” in the constraints can be set to individual values. We
describe how to derive bounds Mj ∀j. First, observe that for j∗ : zj∗ = 1 the equality constraint

in (2) (also in (3)) requires wj∗1 + βj∗ = 1, therefore wj∗

i ≤ 1 ∀i and βj∗ ≤ 1 (recall wj∗

i ≥ 0 and

βj∗ ≥ 0), so we may set Mj∗ = 1. Then for j : zj 6= 0, zj 6= 1, we get (from (2)): wj(mini{z
j
i})1 ≤

wjzj ≤ wjzj + βj = υj ≤ wj∗zj + βj∗ ≤ 1zj + 1 ⇒ wj
i ≤ (1zj + 1)/(mini{z

j
i})), so we may set

Mj = (1zj + 1)/(mini{z
j
i})) ∀j : zj 6= 0, zj 6= 1. Finally, for j′ : zj′ = 0, observe that (from (2))

βj′ = 0 and any wj′ satisfies wj′0 = υ′j = 0. Thus we only need a bound Mj′ sufficiently high to

guarantee collective feasibility for the inequalities υj ≤ wj′zj + βj′∀j : zj 6= 0. It is easy to verify
that the maximum of all the other Mj values is such a bound.
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B Details about the user tests

To conduct the user tests, we recruited a convenience sample of seven subjects. All were profes-
sional analysts: four consultants, an operations research analyst in the UK Government, a retired
former analyst in a UK Government agency and an Audit Manager at the UK’s National Audit
Office. We were keen to recruit subjects with some exposure to or experience of multicriteria
methods who would be able to make an informed comparison of the questioning protocol with
the traditional elicitation of scores and weights. We deliberately avoided subjects from academia,
as the aim was to get an understanding of practical usability rather than methodological innova-
tiveness. We made appointments with subjects for an hour and a half, to allow for an introduction
to the task, use of the interactive procedure, and debrief afterwards. To pinpoint inconsistencies,
a series of linear programs (feasibility systems) were solved. We first checked transitivity for the
combined responses from incumbent-challenger comparisons and ranking questions. A further
transitivity check was performed by adding the preference intensities. We then conducted four
further checks for the concavifiability of the elicited preferences: first by using the challenger-
incumbent preferences only, then separately adding rankings or intensity judgements and finally
using all preference information. In Table 2 we provide the iteration-by-iteration evolution of the
procedure for a representative subject. The rows of the table show the new alternatives generated
at each iteration. The process begins by showing to the subject the ideal and the nadir, in order to
give a sense of the spread of the data – clearly the ideal point should be strongly preferred to the
nadir. Then alternative 3 is generated and compared to the nadir at which point it becomes the
incumbent, but is rapidly replaced in turn by 4. After a couple of iterations, alternative 7 becomes
the incumbent, but then the subject expresses the view that 8 is strongly preferred to 7, and so 8
becomes the incumbent. The judgment of strong preference proves to be problematic, however,
as 9 is judged to be moderately less preferred to 8 but is ranked lower than 7. This provokes an
inconsistency and the subject revises his earlier judgment of the strength of preference between 8
and 7 as moderate. A very similar problem is encountered on the next iteration, and the subject
revises again the strength of preference judgment between 8 and 7 as weak. After this there are no
further inconsistencies and the procedure terminates after a further 8 iterations. It became appar-
ent on discussion with the subject that the reason for the inconsistencies was an ambiguity in the
concept of “strength of preference”: he had interpreted a strong preference as a “definite prefer-
ence”. Alternative 7 is in fact dominated by 8: for him it was thus “definitely better” (even though
it was not better by much), and thus he declared a strong preference. Upon clarification this was
revised, initially to moderate and then to weak, and the inconsistencies were resolved. Obviously
neither of these inconsistencies would have occurred had we enforced the use of a strict mono-
tonicity framework and/or removed the dominated alternatives, as may be reasonably done in
practice. Nevertheless, their occurrence does highlight the importance of clearly communicating
what is meant by “strong” or “weak” preference in this context. It also highlights that this inter-
active process is a learning process. Alerting the DM to such inconsistencies (instead of resolving
them by e.g. discarding some preferences statements) provides further opportunity for the DM to
deliberate and reflect on their preferences.

