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Abstract

The problem of viscous incompressible flow past a periodic array of porous

cylinders (a model of flow in an aerosol filter) is solved. The approximate

periodic cell model of Kuwabara is used to formulate the fluid flow problem. The

Stokes flow model is then adopted to model the flow outside the cylinder and the

Darcy law of drag is applied to find the filtration velocity field inside the porous

cylinder. The boundary value problems for biharmonic and Laplace equations

for stream functions outside and inside the porous cylinder are solved using

a boundary elements method. A good agreement of numerical and analytical

models is shown. The analytical formulas for the integrals in the expressions for

the stream function, vorticity and Cartesian velocity components are obtained.

It is shown that use of analytical integration gives considerable advantage in

computing time.

Keywords: porous cylinder, Stokes flow, Darcy model, boundary element

method

1. Introduction

The problem of air flow through porous bodies has practical applications

for many different environmental problems, for example air cleaning devices –

aerosol filters, wire screens, aerosol respirators. It is known that the use of
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porous cylinders as elements of aerosol filters significantly increases the effi-5

ciency of the deposition of aerosol particles [1, 2]. Also, during the filtration

process the suspended particles, deposited on fibers, form a porous layer. The

distortion of the fluid flow through the filter elements covered by the porous

layers considerably affects the inertial and diffusional capture of further aerosol

particles [3]. Hence it is important that efficient mathematical models of fluid10

flow past porous bodies are developed in order to calculate the two-phase flows

of dusty air.

In the work presented here the fluid flow in a periodic array of porous cylin-

ders, modelling the air flow in an aerosol filter, is considered under the assump-

tion of viscous incompressible flow. The approximate periodic cell model of15

Kuwabara [4] is used to formulate the fluid flow problem. The cell model with

Kuwabara boundary conditions was used previously by Stechkina [5], Kirsh [1]

to determine the velocity field of the flow over a porous cylinder in the case

of small Reynolds number flow, using analytical solution and the collocation

method. In this work the Stokes flow model is adopted outside the cylinder20

in the cell and inside the porous cylinder the Darcy law of drag is applied to

find the filtration velocity field. The resulting boundary value problems for

the biharmonic and Laplace equations for the stream function and pressure,

with boundary conditions on the porous surface, are formulated. The boundary

elements method (BEM) is then used to solve the considered boundary value25

problems. The analytical formulas for the integrals in the expressions for stream

function, vorticity and Cartesian velocity components are found. The numerical

solution is compared with analytical solution obtained with Kuwabara boundary

conditions.

The problems of fluid flow through the porous cylinder in a rectangular30

domain and fluid flow between eccentric cylinders were also solved by the method

developed in this paper and results obtained.
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Figure 1: Fluid flow domain

2. Problem statement

The two-dimensional flow of an incompressible gas in a periodic cell, of

radius h, with a porous cylinder of radius Rc at a small Reynolds numbers is35

considered. The radius Rc and the fluid velocity U , at the cell boundary, are

used as length and velocity scales. Due to the fluid flow symmetry we select as

a calculation domain the upper part of the periodic cell.

The outer fluid domain Ωe is the half annulus region formed by the cell

boundary r = h = 1/
√
α (α = 1 − ε, ε – porosity) and the boundary of the40

cylinder, r = 1. The porous zone Ωi is the inner half-circle of unity radius (fig. 1).

The problem of fluid flow in domain Ωe, assuming Stokes flow, can be reduced

to the solution of the biharmonic equation for the stream function ψe(x, y)

∆2ψe = 0 (1)

with the conditions on the boundary Γe of the domain Ωe. On the outer bound-

ary AD we have45

ψe = y, ωe = 0, (2)

where ωe(x, y) = −∆ψe is the vorticity. Condition (2) is valid for small val-

ues of α as shown by Marshall et al [6] who obtained accurate results for fluid
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flow in a filter for α < 0.2. On the symmetry lines AB and CD the following

conditions are applied:

ψe = 0, ωe = 0. (3)

The stream function ψi(x, y) in the porous zone Ωi with the boundary Γi,50

assuming the Darcy law for fluid flow, is described by the Laplace equation

∆ψi = 0, (4)

with the symmetry condition along the line BOC

ψi = 0. (5)

