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Abstract 

An analytical method for partitioning mixed-mode fractures on rigid interfaces in orthotropic 

laminated double cantilever beams (DCBs) under through-thickness shear forces, in addition to 

bending moments and axial forces, is developed by extending recent work by the authors (Harvey et 

al., 2014). First, two pure through-thickness-shear-force modes (one pure mode I and one pure 

mode II) are discovered by extending the authors’ mixed-mode partition theory for Timoshenko 

beams. Partition of mixed-mode fractures under pure through-thickness shear forces is then 

achieved by using these two pure modes in conjunction with two thickness ratio-dependent 

correction factors: (1) a shear correction factor, and (2) a pure-mode-II energy release rate (ERR) 

correction factor. Both correction factors closely follow an elegant normal distribution around a 

symmetric DCB geometry. The principle of orthogonality between all pure mode I and all pure 

mode II fracture modes is then used to complete the mixed-mode fracture partition theory for a 

general loading condition, including bending moments, axial forces, and through-thickness shear 

forces. Excellent agreement is observed between the present analytical partition theory and 

numerical results from finite element method (FEM) simulations. 

Keywords: Energy release rate, Fracture mode partitioning, Orthotropic laminated composites, 

Mixed-mode fracture, Orthogonal pure modes, Shear forces 
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1. Introduction 

An analytical method for partitioning mixed-mode fractures in orthotropic laminated double 

cantilever beams (DCBs) with rigid interfaces has been developed in the authors’ recent work [1] 

by taking 2D elasticity into consideration in a novel way. In Ref. [1], the DCBs are under crack tip 

bending moments and axial forces. The present study extends Ref. [1] to include crack tip through-

thickness shear forces which commonly occur in practice. 

Some of the previous studies on the topic include Lu et al.’s work [2] where the finite element 

method (FEM) was used to investigate the effects of transverse shear on an orthotropic beam with a 

crack present. Orthotropic rescaling simplified the numerical analysis to three non-dimensional 

parameters. The total energy release rate (ERR) was obtained by using the J-integral and then the 

crack tip displacements allowed the total ERR to be partitioned into its individual mode I and II 

components. Wang and Qiao [3] extended the conventional 2D elasticity-based partition theory of 

Suo and Hutchinson [4] to take into account shear deformation by using first-order shear-

deformable plate theory for a bimaterial interfacial crack. The total ERR was determined using the 

J-integral and related to the individual stress intensity factors by introducing an unknown parameter 

which, as the solution to an integral equation, must be determined from tabulated numerical data 

from a limited range of geometries and material configurations. Li et al. [5], also using Suo and 

Hutchinson’s work [4], considered the effects of transverse shear loading on a crack between a 

layered, isotropic, linear elastic material. They asserted that it is not possible to use beam theories 

(even higher-order ones) to determine the shear component of the ERR because such an approach 

neglects the contribution of the deformation local to the crack-tip, which plays a crucial role. They 

concluded that a full elastic solution is required and used the FEM. They combined their results 

with Suo and Hutchinson’s theory [4] for bending moments and axial forces to provide the ERR 

and mode partition for layered materials under general loading conditions. A disadvantage of this 

method, again, is its reliance on tabulated data. The effect of through-thickness shear forces on the 

fracture-mode partition of a DCB therefore still remains a crucial area of research. 

The authors’ partition theory based on classical beam theory [6–10] has given excellent 

predictions of mixed-mode fracture toughness for delamination in generally laminated composite 

beams [8–10] when compared against the experimental test data from some independent 

comprehensive testing [11–20]. In comparison, mixed-mode partition theories based on 2D 

elasticity [1,4] have shown poor correlation with experimental results. It is, however, still an 

unanswered question as to which mixed-mode partition theory provides the most accurate results 

for brittle fracture subjected to other loading conditions such as fatigue or thermal loading. 

Therefore, it is still essential to develop mixed-mode partition theories based on 2D elasticity in 
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order to provide a comprehensive set of tools for the understanding of interfacial fractures. This is 

the motivation of present work. 

The format of this paper is as follows: Initially, in Section 2.1, the ERR partition based on 

Timoshenko beam theory [6–10] is extended to consider a 2D elastic orthotropic DCB with 

through-thickness shear forces alone at the crack tip. Then, in Section 2.2, a mixed-mode partition 

theory is established for the DCB under general loading conditions which include crack tip bending 

moments, axial forces and shear forces. Comparisons for the mixed-fracture mode partition theory 

are made against results from 2D FEM simulations for a combination of loading conditions in 

Section 3. Conclusions are drawn in Section 4. 