C Proofs

In addition to the full proofs, we also provide short sketches of the proof strategies.
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Table 2: Iterations of the procedure for a representative subject.
Altern. Bedr. Av. Leisure Monthly Decision maker judgment

Area time income
(sq m) (hours) (£)

1 (nadir) 1 4 3 320
2 (ideal) 5 45 6 2080 (Strongly preferred to nadir)
3 1 27 4.5 1776 Strongly preferred to nadir - becomes incumbent
4 2 22 4.5 1640 Weakly preferred to 3 - becomes incumbent
5 5 5 4.5 640 Strongly less preferred to 4 ranked as 3rd, behind 4 and 3
6 4 7 6 600 Strongly less preferred to 4 ranked as 3rd, behind 4, 3
7 2 11 6 1360 Weakly preferred to 4 - becomes incumbent
8 2 18 6 1440 Strongly preferred to 7 - becomes incumbent
9 3 10 5.5 1520 Moderately less preferred to 8 ranked as 5th, behind 8, 7, 4, 3
Inconsistency detected: 8 strongly preferred to 7, 8 moderately preferred to 9, but 9 is ranked lower than 7.
Subject reviews judgements and concludes that 8 should be moderately preferred to 7.
10 1 35 6 1880 Weakly less preferred to 8 ranked as 3rd, behind 8 and 7
Inconsistency detected: 8 weakly preferred to 10, 8 moderately preferred to 7, yet 10 is ranked lower than 7.
Subject reviews judgements and concludes that 8 should be weakly preferred to 7.
11 2 13 6 1800 Moderately preferred to 8 - becomes incumbent
12 2 17 5.5 1752 Weakly less preferred to 11 ranked as 2nd
13 3 12 5.5 1200 Moderately less preferred to 11 not ranked
14 2 17 6 1640 Weakly less preferred to 11 ranked as 3rd, behind 11 and 12
15 2 13 5 1960 Weakly preferred to 11 - becomes incumbent
16 1 45 5 1774 Moderately less preferred to 15 ranked as 4th, behind 15, 11, 12
17 2 16 5 1856 Moderately less preferred to 15 ranked as 3rd, behind 15, 11
18 2 12 6 1856 Weakly preferred to 15 - becomes incumbent
Convergence verified – procedure terminates
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C.1 Proposition 3

The necessary part of the Proposition is a relatively straightforward consequence of the definition
of concavity. The idea behind the proof of the sufficient part is more complicated. We have to show
that if NII holds, then u (λz′ + (1− λ)z′′) ≥ λu (z′) + (1 − λ)u (z′′). We start out by showing
this is true for rational λ. We construct a sequence of equally spaced points starting at z′ and
going up to z′′ such that λz′ + (1 − λ)z′′ is one of those points. We know from NII that the
weighted sum of the differences prior to λz′ + (1 − λ)z′′ is greater than the weighted sum of
the differences subsequent to λz′ + (1 − λ)z′′ and following some algebraic manipulation this
gives us concavity. To deal with irrational λ we suppose that concavity is violated for some λ̂ so
that u (c) = u(λ̂z′ + (1− λ̂)z′′) < λ̂u (z′) + (1− λ̂)u (z′′) and call λ̂u (z′) + (1− λ̂)u (z′′)− u (c)
unity. Hence, for any rational r̂ however close to λ̂, u(r̂z′ + (1 − r̂)z′′) − u (c) ≥ 1 but this is
impossible - because of NII, each step along the direction (λ̂ − r̂)z′ + (r̂ − λ̂)z′′ will “cost” an
increasing amount of value, and so we can find a point arbitrarily close to c which is worse than
0 which is a contradiction to weak monotonicity. Proof. The necessary part is straightforward.
Suppose u is concave and consider a pair of outcomes z′, z′′ ∈ Z. Then, by the definition of
concavity, for λ ∈ (0, 1) :

u(z′′ + λ(z′ − z′′)) ≥ λu(z′) + (1− λ)u(z′′)⇒
u(z′′ + λ(z′ − z′′))− u(z′′) ≥ λ(u(z′)− u(z′′))⇒

u(z′′ + λ(z′ − z′′))− u(z′′)− u(z′) ≥ −(−λu(z′) + λu(z′′) + u(z′))⇒
u(z′′ + λ(z′ − z′′))− u(z′′)− u(z′) ≥ −((1− λ)u(z′) + λu(z′′))⇒
u(z′′ + λ(z′ − z′′))− u(z′′)− u(z′) ≥ −u(z′′ + (1− λ)(z′ − z′′))⇒

u(z′′ + λ(z′ − z′′))− u(z′′) ≥ u(z′)− u(z′′ + (1− λ)(z′ − z′′)).

