
1

Hide-and-Seek: Face Recognition in Private
Yogachandran Rahulamathavan, and Muttukrishnan Rajarajan

Information Security Group, School of Engineering, Mathematics, and Computer Science,
City University London, UK, EC1V 0HB, Emails:{Yogachandran.Rahulamathavan.1,R.Muttukrishnan}@city.ac.uk

Abstract—Recent trend towards cloud computing and out-
sourcing has led to the requirement for face recognition (FR) to
be performed remotely by third-party servers. When outsourcing
the FR, client’s test image and classification result will be revealed
to the servers. Within this context, we propose a novel privacy-
preserving (PP) FR algorithm based on randomization. Existing
PP FR algorithms are based on homomorphic cryptography
which requires higher computational power and communication
bandwidth. Since we use randomization, the proposed algo-
rithm outperforms the homomorphic algorithm in terms of
computational and communication complexity. We validated our
algorithm using popular ORL database. Experimental results
demonstrate that accuracy of the proposed algorithm is same as
the accuracy of existing algorithms, while improving the compu-
tational complexity by 120 times and communication complexity
by 2.5 times against the existing homomorphic cryptography
based approach.

I. INTRODUCTION

Face recognition (FR) is a computer application for auto-
matically identifying a person from a digital image. One of
the ways to do this is by comparing selected facial features
from the image and a facial database. Building a FR classifier
requires a large number of valid training samples; hence, it
is infeasible for individuals or small organizations to build
their own classifier. One viable solution to this problem is to
outsource the FR to a more computationally powerful third-
party. Outsourcing the FR mitigates the requirement of not
only a large number of valid training data samples but also
high computational, storage resources, and maintenance re-
quirements for clients (i.e., individuals or small organizations).

In general, FR problem can be solved using mathematical
model which is based on two phases: training phase and testing
phase.Traditionally, training and testing were performed within
the same environment (i.e., as shown in Fig. 1a, client and
server belong to the same party). However, when outsourcing
the FR to the third-party (see Fig. 1b), the client and server
become mutually untrusted parties and releasing the data sam-
ples owned by the client to the server raises privacy concerns
[1], [2]. Furthermore, the server may not wish to disclose any
details or parameters of its training data set even if it offers
classification service to the client. In order to mitigate these
privacy vulnerabilities, in literature, privacy-preserving (PP)
FR algorithm is proposed based on homomorphic cryptogra-
phy [7]. However, the existing PP FR algorithm requires higher
computational power and communication bandwidth. Homo-
morphic cryptosystems such as Paillier are public key cryp-
tosystems and uses large keys for encryption and decryption
[15]. This involves exponentiation of very large number, which
is computationally intensive operation. On the other hand, the
homomorphic encryption used for data classification schemes
can perform limited number of operations in encrypted domain

Fig. 1. Comparison between traditional and private face recognition ap-
proaches.

(either addition or multiplication). Hence, more number of
interactions between client and server is required to obtain
the classification result. Hence, in this paper, we propose a
lightweight PP FR protocol based on randomization technique.
Note that the proposed algorithm can be directly applied
for various potential applications such as emotion detection,
biometric classification, and clinical decision support.

Notation. We use boldface lower case letters to denote
vectors; (.)′ denotes the transpose operator; ‖.‖2 the Euclidean
norm; b.e the nearest integer approximation; and sign(m)
denotes sign of the number m. The modular reduction operator
is denoted by mod; vec() is a vectorization operator that forms
a vector by stacking the columns of a matrix; ⊗ denotes the
Kronecker product which is an operation on two matrices of
arbitrary size resulting in a block matrix operation.

II. FACE RECOGNITION: A CONVENTIONAL APPROACH

An efficient approach to recognize human faces is to trans-
forms face images into characteristic feature vectors of a lower
dimensional vector space [3]. Principal component analysis
(PCA) is a well-known feature extraction method which aims
to obtain a set of mutually orthogonal bases that describe the
global information of the data points in terms of variance [3].
In this paper, we consider only PCA based feature extraction,
however, the proposed algorithm can be directly extended
for more sophisticated feature extraction methods such as
Fisher linear discriminant analysis and variants of Fisher linear
discriminant analysis.

A. Feature Extraction

Suppose we have C number of facial image classes. Let nc
be the number of facial images for cth class. The total number
of facial images can thus be denoted as N =

∑C
c=1 nc. Let

us assume that each facial image is a real valued grayscale
image and can be represented as a matrix, where each element
corresponds to the pixel value of a point within the image. A
two-dimensional facial image matrix can be converted to a

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288372812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

one-dimensional vector by stacking each column (or row) of
the matrix into a long vector. Denote x̃i ∈ Zn×1 as a vector
representation of the ith facial image.