On the common boundary BC of the domains Ωe and Ωi the conditions of

equality of the pressure and flow rates

pe = pi, (6)
55

ψe = ψi (7)

as well as the condition proposed by Beavers and Joseph [7] are applied. The

condition of Beavers and Joseph gives a linear relationship between the normal

derivative of the slip velocity and the difference of the components of veloci-

ties ueθ and uiθ of outer and interior flows:

∂ueθ
∂r

= −αsS(uiθ − ueθ), (8)

where αs is the dimensionless coefficient (the slip coefficient), S = Rc/
√
k, k is60

the porous medium permeability. The quantity αs depends on structure of the

porous medium. The validity of the condition (8) has been widely supported

[1, 8].

3. Solution

To solve the boundary value problem for the outer region, (1)–(3) Eq. (1) is

reduced to two equations of second order:

∆ψe = η,

∆η = 0,
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where η = −ωe. By using the Rayleigh–Green biharmonic boundary formula65

(see [9]) and Green’s second identity, we obtain the equivalent pair of coupled

integral equations [10],

χ(x, y)ψe(x, y) =

∫

Γe

(

ψe(s)G′

1(x, y, s)− ψe′(s)G1(x, y, s) +

+η(s)G′

2(x, y, s)− η′(s)G2(x, y, s)) ds, (9)

χ(x, y)η(x, y) =

∫

Γe

(η(s)G′

1(x, y, s)− η′(s)G1(x, y, s)) ds,

where χ(x, y) = 2π for the interior points (x, y) ∈ Ωe, χ(x, y) = β for the

boundary points (x, y) ∈ Γe (β is the interior angle at a point on the bound-

ary Γe), a prime denotes differentiation with respect to the outward normal to

the boundary Γe, s is the boundary arc. The Greens functions are written as

G1 = ln ρ, G2 =
ρ2

4
(ln ρ−1), ρ(x, y, s) =

√

(x1(s)− x)2 + (y1(s)− y)2,

where (x1, y1) is the coordinate of the boundary point with arc abscissa s.

The boundary Γe =
⋃n
j=1 Γ

e
j is presented as a number of linear elements Γej

(linear segments). The functions ψe(s), ψe′(s), η(s), η′(s) are approximated by70

piece-wise constant functions with values ψej , ψ
e
j
′, ηj ,η

′

j on the single element Γej .

Eq. (9) can be rewritten in the discrete form

χ(x, y)ψe(x, y) =

n
∑

j=1











ψej

∫

Γe
j

G′

1(x, y, s)ds− ψej
′

∫

Γe
j

G1(x, y, s)ds+

+ηj

∫

Γe
j

G′

2(x, y, s)ds− η′j

∫

Γe
j

G2(x, y, s)ds











, (10)

χ(x, y)η(x, y) =

n
∑

j=1











ηj

∫

Γe
j

G′

1(x, y, s)ds− η′j

∫

Γe
j

G1(x, y, s)ds











.

Applying the expressions (10) at the centers of the elements Γei , (xci, yci),
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gives
n
∑

j=1

{

ψejAij + ψej
′Bij + ηjCij + η′jDij

}

= 0,

n
∑

j=1

{

ηjAij + η′jBij
}

= 0,

(11)

where

Aij =

∫

Γe
j

G′

1(xci, yci, s)ds− βiδij , Bij = −
∫

Γe
j

G1(xci, yci, s)ds,

Cij =

∫

Γe
j

G′

2(xci, yci, s)ds, Dij = −
∫

Γe
j

G2(xci, yci, s)ds,

where βi = β(xci, yci) and δij are the Kronecker symbols.75

The stream function ψi(x, y), that is described by Eq. (4), can be written

in the form

χ(x, y)ψi(x, y) =

∫

Γi

(

ψi(s)G′

1(x, y, s)− ψi
′

(s)G1(x, y, s)
)

ds.

