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Abstract—In the last few years there has been considerable 
increase in the efficiency of Intrusion Detection Systems (IDSs). 
However, networks are still the victim of attacks. As the 
complexity of these attacks keeps increasing, new and more 
robust detection mechanisms need to be developed. The next 
generation of IDSs should be designed incorporating reasoning 
engines supported by contextual information about the network, 
cognitive information from the network users and situational 
awareness to improve their detection results. In this paper, we 
propose the use of a Fuzzy Cognitive Map (FCM) in conjunction 
with an IDS to incorporate contextual information into the 
detection process. We have evaluated the use of FCMs to adjust 
the Basic Probability Assignment (BPA) values defined prior to 
the data fusion process, which is crucial for the IDS that we have 
developed. The results that we present verify that FCMs can 
improve the efficiency of our IDS by reducing the number of false 
alarms, while not affecting the number of correct detections. 

Keywords- Basic Probability Assignment; Contextual 
Information; Dempster-Shafer Theory; Fuzzy Cognitive Maps; 
Intrusion Detection Systems; Network Security 

I.  INTRODUCTION 
There has been considerable increase in the efficiency of 

Intrusion Detection Systems (IDSs) in the last few years. Great 
effort has been made by researchers and private companies in 
the area of network security to increase the efficiency of the 
IDSs. The use of data mining techniques, data fusion 
approaches, and the combined use of different IDSs have 
contributed to this achievement. However, networks are still 
victims of intrusions and cyber-attacks. As the complexity of 
these attacks keeps increasing, new and more robust detection 
mechanisms need to be developed. The next generation of IDSs 
should be designed incorporating reasoning engines supported 
by modules that could assess the quality of the analysed 
datasets, manage contextual and non-contextual information 
about the network, or deal with incongruent decisions between 
different IDSs. 

In our previous work [1], we made initial efforts to add to 
IDSs the capability of assessing the quality of the analysed 
datasets. In this paper, we argue that the next generation of 
IDSs should be developed with the capability of integrating to 
the intrusion detection process contextual information, 
situational awareness and cognitive information, pertaining to 
the experts judgment on the network behaviour. The network 

administrator and users would provide this high-level 
information; not always measurable within the network. 
Generally, the IDSs should be able to adapt their detection 
characteristics based on the context in which these systems 
operate. In addition, the information provided by the users 
should also be used to adjust the detection characteristics of the 
IDSs. Current IDSs utilise measurable network traffic 
information from the protected system or signatures of known 
attacks during the intrusion detection process, but these 
systems do not take into account available high-level 
information (i.e. above the network operation) regarding the 
protected system to improve their effectiveness [2]. 

The problem faced here is how to represent this information 
and how to incorporate it into the detection process. The 
approach that we propose in this work is the use of a Fuzzy 
Cognitive Map (FCM) [3] in conjunction with our anomaly-
based IDS. An FCM provides a useful framework for network 
users to contribute their knowledge, to model new and unseen 
situations, unknown behaviours, and to calculate the influence 
that each individual event may have in the whole system and in 
other events. We argue that this approach may be used to fine-
tune some of the techniques used by the IDSs and, as a 
consequence, improve their detection results. 

Our unsupervised anomaly-based IDS [4] is based on the 
combined use of multiple metrics from multiple layers of the 
TCP/IP stack to carry out the intrusion detection. It uses the 
Dempster-Shafer (D-S) Theory of Evidence as a data fusion 
technique. D-S combines belief values given to different 
hypotheses, also known as Basic Probability Assignment 
(BPA) values. In this paper, we propose three possible 
approaches for the use of FCMs to help to generate or modify 
these beliefs, based on the information provided by the user. 
One of the approaches is to use the FCM to define the weights 
in Weighted D-S (WD-S) theory. Another approach is to let the 
FCM define the actual BPA values. The third approach is to 
adjust the generation of the BPA values prior to the data fusion 
process, by using the outcome of the FCM. 

