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Abstract

The diagonal terms in the added mass matrix for a two-dimensional surface-piercing
structure, which satisfies a geometric condition known as the John condition, are
proven to be non-negative. It is also shown that the heave coefficient, associated
with a symmetric system of two such structures, is non-negative when the length of
the free surface connecting the structures lies between an odd, and the next higher
even, number of half-wavelengths. The sway and roll coefficients, associated with an-
tisymmetric motion of the system, are non-negative in the complementary intervals.
For a specific geometry these intervals are equivalent to frequency ranges. Nega-
tive added mass is associated with rapid variations with frequency, due to complex
resonances that correspond to simple poles of the associated radiation potential in
the complex frequency domain. Approximate techniques are used to show that, for
systems of two structures, complex resonances are located at frequencies consistent
with the intervals in which negative added mass is able to occur.

Keywords: Linear water waves, Added mass, John condition, Complex resonance

1. Introduction

This paper is concerned with the linearised theory of the interaction between
water waves and a floating structure that is constrained to move with a single de-
gree of freedom. In the frequency-domain radiation problem [1, Chapter 1], when
the structure is forced to perform time-harmonic oscillations, the complex-valued
hydrodynamic force on the structure is written as the sum of a part proportional to
minus the velocity of the structure, and a part proportional to minus its acceleration.
The respective coefficients of proportionality are usually termed the damping matrix
and the added mass matrix and the diagonal terms of these matrices represent the
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components of the force in the same direction as the mode of oscillation. In what
follows we shall concentrate only on these diagonal terms and refer to them simply
as the damping and added mass.

From energy flux considerations the damping is necessarily non-negative, but
there is no corresponding physical restriction on the added mass. While for many
structures the added mass has been found to be positive for all frequencies, there
are particular structures for which the added mass becomes negative over one or
more ranges of frequencies. Some of the earliest reported calculations of negative
added mass were for the two-dimensional geometry of a cylinder that is close to
the free surface [2]. Subsequently, negative added mass has been found for other
shallowly-submerged structures including a rectangular cylinder [3], a vertical cir-
cular cylinder [4] and a horizontal disc [5]. Another class of structure for which
negative added mass may occur is one where one or more elements of the struc-
ture enclose a portion of the free surface. Geometries in this class include a pair
of surface-piercing cylinders in two dimensions [6, 7, 8, 9], and toroidal structures
in three dimensions [10, 11, 12]. Most of the calculations mentioned above are for
the heave motion of the structure, but some examples of negative added mass are
reported for other modes of motion such as surge and pitch [10].

In general, negative added mass is associated with rapid variations with fre-
quency of the hydrodynamic force. In turn these variations can be attributed to the
resonances associated with weakly-damped standing waves that occur near certain
frequencies or, in some cases, a low-frequency pumping mode (known as the piston
mode or Helmholtz mode) that is associated with a localised near-vertical motion of
the fluid [7, 8]. That these motions are possible is perhaps more readily apparent
when the structure encloses a portion of the free surface such as in [10, 8], but sim-
ilar interpretations can be made for submerged structures [3, 4]. Another situation
where near-resonant standing waves occur is when an oscillating structure is placed
between parallel rigid walls. Thus negative added mass has been found for a swaying
vertical cylinder in a channel [13], even though the added mass is positive at all
frequencies when the cylinder is placed in open water.

The near-resonant motions just described are the physical manifestations of sim-
ple poles in the frequency-domain radiation potential, when it is regarded as a func-
tion of complex frequency. The locations of these poles are known as complex res-
onances or scattering frequencies, and their real and imaginary parts determine the
frequency and damping rate of the resonant mode respectively. The residue of the
complex potential at a pole, describes the corresponding fluid motion when the mode
is excited in the time domain [14]. Each complex resonance of a radiation potential
corresponds directly to a complex resonance of the force coefficient, the real part of
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which is the added mass coefficient and the imaginary part the damping. A sim-
ple pole of this force coefficient that is close to the real axis gives a mathematical
description of the rapid changes that are observed in the added mass and damping
coefficients near resonance [13, 5]. The contributions of the present work are to pro-
vide conditions under which negative added mass is impossible and, in situations
where it is possible, to obtain approximations to the complex resonances and their
associated residues.

When a simple harmonic wave is incident on a fixed structure of non-zero volume,
that satisfies the geometric condition defined in §2, McIver [15] demonstrated that the
time-averaged potential energy in the fluid is less than or equal to the time-averaged
kinetic energy, using the method introduced by John [16]. Energy conservation in
the fluid then leads to the result, that such a structure cannot be transparent to
an incident wave but always produces a scattered wave field. A similar argument
is used in this work, to show that the time-averaged potential energy in the fluid
is less than or equal to the time-averaged kinetic energy for such a structure, when
it oscillates in a single mode of motion. Falnes & McIver [17] showed that the
added mass is proportional to the difference in the potential and kinetic energies
and so it follows that the added mass cannot be negative for such a structure at any
frequency. The method of Linton & Kuznetsov [18] is then used to investigate a pair
of structures, that individually satisfy the geometric condition defined in §2, and form
a symmetric system that moves in tandem. Regions in the frequency domain in which
the added mass cannot be negative are shown to be complementary for symmetric
and antisymmetric modes of motion. Calculations are made of the added mass for
a pair of circular cylinders that are half immersed in water of infinite depth. The
numerical results are consistent with the theoretical results and show that negative
added mass occurs outside these regions, although its existence has not been proven.