Dividing the boundary into linear elements such that Γi =
⋃m
j=1 Γ

i
j we obtain

χ(x, y)ψi(x, y) =

m
∑

j=1











ψij

∫

Γi
j

G′

1(x, y, s)ds− ψij
′

∫

Γi
j

G1(x, y, s)ds











. (12)

Equation (12) can be written in the form

m
∑

j=1

{

ψijEkj + ψij
′

Fkj

}

= 0, (13)

Ekj =

∫

Γi
j

G′

1(xck, yck, s)ds− βkδkj , Fkj = −
∫

Γi
j

G1(xck, yck, s)ds,

where the points (xck, yck) are the centers of the elements Γik.

The obtained Eqs. (11) and (13) are a system of linear algebraic equations

(SLAE). The boundary conditions (2), (3), (5) are written as80

ψej = ycj, ηj = 0 at AD,

ψej = 0, ηj = 0 at AB CD,
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ψik = 0, at BOC.

The conditions (6) and (8) on the porous cylinder surface BC are expressed in

terms of the stream function and vorticity:85

∂ωe

∂r
= S2 ∂ψ

i

∂r
, (14)

∆ψe − ∂ψe

∂r
− ∂2ψe

∂θ2
= αsS

(

∂ψe

∂r
− ∂ψi

∂r

)

. (15)

From (14) and (15) the following equations can be obtained:

η′j − S2ψik = 0, ψej − ψik = 0,

ηj + (1 + αsS)ψ
e
j
′ −

ψej−1 − 2ψej + ψej+1

∆θ2
+ αsSψ

i
k

′

= 0,

where j and k correspond to the indices of the same linear elements of the

boundaries Γe and Γi. For the domains Ωe and Ωi we have ∂/∂n = −∂/∂r
and ∂/∂n = ∂/∂r respectively. To approximate ∂2ψe/∂θ2 the finite difference

relation is used under the assumption that the linear elements on BC have equal90

lengths (∆θ is the difference between the angle coordinates of adjacent linear

elements). The same conditions were used by Dunnett & Clement [3].

The SLAE obtained is then solved numerically to find the unknown quan-

tities ψej , ψ
e
j
′, ηj , η

′

j , j = 1, n, ψik, ψ
i
k
′

, k = 1,m. The functions ψe(x, y),

ωe(x, y), ψi(x, y) at the general point (x, y) can then be calculated from the95

formulas (10), (12). Taking into account u = ∂ψ/∂y, v = −∂ψ/∂x the formulas

for velocity components are written:

χ(x, y)ue(x, y) =

n
∑

j=1











ψej

∫

Γe
j

∂G′

1(x, y, s)

∂y
ds− ψej

′

∫

Γe
j

∂G1(x, y, s)

∂y
ds+

+ ηj

∫

Γe
j

∂G′

2(x, y, s)

∂y
ds− η′j

∫

Γe
j

∂G2(x, y, s)

∂y
ds











,

χ(x, y)ve(x, y) = −
n
∑

j=1











ψej

∫

Γe
j

∂G′

1(x, y, s)

∂x
ds− ψej

′

∫

Γe
j

∂G1(x, y, s)

∂x
ds+
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+ηj

∫

Γe
j

∂G′

2(x, y, s)

∂x
ds− η′j

∫

Γe
j

∂G2(x, y, s)

∂x
ds











, (16)

χ(x, y)ui(x, y) =

m
∑

j=1











ψij

∫

Γi
j

∂G′

1(x, y, s)

∂y
ds− ψij

′

∫

Γi
j

∂G1(x, y, s)

∂y
ds











,

χ(x, y)vi(x, y) = −
m
∑

j=1











ψij

∫

Γi
j

∂G′

1(x, y, s)

∂x
ds− ψij

′

∫

Γi
j

∂G1(x, y, s)

∂x
ds











.

In order to solve equations (10)–(13), (16) it is necessary to calculate the various

integrals in these equations.

In order to achieve this we introduce the following notation:

f1 = G1, f2 = G2.