Although we propose three approaches, due to space 
limitations, in this paper we have only implemented the third 
one, which adjusts the BPA values. The implementation of the 
other two approaches will be carried out in future work. We 
have conducted a series of experiments to showcase the 
efficiency of the proposed approach to incorporate FCM in the 
adjustment of the BPA values. The results obtained from these 
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experiments empirically verify that an FCM can improve the 
efficiency of our IDS by greatly reducing the number of false 
alarms generated, while not affecting the number of correct 
detections. 

The paper is organised as follows. In Section II, the most 
relevant work is reviewed. An extensive description of an FCM 
is presented in Section III. In Section IV, the three possible 
approaches for the use of an FCM that we propose, as well as a 
short description of D-S theory are presented. In Section V, the 
testbed, the dataset employed and the FCM process are 
described. The obtained results are explained in Section VI. 
Finally, conclusions are given in Section VII. 

II. RELATED WORK 
Future IDSs need to intelligently detect network attacks, not 

only by using measurable information from the network or past 
experiences identifying these attacks, but also by integrating 
human cognition and contextual information into the detection 
process. Incorporating this high-level information into security 
systems aims to improve their detection effectiveness. 

According to [5], contextual information could be defined 
as any information that surrounds a situation of interest, which 
helps to understand and to characterise the situation. The 
authors of [5] present an extensive and very detailed survey 
about current research on context-based information fusion 
systems. This work explains that data fusion systems that use 
contextual information to improve the quality of the fused 
output have gained importance in the last few years. It also 
emphasises that contextual information should be an important 
asset at any level of modern fusion systems. 

In [6], the authors propose an IDS that relies on contextual 
information to classify the alerts as relevant or irrelevant. The 
IDS makes use of contextual information about hosts present in 
the network and known vulnerabilities. The alerts generated by 
the system are processed along with the high-level information 
to generate a relevance score about the alerts. Their results 
demonstrate the effectiveness of using contextual information 
in the detection process to increase the efficiency of the IDSs. 
However, this is a supervised system, and its performance 
depends on a chosen threshold, which is selected in a 
supervised manner after a number of runs. 

The authors of [7] use finite state machines with associated 
performance metrics to model the behaviour of armed forces. 
Their system uses sensor measurements of the soldiers’ actions 
to estimate the states that they are in, at any given time. A node 
is assigned to each state, along with associated attributes 
including classifier and the performance metrics for the state. 
The different states that compose the finite state machine are 
defined using ontologies. 

An ontology is another technique used to provide 
contextual information to intelligent systems. Ontologies have 
proven to be powerful tools to specify and structure knowledge, 
to model behaviours schematically, or to provide formal 
specification of different entities in a system and their 
relationships. Other researchers [2, 8, 9] have used ontologies 
to represent contextual information. For instance, in [9], the 
authors tackle the problem of adding contextual information in 
the smart car domain. They propose a hierarchical model that 
defines a number of known situations using ontologies. In [8], 
the authors model contextual information using interrelated 

concepts of diverse ontologies. The authors of [2] propose a 
security ontologies-based approach to add context information 
into a process that fuses the outcome of heterogeneous 
distributed IDSs. By using this high-level information, the 
authors reduce the false positive alerts. 

All these techniques have proven to increase the efficiency 
of different systems. However, none of these techniques is able 
to model the influence of the different states/events in other 
events or the whole system. Apart from modelling influences 
between events, an FCM provides the capability of integrating 
contextual information from the user to the detection process. 

FCMs have been previously described and used in [3, 10, 
11] to model human knowledge, new and unseen behaviours of 
particular scenarios or actions. The authors of [3] provide a 
detailed description of the FCM and its mathematical 
foundation. Although the work presented in [11] does not focus 
on network security, it comprehensively describes the FCM 
concept with clear examples. Similarly, the authors in [10] 
provide a detailed description of an FCM and examples that 
use FCM to model fault propagation in interconnected systems. 