The work on complex resonances in section 4 concentrates on a pair of identi-
cal symmetric structures. A wide-spacing assumption is used together with high-
frequency asymptotics to obtain approximations to the locations of the resonances
and the corresponding residues. As well as more general expressions, specific re-
sults are given for a pair of half-immersed cylinders and comparisons are made with
numerical calculations.

2. Formulation

A two-dimensional, surface-piercing, piecewise-smooth structure makes small am-
plitude oscillations at angular frequency ω in water of constant depth h. Rectangular
Cartesian coordinates are defined so that the z-axis points vertically upwards and
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Figure 1: A single structure which satisfies the John condition

the mean free surface coincides with the line z = 0, as illustrated in Figure 1. In its
equilibrium position, the structure is assumed to intersect this line only at the two
points (±a, 0), and to be such that a vertical line drawn down through the fluid from
each point on the mean free surface does not intersect the structure. The portion of
the free surface −M < x < −a to the left of the structure is denoted by F− and D−
is the fluid region below F−. Similarly the portion of the free surface a < x < M to
the right of the structure is denoted by F+ and D+ is the fluid region below F+. In
the technical calculations that are made in §3, the limit as M →∞ will be taken, but
a careful combination of certain integrals will need to be made before this limiting
procedure is possible. So initially it is necessary to consider finite portions of the
free surface on either side of the structure. The wetted boundary of the structure is
denoted by B and the fluid region below the structure by DB. The fluid is assumed
to be inviscid and incompressible and the motion irrotational and sufficiently small
for the linearised water wave theory to be valid. John [16] showed that the unforced
frequency domain potential for such a body must be zero and so the structure will
be said to satisfy the ‘John condition’.

In two dimensions the frequency domain potential may be written as a linear
combination of the potential due to the scattering of any incoming waves by a fixed
structure and the potentials due to the radiation of waves by a structure making
small horizontal and vertical oscillations in sway and heave respectively and roll
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oscillations about an axis through the centre of rotation. Quantities associated with
sway, heave and roll are designated by the suffices p = 1, 3, 5 respectively. If the
component of the translation or rotational velocity in the pth mode of motion is given
by Re[vpe

−iωt] then the corresponding velocity potential is Re[vpφp(x, z)e
−iωt], where

φp has continuous second partial derivatives in the fluid and is continuous onto the
boundary. The potential φp satisfies

∇2φp = 0, in the fluid (1)

and
∂φp
∂n

= np on the structure, (2)

where n1 and n3 are the components of the inward normal to the structure in the
positive x and z directions respectively and n5 = (x−x0)n3−(z−z0)n1, where (x0, z0)
denotes the centre of rotation. The linearised free surface boundary condition for φp
is

Kφp −
∂φp
∂z

= 0 on z = 0, x < −a, x > a, K = ω2/g (3)

and as there is no flow through the seabed,

∂φp
∂z

= 0 on z = −h. (4)

There are only outward propagating waves as x→ ±∞ and so

φp ∼ A±p e±ikx
cosh k(z + h)

cosh kh
as x→ ±∞, (5)

where the wave number k is related to the frequency parameter K through the
dispersion relation

K = k tanh kh. (6)

The qth component of the hydrodynamic force on the structure due to the motion
in mode p is obtained by integration of the oscillatory pressure multiplied by nq over
the mean wetted surface of the structure. The non-dimensional force coefficient is
given by

qpq = µpq + iνpq =
1

A0

∫
B

φp nq dS, (7)

where A0 is the cross-sectional area of the structure and the real quantities µpq and
νpq are the non-dimensional added mass and damping matrices respectively.

It is well-known that the diagonal terms in the damping matrix are non-negative
for all frequencies, as they represents the energy in the radiated waves. In the next
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section, the method developed by John [16] to establish uniqueness of the velocity
potential associated with this class of single two-dimensional structures, is used to
show that the diagonal terms in the added mass matrix for these structures are
non-negative at all frequencies. Negative added mass has been found numerically
for symmetric pairs of surface-piercing structures that individually satisfy the John
condition. However it will also be shown, that there are complementary bands of
frequencies, in which the added mass associated with symmetric and antisymmetric
motion for such a system of structures, is non-negative.