Let ϕ be the angle of the tangent slope to the panel Γj. The angle ϕ is constant100

for each panel. Then

dx1
dn

= sinϕ,
dy1
dn

= − cosϕ. (17)

The other functions in the integrals can be obtained by differentiating the func-

tions G1 and G2 taking into account (17):

f3 = G′

1 =
(x1 − x) sinϕ− (y1 − y) cosϕ

ρ2
,

f4 = G′

2 =
1

4

[

(x1 − x) sinϕ− (y1 − y) cosϕ
]

(2 ln ρ− 1),

f5 =
dG1

dx
= −x1 − x

ρ2
, f6 =

dG1

dy
= −y1 − y

ρ2
,

f7 =
dG′

1

dx
=

[(x1 − x)2 − (y1 − y)2] sinϕ− 2(x1 − x)(y1 − y) cosϕ

ρ4
,

f8 =
dG′

1

dy
=

[(x1 − x)2 − (y1 − y)2] cosϕ+ 2(x1 − x)(y1 − y) sinϕ

ρ4
,

f9 =
dG2

dx
= −1

4
(x1 − x)(2 ln ρ− 1), f10 =

dG2

dy
= −1

4
(y1 − y)(2 ln ρ− 1),

f11 =
dG′

2

dx
=

1

4

[

−
(

2 ln ρ− 1 +
2(x1 − x)2

ρ2

)

sinϕ+
2(x1 − x)(y1 − y)

ρ2
cosϕ

]

,
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Figure 2: Single panel scheme

f12 =
dG′

2

dy
=

1

4

[(

2 ln ρ− 1 +
2(x1 − x)2

ρ2

)

cosϕ− 2(x1 − x)(y1 − y)

ρ2
sinϕ

]

.

Calculating the integrals from the 12 functions above can be achieved nu-

merically but it is time consuming when solving the SLAE and determining the

fluid flow velocity at the current point of the calculation domain. Because of this

the analytical determination of the integral would be preferable. The integrals105

involving the first four functions fi, i = 1, 4 have been determined analytically

previously, see [10]. In this work we will give analytical expressions for all the

other integrals needed using the functions above.

Denoting the coordinates of the ends of the panels Γj , (xb, yb) and (xe, ye)

respectively (fig. 2). The coordinates of the current point with arc abscissa s

can be written as

x1(s) = xb + (s− sb) cosϕ, y1(s) = yb + (s− sb) sinϕ,

where sb is the arc abscissa of the point (xb, yb).

Introducing the complex coordinates110

z = x+ iy, z1 = x1 + iy1, zb = xb + iyb, ze = xe + iye (18)
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and variables

ζ = z1 − z, ζb = zb − z, ζe = ze − z. (19)

Note that ρ = |z1 − z| = |ζ|. Hence we can write

G1 = Re
{

ln ζ
}

. (20)

Taking into account that in the panel points

dζ = dz1 = eiϕds, (21)

then

F1 =

∫

Γj

G1ds = Re











∫

Γj

ln ζds











= Re











e−iϕ
ζe
∫

ζb

ln ζdζ











=

= Re

{

e−iϕ
[

ζ(ln ζ − 1)
]ζe

ζb

}

.

(22)

Introducing the notation

[

f(ζ)
]ζe

ζb
= f(ζe)− f(ζb).

The derivative with respect to the normal can be written as115

d

dn
= −ieiϕ d

dζ
, (23)

where dζ = dz1 = ei(ϕ−π/2)dn. Then from (20):

G′

1 = Re

{

d(ln ζ)

dn

}

= Re

{

−ieiϕ d(ln ζ)
dζ

}

= Im

{

eiϕ

ζ

}

.

Integrating the function G′

1 gives:

F3 =

∫

Γj

G′

1ds = Im











e−iϕ
ζe
∫

ζb

eiϕ

ζ
dζ











= Im

{

[

ln ζ
]ζe

ζb

}

. (24)

Taking into account ρ2 = ζζ the function G2 can be written as

G2 =
1

4
Re

{

ζζ
(

ln ζ − 1
)}

. (25)
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Thus
∫

Γj

G2ds =
1

4
Re











e−iϕ
ζe
∫

ζb

ζζ
(

ln ζ − 1
)

dζ











.

In order to calculate this integral integration by parts is used.
∫

udv = uv −
∫

vdu.