The work presented in [12] focuses on developing an 
actionable model of situation awareness for Army infantry 
platoon leaders that could replicate human cognition using 
FCMs. Their FCM is designed based on the goals submap, a 
tree-like diagram that structures the goals and subgoals of the 
platoon, and the relationships between these goals. One of the 
characteristics of the FCM presented in [12] is that the people 
responsible for designing the FCM do not provide weight 
values to the concepts, but rank the importance of each 
concept. A similar approach is presented in [13], in which 
situation awareness is represented using FCM. In addition, the 
authors of [13] also use ontologies to replicate situations. 

In [14], the authors use an FCM to model causal knowledge 
within network data. Based on this knowledge, their system 
calculates the severity/relevance of the modelled network data 
to attacks. This approach would allow their IDS to discard 
irrelevant events and focus only on important ones. However, 
in contrast to the approach that we propose, this research does 
not use an FCM to modify parameters in the detection process, 
but as an events filtering process prior to the actual detection. 

III. FUZZY COGNITIVE MAP 
An FCM is a technique that can be used to model human 

knowledge, to model new and unseen behaviours of a system, 
or to calculate the influence that one event may have in the 
system and in other events. This technique is a graphical 
representation of the modelled system, as perceived by 
different human experts. The main goal of modelling a decision 
problem using an FCM is to be able to predict the outcome of 
the problem by letting the relevant events interact, and to show 
which of the events influence the other events and the degree of 
influence [3]. 

The graphical representation of FCMs is characterised by a 
set of nodes interconnected by causal bidirectional connections. 
An example of an FCM model is presented in Fig. 1. The nodes 
in the FCM represent causal and time-varying concepts, events, 
actions or goals that describe the behaviour of the system. With 
regards to this work, each node represents a change in the 
network throughput, time and date, and each event is 
independent from each other. Each node C carries a weight 



A(t) in the fuzzy interval [0,1], which indicates the quantitative 
measure of the importance that each event has in the system, at 
time t. The connections between nodes represent the causal 
relationship between the modelled events. Each link is assigned 
a weight value wij(t) in the fuzzy interval [-1, 1], which 
indicates the relationship and degree of influence between the 
nodes Ci and Cj. There are three possible relationships between 
nodes: 1) wij > 0, indicating a positive relationship; 2) wij < 0, 
negative relationship; 3) wij = 0, no relationship. Positive 
relationship indicates that Aj(t) increases as Ai(t) also increases, 
whereas a negative relationship indicates that Aj(t) increases as 
Ai(t) decreases, and Aj(t) decreases as Ai(t) increases. 

 
Figure 1.  Simple FCM model in which nodes represent changes in modelled 

system and connections denote relationships between events. 

The first step in the process of creating an FCM is defining 
the main events relevant for the considered system. This is 
done by a number of experts that, apart from defining the main 
events relevant for the considered system, also describe the 
relationships among these events, based on their individual 
knowledge. The negative or positive influence of one event on 
the others is defined along with the degree of influence. The 
fuzzy degree of influence is assigned using linguistic variables, 
as described in [11]. Finally, this knowledge is transformed 
into numerical vectors associated with each event. 

An FCM can be represented by a [nxn] matrix M, where 
[M]ij = |wij| known as an adjacency matrix, describing the 
relationship between the nodes and the weight values wij(t) 
associated with each link, where n is the number of nodes. The 
initial weight value Ai(t) of all the nodes in a model at time t = 
0 can be represented by the initial vector state A, where A(0) = 
(A1(0), A2(0),…, An(0)). Ai(0) is the weight value of Node i at 
time t = 0. At each future time step, the weight value of each 
event is calculated by aggregating the influence of the 
interconnected events on the respective weight. The new 
weights of the nodes are computed via an iterative process, 
using an activation function ƒ. The value of Ai(t) changes at 
each iteration as described below in (1), where Ai(t+1) is the 
weight value of node Ci at time t+1, Aj(t) is the weight value of 
node Cj at time t, and wji(t) is the degree of influence of node Cj 
on node Ci. 