Let us start with a training set of facial images
x̃i = [x̃1,i, . . . , x̃n,i]

T ∈ Zn×1, i = 1, . . . , N . Using these
training data samples, we can train a classifier to classify an
unlabeled test sample. Initially, the training data needs to be
normalized to keep the numeric values of training samples on
the same scale. Let us denote the normalized training data
samples as xi ∈ Rn×1, i = 1, . . . , N where,

xi = x̃i − x̄,∀i, (1)

where x̄ = 1
N

∑N
i=1 x̃i, denotes the mean of the train-

ing data samples. Let us define a matrix X as follows:
X = [x1 x2, . . . ,xN]. Now the covariance matrix, C, of the
normalized training data samples can be defined as follows:

C =
1

N
XXT . (2)

The Eigenfaces are the eigenvectors of the covariance matrix
or scatter matrix, C, defined in (2). The transformation matrix
U can be obtained using the following optimization

U = argmax
V

| VTCV |= [u1 u2 . . . um], (3)

where {ui ∈ Rn×1 | i = 1, . . .m} is a set of eigenvectors
corresponding to the m largest eigenvalues of C (since the size
of C makes it computationally infeasible to directly compute
eigenvectors, usually smaller matrix XTX and appropriate
post-processing are being used).

Let us denote the projected image in the lower
dimensional feature space corresponding to the image
xi = [x1,i, . . . , xn,i]

T ∈ Rn×1 as yi = [y1,i, . . . , ym,i]
T ∈

Rm×1, where m � n. Hence, yi can be obtained by the
following linear projection:

yi = UTxi, i = 1, . . . , N, (4)

where
yk,i = uTk xi, k = 1, . . . ,m. (5)

B. Classification

After feature extraction, the classification can be based
on 1-nearest-neighbor classifier (1-NN) [4]. 1-NN classifier
computes the matching class of the test image based on the
closest training image. Squared Euclidean distance calculation
can be used to obtain the distances between the test image
and training images (i.e., in the lower dimension). In order
to explain the classification phase, let us denote a test image
before normalization as t̃ = [t̃1, . . . , t̃n]T ∈ Zn×1 and after
normalization as t = [t1, . . . , tn]T ∈ Rn×1 where

t = t̃− x̄. (6)

Denote the low dimensional vector corresponding to t as w =
[w1, . . . , wm]T ∈ Rm×1 where m � n. Now t is projected
by the projection matrix as

w = UT t, (7)

where
wk = uTk t, k = 1, . . . ,m. (8)

The squared Euclidean distance, di, between w and yi, i =
1, . . . , N is

di = ‖(w − yi)‖22 = ‖(UT t−UTxi)‖22,

=

m∑
k=1

(
uTk ttTuk − 2uTk tuTk xi + uTk xix

T
i uk

)
. (9)

The decision rule of the 1-NN classifier is that the training
image x∗ is said to have same features of the test image if

d∗ = min{d1, . . . , dN}, (10)

where d∗ is smaller than a given threshold T .

III. FACE RECOGNITION: IN PRIVATE

In this section, we show how the traditional algorithm can
be extended to work in private, so that any such test image
can be recognized with the aid of a third-party server but
without leaking any of the image contents or the recognition
results to the server. The new algorithm satisfies the following
three requirements: R1− without public-key homomorphic
encryption schemes, R2− hide the client’s data and the result
from the server, and R3− hide the server side parameters from
the client. In the following subsections, we explain how the
steps involved in the conventional approach can be computed
without violating the above three requirements (R1 – R3).

A. Normalizing the test image in private

Initially, client’s test image needs to be normalized before
the classification. However, the client cannot send the test
image, t̃, due to the privacy concerns. Client can add noise to
the test image before sending it to the server; however, since
the facial image has a unique structure, adding noise may not
effectively hide the test image. Hence, the client only sends a
noise vector, η̃ ∈ Zn×1, with the same dimension as the test
image. Since server receives only the noise vector, he cannot
be able get any information about the test image vector. As
shown in (6), server normalizes the noise vector, η̃, and obtains
the normalized noise vector, η, as follows:

η = η̃ − x̄. (11)

However, only the client knows the difference between the
test image and the noise image. Let us denote the difference
as γ = η̃ − t̃ ∈ Zn×1. Hence, only the client can recover
the normalized test image, t ∈ Zn×1 (i.e., t = t̃− x̄), from
the normalized noise vector as follows:

t = η − γ. (12)

B. Projecting the normalized noise onto the lower dimension
space in private

Since the server has obtained only the normalized noise
vector, he can only project the normalized noise vector onto
the lower dimension space instead of normalized test im-
age. Hence, as shown in (7), the server projects the nor-
malized noise vector and obtains lower dimension vector,
w̄ = [w̄1, w̄2, . . . , w̄m] ∈ Rm×1, as follows:

w̄ = UTη, (13)

3

where
w̄k = uTk η, k = 1, . . . ,m. (14)

However, using (11), γ = η̃ − t̃, t = t̃− x̄, (8) and (14), we
can derive w̄k in terms of wk, k = 1, . . . ,m as follows:

w̄k = uTk (η̃ − x̄) = uTk [(̃t + γ)− x̄] = wk + uTk γ, ∀k. (15)

The scalar uTk γ in (15) is unknown to the server. Hence, the
server uses only the w̄k, k = 1, . . . ,m obtained in (14) for
the distance calculation step instead of wk, k = 1, . . . ,m.