Nomenclature 

a  crack length in a DCB 

b  width of a DCB 

 c   -dependent correction factor for ERR due to 2D-P  mode II, 
2D-P

G  

LE , TE  in-plane Young’s moduli in the longitudinal and transverse directions 

G , IG , IIG  total, mode I and II ERRs in 2D elasticity theory 

TG , T-IG , T-IIG  total, mode I and II ERRs in Timoshenko beam theory 

T-P
G , 

T-P
G  ERRs due to T-P  mode I and T-P  mode II in Timoshenko beam theory 

2D-P
G , 

2D-P
G  ERRs due to 2D-P  mode I and 2D-P  mode II in 2D elasticity theory 

2D-1
G , 

2D-1
G  ERRs due to 2D-1  mode I and 2D-1  mode II in 2D elasticity theory 

1h , 2h , h  thicknesses of upper, lower and intact beams  

sk  interface spring stiffness 

L  uncracked length of DCB 

1M , 2M  DCB tip bending moments on upper and lower beams 

BM1 , BM 2  crack tip bending moments on upper and lower beams 

1N , 2N  DCB tip axial forces on upper and lower beams 

BN1 , BN2  crack tip axial forces on upper and lower beams 

BeN1  crack tip effective axial force on upper beam 

1P , 2P  DCB tip shear forces on upper and lower beams 

BP1 , BP2  crack tip shear forces on upper and lower beams 
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  thickness ratio, 12 hh  

2D-i , 2D-i  pure mode I and II  4 ,3 ,2 ,1with i  in 2D elasticity theory 

T-P , T-P  shear force only pure mode I and II in Timoshenko beam theory 

2D-P , 2D-P  shear force only pure mode I and II in 2D elasticity theory 

    -dependent through-thickness shear correction factor 

LZ  through-thickness shear modulus 

LT , TL  in-plane Poisson’s ratios 

n , s  interface normal and shear stresses 

 

Abbreviations 

DCB double cantilever beam 

ERR energy release rate 

FEM finite element method 

VCCT virtual crack closure technique 

2. Analytical development 

2.1. Mixed-mode partitions with through-thickness shear forces alone at the crack tip 

Fig. 1a shows a laminated DCB with its geometry and tip bending moments 1M  and 2M , axial 

forces 1N  and 2N , and through thickness shear forces 1P  and 2P . Fig. 1b shows the internal loads 

at the crack tip and the sign convention of the interface normal stress n  and shear stress s . The 

total ERR and its partitions under crack tip through-thickness shear forces, BP1  and BP2 , are 

calculated from Timoshenko beam partition theory [6–10] as: 
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and 12 hh  is the thickness ratio, b  is the width of the beam, and LZ  is the through-thickness 

shear modulus with the correction factor  , usually taken to be 5/6. The ratios     ,1, T-T- PP  

represent the set of orthogonal pure modes. The subscript T-P  denotes that the pure modes are for 

the through-thickness shear forces at the crack tip, BP1  and BP2 , and are based on Timoshenko beam 

theory. That is, when BPB PP 1T-2   pure mode I occurs. Its orthogonal pure mode II is T-P . 

Similarly, when BPB PP 1T-2   the pure mode II mode occurs. Here, the ‘orthogonal’ means 

     011 T-TT- T
PP C   (8) 

It is worth noting that 0T- IIG  as 0
T-


P
G  with  T-P . That is, the two crack tip through-

thickness shear forces, BP1  and BP2 , only produce mode I ERR within the context of the 

Timoshenko beam theory. Obviously, this will not be the case within the context of 2D elasticity. 

The total ERR G  is expected to be different from the TG  in Eq. (1) as the constant through-

thickness shear correction factor 6/5  is no longer valid. Moreover, the orthogonal pure mode 

set     ,1, T-T- PP  will also change to be  2D-2D- , PP  . Interestingly, it is found from FEM 

simulations that 

      iPP  563483.0atanh986060.1exp,1, 2D-2D-   (9) 

where   1log10i . Note that the 2D-P  pure mode remains the same as 1T- P  and that the 

2D-P  pure mode has an exponential multiplier on  T-P . It is easily shown that 

    2D-2D- 11 PP   as required by physical symmetry. Fig. 2 shows the variation of the pure-

mode-II 2D-P  mode with respect to  . Eq. (9), for the pure-mode-II 2D-P  mode, is only valid in 

the range where 7.17.1  i . It was not possible to determine 2D-P  using the FEM outside this 
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range due to the very large numbers of finite elements required. The pure-mode-I 2D-P  mode 

remains unchanged. 