3. The sign of the added mass coefficient

3.1. A single structure

An application of the divergence theorem to φp∇φp+φp∇φp in the fluid yields the
relationship between the non-dimensional diagonal coefficient in the added mass ma-
trix µpp and the difference between the time-averaged kinetic and potential energies
derived by Falnes & McIver [17], namely

µpp =
1

A0

lim
M→∞

[∫
D−∪D+∪DB

|∇φp|2 dV −K
∫
F−∪F+

|φp|2 dx

]
. (8)

To ensure convergence the integrals over the fluid domain and the mean free surface
are taken together and the limit as M → ∞ is taken. The aim here is to use
the method described in [16] to show that the right-hand side of (8), hence µpp, is
non-negative if the structure satisfies the John condition.

Green’s theorem is applied to φp and eik(x−s) cosh k(z + h)/ cosh kh in the region
x ≥ s > a. Both functions represent outward going waves as x→∞ and so the only
contribution comes from the line x = s and yields∫ 0

−h

[
∂φp
∂x
− ikφp

]
x=s

cosh k(z + h)

cosh kh
dz = 0. (9)

The second term in (9) is integrated by parts and the equation rearranged to give

φp(s, 0) =

∫ 0

−h

[
∂φp
∂z

sinh k(z + h)

sinh kh
− i

∂φp
∂x

cosh k(z + h)

sinh kh

]
x=s

dz

=
1

sinh kh

∫ 0

−h

[
∂φp
∂z

cosα− i
∂φp
∂x

sinα

]
x=s

(
sinh2 k(z + h) + cosh2 k(z + h)

)1/2
dz

=
1

2 sinh kh

∫ 0

−h

[(
∂φp
∂z
− ∂φp

∂x

)
eiα +

(
∂φp
∂z

+
∂φp
∂x

)
e−iα

]
x=s

[cosh 2k(z + h)]1/2 dz,

(10)
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where α is real and defined by the pair of equations

cosα =
sinh k(z + h)

(sinh2 k(z + h) + cosh2 k(z + h))1/2
,

sinα =
cosh k(z + h)

(sinh2 k(z + h) + cosh2 k(z + h))1/2
.

(11)

The Cauchy-Schwarz inequality is applied to the integral in (10) to give

|φp(s, 0)|2 ≤
∫ 0

−h cosh 2k(z + h) dz

4 sinh2 kh

×
∫ 0

−h

∣∣∣∣(∂φp∂z
− ∂φp

∂x

)
eiα +

(
∂φp
∂z

+
∂φp
∂x

)
e−iα

∣∣∣∣2
x=s

dz

≤ 1

2K

∫ 0

−h

[∣∣∣∣∂φp∂z
− ∂φp

∂x

∣∣∣∣2 +

∣∣∣∣∂φp∂z
+
∂φp
∂x

∣∣∣∣2
]
x=s

dz

=
1

K

∫ 0

−h
|∇φp|2x=s dz, (12)

after an application of the Cauchy inequality |A+B|2 ≤ 2
(
|A|2 + |B|2

)
and the use

of the dispersion relation (6). Integration of (12) over F+ gives

K

∫
F+

|φp(x, 0)|2 dx ≤
∫
D+

|∇φp|2 dV. (13)

A similar analysis is applied in the region x ≤ s < −a and yields

K

∫
F−

|φp(x, 0)|2 dx ≤
∫
D−

|∇φp|2 dV. (14)

Substitution of (13) and (14) into (8) gives

µpp ≥
1

A0

∫
DB

|∇φp|2 dV ≥ 0, (15)

which means that the diagonal terms in the added mass matrix are non-negative for
a single structure that satisfies the John condition in water of finite depth. If the
region DB has non-zero area then, as φp is not constant throughout such a region,
the final inequality in (15) is strict and µpp > 0.
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The results also holds in water of infinite depth, as was demonstrated in [19], by
repeating the above analysis with cosh k(z + h)/ cosh kh replaced by eKz in (9) and
noting that the infinite-depth wave number is given by k = K. However, numerical
results show that it is possible for the added mass to be negative for a structure which
doesn’t satisfy the John condition, so it is not possible simply to dispense with this
requirement. This is illustrated in Figure 2 where the sway added mass is given for
a circular cylinder of radius a that is more than half-immersed in water of infinite
depth and intersects the mean free surface at an angle of π/4 to the horizontal. It
is clear that there is a range of frequencies near Ka = 1, for which the sway added
mass is negative.

� ��� � ��� �
-�

�

�

�

�

.D

µ11

1

Figure 2: The sway added mass for a more than half-immersed circular cylinder

3.2. A symmetric system of two structures

A similar analysis may be performed for two structures that individually satisfy
the John condition and form a symmetric configuration that oscillates in tandem,
as illustrated in Figure 3. The method employed here is the same as that used by
Linton & Kuznetsov [18] to determine ranges of frequencies for which symmetric and
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Figure 3: A symmetric configuration of two structures that individually satisfy the John condition

antisymmetric trapped modes are not supported by a symmetric configuration of two
fixed structures.