C. Euclidean distance calculation in private

Since the server has only computed w̄, lets us denote
the Euclidean distance between w̄ and the low dimensional
training image yi as d̄i, i = 1, . . . , N . Similar to (9), we can
compute the Euclidean distances d̄i, i = 1, . . . , N as

d̄i = ‖(w̄ − yi)‖22 = ‖(UTη −UTxi)‖22,

=

m∑
k=1

(
uTk ηη

Tuk − 2uTk ηuTk xi + uTk xix
T
i uk

)
.(16)

Since, η = t+γ, we can write d̄i in terms of di, i = 1, . . . , N
as

d̄i =

m∑
k=1

[
uTk (t + γ)(t + γ)Tuk − 2uTk (t + γ)uTk xi

+uTk xix
T
i uk

]
,

= di +

m∑
k=1

[
uTk
(
2tγT + γγT − 2γxTi

)
uk
]
. (17)

In the next subsection, we elaborate how the distances obtained
in (17) can be used to obtain the matching training image.

D. Minimum distance calculation to match the test image to
a known class in private

Let us call the difference between di and d̄i in (17)
as masking factor and denote it as mi, i = 1, . . . , N
(i.e., mi =

∑m
k=1

[
uTk (2tγT + γγT − 2γxTi)uk

]
). Let us

rewrite (17) as follows:

d̄i = di +mi, i = 1, . . . , N. (18)

In order to find the minimum distance, the server needs to
remove the masking factor, mi, from d̄i. Since the server does
not know the difference vector, γ, or the normalized test image
t, it is infeasible for the server to obtain a true distance values
di from d̄i, i = 1, . . . , N . Hence, the server cannot find the
matching training image corresponding to the test image using
(18). In order to obtain the matching image, the server needs
to interact with the client by sending all the d̄i, i = 1, . . . , N .
Before sending d̄i, i = 1, . . . , N , the server generates random
value ri for each d̄i and send d̃i to the client where

d̃i = d̄i + ri = di +mi + ri, i = 1, . . . , N. (19)

Now the client must interact with the server to compute mi+
ri, i = 1, . . . , N . Using mi+ ri, i = 1, . . . , N , the client can
compute the actual Euclidean distances di, i = 1, . . . , N as
follows:

di = d̃i − (mi + ri), i = 1, . . . , N, (20)

mi + ri =

m∑
k=1

uTk (2tγT + γγT − 2γxTi)uk + ri.

TABLE I
PRIVACY-PRESERVING SECURE TWO-PARTY COMPUTATION ALGORITHM

TO COMPUTE r + aTb PRIVATELY.
1. Input by Client: a = [a1, . . . , al]

T , where l < 216,
{(ai)∀ i} ∈ Zo1 with o1 ≤ 28

Input by Server: r, bs.be = [bs.b1e, . . . , bs.ble]T ,
where l < 216, {s.r, (bi)∀ i} ∈ Zo2 with o2 ≤ 232

2. Output: r + 1
s
(bsaeTb) (known only to the client)

Client first performs the following operations
3. choose primes α, β, where |α| = 256 bits and

β > (l.o1.o2 + o2 + 1).α2, e.g., |β| > 312 bits if l = 216

4. set K = 0 and choose l positive random integers
(c1, . . . , cl) such that o2.

∑n
i=1 ci < α− o2.l

5. for each element bi ∈ b do
6. choose random integer zi, compute zi.β such that

|zi.β| ≈ 1024 bits, and calculate ki = zi.β − ci
7. if bi > 0 then
8. Ci = ai.α+ ci + zi.β, K = K + ki
9. else if bi = 0 then
10. Ci = ci + zi.β, K = K + ki
11. end if
12. end for
13. send (α,C1, C2, . . . , Cn) to the server
Now server execute the following operations
14. for each element bi ∈ b do
15. if bs.bie > 0 then
16. Di = bs.bie.α.Ci i.e., if ai > 0

→ Di = bs.bie.ai.α2 + bs.bie.α.ci +bs.bie.α.zi.β
if ai = 0 → Di = bs.bie.α.ci + bs.aie.α.zi.β

17. else if bi = 0 then
18. Di = Ci i.e., if ai > 0 → Di = ai.α+ ci + zi.β

if ai = 0 → Di = ci + zi.β
19. end if
20. end for
21. compute D = s.r.α2 +

∑l
i=1Di and

return D to the client
Now client continues to perform the following operations
22. compute E = D +K mod β

23. return E−(E mod α2)

s.α2 which is equal to
r + 1

s
(bsbeTa) ≈ aTb + r

24. end procedure

Since t = t̃− x̄,

mi + ri =

m∑
k=1

uTk [2(̃t− x̄)γT + γγT − 2γxTi]uk + ri,

=

m∑
k=1

uTk [(2t̃ + γ)γT]uk−
m∑
k=1

uTk (2x̄γT+2γxTi)uk + ri.(21)

It should be noted that masking values (i.e., mi + ri, i =
1, . . . , N) should only be known to the client. If the masking
values are known to the server, then the server can compute
the actual Euclidean distances between the test and training
images, and eventually the server can obtain the matching
image corresponding to the test image which violates the
client’s privacy. In (21), the vectors t̃, and γ are only known
to the client and the vectors uk, xi, x̄ and the random scalar ri
are known only to the server. The vectors and scalars known
to the server and client are mixed with each other in (21) and
it is difficult to develop PP algorithm to securely compute the
masking values mi + ri, ∀i at present. Hence, we need to
reorder (21) such that, the variables known to the server to be
on one side while the variables known to the client to other
side. In order to compute (mi + ri) in private let us propose
a PP secure two-party algorithm in the next subsection.