Note that 5.1
2D-  P  is an accurate approximation if 1 . At 3  or 31  it approximates 

2D-P  to within about 1% of the actual value. Inside this range the accuracy is much higher; 

however, outside it the accuracy decreases rapidly and Eq. (9) should be used instead. 

By using the pure mode set in Eq. (9), the ERR partitions based on 2D elasticity, IG  and IIG , 

can be written as 

 
2

2D-

2
1 










P

B
BIPI

P
PcG


 (10) 

 
2

2D-

2
1 










P

B
BIIPII

P
PcG


 (11) 

where 

 
2

2D-

2D-1
2D-













P

P
IP P

Gc



     ,    
2

2D-

2D-1
2D-













P

P
IIP P

Gc



  (12) 

   














2
2D-

1
2 1

2

1
2D-

P

Ehb
G

P
 (13) 

  
 












 )(

1

1
1

2

1 2
2D-

2
2D-

1
22D-








 c

Ehb
G PP

P
 (14) 

and LEE   for plane stress or  TLLTLEE  1  for plane strain, with LE  being the Young’s 

modulus in the longitudinal direction, and LT  and TL  being the in-plane Poisson’s ratios. It is 

worthwhile to note that the influence of the material properties on the ERR is collectively shown by 

one effective property E . 

Two thickness ratio  -dependent correction factors are introduced in Eqs. (13) and (14): A 

through-thickness shear correction factor    and a pure-mode-II ERR correction factor  c . It is 

simple to prove that     1 , as required by the physical condition      2D-2D-
1

PP
GG  , and 

that     cc 1 , as required by the physical condition         2D-2D-

2
2D-1

PP
GG P

 . By using 

FEM simulations with Eqs. (13) and (14),    and  c  are found to have the following 

interesting and elegant expressions: 

    2390931.1exp047743.0135535.0 i   (15) 
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  2280135.3exp070920.01 iFC   (17) 

It is easily shown that     1  and     cc 1  as required by the physical conditions stated 

above. They are also shown in Fig. 3. It is interesting to see that    has a perfect normal 

distribution form with respect to i . 

2.2. Mixed-mode partitions under general loads 

Based on the authors’ previous work [1,6–10,21–23], the total ERR under the general loading 

conditions as shown in Fig. 1a can be written as 
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where BBBe NNN 211  . The pure-mode-I 2D-1  mode and the pure-mode-II 2D-1  mode have 

previously been determined in Ref. [1] by introducing correction factors into the beam-theory-based 

pure-mode-I and pure-mode-II mechanical conditions. Then the pure-mode-I D22  mode and the 

pure-mode-II D22  mode were obtained by using the orthogonality condition that exists between 

pure modes. Implicit expressions were given in Ref. [1] for the pure-mode-I 2D-1  and 2D-2  modes, 

and the pure-mode-II 2D-1  and 2D-2  modes. Their explicit expressions are presented here for the 

easy use of readers with a clearer mechanical interpretation. 
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where 

 56c     and    ec      with         2133 11  e  (27) 

In Eqs. (23) to (26), the first term is the corresponding pure mode from Timoshenko beam theory 

[6,8,9] and the second term is the correction applied for 2D elasticity. 

The pure-mode-I modes, 2D-3  and 2D-4 , and the pure-mode-II modes, 2D-3  and 2D-4  are now 

determined as follows: Equating ERR IG  ERR in Eq. (10) and Eq. (18) in the pure-mode-I 2D-P  

mode where BPB PP 12D-2   gives 
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Note that in the case of Timoshenko beams,        133 1

21

T-3 hE  where 65 . 

Equating IG  ERR in Eq. (10) and Eq. (18) in the pure-mode-II 2D-P  mode where BPB PP 12D-2   

gives 

 2D-32D-2D-4  P  (29) 

Note that in the case of Timoshenko beams, T-3T-4   . 

Similarly, equating ERR IIG in Eq. (11) and Eq. (19) in the pure-mode-II 2D-P  mode gives  
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Equating IIG  ERR in Eq. (11) and Eq. (19) in the pure-mode-I 2D-P  mode gives 
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 2D-32D-2D-4  P  (31) 

Note that  T-4T-3  . Again, it is worth noting that in the context of 2D elasticity, the 

influence of the material properties on the ERR is collectively shown by one effective property E  

and that the pure modes are affected only by the geometry. This is in agreement with Hutchinson 

and Suo [24]. 

Therefore, as all pure modes are now known, it is now possible to partition the ERR into its 

individual mode components for any combination of bending moments, axial forces and shear 

forces by using Eqs. (18) and (19). 