As before the diagonal terms in the added mass matrix associated with the whole
system moving as a single structure, are related to the difference in the time-averaged
kinetic and potential energies in the fluid. So (8) becomes

µpp =
1

A0

lim
M→∞

[∫
D−∪D+∪DB∪DI

|∇φp|2 dV −K
∫
F−∪F+∪FI

|φp|2 dx

]
, (16)

where B and A0 now represent the combined wetted boundaries and cross-sectional
areas of the structures and DB the combined fluid region below them both. The
mean free surface between the structures is denoted by FI and the fluid region below
it by DI . The same analysis as that used for the single structure shows that the
inequalities (13) and (14) are satisfied and so (16) becomes

µpp ≥
1

A0

[∫
DB∪DI

|∇φp|2 dV −K
∫
FI

|φp|2 dx

]
≥ 1

A0

[∫
DI

|∇φp|2 dV −K
∫
FI

|φp|2 dx

]
, (17)

where the final inequality is strict if DB has non-zero area. It remains to determine
under what circumstances the right-hand side of (17) can be bounded below by zero,
and this is done using the method described in [20, §4.2.2].
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On the portion of the free surface between the structures the function wp is defined
by

wp(x) =

∫ 0

−h
φp(x, z)

cosh k(z + h)

cosh kh
dz. (18)

The operator d2/dx2 is applied to (18) and the order of integration and differentiation
changed. As φp satisfies the 2D Laplace equation the term ∂2φp/∂x

2 may be replaced
by −∂2φp/∂z2 and the resulting integral integrated by parts twice. An application
of the free surface boundary condition for φp in (3) shows that wp satisfies

d2wp
dx2

+ k2wp = 0. (19)

The system of structures is symmetric about the z-axis and the centre of rotation
is assumed to lie on this axis. So the heave potential φ3 is symmetric in x and the
sway and roll potentials, φ1 and φ5, are antisymmetric. This means that w3 is a
symmetric function and w1 and w5 are antisymmetric. It is convenient to consider
the symmetric problem first.

From (18) and (19)

w3(x) =

∫ 0

−h
φ3(x, z)

cosh k(z + h)

cosh kh
dz = B3 cos kx, x ∈ FI , (20)

where B3 is a complex constant. Integration of (20) by parts gives

φ3(x, 0) =
k2

K
B3 cos kx+

∫ 0

−h

∂φ3

∂z

sinh k(z + h)

sinh kh
dz, (21)

after use of the dispersion relation (6). An application of the Cauchy inequality

|A+B|2 = (1+ε)|A|2+(1+1/ε)|B|2−
∣∣∣∣ε1/2A− B

ε1/2

∣∣∣∣2 ≤ (1+ε)|A|2+(1+1/ε)|B|2 (22)

to (21), where ε is a positive parameter to be chosen, and multiplication by K gives

K |φ3(x, 0)|2 ≤ (1 + ε)k4|B3|2 cos2 kx

K
+
K(1 + 1/ε)

sinh2 kh

∣∣∣∣∫ 0

−h

∂φ3

∂z
sinh k(z + h) dz

∣∣∣∣2
≤ (1 + ε)k4|B3|2 cos2 kx

K
+
K(1 + 1/ε) [sinh kh cosh kh− kh]

2k sinh2 kh

∫ 0

−h

∣∣∣∣∂φ3

∂z

∣∣∣∣2dz,
(23)
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where the Cauchy-Schwarz inequality has been used. Integration of (23) over FI
gives a bound for the potential energy associated with the portion of the free surface
between the structures, namely

K

∫
FI

|φ3(x, 0)|2 dx ≤ (1 + ε)k3|B3|2 [2k(b− a) + sin 2k(b− a)]

2K

+
K(1 + 1/ε) [sinh kh cosh kh− kh]

2k sinh2 kh

∫
DI

∣∣∣∣∂φ3

∂z

∣∣∣∣2 dV. (24)

The complex constant B3 is unknown but differentiation of (20) with respect to x
gives

− kB3 sin kx =

∫ 0

−h

∂φ3

∂x

cosh k(z + h)

cosh kh
dz. (25)

An application of the Cauchy-Schwarz inequality to (25), followed by integration
over FI produces the bound

k|B3|2 [2k(b− a)− sin 2k(b− a)]

2
≤ [sinh kh cosh kh+ kh]

2k cosh2 kh

∫
DI

∣∣∣∣∂φ3

∂x

∣∣∣∣2 dV. (26)

Substitution of (26) into (24) gives

K

∫
FI

|φ3(x, 0)|2 dx ≤ (1 + ε)k3|B3|2 sin 2k(b− a)

K

+
(1 + ε)k [sinh kh cosh kh+ kh]

2K cosh2 kh

∫
DI

∣∣∣∣∂φ3

∂x

∣∣∣∣2 dV

+
K(1 + 1/ε) [sinh kh cosh kh− kh]

2k sinh2 kh

∫
DI

∣∣∣∣∂φ3

∂z

∣∣∣∣2 dV. (27)