4

1) Privacy-preserving secure two-party computation: Let
us assume that the client knows a vector a and the server
knows a vector b and scalar r, and both want to interact with
each other in order to compute aTb + r, where the outcome
aTb+r must be known only to the client. In order to compute
r + aTb in private, we use the building block used in [5] for
PP scalar multiplication. In order to avoid information leakage
due to the floating points during the two-party computation,
let us scale the elements in vector b by a large scalar and
approximate into nearest integer. This is a valid operation
since we scale the vector, b, and r by a large scalar, s, before
computation (i.e., s.r + aT bsbe) and divide the outcome by
the same scaling factor s (i.e., 1

s (s.r + aT bsbe) ≈ r + aTb).
Approximation errors due to the nearest integer approximation
operation, b.e is discussed in the Section V.

Table I shows the secure two-party computation algorithm
to compute r + 1

s (bsaeTb) privately. The security of the
algorithm relies on masking the variables using large random
noise. Let us explain the algorithm in Table I. The server
knows r and b while client knows a. Let us assume that the
client’s input a is composed of integers while server’s input
b is composed of floating points. Since the elements of a
are integer, the server converts the elements in b by scaling
and nearest integer approximation operations. This will prevent
any information leakage via floating points about the server
side classification parameters to the client. Initially, the client
add different random noises to each of the elements in a as
shown in Steps 7 to 10 in Table I. Since noise is added to
the elements of a, the server cannot be able filter the noise to
recover the client side parameters, which satisfies the clients
privacy requirement. Now the server execute the Steps from
14 to 21 and return the outcome to the client. In Step 21,
the server adds random value s.r to

∑l
i=1Di which protects

the server side parameters from clients selective input attack
according to the Lemma 1 provided below.

Lemma 1: The algorithm in in Table I is not vulnerable to
selective input attack i.e., the client cannot learn the server
side parameters by selectively input vector.

Proof: See the Appendix I. �
Finally, the client does the operations in Steps 22 and 23

to obtain ri + 1
s (bsaeTb). The correctness of the algorithm is

provided in the following Lemma.
Lemma 2: There is no overflow errors in the algorithm in

Table I due to the modulo reduction.
Proof: See the Appendix II. �

2) Solve (21) Using the Algorithm in Table I: In this
section, we show how we can compute (mi+ri) in (21) using
the algorithm in Table I. In order to exploit the algorithm in
Table I, we must rearrange the variables in (21). In order to do
this, let us introduce the following Kronecker identities [17]:
vec(AXB) = (BT ⊗ A)vec(X), and (A ⊗ B)(C ⊗ D) =
(AC)⊗(BD), where A, B, C, D, and X are matrices/vectors
with appropriate sizes. Let us now process the first term in (21)
(i.e.,

∑m
k=1 uTk [(2t̃ + γ)γT]uk) as follows:

uTk [(2t̃ + γ)γT]uk = vec
{
uTk [(2t̃ + γ)γT]uk

}
,

= (uTk ⊗ uTk)[γ ⊗ (2t̃ + γ)] = (uTk γ)⊗
[
uTk (2t̃ + γ)

]
,

= (uTk γ)×
[
uTk (2t̃ + γ)

]
. (22)

Let us define the following random variables rki,1, rki,2, rki,3,
and rki,4, ∀k and assume that these random variables are
generated by the server to randomize the scalar product output.
If we incorporate these random variables within (22) then (22)
become equals to (23) which is shown in the top of the next
page.

In (23), the server knows uk, rki,1, rki,2, rki,3, and rki,4 while
the client knows γ and 2t̃ + γ. Hence, client and server
collaboratively compute

[
uTk γ + rki,1

]
,
[
uTk (2t̃ + γ) + rki,2

]
,[(

rki,2uk
)T

γ + rki,3

]
, and

[(
rki,1uk

)T
(2t̃ + γ) + rki,4

]
using

the algorithm in Table I. In order to balance the equation, the
server subtract the remaining random value

(
rki,1r

k
i,2−rki,3−rki,4

)
in (23) in the next computation. Now let us process the
remaining terms in (21) (i.e., −

∑m
k=1 uTk (2x̄γT +2γxTi)uk−

ri). Assume ri = −
∑m
k=1(rki,1r

k
i,2− rki,3− rki,4), hence

−
∑m
k=1 uTk (2x̄γT + 2γxTi)uk − ri can be transformed into

(24) which is shown in the top of the page after next page.
In (24), the server knows 2

[
(uTk ⊗ uTk x̄)+(uTk xi ⊗ uTk)

]
and (rki,1r

k
i,2−rki,3−rki,4) and the clients knows γ. Hence, the algo-

rithm in Table I can be exploited by both the client and server
in order to compute the (−

∑m
k=1 uTk (2x̄γT +2γxTi)uk−ri).