3. Numerical verification 

To verify the present analytical partition theory, a program of 2D FEM simulations was carried 

out on the DCB shown in Fig. 1a using MSC/NASTRAN. The present analytical theory has 

previously been verified for combinations of DCB tip bending moments and axial forces only [1] 

against Suo and Hutchinson’s 2D elasticity-based analytical partition theory [4]. Note that although 

Suo and Hutchinson’s theory [4] is regarded as the most accurate for bending moments and axial 

forces, the method developed in Ref. [1] has a stronger capability for solving more complex mixed-

mode partition problems, for example, in the bimaterial case [21,22] and in this work which 

accounts for shear forces. 

Hutchinson and Suo [24] showed that the ERR components of an orthotropic material are 

essentially the same as their isotropic counterparts, except using the longitudinal tensile modulus. 

For convenience, therefore, isotropic material constants were used, as follows, and apply for all 

loading conditions and thickness ratios considered in this section: The Young’s modulus 1000E , 

the Poisson’s ratio 29.0 , and the shear modulus     12E . The DCB geometry consisted 

of the uncracked length 100L , the cracked length 10a , the width 10b  and the minimum 

beam thickness 1min h . The thicknesses of the upper and lower beams were therefore dependent 

on the thickness ratio, 12 hh , with min1 hh   and min2 hh   if 1 , and with min1 hh   and 

min2 hh   if 1 . Since the FEM is dimensionless in nature, the model’s parameters are given here 

without units; however, if engineering scale-appropriate units are desired in the following, then 

units of mm and N may be chosen for length and force respectively from which the consistent set of 

units follows. 

To verify the present analytical theory, the thickness ratio   was varied in the range 

10101    under three different sets of loading conditions. In the first loading condition there 

were only through-thickness shear forces at the crack tip and BP2  was varied in the range 
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000,10000,10 2  BP  with 10001 BP . In the second loading condition there was a combination 

of through-thickness shear forces and bending moments at the crack tip and BP1  was varied in the 

range 000,10000,10 1  BP  with 10001 BM . In the third loading condition there were through-

thickness shear forces and axial forces at the crack tip and BeN1  was varied in the range 

000,10000,10 1  BeN  with 10001 BP , where BBBe NNN 211  . 

The FEM meshing procedure was similar to that used in Ref. [22], which is now summarised. 

Since very fine meshes were required at the crack tip in order to obtain converged numerical 

solutions, non-uniform meshes were used in order to avoid excessive computation. 2000 square 

elements of size pp  were centered on the crack tip in the x-direction, and 100 square elements 

were centered on the crack tip in the y-direction. A mesh size of 001.0p  was found to provide 

mesh independence and was used for all simulations in this section. Beyond the region of uniform 

element size surrounding the crack tip, elements were allowed to grow at a constant rate of 1.1 in 

both the x- and y-directions up to maximum sizes of 1.0 and 0.1 respectively, after which they 

remained at these maximum sizes. Very small adjustments were made to the element size growth 

rate, or to the maximum element size, as appropriate, to satisfy the boundary geometry. Axial 

forces, 1N  and 2N , were applied as point forces to the tips of the upper and lower beams 

respectively and were uniformly-distributed by area. Bending moments, 1M  and 2M , were applied 

as equal and opposite axial forces to the top and bottom corners of each of the upper and lower 

beam tips respectively. The upper and lower beams were modelled using quadrilateral plane-strain 

shell elements. A rigid interface between the upper and lower beams was modelled by ‘connecting’ 

the translational degrees of freedom of co-located interface nodes on the upper and lower beams 

using multi-point constraints; however, at the crack tip, instead of rigidly connecting the crack tip 

nodes, the interface was modelled with normal and shear point springs. The stiffness of both springs 

was CTbpEks   where 10
CT 10E , which is the Young’s modulus of the interface at the crack tip. 

The spring stiffness sk  was sufficiently high in comparison to LE  to simulate brittle interfacial 

cracking without introducing excessive numerical error. The ERRs were calculated using the virtual 

crack closure technique (VCCT) and the forces from the crack tip springs [23,25,26]. Contact 

between the upper and lower surfaces of the crack was not considered. 

3.1. Through-thickness shear forces alone at the crack tip 

This section considers the first loading condition in which there were only through-thickness 

shear forces at the crack tip and BP2  was varied in the range 000,10000,10 2  BP  with 

10001 BP . To achieve this loading condition, DCB tip through-thickness shear forces were applied 
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as BPP 11   and BPP 22  . To avoid bending moments at the crack tip, bending moments were also 

applied at the DCB tip as aPM 11   and aPM 22  . 

