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Abstract
The value of no-take marine reserves as fisheries-management tools is controversial, par-

ticularly in high-poverty areas where human populations depend heavily on fish as a source

of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine

reserves may have a positive influence on adjacent fisheries. Spillover can contribute to

poverty alleviation, although its effect is modulated by the number of fishermen and fishing

intensity. In this study, we quantify the effects of a community-managed marine reserve in a

high poverty area of Northern Mozambique. For this purpose, underwater visual censuses

of reef fish were undertaken at three different times: 3 years before (2003), at the time of es-

tablishment (2006) and 6 years after the marine reserve establishment (2012). The survey

locations were chosen inside, outside and on the border of the marine reserve. Benthic

cover composition was quantified at the same sites in 2006 and 2012. After the reserve es-

tablishment, fish sizes were also estimated. Regression tree models show that the distance

from the border and the time after reserve establishment were the variables with the stron-

gest effect on fish abundance. The extent and direction of the spillover depends on trophic

group and fish size. Poisson Generalized Linear Models show that, prior to the reserve es-

tablishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside

the reserve has increased and caused spillover of herbivorous fish. Spillover was detected

1km beyond the limit of the reserve for small herbivorous fishes. Six years after the estab-

lishment of a community-managed reserve, the fish assemblages have changed dramati-

cally inside the reserve, and spillover is benefitting fish assemblages outside the reserve.

Introduction
The world’s oceans are subject to a myriad of threats including overexploitation of species,
coastal development, land-based pollution, energy practices, aquaculture, land use and trans-
formation, water use, shipping practices, and climate change [1,2,3]. These threats, coupled
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with continued growth of the human population and migration to coastal areas, are driving un-
anticipated, unprecedented and complex changes on the world’s oceans [4]. Marine Protected
Areas (MPAs) are one of the most often advocated management options to protect oceans
from these threats. They are one of the easiest management approaches for non-specialists to
grasp, making MPAs an alluring alternative to complex arrays of management tools [5,6].
MPAs also represent a more holistic approach to management. However, their design is often
more political and social than based in ecological and fisheries science [7], and can be imple-
mented in situations of limited information [8]. MPAs are widely used, and their use is likely
to increase in the future. For example, several large scale marine reserves, the size of California
or bigger, were declared around the world to fulfill the goal of 10% of oceans protected as
MPAs by 2020 proposed by the Convention on Biological Diversity. Since 1990, MPAs have in-
creased in number by 58% and in extent by 48% [9].

An MPA can have different zones, including: no-take areas, where fishing is prohibited or
restricted (e.g. only some gear types allowed); buffer zones; and zones reserved for different ac-
tivities like sport fishing or aquaculture [10]. Larger MPAs allow different zoning for different
activities, providing spatial separation of incompatible human activities and reducing conflict
among stakeholders [11]. The most restrictive MPAs are Marine Reserves (MRs), normally
dedicated to the protection of biodiversity and ecosystems. To maximize fisheries benefits, net-
works of several small MRs tend to work better than fewer, bigger MRs, but if the goal is con-
servation a smaller number of larger MRs is better [12].

MPAs can be established with different goals. They are a central tool for ecosystem-based
management, conferring protection on species and habitats from fishing within their borders
and also issuing control measures for pollution, gas and oil exploration, and coastal develop-
ment [13,14,15]. They are implemented for biodiversity conservation and to protect certain
zones for underwater tourism, which has become very important for many island and coastal
countries [16,17]. However, the most common, and most controversial, goal of MPAs is to en-
hance fisheries [8,18,19,20,21,22,23,24] through the export of larvae and adults from the pro-
tected areas into the surrounding unprotected areas [25]. Despite the potential benefits of
MPAs, prohibiting extractive uses can have socio-economic costs such as the loss of income
from fishing, and/or the increased costs of having to fish further away [26, 27]. It can be difficult
to defend these costs, especially when they are imposed on extremely poor communities where
local inhabitants rely on the fish they catch as their only source of protein [28,29], unless there
are unequivocal gains in terms of enhanced fisheries or other forms of poverty alleviation.