It is straightforward to show that the choice of the parameter ε as

ε =
sinh kh cosh kh− kh
sinh kh cosh kh+ kh

> 0 (28)

means that each of the factors that multiply the integrals in (27) are equal to one
and the inequality becomes

K

∫
FI

|φ3(x, 0)|2 dx ≤ (1 + ε)k3|B3|2 sin 2k(b− a)

K
+

∫
DI

|∇φ3|2 dV. (29)
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If the non-dimensional length of the free surface between the two structures lies in
the range given by (2n − 1)π ≤ 2k(b − a) ≤ 2nπ, n integer, then sin 2k(b − a) ≤ 0
and (29) becomes

K

∫
FI

|φ3(x, 0)|2 dx ≤
∫
DI

|∇φ3|2 dV. (30)

This may be substituted into (17) to give

µ33 ≥
1

A0

[∫
DI

|∇φ3|2 dV −K
∫
FI

|φ3|2 dx

]
≥ 0, (2n− 1)π ≤ 2k(b− a) ≤ 2nπ,

(31)
where n is an integer.

For sway or roll motion φp is antisymmetric in x. So from (18) and (19)

wp(x) =

∫ 0

−∞
φp(x, z)

cosh k(z + h)

cosh kh
dz = Bp sin kx, x ∈ FI , p = 1, 5. (32)

A similar analysis to that used for symmetric motion produces a modified version of
the inequality in (29), namely

K

∫
FI

|φp(x, 0)|2 dx ≤ −(1 + ε)k3|Bp|2 sin 2k(b− a)

K
+

∫
DI

|∇φp|2 dV, p = 1, 5.

(33)
If 2nπ ≤ 2k(b− a) ≤ (2n+ 1)π, n integer, then sin 2k(b− a) ≥ 0 and (33) yields

K

∫
FI

|φp(x, 0)|2 dx ≤
∫
DI

|∇φp|2 dV, p = 1, 5. (34)

This may be substituted into (17) to give, for p = 1 or 5,

µpp ≥
1

A0

[∫
DI

|∇φp|2 dV −K
∫
FI

|φp|2 dx

]
≥ 0, 2nπ ≤ 2k(b− a) ≤ (2n+ 1)π,

(35)
where n is an integer.

From (31) and (35), the ranges of frequency in which the added mass can possibly
be negative, are complementary for symmetric and antisymmetric motion. It is
worth noting that the theory only establishes that the added mass is non-negative
in certain intervals, not that it takes negative values outside those intervals. In
general the added mass is not negative everywhere outside these ranges. Numerical
results obtained by a boundary element method (BEM) are presented in figure 4
for a pair of surface-piercing semi-circular cylinders in water of infinite depth. The

12



shaded areas represent the intervals in which the sway added mass has been proven
to be non-negative and the heave added mass is non-negative in the complementary
unshaded regions. It is clear that the numerical results are in agreement with the
theoretical predictions, although the regions over which negative added mass occurs
are observed to get closer and closer to the boundaries of the relevant intervals, as the
frequency increases. In the next section, for fluid of infinite depth an approximate
prediction is given of where the poles in the force coefficient occur, and hence the
frequencies at which there are sign changes in the added mass.

0 1 2 3 4 5 6
-4

-2

0

2

4

Ka

ad
d
ed

m
as

s

Figure 4: The heave −−−−− and sway −−− added mass for 2 semi-circular cylinders, radius a, b = 2a

4. Approximations to the complex resonances

In this section the fluid is taken to have infinite depth so that both the wide-
spacing theory described in [21], and certain high-frequency asymptotic results, may
be used. The rapid changes in the added mass seen in figure 4 are associated with
so-called complex resonances of the complex force coefficient

qpp(κ) = µpp(κ) + iνpp(κ) (36)

where κ = Ka. With κ regarded as a complex variable, a complex resonance is a
pole of qpp(κ), located in the lower half of the complex κ plane [14]. The pole is
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assumed to be simple and, although the numerical evidence suggests that this is the
case here, to the authors’ knowledge it has not been established formally that it is
necessarily true. Specifically, for a resonance at κ = κn + iτn indexed by an integer
n, with κn, τn ∈ R and τn < 0, then

qpp(κ) ∼ q̂pp,n
κ− (κn + iτn)

as κ→ κn + iτn, (37)

where the residue q̂pp,n is a complex constant.
In the following it is assumed that the resonance under consideration is sufficiently

close to the real axis for (37) to provide a good approximation to the complex force
coefficient when κ is real and close to κn. Numerical calculations presented below
indicate that Re{q̂pp,n} < 0 and Im{q̂pp,n} ≈ 0, both of which are consistent with the
requirement that the damping coefficient is non-negative. If (37) with q̂pp,n ∈ R is
adopted as an approximation near a resonance this gives

Re {qpp(κ)} = µpp(κ) ≈ q̂pp,n(κ− κn)

(κ− κn)2 + τ 2n
. (38)

This form describes the characteristic spikes in the added mass that are seen in
figure 4. There are turning points in the added mass at κ = κn ± τn at which
µpp = ±q̂pp,n/2τn, hence the height of a spike is determined by the relevant residue
and the distance of the pole from the real axis. Furthermore, on the basis of this
approximation µpp(κn) = 0, and these are the zeros observed on the downward parts
of the curves in figure 4. The form (37) also yields a maximum value of the damping
coefficient of q̂pp,n/τn at κ = κn so that the height of a spike in the damping is, to a
first approximation, equal to the total height of the corresponding spike in the added
mass [13].