Hence, using (23), (24), and Table I, the client can obtain
(mi + ri) ∀i. This will enable the client to compute the true
Euclidean distances between the test image and the training
images using (20). Hence, the client can find the smallest
Euclidean distance using (10). Only task now left is to find
the identity of the training image corresponding to the smallest
Euclidean distance. This task must be achieved without leaking
the index of the training image corresponding to the smallest
Euclidean distance to the server.

3) Privacy-preserving Identity Finding: Let us define a
binary vector db ∈ {0, 1}N,1. If nth Euclidean distance
is the smallest distance then, the client generates a binary
vector db by setting nth element to 1 while setting all other
elements to 0. Let us denote the identity of nth training
image as idn and define another vector called identity vec-
tor as did = [id1, id2 , . . . , idN]T . Client must keep the
binary vector db away from the server in order to protect
the privacy of the test image. However, the client could
exploit the algorithm in Table I to obtain the identity of
the test image without revealing the db as follows: The
identity of the training image which is corresponding to
the smallest Euclidean distance (i.e., lets assume nth train-
ing image) could be obtained by computing dTb did (i.e.,
[0 0 . . . 0 1 0 . . . 0].[id1 id2 . . . , idn, idn+1, . . . , idN]T =
idn). It should be noted that the algorithm in Table I but with
different inputs can be used to obtain the correct identity of the
matching training image. If the client feeds the binary vector
db instead of a and if the server feeds the identity vector did
instead of s.b and 0 for r to the algorithm in Table I, then the
output of the algorithm should be equivalent to the identity of
the matching training image.

IV. SECURITY AND PRIVACY ANALYSIS

The goal of our protocol is to keep the client’s test image
and the classification result away from the server and the
server’s parameters away from the client. Initially, the client
was just sending the noise vector η̃ ∈ Zn×1 to the server

5

(uTk γ)×
[
uTk (2t̃ + γ)

]
=
[
uTk γ+rki,1

]
×
[
uTk (2t̃+γ)+rki,2

]
−
[(
rki,2uk

)T
γ+rki,3

]
−
[(
rki,1uk

)T
(2t̃+ γ)+rki,4

]
−
(
rki,1r

k
i,2−rki,3−rki,4

)
. (23)

−uTk (2x̄γT+2γxTi)uk − (rki,1r
k
i,2−rki,3−rki,4) = −2vec(uTk x̄γTuk)− 2vec(uTk γxTi uk)− (rki,1r

k
i,2−rki,3−rki,4),

= −2
[
(uTk ⊗ uTk x̄)+(uTk xi ⊗ uTk)

]
vec(γ)− (rki,1r

k
i,2−rki,3−rki,4). (24)

Fig. 2. Example facial images from the ORL database.

instead of the true test image t̃ ∈ Zn×1. From this input,
the server can only infer the size of the test image. However,
facial features of the test image cannot be inferred from the
size of the image, hence, there is no privacy or security issue.

There is no interaction between the server and the client
until the minimum distance calculation (Subsection III-D),
hence, there is no information leakage in Subsection III-B
and Subsection III-C to the client. However, the server may
use different uk vectors to infer wk from w̄k or di from
d̄i. However, since both wk and uTk γ as well as di and∑m
k=1

[
uTk
(
2tγT + γγT − 2γxTi

)
uk
]

are depend on uk, the
server cannot be able to infer any client side parameter.

In Subsection III-D, the client and server interact with each
other using an algorithm in Table I in order to compute the true
Euclidean distances. The output of the algorithm in Table I is
known only to the client, hence it is crucial to evaluate whether
any malicious client can infer the server side parameters using
the output. However, we proved in Lemma 1 that, since the
server adds a random value ri at Step 21 in Table 1, the client
cannot learn the server side parameters, which satisfies the
privacy requirements of the server.

Let us now analyse the security properties of the algorithm
in Table I. Since the client hides the test image within input
vector b, malicious server may try to learn elements of b
during the execution of the algorithm in Table I. Hence, the
algorithm in Table I must be secure enough to protect elements
of b from the server. If we carefully look at the Steps 8 and 10
in the algorithm in Table I, the elements of b are randomized
by very large positive random integers ci + zi.β, where ci, zi,
and β are only known to the client. Hence, it is infeasible for
the server to extract elements of b from random noise, hence,
the algorithm in Table I is secure enough to protect the client
side parameters.

V. NUMERICAL ANALYSIS

In this section, we evaluate the proposed algorithm using
the ORL Database of Faces [6]. The ORL database contains
10 facial images of 40 distinct subjects i.e., number of classes
equal to 40, totalling 400 images (see Fig. 2). The size of each
image is 92 × 112 pixels with 256 grey levels per pixel i.e.,
n = 92× 112 = 10304.