Inside MRs, full protection from fishing usually leads to a rapid increase in density and bio-
mass of previously exploited populations. Species richness increases, alongside the size of indi-
viduals, and the age structure of fish populations [5,7,19,30]. Dividing species into targeted and
non-targeted reveals that only target species tend to increase significantly in number within
MRs; non-target species tend to remain the same or even decrease [20,30,31], due to an increase
in predators inside the MR. MRs foster habitat recovery from fishing disturbances and allow dif-
ferent assemblages of species and habitat improvement (for example increased coral cover) [32].
In the Caribbean, MRs have been shown to enhance the recovery of coral reefs [33,34] by pre-
venting the overfishing of herbivorous fishes that keep the substrate free for new coral recruits.

MPAs can generate conflicts between users (e.g. fishermen vs. others) and between objec-
tives (e.g. conservation vs. fisheries). Opponents contend that many MPAs are just “paper
parks”, impossible to properly enforce, or that they simply displace fishing effort to zones with-
out effective management [35]. Others insist that while efforts to increase the size and number
of MPAs must continue, solutions that stabilize the size of human population and our demands
on biodiversity need to be found and implemented [36]. One of the main benefits proclaimed
is the enhancement of fisheries around the areas of protection: they increase fish abundance
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inside the protected area and eventually this effect extends outside. However, whether MPAs
truly enhance fisheries remains controversial [8,18,19,20,21,22,23,24].

Fisheries can profit from two different processes after the initial recovery inside the MR: the
export of propagules (recruitment effect), and the export of adults (spillover effect) outside of
the MR [37,38,39,40]. Additionally, fish from MRs are relatively naïve to fishing and therefore
more easily fished [41]. The intensity of these effects, both inside and outside the MR, depends
on: 1. Location, MRs with similar habitats inside and outside the border maximize spillover
[42,43]; 2. Size, bigger reserves are preferable for conservation effects, but smaller MRs increase
the border/area ratio and hence the spillover [42]; 3. Duration of the protection, abundances
build up first inside the MR before spillover starts to happen [44]; 4. Isolation, whether the MR
is isolated or part of a network (where the appropriate spacing between MRs is crucial); 5. Con-
nectivity, exchange of larvae between the protected areas is especially important for conserva-
tion efforts [45] [46]. All these variables mean that the benefits of MRs are not always
immediately detectable.

The dimensions and “visibility” of the spillover effect are critical to the acceptance of MRs
by fishermen [5]. However, the effects of MRs can take from as little as 3 years [47,48] to sever-
al decades to be detectable [47]. Spillover can take even longer to detect, and the length of this
period also varies among studies [6,20,40]. The spillover effect can differ from one taxonomic
group to another and it also depends on whether the species is targeted by fishermen outside
the MR [32]. In general when fishing intensity is low, the difference between the MR and out-
side areas is not significant [43]. Depending on all these factors, the spillover effect can be
traced to 200–300m [6,49] or even 500m to 1–2km [20] from the MR border. Spillover can ei-
ther be masked or reinforced by habitat variables [39] or by the amount of exploitation suffered
before the MR was implemented [50]. Additionally, lack of compliance and enforcement can
render MRs inefficient [35,51,52]. Also, high fishing intensity just outside the MR border,
known as “fishing the line” [53], can mask the spillover effect, and increase the relative differ-
ences in fish abundance between the MR and the unprotected surrounding areas. Occasionally,
the existence of an MPA attracts fishermen from other regions increasing fishing effort around
it and contributing to the masking of the spillover effect [35]. This ‘attraction’ phenomenon is
common in community-managed areas where legal ownership is hard to establish [54].

Spillover is the key to an MR being accepted as a fisheries-management tool. The strength
and visibility of spillover effects are the main criteria by which local communities assess the
success of an MR. This study is dedicated to the detection of these effects from a small, commu-
nity-managed MR. Our main questions are: does the MR affect fish abundances? Can we detect
spillover? Are there differences in spillover between trophic groups or fishes of different sizes?
In a very remote and poor area such as the location of our study, Vamizi Island, Mozambique,
the information gathered is crucial to allow Mozambican Government representatives and co-
management institutions to assess the effectiveness of small community marine reserves in en-
hancing and supporting nearby fisheries [55,56].