4.1. Locations of the complex resonances

Approximations to the locations of the poles for a pair of surface-piercing struc-
tures may be obtained by adopting the assumption that the structures are widely
spaced. Under the extended wide-spacing approximation [21, equations (6.16) and
(6.18)], for two identical symmetric structures a distance l = 2b apart resonances
occur at those complex K for which

1∓ r eiKl − ε2p3eiKl = 0 (39)

where, in the second term, the negative sign is taken for symmetric motions and
the positive sign for antisymmetric motions, r is the reflection coefficient for a single
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isolated structure and ε = 1/Kl. It is assumed that r 6= 0 for the frequencies under
consideration. In the extended wide-spacing approximation it is assumed that ε� 1
and a/b � 1, where a is a typical dimension of each structure. Further p3, defined
in [21, equations (5.8)], is a property of a single isolated structure that depends
on frequency. Thus, both r and p3 are functions of the real frequency parameter
κ = Ka and, for the present purposes, each may be extended analytically into a
suitable complex neighbourhood of the real axis (see [14, section 4]). Results will be
obtained using the standard wide-spacing approximation (ε = 0); the term in ε2 is
included above to shed light on the magnitude of the first neglected term and will
not be be included explicitly from now on (for the case of a half-immersed circular
cylinder next to a wall, the effects of this term are discussed in detail in [22]).
The overall aim is to obtain approximations to the locations of resonances using
high-frequency approximations to the hydrodynamic coefficients that are valid for
Ka � 1. The wide-spacing approximation is effectively an expansion in the small
parameter 1/Kb, and hence it is consistent to expand individual terms in 1/Ka
as long as 1/Kb � 1/Ka, which is just a rewriting of the second wide-spacing
assumption a/b� 1.

From equation (39), as ε→ 0

e−2iκ b/a+nπi = r +O(ε2), (40)

where the integer n is even for symmetric motions and odd for antisymmetric mo-
tions, and hence

−2iκ b/a+ nπi = log r +O(ε2). (41)

For surface-piercing structures, it is anticipated that the complex resonances are close
to the real axis and hence, for a chosen n, equation (41) has a solution κ = κn + iτn,
where κn, τn ∈ R and |τn| � |κn|. By Taylor expansion

r(κ) = r(κn) + iτnr
′(κn) +O(τ 2n) as τn → 0 (42)

where, by a result from complex analysis, it is permissible to take the derivative r′

in the real κ direction. Thus equation (41) becomes

−2i(κn + iτn)b/a+ nπi = log r +
iτnr

′

r
+O(τ 2n, ε

2), (43)

where r and r′ are now evaluated at κ = κn. The real part of equation (43) yields

τn

(
2b

a
+ Im

r′

r

)
= log |r|+O(τ 2n, ε

2), (44)
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while the imaginary part gives

2κnb/a = nπ − δr − τn Re
r′

r
+O(τ 2n, ε

2), (45)

where δr = arg r.
Approximations to r are available for a number of geometries. For example,

Leppington [23] considers the reflection of waves by cylinders whose cross section B′

intersects the free surface normally; he further assumes that B′ is locally smooth
and convex at the two intersection points (see [23, p. 134] for an explanation of the
reasons for this). Suppose that near the intersection points x = ±a, B′ has the local
form

x∓ a = ∓
∞∑
s=N

αs(−z)s

s!
, (46)

where 2 ≤ N < ∞ and to ensure local convexity αN > 0. From [23] the reflection
coefficient

r ∼
(

1− iαNa
N−1

(2κ)N−1

)
e−2iκ as κ→∞ (47)

and the transmission coefficient

t ∼ t0e
−2iκ

κ2N
as κ→∞, (48)

where the constant t0 is determined by the geometry of B′; it follows from (47) that
the phase

δr ∼ −2κ− αNa
N−1

(2κ)N−1
as κ→∞. (49)

The leading-order approximation to log |r| is obtained from t using the identity |r|2+
|t|2 = 1 so that from (44)

τn(b/a− 1) ≈ − |t0|
2

4κ4Nn
. (50)

It then follows from (45) that

κn(b/a− 1) ≈ 1
2
nπ +

αNa
N−1

2NκN−1n

(51)
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or, after reversion,

κn(b/a− 1) ≈ 1
2
nπ + 1

2
αN

[
b− a
nπ

]N−1
. (52)

Other than the dependence on n, these approximations do not depend on the flow
symmetry of the resonance under consideration.