Therefore we obtain (z′′ + λ(z′ − z′′) ← z′′) %∗ (z′ ← z′′ + (1− λ)(z′ − z′′)) which represents
the condition of Definition 2. The sufficiency part is a bit more complicated and we deal with it
as follows. Suppose that NII holds. Consider again a pair of outcomes z′, z′′ ∈ Z, and assume
with no loss of generality that z′ % z′′. In the first instance we will show that concavity holds for
a rational choice of λ, which we denote by λ̄, i.e. u(λ̄z′ + (1− λ̄)z′′) ≥ λ̄u(z′) + (1− λ̄)u(z′′), for
λ̄ ∈ (0, 1) and λ̄ ∈ Q. Since (1− λ̄) ∈ Q, there exist positive integers σ and τ, with σ < τ, such
that (1− λ̄) = σ

τ . Define ρ = τ− σ. Now consider a sequence of τ + 1 points pk = z′ + k
τ (z
′′ − z′),

k = 0, ..., τ (so that p0 = z′, pτ = z′′, pσ = λ̄z′ + (1− λ̄)z′′). Accordingly, define the following
sequence of τ terms:

(P1) u(p1)− u(z′)
(P2) u(p2)− u(p1)

...
...

(Pσ) u(λ̄z′ + (1− λ̄)z′′)− u(pσ−1)
(Pσ+1) u(pσ+1)− u(λ̄z′ + (1− λ̄)z′′)

...
...

(Pτ) u(pτ)− u(pτ−1).

By construction pk =
1
2 (pk−1 + pk+1) ∀k = 1, ...τ− 1, therefore, from NII, (P1) ≥ (P2) ≥ ... ≥ (Pτ),

so that we can obtain the τ inequalities: (Pi) ≥ (Pσ), i = 1, ..., σ and (Pi) ≤ (Pσ) i = σ + 1, ..., τ. By
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summing the first σ and the last ρ inequalities separately we obtain:

u(λ̄z′ + (1− λ̄)z′′)− u(z′) ≥ σ(u(pσ)− u(pσ−1))
u(z′′)− u(λ̄z′ + (1− λ̄)v) ≤ ρ(u(pσ)− u(pσ−1)).

Dividing these by σ = (1− λ̄)τ and ρ = λ̄τ respectively gives:

1
(1−λ)τ

(u(λ̄z′ + (1− λ̄)z′′)− u(z′)) ≥ (u(pσ)− u(pσ−1))
1

λτ
(u(z′′)− u(λ̄z′ + (1− λ̄)v)) ≤ (u(pσ)− u(pσ−1)),

and by combining and simplifying we obtain: u(λ̄z′ + (1 − λ̄)z′′) ≥ λ̄u(z′) + (1 − λ̄)u(z′′) as
required. It remains to show that the Theorem also holds true for any irrational λ̂, i.e. for any
z′, z′′ ∈ Z, λ̂ ∈ (0, 1) , λ̂ 6∈ Q. We shall assume the contrary, i.e. that u(λ̂z′ + (1 − λ̂)z′′) <
λ̂u(z′) + (1− λ̂)u(z′′) for some z′, z′′ ∈ Z. We shall also assume that z′ % z′′, and that u(0) = 0,
with no loss of generality. Note that for any ε > 0, we can always find a rational r̂ such that
|r̂ − λ̂| < ε. Consider r̂ ∈ Q, such that r̂ ∈ (0, 1) and r̂ > λ̂ and define dr̂ = r̂z′ + (1 − r̂)z′′,
c = λ̂z′ + (1− λ̂)z′′. Given that u is cardinal and also because λ̂u(z′) + (1− λ̂)u(z′′)− u(c) > 0
we may assume that λ̂u(z′)+ (1− λ̂)u(z′′)− u(c) = 1. Because r̂ > λ̂ and u(z′) ≥ u(z′′), it follows
that r̂u(z′) + (1− r̂)u(z′′) ≥ λ̂u(z′) + (1− λ̂)u(z′′), and so, because r̂ ∈ Q, from the preceding part
of the proof we obtain:

u(dr̂) = u(r̂z′ + (1− r̂)z′′) ≥ r̂u(z′) + (1− r̂)u(z′′)⇒
u(dr̂) ≥ λ̂u(z′) + (1− λ̂)u(z′′)⇒

u(dr̂)− u(c) ≥ 1.

Let π ∈ Z+, consider a sequence of π + 1 points and define a point pr̂
k = dr̂ + k(c− dr̂) k = 0, ..., π.