TABLE II
COMPARISON OF COMPUTATIONAL COST OF THE PROPOSED SCHEME

AGAINST [7] (THE SIZE OF THE IMAGES, TOTAL NUMBER OF TRAINING
IMAGES, AND THE TOTAL NUMBER OF FEATURE VECTORS ARE DENOTED

AS n, N , AND m).

for Erkin [7] Proposed

III-A Client n(Cm + Ce) –
Server n(2Cm + Ce) –

III-B Client – –
Server m(n− 1)Cm +mnCe –

III-C Client NCm 2nCm
Server [(2+5m)Cm+(1+4m)Ce]N mN(n+1)Cm

IV-D Client (2Cm + Ce)log2N NCm
Server (9Cm + 3Ce)log2N (n+ 1)Cm

Total Client (n+N + 2log2N)Cm + (n+
log2N)Ce

(2n+N)Cm

Server
[2n+ (n− 1)m+ (2 +

5m)N + 9log2N]Cm + (n+
mn+N+4mN+3log2N)Ce

(mN +
1)(n+ 1)Cm

The aim of this experimental section is to show that the
proposed method achieves the same recognition accuracy as
that of the Paillier cryptography based PP FR approach of [7].
Since the approach in [7] does not degrade the performance of
the plain domain algorithm, our approach therefore does not
degrade the accuracy of the plain domain approach. In order
to evaluate the performance, we use 5-fold cross validation for
the experiments such that for each subject we use 8 images
in the training phase and 2 images for testing phase, hence
N = 8 × 40 = 320. We consider the first twelve dominant
eigenfaces for projection since there is no improvement in the
accuracy i.e., m = 12. We tested our algorithm on a computer
with a 3.40 GHz Intel(R) Xeon(R) processor and 8GB of RAM
running on Windows 64−operating system. The size of the
Paillier security parameter was 1048 bits long. Our proposed
private FR is implemented in C++ using GNU GMP library
version 4.2.4. Both the server and client were modelled as
different threads of a single program, which pass the variables
to each other.

To illustrate the effect of the scalar s in Table I, we have
plotted the classification accuracy of the proposed algorithm
for five different scalar values in Fig. 3. We also plotted
the accuracy of [7] against the scaling factor in Fig. 3. Our
algorithm performs better than [7] for the smaller scaling
factors. Also our algorithm achieves the maximum accuracy
faster than [7]. The crucial point is that the classification
accuracies of the both the algorithms eventually becomes equal
(i.e., 96.25 percent) when s is at a sufficient level, in this
case s > 104. Hence, our algorithm does not degrade the
performance of the traditional classification.

6

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

Scaling Factor

A
c
c
u
ra

c
y

Classification Accuracies: Our Scheme Vs Exisiting Scheme

Our Scheme

Existing Scheme

Fig. 3. Relation between scaling factor and the classification accuracy.
Accuracy of both the algorithms approaches to the maximum when s ≥ 104.

A. Computational complexity

In order to demonstrate the computational efficiency of the
proposed method, we compare our algorithm against the algo-
rithm in [7]. The pioneering work in [7] was the first-known PP
FR work which is based on Paillier cryptography. In order to
compare these works, without loss of generality, let us set the
security parameter to 1024 bits and denote the computational
time (in ms) for multiplication, modulo exponentiation in 1024
bits field as Cm and Ce, respectively. Table II compares both
the schemes in terms of the number of modulo exponentiations
and multiplications. Note that our scheme does not require
any computationally-expensive modulo exponentiations. From
[8], we can roughly estimate Ce ≈ 240Cm. Let us define
computational efficiencies of the proposed algorithm against
[7] at the client side and the server side as eC and eS ,
respectively where

eC =
Complexity for client in [7]

Complexity for client in our algorithm
,

eS =
Complexity for server in [7]

Complexity for server in our algorithm
.

Table III shows the computational efficiency of the proposed
algorithm for different set of parameters. In Table III, we
calculate the efficiency at both the client and server side
by varying the parameters m, N , and n. The computational
complexity to the client in the proposed algorithm is almost
120 times less than the complexity required for [7]. At the
server side, our algorithm outperforms when the total number
of training images (N) is less than 300. When N increases, the
efficiency of the proposed algorithm at the server side drops
slightly compared to [7], however efficiency at the client side
is constant irrespective of any parameters. If we consider the
same parameters used in numerical analysis (i.e., N = 320,
n = 10304, and m = 12) then both schemes share the same
order of computational complexity at the server side. However,
the computational efficiency at the client side in the proposed
algorithm is 120 times higher than [7].

B. Communication complexity

We measure the total communication complexity in terms
of data being communicated between the server and client.