The first approximation κn(b/a − 1) ≈ 1
2
nπ corresponds to the the right-hand

end of a region for which, in section 3.2, it has been shown that negative added mass
does not occur. The second term in (52) then shifts the real part of the complex
resonance to a higher frequency which is consistent with the theory of section 3.2
(recall the remark above that the zeros on the downward parts of the added-mass
curves occur, to a first approximation, at κ = κn). As a specific example suppose
that B′ is a semicircle of radius a. From results given in [23, section 4], for this case
N = 2, α2 = 1/a and t0 = 2i/π so that

κn(b/a− 1) ≈ 1
2
nπ +

b/a− 1

2nπ
(53)

and

τn(b/a− 1) ≈ − 1

π2κ8n
. (54)

The accuracy of these approximations is assessed by comparison with numerical
results in section 4.3 below.

Suitable high-frequency results for other classes of geometry are also available.
For example, Ayad & Leppington [24] consider high-frequency scattering by cylinders
that intersect the free surface in vertical planes. In this case, both δr + 2κ and t
are exponentially small as κ → ∞, and hence τn and κn(b/a − 1) − 1

2
nπ are also

exponentially small (the latter quantity is again positive to a first approximation).

4.2. Residues

The residues at simple poles of q(κ) in the complex plane may be estimated as
follows. Suppose that

qpp(κ) =
fpp(κ)

gpp(κ)
(55)

where gpp(κ) has a simple zero at κ = κ̂ and fpp(κ̂) 6= 0, so that qpp(κ) has a simple
pole at κ = κ̂. The residue at the pole is

q̂pp = lim
κ→κ̂

(κ− κ̂)fpp(κ)

gpp(κ)
=
fpp(κ̂)

g′pp(κ̂)
, (56)
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where prime denotes differentiation. For a resonance, that is a simple pole of qpp, at
κ̂ = κn + iτn the residue

q̂pp,n =
fpp(κn)

g′pp(κn)
+O(τn) as τn → 0. (57)

Denote by q1,pp the complex force coefficient for a single structure in isolation,
and by Ap the amplitude of waves radiated by a single structure and scaled by a.
From [21, equations (3.8), (6.16) and (6.18)], for sway

q11(κ) = 2q1,11(κ) +
2ie2iκb/a[A1(κ)]2

π[1 + r(κ) e2iκb/a]
(58)

and for heave

q33(κ) = 2q1,33(κ)− ie2iκb/a[A3(κ)]2

π[1− r(κ) e2iκb/a]
(59)

(factors of π have been introduced into the denominators because a different non-
dimensionalisation was used in [21]). From the high-frequency asymptotics of the re-
flection coefficient given in equation (47), the leading approximations to the residues
are therefore

q̂11,n(κ) ≈ e2iκn [A1(κn)]2

π(b/a− 1)
and q̂33,n(κ) ≈ e2iκn [A3(κn)]2

2π(b/a− 1)
. (60)

For the semicircle, Simon [25] gives that as κ→∞

A1 ∼ −
2ie−iκ

κ
and A3 ∼ −

4ie−iκ

κ2
(61)

so that, in this case,

q̂11,n(κ) ≈ − 4

π(b/a− 1)κ2n
and q̂33,n(κ) ≈ − 8

π(b/a− 1)κ4n
. (62)

Both approximate residues are real, which is consistent with the requirement that
the damping is non-negative.

As noted above, first approximations to the extreme values of the added mass
are ±q̂pp,n/2τn. Thus, for sway the extreme values are ±2πκ6n and for heave they
are ±4πκ4n so that the height of the sway spikes grows more rapidly with increasing
frequency. This behaviour explains why in figure 4 the second sway spike appears
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n 1 2 3
1
2
nπ 1.571 3.142 4.712

κn (BEM) 1.703 3.218 4.762

κn (approx) 1.730 3.221 4.765

τn (BEM) −(3.3± 0.3)× 10−4 −(1.1± 0.1)× 10−5 −(2.8± 1.3)× 10−7

τn (approx) −1.3× 10−3 −8.7× 10−6 −3.8× 10−7

q̂pp,n (BEM) −0.21± 0.01 −0.021± 0.005 −0.055± 0.001

q̂pp,n (approx) −0.425 −0.024 −0.056

Table 1: Resonances: comparison of boundary element method (BEM) calculations with the ap-
proximate formulae (53), (54) and (62) for two half-immersed cylinders with b/a = 2.

somewhat broader than the second heave spike; it is simply a much larger spike.
In fact, for the heave spike the maximum added mass is about 1350 while for the
sway spike it is about 74, 000. This behaviour may interpreted in terms of the wave
making properties of a single half-immersed cylinder; at high frequencies a swaying
cylinder generates waves more readily than a heaving cylinder (see equation (61)),
and hence interactions between two cylinders are stronger for synchronised sway
when compared with synchronised heave.