Clearly it is always the case that pr̂
k ∈ Z for any r̂ ∈ (0, 1) and k = 0, 1. Because r̂ can be chosen

so that it is arbitrarily close to λ̂, it follows that it can be chosen such that the components of the
vector (c− dr̂) are arbitrarily close to zero. Recall that λ̂ ∈ (0, 1), i.e. c is an interior point of the
line segment adjoining z′ and z′′ and therefore an interior point of Z since Z is by assumption
convex. It follows that r̂ can be chosen such that the vector (c − dr̂) is “small enough” so that
adding π multiples of it to dr̂ will still give a point on the line segment adjoining z′ and z′′, i.e. r̂
can be chosen so that pr̂

π ∈ Z for any given integer π. Let π =
⌈
u(dr̂)

⌉
+ 1. We now construct the

following sequence of π terms:

(P
′
1) u(c)− u(dr̂)

(P
′
2) u(pr̂

2)− u(c)
...

...
(P
′
π) u(pr̂

π)− u(pr̂
π−1).

Note that, as before, pr̂
k = 1

2 (pr̂
k−1 + pr̂

k+1) ∀k = 1, ...π − 1, and therefore because of NII we obtain
(P
′
1) ≥ (P

′
2) ≥ ... ≥ (P

′
π). Recall that u(dr̂) − u(c) ≥ 1, and therefore we obtain π inequalities

(P
′
i ) ≤ −1, i = 1, ..., π, which we then sum to obtain u(pr̂

π)− u(dr̂) ≤ − π and because π > u(dr̂),
it follows that u(pr̂

π) ≤ u(dr̂)− π < 0 = u(0)⇒ 0 �pr̂
π ∈ Z, which contradicts weak-monotonicity

of preferences (recall that Z ⊆ R
p
+). This completes the proof.
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C.2 Theorem 4

The proof strategy for Theorem 4 is as follows. The first part of the proof considers a value assign-
ment υ ∈ ΥCN and constructs a concave and nondecreasing value function Uυ (·) that reproduces
υ, i.e. that Uυ(zj) = υj ∀j ∈ J. Given a concave value function u(·), the second part of the proof
uses a duality approach to construct a hyperplane for each zk ∈ R which passes through the point
(u(zk), zk), and above (u(zj), zj) for all zj ∈ R : zj 6= zk - these correspond to the constraints of ΥCN
listed in equation (2), thus ensuring that every value assignment according to a concave value
function respecting expressed preferences does indeed lie in the set in question. Proof. To begin,
define for each υ ∈ ΥCN , a polyhedron H(υ) and an associated function Uυ(·) : Z → R+ as below;
with these in place we split the proof in parts (i) and (ii):

H(υ) =

{
(υ̂, ẑ) ∈ R

p+1
+

∣∣∣∑
j

λjzj ≤ ẑ, ∑
j

λjυj ≥ υ̂, ∑
j

λj = 1, where λ ∈ Rn
+

}
, (5)

Uυ(z) = max{υ̂| (υ̂, z) ∈ H(υ)}. (6)

In part (i) we will show that the function Uυ(·) is concave and nondecreasing and that Uυ(zj) =
υj ∀j ∈ J, i.e. that Uυ(·) ∈ UCN (%∗R) (recall that υ satisfies the first set of constraints in (2) ensuring
compatibility with %∗R). To show that Uυ(·) is nondecreasing, consider z′, z′′ ∈ Z : z′′ ≥ z′. From
the definition of H(υ) we obtain (Uυ(z′), z)′ ∈ H(υ)⇒ (Uυ(z′), z′′) ∈ H(υ) and so it follows im-
mediately from the definition of Uυ(·) that Uυ(z′′) ≥ Uυ(z′). Observe that H(υ) is by construction
the hypograph of Uυ(·) and since it is obviously convex, concavity of Uυ(·) follows. It remains to
show that Uυ(zj) = υj ∀j ∈ J. Obviously, Uυ(zj) ≥ υj (since Uυ(·) is defined by a maximization
operator and (υj, zj) ∈ H(υ)), so it is only left to show that Uυ(zj) ≤ υj ∀j ∈ J. Consider an
arbitrary k ∈ J. Denote by (Uυ(zk), λ∗) ∈ Rn+1

+ the optimal solution to the linear programming
problem in (6) and let B ⊆ J contain the indices of points in the reference set for which the cor-
responding variables λ∗j are in the optimal basis. By virtue of optimality the following obviously
hold: (a) Uυ(zk) = ∑

j∈B
λ∗j υj, and (b) zk ≥ ∑

j∈B
λ∗j zj. By assumption υ ∈ ΥCN and therefore (from

the definition of ΥCN in (2)) it holds that υj − wkzj ≤ βk ∀j ∈ B and also that υk − wkzk = βk.
Recall that λ∗j ≥ 0 and ∑j∈B λ∗j = 1, so that combining these inequalities using multipliers λ∗j in a
weighted sum gives:

∑
j∈B

λ∗j υj − wk ∑
j∈B

λ∗j zj ≤ βk ∑
j∈B

λ∗j ≤ βk = υk − wkzk ⇒

∑
j∈B

λ∗j υj − wk ∑
j∈B

λ∗j zj ≤ υk − wkzk ⇒

υk −∑
j∈B

λ∗j υj ≥ wk(zk −∑
j∈B

λ∗j zj)⇒ (from (a) and (b))

υk ≥ Uυ(zk), and this completes the proof of part (i).