Taking u = ζ, dv = ζ(ln ζ − 1)dζ and taking into account the formulas (21) and

the fact dζ = e−iϕds we have

dζ

dζ
= e−2iϕ.

The quantities du and v can be written in the form: du = e−2iϕdζ, v = ζ2(2 ln ζ − 3)/4.

Inserting these expressions into the integral we obtain

F2 =

∫

Γj

G2ds =
1

16
Re

{

e−iϕ
[

ζ2ζ
(

2 ln ζ − 3
)

− ζ3

9

(

6 ln ζ − 11
)

e−2iϕ

]ζe

ζb

}

.

(26)

To calculate G′

2, from (23) it follows that dζ = ie−iϕdn. Hence120

dζ

dζ
= −e−2iϕ. (27)

Differentiating (25) and taking into account (23) and (27) we have

G′

2 =
1

4
Im

{

eiϕζ ln ζ − e−iϕζ
(

ln ζ − 1
)}

.

Then
∫

Γj

G′

2ds =
1

4
Im











ζe
∫

ζb

ζ ln ζdζ − e−2iϕ

ζe
∫

ζb

ζ
(

ln ζ − 1
)

dζ











.

Computing the integrals we obtain

F4 =

∫

Γj

G′

2ds =
1

4
Im

{

[

ζζ
(

ln ζ − 1
)

− ζ2

2

(

2 ln ζ − 3
)

e−2iϕ

]ζe

ζb

}

. (28)

To integrate the other 8 integrals we differentiate (22), (24), (26), (28) taking

into account the formulas obtained from (18) and (19)

dζ

dx
= −1,

dζ

dx
= −1,

dζ

dy
= −i, dζ

dy
= i,
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∫

Γj

dG1

dx
ds =

dF1

dx
= −Re

{

e−iϕ
[

ln ζ
]ζe

ζb

}

,

∫

Γj

dG1

dy
ds =

dF1

dy
= Im

{

e−iϕ
[

ln ζ
]ζe

ζb

}

,

∫

Γj

dG′

1

dx
ds =

dF3

dx
= − Im

{

[

1

ζ

]ζe

ζb

}

,

∫

Γj

dG′

1

dy
ds =

dF3

dy
= −Re

{

[

1

ζ

]ζe

ζb

}

,

∫

Γj

dG2

dx
ds =

dF2

dx
=

=
1

16
Re

{

e−iϕ
[

−4ζζ
(

ln ζ − 1
)

+ ζ2
(

2 ln ζ − 3
)(

e−2iϕ − 1
)]ζe

ζb

}

,

∫

Γj

dG2

dy
ds =

dF2

dy
=

= − 1

16
Im

{

e−iϕ
[

−4ζζ
(

ln ζ − 1
)

+ ζ2
(

2 ln ζ − 3
)(

e−2iϕ + 1
)]ζe

ζb

}

,

∫

Γj

dG′

2

dx
ds =

dF4

dx
=

1

4
Im

{

[

−ζ ln ζ + ζ
(

ln ζ − 1
)(

2e−2iϕ − 1
)]ζe

ζb

}

,

∫

Γj

dG′

2

dy
ds =

dF4

dy
=

1

4
Re

{

[

−ζ ln ζ + ζ
(

ln ζ − 1
)(

2e−2iϕ + 1
)]ζe

ζb

}

.

The formulas obtained can be used for z /∈ Γj as well for the case z ∈ Γj when

some of integrals are singular and they can not to be integrated numerically. For

the case z /∈ Γj the increment of the argument ζ at the movement of z1 along

the panel Γj must be calculated keeping the selected branch of the function125

arg ζ. The increment of the argument ζ is accepted equal to zero for z ∈ Γj . It

corresponds to the calculations in terms of principal value of singular integrals.
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4. Analytical solution for Kuwabara cell

The problem of fluid flow past a porous cylinder in the periodic cell of the

Kuwabara model can be solved analytically [1]. We will seek a solution of the

form

ψea(r, θ) =

(

A
1

r
+Br + Cr ln r +Dr3

)

sin θ, ψia(r, θ) = Gr sin θ.