Material and Methods

2.1 Ethics
This study did not require animal ethics approval because no animals were handled. The field
study did not involve endangered species. The study was carried out in Northern Mozambique
(GPS coordinates: S 11°01,218'; E040° 40,762'). The Mozambican Government does not request
or issue research permits to conduct research at this site. The study was authorized by the com-
munity committee in charge of managing this community reserve, as well as by the tourist re-
sort operating in the area.
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2.2. Study site
Vamizi is a 48km2 island located in the Quirimbas archipelago in Northern Mozambique
(Fig 1), 40 km south of the Tanzanian border. The island has a permanent population of
around 1500 people, which doubles in the dry season due to the annual migration of fishermen
from Nacala, located in the adjacent southern province [57]. The island is far from urban cen-
ters and the region is largely undeveloped. On the east side of the island, an ecotourism lodge
has been promoting conservation since 2000. Between December and March the predominant
winds are from the north; the rest of the year they come from the south. To the north, Vamizi’s
lagoon finishes in a reef crest, leading to a wall down to 200–500 m in eastern locations, and a
slope to the same depths in the west. The south side of the island has a gentle slope into shallow
reef flats of seagrass, macroalgae and coral bommies. On the north side, coral forms a continu-
ous barrier with live cover between 30–60% and dominated by Acropora species [58].

In 2006, a 38 Km2 marine reserve was created by the community around the east point of
the island, within which fishing is not permitted. The west point of the island around the vil-
lages was excluded from the marine reserve. The community enforces the no-take status with

Fig 1. Map of Vamizi Island and location in Mozambique. Locations 1, 2 and 3 outside the MR. Locations 4, 5 and 6 inside the MR.

doi:10.1371/journal.pone.0111774.g001
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support from the lodge. In 2011, WWF (The World Wide Fund for Nature) began running a
conservation project for the lodge, promoting the engagement of both the lodge and the com-
munities with the marine reserve.

2.3. Sampling design
To quantify the effect of the MR, the state of reef communities was assessed using an Underwa-
ter Visual Census (UVC) at sites inside and outside the MR (Fig 1). Sites with similar wind,
current and topographic characteristics were selected to facilitate comparisons between treat-
ment (inside the MR) and control (outside the MR) locations. Surveys were conducted at two
sites in 2003 (before MR establishment), at four sites in 2006 (during establishment) and at six
sites in 2012 (6 years after establishment). In 2012 more sites were surveyed near the border of
the MR to enable quantification of the spatial extent of the spillover effect (Fig 1). UVC is an
indirect way of assessing spillover, as it does not involve tagging fish or tracking fish prove-
nance. However, it is a reliable, non-destructive method with an established track record for
detecting effects of MRs [38,39]. All of the 2012 surveys were conducted at 10m depth because
surveys in 2003 and 2006 had shown no significant differences between two initial survey
depths. Fish abundance data was collected in all years, but in 2006 and 2012 benthic variables
(see below) were also collected.

At each site we quantified fish abundance, benthic cover and rugosity. Fish abundance is
predicted to change directly as a result of the establishment of the MR. Quantifying benthic
habitat and rugosity is important in order to control the effect of benthic variables on fish
abundances allowing us to disentangle the effects of the MR and habitat factors. The positions
of the survey sites along the border allow tracking of the changes in fish abundances along the
gradient of the MR, and detection of spillover. UVCs [59] of reef fish were conducted to esti-
mate abundances per 250m2 of herbivorous fishes families Acanthuridae and Scaridae, and of
piscivorous families Lutjanidae, Haemulidae, and Serranidae (only groupers). Acanthuridae
and Scaridae were chosen because of their ecological importance [60]. The piscivorous families
were chosen as the most important indicators of overfishing [61]. Fishes were identified to
genus and counted along 50m by 5m transects by following a transect line following a contour.
Fish were counted within 2.5m on either side of the line. Each site had a nested design with 3
replicates and each replicate consisted of 3 transects, adding up to a total number of 18 tran-
sects in 2003, 36 in 2006 and 54 in 2012. To ensure standardization of transect width, 2.5m of
tape was shown to the divers at the beginning of each survey dive. Some of the techniques of
Samoilys and Carlos [62] were followed to count the fishes: the larger mobile fishes were
counted first, then the smaller ones, and fishes that re-entered the transect area were not
counted. In 2012 we also estimated the size of all the fishes surveyed by assigning them to size
categories. At the beginning of each dive the observer was shown lengths of 10, 20, 30, 40 and
50 cm, at a distance of 2.5 m [62]. Additionally, the recording slate had size categories marked.
The 10cm size categories are easy to use [63], and comply with methods commonly used in the
Western Indian Ocean [64]. Length was converted to biomass using length-weight relation-
ships in Fishbase [65]. Small numbers in each size category of piscivorous fishes prevented
analyses of those data. Abundances were pooled into two functional groups for analysis: Pisciv-
orous vs. Herbivorous.