For part (ii) of the proof we shall consider u(·) ∈ UCN (Υ) and denote the value assignment ac-
cording to u(·) as u = (u(z1), ..., u(zn)). We need to show that u ∈ ΥCN . Using u we can define
H(u) and Uu(·) accordingly. We shall first show that Uu(zj) = uj ∀j ∈ J and use this in the ensu-
ing. As pointed out in the proof of part (i), (uj, zj) ∈ H(u) ∀j ∈ J, and so it follows directly from
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the definition of Uu(·) that Uu(zj) ≥ uj ∀j ∈ J. As before, we now consider an arbitrary k ∈ J,
denote the corresponding optimal solution to (6) by (Uu(zk), λ∗) ∈ Rn+1

+ and also define B ⊆ J in
exactly the same way as in the preceding part of the proof. Therefore we obtain the following: (c)
Uu(zk) = ∑

j∈B
λ∗j uj, (d) zk ≥ ∑

j∈B
λ∗j zj. By assumption u(·) is nondecreasing and so it follows from

(d) that: (e) uk ≥ u(∑j∈B λ∗j zj). We now combine these statements with the concavity of u(·) as
follows:

u(∑
j∈B

λ∗j zj) ≥ ∑
j∈B

λ∗j uj ⇒ (from (c))

u(∑
j∈B

λ∗j zj) ≥ Uu(zk)⇒ (from (e))

uk ≥ Uu(zk), and this collectively gives Uu(zj) = uj ∀j ∈ J.

By definition, u satisfies the first set of constraints in (2) ensuring compatibility with %∗R. Therefore
we can show that u ∈ ΥCN by demonstrating that for any k ∈ J there will exist wk and βk such
that the vector (u, wk, βk) satisfies the corresponding conditions in (2). For any zk ∈ R, consider
the following linear program:

max s

−s + ∑
j∈J

λjuj = uk (vk)

∑
j∈J

λjzj ≤ zk (wk)

∑
j∈J

λj = 1 (βk)

λ ∈ Rn
+, sk ∈ R.

We associate dual variables as shown (in parentheses) so that dualizing and simplifying gives:

min − uk + wkzk + βk

uj ≤ wkzj + βk ∀j ∈ J

wk ∈ Rn
+, βk ∈ R.

Let (s∗, λ∗) denote an optimal solution to the primal and (wk∗ , βk∗) an optimal solution to the
dual. Clearly, a solution in which λ∗k = 1 and all other variables are equal to zero is a feasible
solution to the primal and therefore it must be that s∗ ≥ 0. However, if s∗ > 0 then that would
imply that (uj + s∗, zj) ∈ H(u) and since we have already shown that Uu(zk) = uk this gives
(Uu(zk) + s∗, zj) ∈ H(u) which contradicts the definition of Uu(zk). Therefore s∗ = 0 and so
duality gives −uk + wk∗zk + βk∗ = 0. Therefore we have demonstrated that there exist wk ∈ Rn

+

and βk ∈ R such that uk = wk∗zk + βk∗ and uj ≤ wkzj + βk, and this completes part (ii) of the
proof.

C.3 Theorem 5

The proof strategy for Theorem 5 is as follows. Intuitively, at each iteration more preferences are
introduced and the incumbent can only “improve”. Therefore A∗t , the optimal value of problem
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(3), must decline and since the incumbent is always a feasible solution this value will always be
nonnegative. It is then observed that A∗t is actually an upper bound on the “true” value difference
between a most preferred alternative and the current incumbent. So if A∗t converges to 0 then the
result is proved. If A∗t does not converge to zero, then in the case where the number of alternatives
is finite, the procedure will eventually run out of alternatives which could be potentially preferred
to the incumbent – so the value will effectively reach 0 at which point a most preferred alternative
has been identified. In the case where the number of alternatives are infinite, if A∗t converged to a
value greater than 0 (say ∆), this would provide a bound on how far apart this infinite number of
alternatives could be, but as the alternatives have to be contained in a set of finite volume, this is
a contradiction and so the result is proved. Proof. Recall that u̇(·) : Z → R+ is the “true” value
function representing %∗. First we establish that u̇max = maxz∈F(X) u̇(z) is well-defined. We have
assumed that Z = R