 
This process continues during a number of iterations until 

the FCM reaches one final fixed model, known as a hidden 
pattern or fixed-point attractor. It is also possible that FCM 
keeps cycling between several fixed models, known as a limit 
cycle, or it may continue generating different models 
indefinitely. The authors of [15] describe four activation 
functions ƒ; these are sigmoid, hyperbolic, linear threshold, and 
step function. The sigmoid is the most commonly used 

activation function in an FCM according to [15]. Therefore, by 
using the sigmoid function, the evolution of the weight values 
Ai(t) would be as represented in (2), where λ is a constant that 
indicates the function slope (degree of normalisation) [15]. 

 
One of the most important characteristics of the FCM is its 

capability to combine knowledge of multiple human experts. 
Also, it is not necessary that all human experts involved in the 
process agree on which events should compose the FCM or 
what weight should be assigned to each node. FCMs can deal 
with multiple, incomplete, contradictory or conflicting pieces 
of information. This technique also allows for different FCMs 
to be combined additively. The addition of k adjacency 
matrices can be calculated as described in (3): 

 
Another characteristic of an FCM is that the model of a 

system can be easily modified to incorporate new behaviours, 
knowledge from new human experts, or changes to the current 
modelled behaviour. An FCM provides the potential to make 
changes easily and intuitively, and allows combining additional 
pieces of information at a later time instance. Additionally, it 
supports memberships of more than one set of events and 
allows the overlapping of different FCM models [16]. A more 
detailed description of FCM models can be found in [3]. 

IV. PROPOSED USE OF AN FCM WITHIN AN IDS 
In this section we propose three approaches by which an 

FCM could be integrated within our unsupervised anomaly-
based IDS [4]. These approaches are based on the generation or 
modification of the BPA values used in a D-S formulation. 

A. Dempster-Shafer Theory 
The Dempster-Shafer theory of evidence is a data fusion 

technique. D-S theory starts by defining a frame of discernment 
Θ = {θ1, θ2,..., θn}, which is the finite set of all possible 
mutually exclusive outcomes of a particular problem domain. 
With regards to this work, the frame of discernment is 
comprised of A = Attack and N = Normal. Assuming Θ has two 
outcomes {A, N}, the total number of subsets of Θ, defined by 
the number of hypotheses that it composes, is 2Θ = {A, N, 
{A|N}, Ø}. Each hypothesis from the power set of the frame of 
discernment is assigned a BPA value within the range [0, 1]. 

D-S uses Dempster’s rule of combination to calculate the 
orthogonal summation of the belief values from two different 
sensors, and fuses this information into a single belief. This 
rule is defined in (4), where m1(H) and m2(H) are the beliefs in 
the hypothesis H, from observers 1 and 2, respectively. 

 
As we have previously described in [4], our unsupervised 

anomaly-based IDS is based on the combined use of multiple 
metrics from multiple layers of the protocol stack. It provides 
three levels of belief or BPA values, for each analysed network 



frame. These are belief in Normal, which indicates how strong 
the belief is in the hypothesis that the current analysed frame is 
non-malicious, belief in Attack, which indicates how strong the 
belief is in the hypothesis that the current analysed frame is 
malicious, and belief in Uncertainty, which indicates how 
doubtful the system is regarding whether the current analysed 
frame is malicious or non-malicious. The proposed system 
exploits a sliding window scheme to manage the statistical 
distribution of the data and generate the different belief values. 
The length of the sliding window will generally affect the final 
detection results. Once these values have been generated, the 
BPA values are fused using D-S theory. 

The BPA values are automatically and self-adaptively 
generated, using three independent statistical approaches based 
on the current network measurements characteristics [4]. 