Benthic cover was quantified following approaches commonly used in the Western Indian
Ocean, to facilitate regional comparisons [60]. Specifically, we used photo transects consisting
of photos taken in 20m transects with 2 photos per meter, one on each side of the transect (i.e.
40 photos per transect) to avoid pseudoreplication. The sampling design was similar to that
previously described for the fishes: each site had 3 replicates, each replicate 3 transects, and
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each transect 40 photos. Photos were analyzed with CPCe 3.2, Coral Point Count w/ excel ex-
tension from NCRI. This software gives the mean cover for several benthos categories based on
10 random points for each photo. Each random point is inspected and classified as hard coral,
soft coral, dead coral with algae, recent dead coral, macroalgae, coralline algae, other inverte-
brates, and sand, rubble or pavement. Rugosity was estimated by measuring the contour of the
reef under a portion of 5m of the transect line, the value was then divided by 5m, and used as
index of reef complexity [66] and was only measured in 2012. Benthic cover estimates and ru-
gosity estimates, allow controlling for differences in complexity among sites, and hence identi-
fying situations where the faunistic differences between the locations are caused by differences
in the habitat.

2.4. Data analysis
Data were categorized as benthic cover variables, fish abundance variables (numerical abun-
dance and biomass for herbivorous fish), or time /spatial traits (MR years/distance to the bor-
der). Fish abundance was the response variable and all the other variables were assessed as
predictors of fish abundance.

Regression trees were used to identify the most important predictor variables. Regression
trees consist of a series of binary splits of the response variable based on the values of the pre-
dictor variables (we did not transform the predictor variables). They are constructed by recur-
sively partitioning the data set of fish abundances into two subsets based on the optimal split
among all possible splits, where optimality is defined as the reduction of the mean squared
error. Since we cross-validate the results (10 fold), the optimal tree is the one with the smallest
Cross Validated Relative Error (CVRE) or the smallest size plus one standard deviation [67].
The output is a tree diagram with the branches determined by the splitting rules based on the
predicator variables: MR years, distance to the border, benthic cover variables and rugosity. Re-
gression trees identify differences in fish abundance and the location of changing points for
these differences. Two regression trees were constructed splitting fish abundance (herbivorous
and piscivorous) by all the benthic variables, distance and years. Using the results of the regres-
sion tree, we built several Generalized Linear Models (GLMs) models with the abundance of
fish as a function of year and distance to the reserve boundary with appropriate breakpoints for
each year (Tables 1 and 2).

Assuming a Poisson distribution for the fish abundance, Zy, of year y, we fit a Generalized
Linear Model (GLM) with a break point. Each GLMmodels how the mean abundance
E⎣Zy⎦ of each year changes according to the distance, x, to the reserve boundary:

E½Zy� ¼ exp½b0 þ b1xIðx � x�Þ þ fb2 þ b3ðx � x�ÞgIðx > x�Þ�;

where x� is the breakpoint and I(A) is an indicator function taking 1 when A is true, or 0 other-
wise. This non-linear model is therefore discontinuous at the change point x�.

The best model for the year and trophic group was chosen using AIC (Akaike information
criterion). The total number of individuals per 250 m2 transect of each of the two functional
groups was modeled as a Poisson random variable. All the model parameter estimates used to
construct the graphic representation are presented with their standard error (Table 3).

The benthic cover data were analyzed with Nonmetric multidimensional scaling (NMDS) to
evaluate the homogeneity of the habitat between the inside and outside of the marine reserve.
NMDS was used, since the data are proportional and thus non-independent, and zeros were fre-
quent. NMDS represents the set of objects along a predetermined number of axes while preserv-
ing the ordering relationships among them. We used Gower distances and expanded scores
based on theWisconsin square root of the data. The goal of this analysis is to investigate if the
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benthic characteristics of the sites vary consistently as a function of the distance to the reserve
boundary and/or time since reserve implementation. As such, it provides an additional explor-
atory indication of the effects of the habitat as potential driver of fish abundances. All the data
are presented in S1 Table. All analyses were carried out in R [68] with the following packages:
vegan for the NMDS [69], mvpart for regression trees [70], and car for the GLMs [71].