Fig. 4a shows the differences between the total ERRs G  from the present analytical theory and 

from the 2D FEM for each value of   and BB PP 12 . Fig. 4b shows the differences between the 

ERR partitions GGI  from the present analytical theory and from the 2D FEM. Note that in Fig. 4, 

the subscript ‘th’ notation denotes quantities from the analytical theory whereas the subscript 

notation ‘FEM’ denotes quantities from the 2D FEM. There is excellent agreement between the 

present analytical theory and the 2D FEM results for both the total ERR G  and the ERR partition 

GGI  for the majority of   and BB PP 12  values considered. The areas of slightly increased error on 

both Fig. 4a and Fig. 4b are a result of the small values of the total ERR G  in these regions, 

therefore magnifying the apparent error between the present analytical theory and 2D FEM. To 

examine this further, Fig. 5 compares the absolute values of G  and GGI  from the present 

analytical theory and the FEM for the cross-sections through Figs. 4a and 4b where 

  7.01log10  . It is seen that there is excellent agreement for the whole range of BB PP 12  and 

that G  becomes small close to 1012 BB PP  which is where the error increases in Figs. 4a and 4b. 

3.2. General loading conditions 

In the second loading condition, there was a combination of through-thickness shear forces and 

bending moments at the crack tip and BP1  was varied in the range 000,10000,10 1  BP  with 

10001 BM . To achieve this loading, a DCB tip through-thickness shear force and a DCB tip 

bending moment were applied as BPP 11   and aPM 11 1000   respectively. 

Fig. 4c shows the differences between the total ERRs G  from the present analytical theory and 

from the 2D FEM for each value of   and BB MP 11 . Fig. 4d shows the differences between the 

ERR partitions GGI  from the present analytical theory and from the 2D FEM. There is excellent 

agreement between the present analytical theory and 2D FEM results for both the total ERR G  and 

the ERR partition GGI  for the majority of   and BB MP 11  values considered. It is worth noting 

that the maximum error in Fig. 4c has been capped to 0.15 in order to make clearer comparisons 

between the present analytical theory and the 2D FEM. The areas of increased error in Fig. 4c and 

Fig. 4d are also due to the small values of the ERR G  in these regions. Fig. 6 compares the 

absolute values of G  and GGI  from the present analytical theory and the FEM for the cross-

sections through Figs. 4c and 4d where   8.01log10  . It is seen that there is excellent agreement 
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for the whole range of BB MP 11  and that G  becomes small close to 111 BB MP  which is where 

the error increases in Figs. 4c and 4d. 

Finally, the third loading condition is considered, in which there were through-thickness shear 

forces and axial forces at the crack tip and BeN1  was varied in the range 000,10000,10 1  BeN  

with 10001 BP . To achieve this loading, a DCB tip through-thickness shear force, a DCB tip 

bending moment, and a DCB tip axial force were applied as BPP 11  , aPM 11   and BeNN 11   

respectively. 

Fig. 4e shows the differences between the total ERRs G  from the present analytical theory and 

from the 2D FEM for each value of   and BBe PN 11 . Fig. 4f shows the differences between the 

ERR partitions GGI  from the present analytical theory and from the 2D FEM. Again, there is 

excellent agreement between the present analytical theory and 2D FEM results for both the total 

ERR G  and the ERR partition GGI  for the majority of   and BBe PN 11  considered. The 

maximum error in both Fig. 4e and Fig. 4f has again been capped to 0.15 in order to make clearer 

comparisons between the present analytical theory and the 2D FEM. The areas of increased error in 

both Fig. 4e and Fig. 4f are also due to the small values of the ERR G  in these regions. Fig. 7 

compares the absolute values of G  and GGI  from the present analytical theory and the FEM for 

the cross-sections through Figs. 4e and 4f where   9.01log10  . It is seen that there is excellent 

agreement for the whole range of BBe PN 11  and that G  becomes small close to 111 BBe PN  

which is where the error increases in Figs. 4e and 4f. 

4. Conclusions 

The authors’ existing analytical partition theory for mixed-mode fractures in 2D elastic 

orthotropic laminated beams with rigid interfaces [1] has been successfully extended to account for 

through-thickness shear forces. Results for the present analytical partition theory have been 

compared to those from the 2D FEM and excellent agreement has been observed, particularly when 

the total ERR G  is not close to zero. This work now offers a means of calculating the 2D elasticity-

based ERR partition for an orthotropic laminated DCB under any combination of bending moments, 

axial forces and shear forces. 

The present analytical partition theory is achieved by introducing correction factors into the 

authors’ Timoshenko beam partition theory [6–10]. The correction factors were determined by 

using the 2D FEM. It is interesting that the correction factors closely follow elegant normal 

distributions around a symmetric DCB geometry. 
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