B. FCM in Weighted D-S Theory 
The first approach that we propose is based on the 

generation of the weight values in WD-S theory using FCMs. 
Dempster’s rule of combination (4) assumes that all the 
observers have a similar level of trust, however in reality some 
observers may be more reliable or trustworthy than others. To 
overcome this problem, WD-S, which extends the D-S theory, 
allows an independent level of trust to be assigned to each of 
the n observers. These weight values wi, i={1, 2,…, n}, may 
change over time and situation. Dempster’s rule for weight D-S 
is defined in (5) as: 

 
We argue that WD-S would allow the incorporation of 

contextual information into the intrusion detection process via 
the form of individual weight values for each observer. The 
problem to be addressed is how to determine these weights. We 
propose that the single weight value Ai(t), generated by (1), 
associated with each of the events Ci from the FCM could be 
used to define the weights in the weighted D-S theory. 
Equation (6) represents the modified Dempster’s rule with two 
events C1 and C2. 

 
C. Composed FCM Weight Values 

The second approach that we propose is based on creating 
the FCM models including two different weights in each event, 
letting the FCM define the actual BPA values. As previously 
explained, in the FCM, the human experts define the main 
events relevant for the considered system and assign the 
importance of each event in the system. Each event C carries a 
single weight A(t). We propose that each expert could define 
the main events providing two weight values instead of one. An 
approach similar to the one we propose has been previously 
described in the literature. For instance, the authors of [17] 
present a Bayesian belief network model in which the nodes 
carry two probability outcomes (i.e. true and false outcomes). 
Similarly, the authors of [18] describe a Fuzzy Grey Cognitive 
Map that defines concepts containing two weight levels. 

When designing an FCM model, we can contribute to the 
design process by assigning an extra weight value to each 

event, similar to the Bayesian network shown in [17]. Each 
node C would carry two weights {Ni(t), Mi(t)} in the fuzzy 
interval [0, 1]. We can extend this approach by providing two 
weight values (e.g. Normal and Malicious), and compute the 
belief in Uncertainty as we currently do in [4]. Once these three 
values are computed, they could be used as an extra metric in 
the current IDS. This extra metric, extracted from the 
contextual information, would be fused using the D-S theory 
along with the measurable metrics from the network. 

D. BPA Adjustment Using FCM 
The third alternative approach that we propose is based on 

the adjustment of the BPA values prior to the data fusion 
process, by using the outcome of the FCM. 

Our IDS uses three independent statistical approaches to 
generate the BPA values based on the current characteristics of 
the network, and the measurable parameters of the network 
traffic [4]. In order to incorporate contextual information from 
the network users, the outcome of the FCM, i.e. the weight A(t) 
value that each event C carries, or the weight relationship, 
wij(t), between events can be used prior to the data fusion 
process, to adjust the assigned BPA values. These weight 
values may be used to increase or decrease the BPA values for 
one particular D-S hypothesis or for all the D-S hypotheses. 
This approach has been empirically evaluated in Section V. 

V. TESTBED AND EXPERIMENTS 
A. Testbed and Measurement Description 

We have conducted a series of experiments as a first step to 
confirm the efficiency of the proposed approach. These 
experiments use netflow measurements gathered during a 168 
hours (7 days) period from a virtual network testbed. 

A detailed description of the testbed can be found in [19]. 
Two physical hosts compose the physical infrastructure that 
hosts the virtual machines. In total, three virtual machines were 
set up in the testbed to generate traffic, two clients and one 
server. One virtual machine, acting as a client, was installed on 
one physical host, and two other virtual machines, acting as 
secondary client and server, were installed on the second 
physical host. That ensures that there was traffic both internally 
in the physical host and between two distinct physical hosts. 
Fig. 2 shows the logical topology of the virtual network. 