Taking into account the boundary conditions (2), (7), (14), (15) and the fact

that ωe(x, y) = −∆ψe the coefficients A, B, C, D, G can be obtained as:

A = S2k−1
1 (2− 3γ + αsS(γ − 2)) ,

B = −2k−1
1

(

4(1 + γ)(1 + αsS) + S2(1− γ)(1− αsS)
)

,

C = −8k−1(1 + αsS), D = 2αsk
−1(1 + αsS),

G = −8S−2k−1(1 + αs)(1 + αsS),

where γ = h−2,

k = −2+8γ−6γ2+αsS(6−8γ+2γ2)−16S−2(1+γ)(1+αsS)+4(1+αsS) ln γ,

k1 = −8(1+γ)(1+αsS)+4γS2(1−αsS)+3S2(γ2−αsS)+γ2αsS3+2S2(1+αsS) ln γ.

The velocity components and vorticity can be written in the form

uear(r, θ) =
1

r

∂ψea
∂θ

=

(

A

r2
+B + C ln r +Dr2

)

cos θ,

uiar(r, θ) =
1

r

∂ψia
∂θ

= G cos θ,

ueaθ(r, θ) = −∂ψ
e
a

∂r
= −

(

−A

r2
+B + C(ln r + 1) + 3Dr2

)

sin θ,

uiaθ(r, θ) = −∂ψ
i
a

∂r
= −G sin θ,

ωea(r, θ) =
1

r

∂

∂r

(

r
∂ψea
∂r

)

+
1

r2
∂2ψea
∂r2

= −2

(

C

r
+ 4Dr

)

sin θ,

ωia(r, θ) ≡ 0.
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Figure 3: Streamlines and vorticity distributions

5. Numerical results130

To test the developed numerical model the values h = 5, αs = 1, S = 2 are

used. The number of linear elements on the boundaries Γe and Γi is taken to

be n = 161 and m = 50 respectively.

The distributions of streamlines and vorticity obtained are given in fig. 3.

The points on the boundaries show the ends of the linear elements of Γe and Γi.135

Note that the distributions obtained from analytical formulas are not shown

because they practically coincide with the presented numerical distributions.

To estimate the accuracy of the method the absolute (Eψ(x, y), Eu(x, y),

Ev(x, y), Eω(x, y)) and relative (εψ, εu, εv, εω) errors were calculated for the

functions ψ(x, y), u(x, y), v(x, y), ω(x, y):

Eψ(x, y) = |ψ(x, y)− ψa(x, y)|, Eu(x, y) = |u(x, y)− ua(x, y)|,

Ev(x, y) = |v(x, y)− va(x, y)|, Eω(x, y) = |ω(x, y)− ωa(x, y)|,

εψ =
maxEψ(x, y)

max |ψa(x, y)|
, εu =

maxEu(x, y)

max
√

u2a(x, y) + v2a(x, y)
,

εv =
maxEv(x, y)

max
√

u2a(x, y) + v2a(x, y)
, εω =

maxEω(x, y)

max |ωa(x, y)|
.
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Figure 4: The distributions Eψ(x, y), Eu(x, y), Ev(x, y), Eω(x, y)
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Figure 5: The errors ratio as a function of ∆s: � – fψ , △ – fω, ⋄ – fu, ◦ – fv

The distributions Eψ(x, y), Eu(x, y), Ev(x, y), Eω(x, y) are shown in fig. 4.

The relative errors are εψ = 0.00014, εu = 0.00112, εv = 0.00057, εω = 0.00086.

The observed small values of absolute and relative errors confirm the high ac-140

curacy of the developed method.

The results of the comparison of using analytical (method 1) and numerical

(method 2) integration are given in fig. 5. On the figure the x-axis is the

15



integration step ∆s within one boundary element. Ordinates are the errors

ratio. The ratio’s of the errors E obtained by method 1, index a, and method 2,

index n, are shown for ψ, ω, u, v:

fψ =
maxEnψ(x, y)

maxEaψ(x, y)
, fω =

maxEnω(x, y)

maxEaω(x, y)
,

fu =
maxEnu (x, y)

maxEau(x, y)
, fv =

maxEnv (x, y)

maxEav (x, y)
.