Results
In the herbivorous fish abundance tree, four branches appeared, the first node indicating that
in 2009 (the mid-year between 2006–2012), herbivorous fish abundance started to increase, fol-
lowed by nodes at distances of -1,55 and -0,95km (outside the reserve). Herbivorous fish

Table 1. Summary data of the multivariate regression tree constructed based on herbivorous fish abundances.

Regression tree CVRE Number Splitting nodes 1° Node 2°Node 3° Node 4ªNode

Abundances of herbivorous fishes 0,342 3 Y = 9 D = -1,55 D = -0,95

*All variables

Abundances of piscivorous fishes * 0,0833 1 D = 4

Distance * Years

We present the values for: the CVRE (Cross Validated Relative Error), the number of splitting nodes and variable prediction values for each node. D-

distance, Y-years.

doi:10.1371/journal.pone.0111774.t001

Table 2. AIC (Akaike information criterion) values for GLMs with different breakpoints.

AIC

herbivorous fishes

2006

model without breakpoint 297,3*

model with breakpoint of dis = -1,55 297,59

model with breakpoint of dis = -0,5 299,51

model with breakpoint of dis = 3,6 299,28

2012

model without breakpoint 972,23

model with breakpoint of dis = -1,55 712,86*

model with breakpoint of dis = -0,5 933,07

model with breakpoint of dis = 3,6 917,33

Piscivorous fishes

2006

model without breakpoint 418,08

model with breakpoint of dis = -1,55 345,76

model with breakpoint of dis = -0,5 322,81*

model with breakpoint of dis = 4 327,66

2012

model without breakpoint 1471,4

model with breakpoint of dis = -1,55 1446,7

model with breakpoint of dis = -0,5 1456,6

model with breakpoint of dis = 4 1359,5*

The model with lowest AIC is chosen *. Dis- Distance.

doi:10.1371/journal.pone.0111774.t002
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abundance substantially increased towards the MR (Fig 2). The points -1,55 and -0,95km are
the mid-points between sampling sites where a break occurs. None of the benthic variables ap-
peared in the nodes of the trees (Table 1).

The regression tree analysis for the piscivorous fish abundance produced a tree with only 2
branches and one node (Table 1), dividing abundances of fishes at 4km distance from the bor-
der, well inside the MR boundaries, while the variable years did not appear in any node, nor
did any of the benthic variables. The abundances of piscivorous fishes are only very different
well inside the border of the MR.

Table 3. β Value estimates and respective standard error for the GLMmodels.

Herbivorous model

Year β0 (std. error) β1 (std. error) β2 (std. error) β3 (std. error) x*

2003 3,272 (0,046) 0,004 (0,012) - - -

2006 3,478 (0,031) -0,037 (0,007) - - -

2012 3,323 (0,167) -0,363 (0,046) 1,986 (0,170) 0,003 (0,006) -1,55

Piscivorous model

Year β0 (std. error) β1 (std. error) β2 (std. error) β3 (std. error) X*

2003 1,505 (0,111) 0,003 (0,029) - - -

2006 -0,213 (0,381) -0,426 (0,105) -3,268 (0,771) 0,898 (0,091) -0,5

2012 1,403 (0,088) 0,431 (0,030) 2,336 (0,128) -0,079 (0,035) 4,0

doi:10.1371/journal.pone.0111774.t003

Fig 2. A multivariate regression tree was built based on herbivorous fish abundances. For each node
the mid-point value of the split is reported, and on each leaf the number of observations (n) on that leaf.

doi:10.1371/journal.pone.0111774.g002
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To consolidate the results of the regression tree, we compared sites according to benthic
cover variables using NMDS (Fig 3). No aggregation by distance from the MR boundary (Fig
3A) is apparent from the ordination, but different years appear to segregate with regards to
their benthic cover (Fig 3B). NMDS stress for this model is 0,139.