p
+ and that ∃r > 0 : z ≥ r1 ∀z ∈ F(X). Therefore F(X) is contained in the

interior of Z. The value function u̇(·) is concave, hence continuous in the interior of its domain, so
u̇(·) is continuous over F(X). We have also assumed that X and hence F(X) is compact. Therefore
by the Weierstrass theorem the restriction of u̇(·) to F(X) ⊂ Z attains its maximum on F(X),
i.e. umax exists and is finite. In the ensuing we set r = 1, but it is easy to see that this does
not restrict generality. The next part of the proof will show that as t → ∞, A∗t converges to a
nonnegative ∆. For brevity, denote by Alt[%∗t ] the instance of problem (3) solved at iteration t.
We first show that at every iteration t, problem Alt[%∗t ] is feasible and bounded, and that A∗t ≥ 0.
We demonstrate feasibility by constructing a feasible solution γ̇ = (υ̇o, υ̇, ẇ1, ..., ẇn, β̇1, ..., β̇n, ẋ, żo)
(note that we will we use this solution again later in the proof). The preference information in %∗t
over Rt is assumed to be consistent with %∗ so, by Theorem 4, the value assignment of the true
value function u̇(·) which represents %∗ must be recoverable through ΥCN , i.e. (u̇(z1), ..., u̇(zn))
∈ ΥCN . Set υ̇j = u̇(zj) ∀j ∈ Jt, so that ∃(υ̇j, ẇj, β̇j) ∀j ∈ Jt, which collectively satisfy the constraints
that stipulate υ ∈ ΥCN . It is easy to see that we could then pick any ẋ ∈ X and use it to calculate
żo = F(ẋ) and υ̇o = minj∈Jt{ẇj żo + β̇j} so that γ̇ constitutes a feasible solution to Alt[%∗t ]. To
show that Alt[%∗t ] is bounded, observe first that for z1 = 0 it holds that υ1 = 0 and so from the
constraints defining ΥCN we obtain 0 = υ1 ≤ wj0 + βj ∀j ∈ J ⇒ βj ≥ 0 ∀j ∈ J. Similarly, for
z2 = 1 it holds that 1 = υ2 = w21+β2 and since w2, β2 ≥ 0, it follows that the values of w2

and β2 are bounded. Since υo ≤ w2zj + β2 it follows that the optimal objective function value
is bounded. To show that A∗t ≥ 0 we consider separately the first iteration from all subsequent
iterations. At iteration t = 1, no preference information is known, i.e. %∗1= ∅, and R1 = {0, 1}. So
at this stage UCN (Υ) contains any concave nondecreasing value function u(·) such that u(0) = 0
and u(1) = 1. We have assumed that % is weakly monotonic and also that z ≥ 1 , ∀z ∈ F(X).
Therefore z % 1, ∀z ∈ F(X) which implies u(z) ≥ 1 ∀ z ∈ F(X). Therefore, ∀z ∈ F(X) and
u(·) ∈ UCN (Υ): u(z)− u(1) = u(z)− 1 ≥ 0, and so A∗1 = υ∗o − 1 ≥ 0. In subsequent iterations,
we know of an incumbent solution xinc

t prior to the solution of Alt[%∗t ]. We can show that A∗t ≥ 0
by demonstrating the existence of a feasible solution with an associated objective function value
equal to zero. Earlier we constructed a feasible solution γ̇ = (υ̇o, υ̇, ẇ1, ..., ẇn, β̇1, ..., β̇n, ẋ, żo) for an
arbitrary choice of ẋ ∈ X. So now we can set ẋ = xinc

t so that żo = zinc
t and therefore υ̇o = υ̇j′ , so

the objective function value for γ̇ is zero. Next we show that A∗t+1 ≤ A∗t for any two consecutive
iterations t and t + 1. To distinguish the optimal values of different variables between iterations t
and t + 1 we use υinc

t , υinc
t+1 for the optimal value assignment to the incumbent alternative (i.e. the

optimal value υ∗j′ at each iteration) and add the index t to all other variables. At iteration t there

are two distinct possibilities for updating the expressed preference ordering: a) zinc
t � z∗ot ; b) z∗ot %

24



zinc
t . In the first case we construct Alt[%∗t+1] by adding an additional constraint to Alt[%∗t ] and so