The network traffic information is gathered from the switch 
of the network (Cisco Nexus) acting as a netflow exporter. For 
setting up the virtual network, ESXi from VMware [20] was 
used as a hypervisor, installed on both physical hosts. For 
managing the virtual network, vCenter Server was installed as a 
virtual machine. The administrator can access vCenter Server 
through a web browser and manage most properties of the 
virtual network. A distributed virtual switch was also deployed, 
namely Nexus 1000v [21]. Distributed virtual switches are 
particularly useful for interconnecting virtual machines hosted 
on distributed physical hosts. The virtual switch was set up to 
send netflow data regarding the network to a netflow collector. 

B. Network Traffic Measurements 
In order to create some time-based patterns on the 

generated network traffic data, and therefore assign time as 
context to the data, three cron (built-in Linux tool) schedules 
were scripted: 1) connecting to a web server (port 80) and 



downloading a webpage (with wget); 2) securely copying a file 
over the network from a server over the virtual network with 
scp (port 22); and finally 3) streaming video from a server with 
VLC (port 8080) [22]. Table I presents the description of the 
time in which each of the services is active. 

The network traffic throughput was collected from the 
netflow measurements to identify possible anomalies in the 
traffic. Each service would generate a distinctive throughput 
value, distinct from the other throughput values generated by 
the other two services. These measurements for these 168 
hours have been plotted in Fig. 3. The services create periodical 
step-like changes in the throughput values. These changes may 
cause our IDS to generate False Positive (FP) alarms when 
analysing this data. In addition, some unexpected increases in 
the throughput value were seen, particularly evident between 
days 3 and 4. We consider these values as anomalies in the 
throughput measurements. A close-up of the step-like changes 
and the anomalies in the measurements is presented in Fig. 4. 
Therefore, the main purpose of the presented experiments is 
twofold. First, identify the anomalies in the throughput values. 
Second, reduce or eliminate any FP alarm that may be 
generated by our IDS. 

ESXi server 1

Cisco Nexus 

Ubuntu 
Linux Client

ESXi server 2

Ubuntu 
Linux Client

Ubuntu 
Linux Server

VLC server
ssh server
Web server  

Figure 2.  Logical topology of the virtual network: Three virtual machines 
(two clients and one server) installed on two physical hosts. 

 
Figure 3.  Throughput Measurements Over 7 Days - 168 Hours 

 
Figure 4.   Throughput Measurements Over 2 Days - 48 Hours 

TABLE I.  TRAFFIC PATTERN DESCRIPTION 

Scheduled 
Time 

00:00:00 - 
03:59:00 

04:00:00 - 
08:59:00 

09:00:00 - 
18:59:00 

19:00:00 - 
23:59:00 

Services vlc/ssh/wget vlc/wget ssh/wget vlc/ssh 

C. FCM Adjustment Process Description 
Three users with wide knowledge about the virtual network 

described in the previous section contributed to the FCM 
model. Each of them provided their opinion on whether the 
throughput measurements were normal or abnormal, based on 
the time and the different scheduled services. Initially, the users 
defined the main events relevant for the virtual network, the 
relationships among these events and the level of influence. 
This must be done without seeing the actual throughput 
measurements. In total, 13 events were defined, which have 
been sorted in Table II. The FCM events C1-3 define the three 
scheduled services. The events C4-7 define four throughput 
levels that are considered normal when one of the services is 
running. The four events C8-11 define the periods of time at 
which the different services are scheduled. Both C12 and C13 are 
the two possible outcome decisions about each state. These two 
events are finally used to adjust the BPA values. 

Using the input from each user, three adjacency matrices 
were generated. These matrices were formed as described in 
Section III, using the different events sorted in Table II, and the 
values w and A assigned by each user to each link and each 
event C, respectively. The adjacency matrices were merged 
using (3), and the combined knowledge of the expert has been 
tabulated in the 13x13 adjacency matrix presented in Fig. 5. 