We used the results from the regression tree to build three GLMmodels of fish abundance
for each year as a function of distance to the MR border. The models had either no breakpoint,

Fig 3. Nonmetric Multi Dimensional Scaling (NMDS) of the benthic observations by: A- Year of
observations B- Distances to the border. (negative values outside the border, positive values inside the
border)

doi:10.1371/journal.pone.0111774.g003
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or a breakpoint outside the reserve at 1.55 and 0.5km from the border (dis = -1.55 and −0.5),
and inside the reserve at 4km (dis = 4) from the border (Table 2). Fig 4 shows that for herbivo-
rous fish abundance only in 2012 did model selection favor a model with a breakpoint, with the
break point at -1.55km (Fig 4C). The 2006 model with lowest AIC did not have any break
points (Fig 4A and 4B), and no breakpoints were apparent in 2003 either.

For the piscivorous fish, GLMmodels show that 2003 data also have no distinguishable
breakpoint (Fig 5A), while for 2006, the models with a break point at -0,5 and 4km from the
border did have very similar (lower than no breakpoint, but not a big difference) AICs
(Table 2) and the lower AIC model was represented (Fig 5B). Finally, in 2012 the model that
best fitted the data was the one using the splitting node of the Multivariate Regression Tree, lo-
cated at 4km inside the reserve (Fig 5C). All the parameter estimates of the models used are
given in Table 3 with their standard error.

The biomass of herbivorous fishes peaked at the border zone (Fig 6) and inside the MR. The
smallest sizes classes are responsible for the higher biomass at the MR border (for sizes 10–
20cm and 21–30cm). Large herbivorous fish only occur well within the reserve boundaries.

Discussion
Our data showed the existence of a significant and consistent effect in all trophic groups on the
abundance and distribution of reef fishes of the Vamizi marine reserve. Based on the regression
tree splits, six years after its establishment, both herbivorous and piscivorous fish are more
abundant inside the reserve than outside, where no difference existed before. Additionally,
spillover was detected in the herbivorous fish functional group, but not in the piscivorous
group, which is only more abundant well within the reserve. Most importantly, fish abundance
outside the reserve has not decreased in relation to its abundance prior to the reserve establish-
ment, despite the concentration of fishing pressure.

Our Before-After-Control-Impact sampling design and the analysis of benthic variables con-
firm that habitat differences were not responsible for the variation in fish abundances. Based on
the regression trees results our analysis relies on the assumption that the habitat is uniform, so
that the differences in the abundance of fish can be attributed to the reserve establishment.
However, protection could have changed the habitat and influenced reef fish abundances since
MR establishment. For that reason we included benthic variables in the study. There is conflict-
ing evidence in previous studies: in some, habitat accounts for part of the variation [31,39,72],
in others habitat had no effect [49]. These apparent differences are likely caused by the specific
characteristics of each study site. Nevertheless, McClanahan [73] stated that reef structure has
less influence on reef fish abundances than management, and our findings agree with this. Our
NMDS plots are in accordance with the results from regression trees, showing apparent differ-
ences between the years (due to management) but not between different distances (due to habi-
tat differences). Moreover, evidence suggests that habitat homogeneity around the reserve
enhances spillover, increasing the distance from the border at which it is detectable.

Recovery from fishing is often different for piscivorous and herbivorous functional groups.
Recovery will also depend on which fish are targeted by fishermen [49]. In Vamizi island both
piscivorous (especially groupers) and herbivorous fish (especially parrotfish) are targeted by fish-
ermen. Results from other studies found that recovery of predatory fishes was the largest effect
of marine reserve establishment, while the response by herbivorous fish was weak [74]. In some
cases, spillover was detected for predatory species only [75], while others found that the preda-
tors have a slower response and that they eventually reduce their herbivorous prey [30,76,77].
McClanahan et al. [78] found that different groups react differently: Scaridae and Labridae in-
crease rapidly, Balistidae and Acanthuridae slower, and some predators may never recover. The
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Fig 4. Summary of Generalized Linear Models (GLM) for herbivorous fishes abundance. Points with
negative distance are situated outside the MR and points with positive distance are situated inside the MR.
The red line reflects model predictions. A- 2003. B- 2006. C- 2012.

doi:10.1371/journal.pone.0111774.g004
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Fig 5. Summary of Generalized linear Models (GLM) for piscivorous fish abundances. Points with
negative distance are outside the MR and points with positive distance are inside the MR. The red line
reflects model predictions. A- 2003. B- 2006. C- 2012.

doi:10.1371/journal.pone.0111774.g005
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results vary between studies, and few are focused on spillover, the majority of studies tending to
concentrate on fish recovery inside the reserve. We predict that, with time, the spillover effect
for herbivorous fish will change relative to the extent of piscivorore spillover. Similar changes
were revealed for the recovery of fishes inside MRs by other authors in analogous studies [60].