A∗t+1 ≤ A∗t follows immediately. In the second case, in addition to adding an additional constraint,
the objective function also changes because the incumbent solution is updated to zinc

t+1 = z∗ot. The
new constraint is introduced to guarantee that u(z∗ot) = u(zinc

t+1) ≥ u(zinc
t ) for any compatible value

function u(·) ∈ UCN (Υ). Suppose that A∗t+1 > A∗t = υ∗ot − υinc
t . Then there exists a value function

u(·) compatible with (%∗t+1, Rt+1) (and therefore also compatible with (%∗t , Rt)), such that:

u(z∗ot+1)− u(zinc
t+1) > υ∗ot − υinc

t ⇒ (because zinc
t+1 = z∗ot)

u(z∗ot+1)− u(z∗ot) > υ∗ot − υinc
t ⇒ (because z∗ot % zinc

t )

u(z∗ot+1)− u(zinc
t ) > υ∗ot − υinc

t ,

however this would be a contradiction because A∗t is the optimal value of Alt[%∗t ]. Thus we have
shown that for all iterations t, 0 ≤ A∗t+1 ≤ A∗t ≤ A∗1 , i.e. the sequence of real numbers {A∗t }
is nonincreasing and bounded from below. Therefore, by the monotone convergence theorem,
it follows that as t → ∞, A∗t converges to a value ∆ : 0 ≤ ∆ ≤ A∗1 . In fact, if ∆ = 0 this would
imply that the true value of the incumbent alternative, u̇(zinc

t ), converges to the true maximal value
u̇max = maxz∈F(X) u̇(z). This follows directly from the fact that the values A∗t are upper bounds
for the true value difference u̇max − u̇(zinc

t ). To show the latter, assume that for some iteration t we
have u̇max − u̇(zinc

t ) > A∗t . Define xmax ∈ X, zmax = F(xmax) such that u̇(zmax) = u̇max. Now we
use the solution γ̇ constructed as was done earlier in the proof, by setting υ̇o = u̇(zmax), ẋo = xmax

and zo = zmax. Then γ̇ would be a feasible solution to Alt[%∗t ] with an objective value strictly
greater than A∗t , which contradicts optimality. From this we obtain that u̇(zmax)− u̇(zinc

t ) ≤ A∗t ∀t.
So if A∗t converges to 0 then u̇(zinc

t ) converges to the true maximal value u̇max. It remains to show
that as t → ∞, A∗t converges to ∆ = 0, which we do in the remainder of the proof. We suppose
the contrary, i.e. ∆ > 0. Recall that z∗ot denotes the challenger alternative identified at iteration t.
Note that, because A∗t > 0, it follows that the challenger alternative z∗ot cannot be identical to any
of the identified alternatives in the reference set Rt, as all of these are (weakly) less preferred to
the incumbent alternative , i.e. z∗ot 6= zj ∀zj ∈ Rt. Observe that if X is a finite set, it is not possible
to generate a new challenger at each iteration for an arbitrarily large number of iterations and
we have a contradiction and are already done (in other words it is possible to explicitly consider
all distinct points in finite time); otherwise, read on. At this point the reader may benefit from a
structure of the remainder of the proof, which deals with the case where X is an infinite set. We are
aiming to falsify the supposition that ∆ > 0 and hence there is infinite series of new challengers.
To do this we construct a neighborhood around each point in the reference set such that each new
challenger is outside the neighborhood of all alternatives in the reference set (supposing that the
challenger is within this neighborhood leads to an arithmetic impossibility). At some point, as one
proceeds down the infinite list of challengers, there will be no more room for a new challenger
because the solution space is compact. We begin the construction of the neighborhood by finding
a positive real Γ such that u(z) ≤ Γ, for any z ∈ F(X) and u(·) ∈ UCN with u(0) = 0 and u(1) = 1.
It is easy to see that we may set Γ = υ∗o , where υ∗o comes from the optimal solution to Alt[%∗1 ]
at the first iteration and is the optimal value assignment to the challenger alternative. If it was
the case that a different û(·) existed which satisfied û(0) = 0 and û(1) = 1 so that û(z∗o ) > υ∗o ,
then it would hold that û(z∗o ) − 1 > υ∗o − 1 = A∗t , and since û(·) is be compatible with %∗1 this
would contradict optimality of A∗t . Using Γ = υ∗o and ∆ > 0 (as per our previous assumption) we

now define a positive integer τ =
⌈

Γ
∆

⌉
+ 1. Consider the challenger alternative z∗ot, identified at
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iteration t by solving Alt[%∗t ] and let zr ∈ Rt be an arbitrary reference alternative. We shall now
show that it cannot be the case that z∗ot ≤ zr + 1( 1