TABLE II.  LIST OF FCM EVENTS 

FCM Events Events Definition 
C1 SSH 
C2 WGET 
C3 VLC 
C4 Throughput < 50000 
C5 50000 < Throughput < 200000 
C6 200000 < Throughput < 450000 
C7 Throughput > 450000 
C8 00:00:00 - 03:59:00 
C9 04:00:00 - 08:59:00 

C10 09:00:00 - 18:59:00 
C11 19:00:00 - 23:59:00 
C12 Normal 
C13 Abnormal 

 
Figure 5.  Combined Adjacency Matrix 

We can model how changes in the throughput, time and 
date affect the two events C12 and C13 using the initial vector 
state. Because the system can only measure the network traffic 
throughput and time, we have focused on the effect that 
changes in these two measurements have on the other events. 
For this process we have used the threshold activation function. 



As an example, suppose that the time is 07:00:00 and there 
is a transition in the measured throughput from 29890 bps to 
98500 bps, which is a normal situation. If we want to compute 
the weight with which the FCM would modify the BPA in this 
case, we would use the vector state A(0)= [0, 0, 0, -1, 0, 1, 0, 0, 
1, 0, 0, 0, 0]. After a number of iterations using (1), the 
resulting weights would be A(6)= [0.27, 0.32, 0, -0.5, 0.38, 0.5, 
0.05, 0, 0.5, 0, 0, 0.41, 0.05]. Therefore, the BPA Normal is 
adjusted by 0.41, whilst the BPA Abnormal is adjusted by 0.05. 

VI. RESULTS 
This section describes the detection results generated by our 

anomaly-based IDS. We have compared the efficiency of the 
detection system when contextual information is not used 
against detection results in which FCM is considered. The 
efficiency of the IDS has been evaluated using four well-
known parameters, True Positive (TP), which represents 
anomalies correctly classified as anomalous; True Negative 
(TN), which represents normal instances correctly classified as 
non-anomalous; False Positive (FP), which represents non-
anomalous instances misclassified as anomalous; and False 
Negative (FN), which represents anomalies misclassified as 
normal. These four parameters are essential to calculate the 
following performance metrics: 

• Detection Rate (DR): Proportion of anomalies 
correctly classified as anomalous among all the 
measurements. DR (%) = TP/(FN+TP)⋅100 

• False Positive Rate (FPr): Proportion of normal 
instances misclassified as anomalous among all the 
measurements. FPr (%) = FP/(TP+FP+TN+FN)⋅100 

• False Negative Rate (FNr): Proportion of anomalies 
misclassified as normal among all the measurements. 
FNr (%) = FN/(FN+TP)⋅100 

• Overall Success Rate (OSR): Proportion of all the 
measurements correctly classified. 
OSR (%) = (TN+TP)/(TP+FP+TN+FN)⋅100 

• Precision: Proportion of anomalies correctly classified 
as anomalous among all the alarms generated. 
Precision (%) = TP/(TP+FP)⋅100 

These parameters provide quantifiable evidence of how 
effective the IDSs are at making correct detections. 

During the experiments we have experimentally evaluated 
the performance of the detection system using only measurable 
information from the network, as well as the performance of 
the system including contextual information through the use of 
the FCM. The length of the sliding window approach used in 
the D-S process to generate the different belief values has been 
sequentially increased from 1 to 400 slots to assess the effect 
that these changes may have in the final performance results. 

The results without contextual information indicate that all 
the anomalies in the throughput measurements have been 
successfully identified (i.e. DR = 100% and FNr = 0%) but at 
the cost of a high number of false alarms. The FPr reaches up 
to 49% in the best-case scenario. The FPr results are presented 
in Fig. 6. This excessive high number of false alarms directly 
affects the rest of the performance measures. For instance, the 
Precision does not exceed 1% for any sliding window length, 
while the OSR result is considerably low, as can seen in Fig. 7. 

As previously explained in Section V, all these false alarms 
generated by the IDS are caused by the periodical step-like 

changes in the network throughput values. These results are a 
clear indicator that by utilising only measureable information 
from the network without considering the context, IDSs may 
reach a wrong conclusion, leading to low accuracy. 