4.3. Comparison with the BEM calculations

The above approximations are now compared with the BEM calculations pre-
sented previously. The resonances and their corresponding residues were computed
from the BEM results using an adaptation of the technique described in [26]. In
that paper, a Taylor series expansion of the complex force coefficient about the fre-
quency corresponding to a maximum in the damping coefficient was used. However,
the extreme height and narrowness of the resonance spikes for the geometry used
here mean that this choice of expansion point is not practical. Instead, a range of
expansion frequencies covering the shoulders of the resonance spikes was used to
obtain the results given in table 1. This gives a range of values for each quantity
and hence allows an error estimate to be obtained. The results in figure 4 indicate
that there are four resonances within the range of κ displayed – two associated with
heave and two with sway – and these are assigned the indices n = 0..3 in increasing
order of frequency. (The roll resonances occur at the same frequencies as the sway
resonances although the residues are different.) The first heave resonance n = 0 is
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at a sufficiently low frequency for the behaviour of the added mass to be strongly
influenced by the singular behaviour of the added mass at zero frequency. As a
consequence, reliable numerical estimates for n = 0 cannot be obtained and hence
do not appear in table 1 (furthermore, the wide-spacing theory of section 4.1 does
not apply in this case). Results for the remaining heave resonance (n = 2) and the
two sway resonances (n = 1, 3) do appear in the table. For the real parts κn of the
resonance frequencies reliable numerical results to three decimal places are obtained;
in each case these values of κn correspond, to the number of digits shown, with the
locations of the zeros on the downward portions of the added mass curves computed
by the BEM. The imaginary parts τn are small and the most difficult to estimate
numerically (indeed, for n = 3 the first digit was not obtained reliably). Only the
real parts of the residues are given; the BEM computations do suggest that there is
a small non-zero imaginary part. These results indicate that, at least for the geom-
etry under consideration, the combination of the wide-spacing approximation with
high-frequency asymptotics is able to give useful approximations to the resonances.

4.4. Approximations away from the resonances

Adopting the above high-frequency approximations for the half-immersed circle
directly in equations (58) and (59), but with the assumption that κ is not close to a
resonance so that there is no zero in the denominator, yields the approximations to
the interaction terms:

q11(κ)− 2q1,11(κ) ≈ − 4

πκ2
(− tan[κ(b/a− 1)] + i) (63)

and

q33(κ)− 2q1,33(κ) ≈ − 8

πκ4
(cot[κ(b/a− 1)] + i) . (64)

Within the high-frequency regime, these expressions broadly describe the behaviour
seen in figure 4. In both cases, at high frequencies the interactions act to decrease
the damping of a cylinder pair compared to twice the values for a single cylinder.
This is because some of the energy radiated by the cylinders individually is trapped
between the cylinders, and hence cannot reach infinity.

5. Discussion

In this paper, it has been shown that the diagonal coefficients in the added mass
matrix, are not negative at any frequency, for a single two-dimensional structure that
satisfies the so-called John condition. Unfortunately it is not possible to extend this
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argument, to single structures that are contained within lines that do not intersect
the free surface perpendicularly, in the way that John’s uniqueness argument was
extended in [27] and [20, §3.2.2]. Mathematically this is because in the analysis of
the uniqueness problem, similar inequalities to those given in (13) and (14) arise, with
φp replaced by the real solution of the homogeneous boundary value problem, but
with an extra factor on the right-hand side of each inequality, that is less than one.
This provides scope for changing the orientation or shape of the lines that connect
the free surface to the seabed in D±, in such a way that when the extension of John’s
argument is made, this factor increases to a maximum of one. As the factor already
takes the maximum possible value in this work, there is not the same possibility for
extension of the argument. In fact there is not a one-to-one correspondence between
uniqueness of potential and non-negative added mass, as illustrated in Figure 2,
where the sway added mass for a circular cylinder that is more than half-immersed
in water of infinite depth and intersects the mean free surface at an angle of π/4
to the horizontal, is seen to take negative values in a certain frequency range. This
is a structure for which the extended version of John’s argument [27] establishes
uniqueness of potential at all frequencies.

In general, the added mass is negative at some frequencies for a horizontally
separated pair of structures. However, for a symmetric arrangement of bodies that
individually satisfy the John condition, it was shown in the present work that the
added mass is non-negative in certain complementary ranges of frequency, for sym-
metric and antisymmetric motions. In addition, a wide-spacing approximation was
used to confirm the close connection between complex resonances and negative added
mass in two-dimensional problems. An extension to slender toroidal geometries may
be possible by coupling the wide-spacing approximation with strip theory (see [10])
so that the extensive high-frequency results for two-dimensional geometries could
again be used.

Further extensions to three dimensions will be considered in a separate paper
where single axisymmetric bodies without an internal free surface that also satisfy
the John condition will be studied, as will toroidal ‘John’ bodies that enclose a
portion of the free surface. By analogy with the three-dimensional uniqueness results
described in [20, §4.2.3], it is expected that in the former case the diagonal added
mass coefficients must be non-negative for all frequencies, while in the latter case
non-negative values can be expected only in particular ranges of frequency.
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