The ratio of computing times, τ , for calculating the functions ψ(x, y), u(x, y),

v(x, y), ω(x, y) using numerical and analytical integration is shown by the

dashed line in the figure.

Fig. 5, a and fig. 5, b correspond to the fine and coarse mesh. In the first case145

the length of the boundary elements on the cylinder surface ∼ 0.1 and on the

outer boundary 0.2 (the number of boundary elements for the outer domain –

161, for the cylinder – 50). For the coarse mesh the length of the boundary

elements on the cylinder surface ∼ 0.2 and on the outer boundary 0.4 (the

number of boundary elements for the outer domain – 80, for the cylinder – 24).150

It is seen that there is advantage in computing time using method 1 compared

to method 2 beginning from ∆s > 10−2 = 0.1/10 and ∆s > 2 · 10−2 = 0.2/10

for fine and coarse mesh respectively. Also, as can be seen in the figure, the

accuracy of the two approaches becomes the same for ∆s ∼ 10−3. For these

values of ∆s the computing time using method 2 is > 10 times more than for155

the method 1.

The conclusion can be made that using analytical integration for determining

the expressions for stream function, vorticity and velocity components in the

BEM method for Stokes flow problem considerably reduces the computing time

required to obtain a solution of the required accuracy.160

To further test the accuracy and adaptability of the developed method two

additional problems have been considered. Firstly, the problem of fluid flow

through the porous cylinder in a rectangular domain, as shown in fig. 6, is

studied. This corresponds to the periodic cell of a system of parallel porous

cylinders such that their axes are perpendicular to the airflow. The packing165
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Figure 6: Fluid flow domain

fraction α is given by α = π/4h2. Additionally to the boundary conditions (3),

(5)–(7) the conditions applied on AE, DF

ψe = y, ωe = 0, (29)

and on EF

ψe = h, ωe = 0. (30)

The boundary value problem (1), (3)–(7), (29), (30) was solved using the

approach developed in this paper for h = 4.43, αs = 1, S = 2. The value170

h = 4.43 is taken in order to ensure that the porosity ε takes the same value,

0.96, as in the earlier results for the Kuwabara problem. The number of linear

elements on the boundaries Γe and Γi is taken to be n = 144 and m = 50

respectively. It is seen from fig. 7 that the distributions of streamlines and

vorticity obtained agree with the distributions in fig. 3. The relative fluid flow175

rate through the porous cylinder, Q = ψ(0, 1), is shown as a function of the

parameter, S, for two values of ε in fig. 8. Also shown in the figure are results

using the circular Kuwabara cell, fig. 1. It is seen that the quantity Q decreases

with increasing values of the parameter S due to the decreasing permeability.
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Figure 8: The relative fluid flow through porous cylinder Q(S). ε = 0.96: solid line for

Kuwabara cell, circle symbols for rectangle cell. ε = 0.6: dashed line for Kuwabara cell,

square symbols for rectangle cell.

For the value ε = 0.96 there is no significant difference in the results obtained180

using the rectangular and circular cells. However, ε as decreases the difference

between the results from the two models increases, as can be seen for ε = 0.6 in

the figure.

To validate the method developed for a doubly connected domain the flow be-

tween eccentric cylinders as considered by [11], [12], see fig. 9, has been modelled.185
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The flow is described by the biharmonic equation for the stream function (1).

The inner solid cylinder rotates with the constant anticlockwise angular velocity

ω1 = 1 and the outer is stationary. The radii of inner and outer cylinders are

r1 = 0.5 and r2 = 2 respectively. The eccentricity is found from the relation,

εc = e/(r2 − r1) where e is the distance between the centers of the cylinders.190

On the inner cylinder B1 the boundary conditions are:

ψ = ψ1,

∂ψ

∂n
= ω1r1.

To determine the value ψ1 the condition for periodicity in the form taken in [11]

∫

B1

∂ψ

∂n
dt = 0

is used.

On the outer cylinder B2 the conditions are:

ψ = 0,

∂ψ

∂n
= 0.