TABLE III
COMPARISON OF COMPUTATIONAL EFFICIENCY OF THE PROPOSED

ALGORITHM AGAINST [7] .

n = 10000 n = 20000 n = 30000
(m,N) eC eS eC eS eC eS

(10, 200) 119 1.42 119 1.37 120 1.35
(20, 200) 119 1.36 119 1.31 120 1.29
(10, 400) 118 0.76 119 0.71 119 0.69
(20, 400) 118 0.73 119 0.69 119 0.66
(10, 800) 116 0.43 118 0.38 119 0.36
(20, 800) 116 0.41 118 0.37 118 0.35

In our algorithm, the client and server interact via only 8-bit
data during the normalization and projection steps. Afterwards,
they interact via the PP secure two-party algorithm proposed
in Table I. The client initially sends 2×1024-bits to the server.
Then the server sends back 5×1024×12×320 (i.e., N = 320,
and m = 12) size of data to the client. Finally, in order to find
the identity of the matched image, the client sends 1024×320-
bits to the server which sends back another 1024-bits to the
client. In total, the communication bandwidth required for
our algorithm is 2.499MB. However, the communications
complexity of the Paillier cryptography based FR algorithm
[7] requires (n+m+1)×1024 = (10304+12+1)×1024 =
1.32MB bandwidth for the normalization and projection steps.
For the match finding steps, [7] requires 6N + N(2l + 1) ×
1024 = 6 × 320 + 320 × (106 + 1) × 1024 = 4.63MB. In
total, [7] requires 6MB of bandwidth, when security parameter
is 1024, which is nearly 2.5 times higher than the proposed
approach.

VI. RELATED WORKS

There were several classification algorithms developed in
pattern recognition and machine learning for different appli-
cations [9]. However, only a few of them have been redesigned
for PP classification in literature ([7], [10]–[14] and references
therein). Majority of the work in the literature were developed
for the distributed setting where different parties hold parts of
the training data sets and securely train a common classifier
without each party needing to disclose its own training data
to other parties [13], [14]. The works in [13], [14] exploited
the secure multi-party integer summation in order to compute
the kernel matrix. Basically, each party generates a Gramm
matrix using scalar products of training and test data samples.
This Gramm matrix is later revealed to the trusted third party
who will compute the kernel matrix and then classify the test
sample. Revealing the Gramm matrix may leak the private data
and, therefore, privacy cannot be entirely preserved.

Recently, Yuan et.al. proposed an efficient biometric iden-
tification based on random matrix operations and without
homomorphic encryption and garbled circuit [16]. In fact, the
work in [16] is about biometric identification (our work is
about biometric recognition). In our method, the classification
result and test image are known only to the client while [16]
reveals the result and the test sample to another party who is
using the cloud computing.

PP data classification algorithms suitable for a client-server
model were studied in [7], [10]–[12]. We stress here that these

7

works are developed based on homomorphic cryptography. Ef-
ficient PP FR algorithm based on garbled circuit and oblivious
transfer function was proposed in [18]. In [18], Sadeghi et
al. proposed two algorithms: one is purely based on garbled
circuit and other one is combination of Paillier homomorphic
algorithm and garbled circuit. The work in [18] improved
the complexity of [7] by nearly four times (our algorithm is
120- times faster than [7]) by exploiting efficient minimum
value and minimum index garbled circuit. To the best of our
knowledge, the proposed work in this paper is the first known
lightweight PP FR algorithm which is suitable for outsourcing
face recognition in the cloud.

VII. CONCLUSIONS

In this paper, we have proposed a lightweight FR to out-
source the FR task to untrusted third-parties. We exploited ran-
domization technique to preserve the privacy of the client and
server side parameters. Since the proposed method excluded
the usage of homomorphic cryptography, the computational
and communication complexities were substantially reduced
compare to the existing schemes. In order to validate the
proposed methods, we have experimented our method on
popular face image database. The experiment results show that
the classification accuracy of the proposed method is same
as the traditional approach, which proves reliability of the
proposed method.

APPENDIX I

Proof of Lemma 1: Algorithm in Table I outputs ri + aTb to
the client. Let’s assume that the server does not randomize the
Euclidean distances d̄i by random value ri, i = 1, . . . , N . In
this case, a malicious user can infer the server’s input vector
b by selectively inputting binary vector e.g., if client wants to
know b1 then client can inputs vector [1 0 . . . 0]T . However,
since the server add freshly generated random value ri every
time, it is impossible for the client to infer server’s vector b.

APPENDIX II

Proof of Lemma 2: Let us assume that elements in vectors a,
bs.be, and s.ri take maximum possible value. Let us denote
elements in a can take maximum value of o1 and elements in
bs.be and s.ri can take maximum value of o2. Hence, if num-
ber of elements in a and bs.be are equal to l, then output of
the algorithm in Table I should be o2+l.o1.o2

s . In order to verify
this, lets go through the Steps 8, 16, 21, 22, and 23 in Table
I: Step 8 ⇒ Ci = o1.α+ ci + zi.β, i = 1, . . . , l. Step 16 ⇒
Di = o2αCi = o2.o1.α

2 + o2.α.ci + o2.α.zi.β, i = 1, . . . , l.
Step 21 ⇒ D = o2.α

2 +
∑l
i=1Di = o2.α

2 + l.o1.o2.α
2 +

o2.α.
∑l
i=1 ci+o2.

∑l
i=1 α.zi.β. Since K =

∑l
i=1(zi.β−ci),

and from Step 22 ⇒ E = D + K mod β = o2.α
2 +

l.o1.o2.α
2 + o2.α.

∑l
i=1 ci + o2.