Herbivorous fish size results indicate that smaller-sized fishes are responsible for the spill-
over effect in 2012. We suggest that an increase in predators and agonistic relations within the
protected area drove the smaller individuals out of the reserve, a pattern already detected in
other studies [49]. This interpretation would reconcile our findings- more small fishes on the
border of the reserve- with the literature, namely regarding the higher number of larger fishes
and predators inside MRs [43,79]. Another explanation could be that the larger Scaridae are
too big to be eaten by the predators, meaning that the smaller fish within the reserve are pre-
dated upon more heavily and consequently their numbers are lower. An alternative possibility
is that herbivorous fishes are the first to recover and hence the first to be detected in terms of
spillover effects. This is supported by McClanahan and Mangi [20] who point out that Scaridae
(one of the most abundant herbivorous groups) are the fastest recovering group inside reserves.
Herbivorous fishes are of great importance to reef health maintenance, keeping algae from
competing for space with corals. Good numbers of herbivores are a sign of reef resilience to cli-
mate change [60]. In the context of MPAs, protection and recovery of herbivorous fishes is of
major importance to the conservation and recovery of coral cover and health [33,79].

Our study reports a larger area of spillover than most other studies. We found a spillover dis-
tance of more than 1km outside of the reserve, which contrasts with the distance values of 300–
350m reported by some authors [38,49], or the 500m reported by others [80] [20,43]. One of the
reasons for this larger spatial extent of spillover could be the homogeneity of the habitat around
the border of the MR, a characteristic previously highlighted as a multiplier factor of the reserve’s
effects [81]. In the presence of low fishing pressure, a 1.2km spillover distance has been occasion-
ally reported [20,43]. Nonetheless, other studies that found a very light spillover effect and only
for a few meters, attributed the weak spillover to “fishing the line” [53,80]. However, even ob-
serving heavy “fishing the line” around Vamizi MR, the spillover effect could still be detected.

Fig 6. Scatter plot of the biomass of herbivorous fish by size. Negative distances are outside the MR,
positive distances are inside and 0 is the border of the MR.

doi:10.1371/journal.pone.0111774.g006
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The regression tree results reveal changes in fish abundances since the designation of the
Vamizi reserve (less than 6 years). These findings are consistent with the literature which re-
ports time intervals from establishment to detection from as little as 3 years [61,82,83], al-
though in some cases it has taken decades before recovery is detected [30]. This recovery could
be explained by the initial state of the Vamizi MR, which was not severely depleted because
only light fishing (involving fewer than 120 fishermen) was had occurred, or by the strong
compliance to the marine reserve restrictions. Our 2003 data, from before the MR establish-
ment, support the former explanation [58]. Fishing pressure was light outside the reserve
(stronger on the border of the MR) in the sense that fisheries around Vamizi are mainly arti-
sanal and subsistence fisheries, not using trawling or mosquito nets as in mainland Mozam-
bique. Meanwhile, fishermen numbers did increase in Vamizi from the original 120 from 2003,
to approximately 131 in 2006, and 159 in 2012, but this does not necessarily imply a large in-
crease in fishing pressure, because the increase was mainly in speargun and line fishing, just for
few days a week and only 0–20kg a day, as opposed to the 20–180kg a day by those using gill-
nets and seine nets whose number did not increase in this area. Moreover, compliance with the
marine reserve rules was variable (but better than most MRs) [44] and also, only migrant fish-
ermen tried to fish in the MR. This is confirmed by another study in which Vamizi MR was
classified as having variable compliance levels [84].

Most of the controversy surrounding MPAs concerns the benefits to fisheries. MPAs have
been showing improved fish abundances inside the protected areas, but less is known about the
spillover effect, which was the main focus of our work. We show that habitat homogeneity is
important for spillover, that spillover can be achieved in 6 years and that it is different across
the different trophic groups. Vamizi marine reserve has variable compliance levels and reason-
able enforcement of fisheries laws, and spillover was still detected. We suggest that small com-
munity marine reserves must be well placed (with homogenous habitat around the border),
should have good enforcement and the fishing activities around the MR need to be well man-
aged (controlling fishing effort and fishermen number), to achieve best performance in terms
of enhancing the fisheries through spillover.
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