 
Figure 6.  FPr Anomaly Detection Results 

 
Figure 7.  OSR Anomaly Detection Results 

On the other hand, when contextual information is 
considered, the performance of the detection system can be 
greatly improved. The detection results including contextual 
information indicate that all the anomalies in the throughput 
measurements have been successfully identified (i.e. DR = 
100% and FNr = 0%). The use of the FCM restricts the FPr to 
just 1.82%, in the worst-case scenario, for any evaluated sliding 
window length. This reduction in the number of FP alarms is a 
direct consequence of the adjustment induced by FCM. The 
FPr results when the FCM is used are also presented in Fig. 6. 
The precision values are also substantially higher than the 
results generated when the FCM is not employed; reaching up 
to 25% when a sliding window length 400 is used. In Fig. 7 we 
can also see that the OSR result is considerably higher than the 
results generated when the FCM is not used. 

TABLE III.  TRAFFIC PATTERN DESCRIPTION 

Metrics 
Result Values  

Without FCM Including FCM 

Sliding Window Size 50 slots 50 slots 

Detection Rate 100 % 100 % 

False Positive Rate 80.61 % 1.82 % 

False Negative Rate 0 % 0 % 

OSR 19.39 % 98.18 % 

Precision 0.54 % 19.38 % 

F-Score 0.01 0.39 

We have selected the sliding window length 50 as an 
example to compare the different performance metrics. In this 
particular case, both approaches generate perfect DR and FNr. 
However, the FPr without FCM reaches up to 80.61% whilst 



only up to 1.82% when FCM is used. The difference between 
both approaches is also evident in the OSR, F-Score and 
Precision results presented in Table III. These experiment 
results empirically confirm that the FCM can improve the 
efficiency of our IDS reducing the number of false alarms 
generated by the IDS, while not altering the number of correct 
detections. Therefore, we have verified improvement in the 
performance from the proposed approach. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper we advocated incorporating contextual 

information regarding the monitored network when taking 
decisions on whether an anomaly in the monitored network 
takes place. We discussed the drawbacks of most current IDSs 
that only use quantifiable measurements from the network. 

The methodology that we present in this paper builds upon 
and improves the performance of our prior work on a multi-
layer data fusion anomaly-based IDS, that has been briefly 
described in Section IV. The data fusion mechanism, based on 
D-S theory of evidence, combines belief values assigned to 
different hypotheses pertaining to whether an anomaly takes 
place or not. We have proposed three possible approaches with 
the aim of generating or influencing these beliefs based on 
contextual information as assigned by multiple human experts. 
The usage of the FCM in conjunction with our anomaly-based 
IDS provides the capability to integrate contextual information 
from the user to the detection process in addition to modelling 
influences between events. 

We have evaluated the use of FCMs in a virtual network 
topology. The services running in the network are scripted 
based on the time of day, and therefore, the time becomes a 
contextual information input, along with the date and the 
measured network throughput. We have compared the 
efficiency of the IDS system with and without the usage of 
contextual information. The experimental results strongly 
indicated the importance of contextual information when 
decisions about the behaviour of a network have to be taken. 
The practical results empirically confirm that by using the 
FCM module, the number of false alarms generated by our IDS 
was greatly reduced, while the number of correct detections is 
not affected. For instance, without FCM, the FPr reaches 49% 
in the best-case scenario, while the use of the FCM restricts the 
FPr to just 1.82%, in the worst-case scenario. 

As for future work, the proposed methodology has been 
empirically evaluated in a simple virtual network scenario. 
However, this testbed might not be representative of a realistic 
network in operation. Further work will address more complex 
scenarios. Such environments would require the experts to 
exhibit more thorough and deeper understanding of the 
monitored network and its behaviour. A possible integration of 
the Service Level Agreement and Quality of Service policies 
could assist in enhancing the expert understanding of the 
expected network behaviour under various context and 
situation conditions. Also, we wish to implement the remaining 
two approaches that have been suggested, as well as investigate 
the usage of richer contextual information inputs. 
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