∑l
i=1 α.zi.β +

∑l
i=1(zi.β −

ci) mod β = o2.α
2 + l.o1.o2.α

2 + (o2.α− 1).
∑l
i=1 ci. There

is no further modulo reduction since β > (l.o1.o2+o2+1).α2

(Step 3), o2.
∑n
i=1 ci < α− o2.l (Step 4), and

E = o2.α
2 + l.o1.o2.α

2 + (o2.α− 1).

l∑
i=1

ci,

< o2.α
2 + l.o1.o2.α

2 + o2.α.

l∑
i=1

ci

< o2.α
2 + l.o1.o2.α

2 + (α2 − α.o2.l)
< o2.α

2 + l.o1.o2.α
2 + α2 = l.o1.o2.α

2 + (o2 + 1).α2 < β.

From Step 23, E mod α2 = o2.α
2 + l.o1.o2.α

2 + (o2.α −
1).
∑l
i=1 ci mod α

2 = (o2.α−1).
∑l
i=1 ci. There is no further

modulo reduction since om.
∑n
i=1 ci < α− om.l (Step 4) and

E mod α2 = (o2.α − 1).
∑l
i=1 ci < om.α.

∑l
i=1 ci < α2.

Hence, from Step 23, E−(E mod α2)
s.α2 = o2.α

2+l.o1.o2.α
2

s.α2 . The
two-party computation algorithm always output correct result.

REFERENCES

[1] Sundareswaran, S., Squicciarini, A. C., Lin, D.: Ensuring distributed
accountability for data sharing in the cloud. In: IEEE Trans. Dependable
and Secure Computing, vol. 9, no. 4, pp. 555–567. (Jul.-Aug. 2012)

[2] Pearson, S., Charlesworth, A.: Accountability as a way forward for pri-
vacy protection in the cloud. In: Proc. First Int’l Conf. Cloud Computing.
(2009)

[3] Sirovich, L., and Kirby. M.: Low-Dimensional Procedure for the Charac-
terization of Human Faces. In J. Opt. Soc. Am. A, vol. 2, pp. 519–524.
(1987)

[4] Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic
Press, second edition ed. (1990)

[5] Lu, R., and Lin, X., and Shen, X. (Sherman).: SPOC: A Secure and
Privacy-Preserving Opportunistic Computing Framework for Mobile-
Healthcare Emergency. In IEEE Trans. Parallel and Distributed Systems,
vol. 24, no. 3, pp. 614–624. (Mar. 2013)

[6] The Database of Faces, (formerly The ORL Database of Faces). Available
at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase. html.
AT&T Laboratories Cambridge.

[7] Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft.
T.: Privacy-preserving face recognition. In privacy enhancing technologies
(PET09). LNCS, vol. 5672 pp 235–253. Springer. (2009)

[8] Huang, K.-H., Chung, Y.-F., Liu, C.-H., Lai, F., and Chen. T.-S.: Efficient
Migration for Mobile Computing in Distributed Networks. In Computer
Standards and Interfaces, vol. 31, no. 1, pp. 40-47. (2009)

[9] Duda, R. O., Hart, P. E., and Stork, D. G.: Pattern classification and scene
analysis 2nd ed. (1995)

[10] Rahulamathavan, Y., Phan, R. C.-W., Chambers, J. A., Parish, D.: Facial
expression recognition in the encrypted-domain based on local fisher
discriminant analysis. In: IEEE Trans. Affective Computing, vol. 4, no.
1, pp. 83–92. (Jan.-Mar., 2013)

[11] Rahulamathavan, Y., and Veluru, S., and Phan, R.C.-W., and Chambers,
J. A., and Rajarajan, M.: Privacy-Preserving Clinical Decision Support
System Using Gaussian Kernel-Based Classification. In IEEE Journal of
Biomedical and Health Informatics, vol. 18, no. 1, pp. 56–66. (Jan. 2014)

[12] Rahulamathavan, Y., and Phan, R.C.-W., and Veluru, S., and Cumanan,
K., and Rajarajan, M.: Privacy-Preserving Multi-Class Support Vector
Machine for Outsourcing the Data Classification in Cloud. In IEEE Trans.
Dependable and Secure Computing, vol. 11, no. 5, pp. 467–479. (2014)

[13] Yu, H., Jiang, X., Vaidya. J.: Privacy-preserving SVM using nonlinear
kernels on horizontally partitioned data. In: Proc. ACM Symp. Applied
Computing (SAC). (2006)

[14] Chen, K., Liu, L.: Privacy preserving data classification with rotation
perturbation. In: ICDM, IEEE Computer Society, pp. 589–592. (2005)

[15] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238, Springer, Heidelberg. (1999)

[16] Yuan, J., Yu, S.: Efficient privacy-preserving biometric identification in
cloud computing. In IEEE INFOCOM, pp. 2652-2660. (2013)

[17] Meyer, C. D.: Matrix Analysis and Applied Linear Algebra. In Society
for Industrial and Applied Mathematics, isbn – 0-89871-454-0, Philadel-
phia, PA. (2000)

[18] Sadeghi, A.R., Schneider, T., and Wehrenberg, I.: Efficient privacypre-
serving face recognition. In Information, Security and Cryptology ICISC
2009. Springer Berlin Heidelberg, pp. 229-244. (2010)