The boundary value problem for the flow between the cylinders was solved

by the BEM described above. The distributions obtained for ψ(x, y) (top) and
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Figure 10: Comparison of distributions ψ(x, y) (top) and ω(x, y) (bottom) obtained in [12]

(left) and in present work (right) for ε = 0.5

ω(x, y) (bottom) are shown in fig. 10 for εc = 0.5. Also shown in the figure, on

the left hand side, are the results obtained in [12] using the boundary integral195

equations (BIEs) expanded in terms of Fourier series. As can be seen there is

no significant difference between the distributions obtained in the earlier work

and those obtained here.

Analytical and numerical results of the unknown boundary constant ψ1 ob-

tained in [11],[12] and in the present work are compared in Table 1. In [11]200

the traditional BEM was applied. The values ψ1 obtained by the numerical
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Table 1: Comparison of analytical and numerical results

Kelmanson [11] Analytical

solution
Present work

ε n = 80 n = 160 n = 320 and Chen [12] n = 80 n = 160 n = 320

0.0 0.1066 0.1062 0.1061 0.1060 0.1056 0.1058 0.1059

0.1 0.1052 0.1048 0.1047 0.1046 0.1042 0.1044 0.1045

0.2 0.1011 0.1006 0.1005 0.1005 0.1001 0.1003 0.1004

0.3 0.0944 0.0939 0.0938 0.0938 0.0935 0.0936 0.0937

0.4 0.0854 0.0850 0.0848 0.0848 0.0845 0.0846 0.0847

0.5 0.0748 0.0740 0.0739 0.0738 0.0736 0.0737 0.0737

0.6 0.0622 0.0615 0.0613 0.0611 0.0610 0.0611 0.0611

0.7 0.0484 0.0477 0.0474 0.0472 0.0471 0.0471 0.0472

0.8 0.0347 0.0332 0.0326 0.0322 0.0322 0.0322 0.0322

0.9 0.0191 0.0175 0.0168 0.0164 -0.0055 0.0172 0.0164

method of [12] are the same as analytical values and are shown in the fifth col-

umn of Table 1. It is seen that using the BEM with analytical integration, as in

the present work, provides better agreement with the analytical value than the

method of [11] for equal numbers n of linear elements on the boundary. The205

negative value for n = 80 at εc = 0.9 is explained by the very narrow distance

between cylinders that becomes approximately equal to the length of boundary

linear element.

6. Conclusion

The viscous incompressible fluid flow in a periodic cell with a porous cylinder,210

the model of air flow in an aerosol filter, is considered. The Stokes flow model

is adopted outside the cylinder. Inside the porous cylinder, Darcy law of drag is

applied to find the filtration velocity field. The corresponding boundary value

problems for the biharmonic and Laplace equations for the stream function and

pressure are then formulated. The equality of pressure and normal velocity and215

the condition for the tangential velocity proposed by Beavers and Joseph [7] are
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taken as the boundary condition on the porous surface. The boundary elements

method is developed to solve the considered boundary value problems. The

results obtained using this method are compared with results obtained using

an analytical approach and good agreement is shown. Also, previous work in220

the area has obtained the flow velocity components using numerical approxi-

mations, [3]. In this work the velocity components are found using integration

and these integrals determined numerically and analytically. Analytical formu-

las for all the integrals in the expressions for the stream function, vorticity and

Cartesian velocity components are also given in this work. From the results it is225

shown that using analytical integrals in the BEM procedure reduces computing

time and also that the BEM method gives accurate results. Various situations

have been considered and the method has been shown to perform well. Hence

it has been demonstrated that the approach outlined here, with the analytical

derivation of the integrals within the BEM, is an accurate and efficient method230

to model filtration problems.

The developed method was also tested by the solution of the problems of

fluid flow through the porous cylinder in rectangular domain and the fluid flow

between eccentric cylinders. High accuracy of the method was confirmed.

The present approach will be applied in future work to calculate the dusty235

air flow in an array of filter fibers taking into account the change of the fiber

shape and size due to the dust particle deposition.

The work was supported by the RFBR (grant N15-01-06135) and EPSRC

(travel grant EP/M003841/1).
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