τ−1 ). Let us assume, on the contrary, that this is
true and let ū(·) ∈ UCN be a value function which reproduces the value assignment (υ∗o , υ∗1 , ..., υ∗n).
Then it holds that A∗t = ū(z∗ot) − ū(zinc

t ) > 0, and since zinc
t % zj for any zj ∈ Rt, it follows

that ū(z∗ot) > ū(zr). As in the proof of Proposition 3, we construct a sequence of τ + 1 points:
qk = z∗ot − k(z∗ot − zr), k = 0, 1, ..., τ so that q0 = z∗ot, q1 = zr and each intermediate point in the
sequence is the midpoint of its predecessor and its successor. First we show that qτ ∈ R

p
+. Let z∗oti

denote the i-th coordinate of z∗ot and recall that we have assumed that z∗ot ≤ zr + 1( 1
τ−1 ) and also

zr ≥ 1. It follows that:

qτi = z∗oti − τ(z∗oti − zri)⇒
qτi = (1− τ)z∗oti + τzri ⇒

qτi ≥ (1− τ)zri +
1− τ

τ − 1
+ τzri ⇒

qτi ≥ zri − 1 ≥ 0⇒
qτ ∈ R

p
+.

Since, ū(z) ≥ 0 ∀z ∈ R
p
+ from weak monotonicity, ū(qτ) ≥ 0. We now construct the following

sequence of τ terms:
(Q1) ū(zr)− ū(z∗ot)
(Q2) ū(q2)− ū(q1)

...
...

(Qτ) ū(qτ)− ū(qτ−1).

By NII it must be that (Qi) ≥ (Q1) ∀i = 1, ..., τ, so we can add these inequalities and obtain:

ū(qτ)− ū(q0) ≤ τ(ū(q1)− ū(q0))⇒
ū(qτ) ≤ ū(q0)− τ(ū(q0)− ū(q1))⇒
ū(qτ) ≤ ū(z∗ot)− τ(ū(z∗ot)− ū(zr))⇒ (because ū(zinc

t ) ≥ ū(zr))

ū(qτ) ≤ ū(z∗ot)− τ(ū(z∗ot)− ū(zinc
t ))⇒

ū(qτ) ≤ ū(z∗ot)− τA∗t .

But in this case observe that:

ū(qτ) ≥ 0⇒
ū(z∗ot)− τA∗t ≥ 0⇒

ū(z∗ot)

A∗t
≥ τ ⇒ ( because τ =

⌈
Γ
∆

⌉
+ 1)

ū(z∗ot)

A∗t
≥
⌈

Γ
∆

⌉
+ 1⇒ (because ū(z∗ot) ≤ Γ and A∗t ≥ ∆)

Γ
∆
≥
⌈

Γ
∆

⌉
+ 1,
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so we have our contradiction to the supposition that z∗ot ≤ zr + 1( 1
τ−1 ). Therefore if ∆ > 0, then

at every iteration t we can solve Alt[%∗t ] and identify a challenger alternative z∗ot which for each
zj ∈ Rt satisfies z∗oti > zji +

1
τ−1 for at least one coordinate i. Let B(z, r) denote the closed ball of

radius r centered at a point z ∈ Rp and consider the set of all points which can be contained by
balls of radius 1

3(τ−1) centered at points z ∈ F(X), i.e.:

Z =

{
ζ ∈ Rp | ζ ∈ B(z,

1
3(τ − 1)

), z ∈ F(X)

}
.

Because F(X) is compact, Z is also compact and it has finite volume vol(Z) = V. For ev-
ery iteration t, define a closed ball Bt = B(z∗ot,

1
3(τ−1) ) with volume δ = volume(Bt) ∀t. Since

z∗oti � zji +
1

τ−1 ∀zj ∈ Rt, it follows that d(z∗ot, zj) ≥ 1
τ−1 ∀zj ∈ Rt (where d(·, ·) denotes the

usual Euclidean distance metric). So any closed ball around z∗ot with radius r strictly smaller
than 1

2(τ−1) (greater than half of any distance d(z∗ot, zj)) cannot contain any reference alternative
zj ∈ Rt. Since z∗ot will be added to the set of reference alternatives in iteration t + 1, it follows that
successive balls Bt must be disjoint. Therefore, for any iteration T we have: volume(

⋃
t=1...T Bt)

=∑t=1...T volume(Bt) = δT. By construction, however, Bt ⊆ Z ∀t ⇒ ⋃
t=1...T Bt ⊆ Z and so

volume(
⋃

t=1 to T Bt) ≤ volume(Z) ⇔ δT ≤ V. However, we can choose T as high as we like
and thus secure a contradiction. Therefore it must be true that ∆ = 0 and this completes the proof.
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