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Abstract  

 

We present our findings after scaled-down drop-weight tests, performed under relatively low 

loading conditions and employing a small-scale spherical indenter as a projectile, to boost the 

strain rate and energy density of the impact, resulted in the generation of a cavity of 

measurable depth on the surface of a pure, fully dense, alumina ceramic. We demonstrate that 

activated dislocations are a main contributor in the formation of the residual impression with 

an estimated maximum density of ~4.02 × 1014 m-2. 
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1. Introduction 

 

Since Longy and Cagnoux’s paper demonstrating that, along with the fragmentation, 

dislocations/twins are activated during high-velocity impacts [1], a handful of researchers 

have paid specific attention to the role that plastic deformation plays in the performance of 

armour ceramics under various high-impact loading conditions [1-10]. In these investigations,
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several methods, including gas gun tests [2], flyer plate impact tests [1,3-5] and split 

Hopkinson pressure bar tests [6, 7], were employed. The principle of each of these 

experiments is the utilisation of a high-velocity projectile/bar (100-800 ms-1) in order to 

achieve a peak internal stress beyond the Hugoniot elastic limit, a stressing condition 

necessary for the initiation of dynamic plasticity [4]. From a practical standpoint, the 

adoption of such extreme conditions is often a financially costly, labour-intensive and lengthy 

process. Consequently, despite the potential findings that could be extracted from the data, 

many researchers and engineers do not typically evaluate plasticity in ceramics under 

dynamic impact conditions. Ultimately, this limits the scope of the work performed on 

applications involving dynamic impacts in ceramics. In addition to the cost and time 

constraints, the resultant impacts from the aforementioned experimental techniques 

frequently lead to catastrophic failure of the tested specimen. This invariably means that post-

impact characterisation requires some form of reconstructive fragment analysis [10], leading 

to difficulties in interpreting the data. As a result, to date, the analysis of the plastic 

deformation in armour ceramics has not been understood to a level whereby the conditions of 

such a physical process and its potential impact on the dynamic/ballistic contact damage 

resistance of ceramic structures can be clearly defined. 

 

The objective of the present work is to demonstrate the potential of low-velocity drop-weight 

(DW) impact tests as a simple, convenient and repeatable technique for studying plasticity in 

ceramics subjected to dynamic impacts. In doing so, we aim to expose a phenomenon after 

recent DW tests performed on fully-dense monolithic alumina ceramics generated a crater of 

marked depth and a residual damage zone far beyond anything produced by comparable 

quasi-static indentation tests. Despite similar DW setups and other “dynamic indentation” 

tests being performed by other workers [11-13], this response of the material remains 



 

undocumented. We believe that, once instrumented, such a method could be useful in helping 

us understand dynamic damage in different ceramics, as well as provide a viable method for 

screening armour, aerospace and dentistry ceramics for better performance in advanced 

ceramic research.  

 

Experimental Procedure 

 

The alumina test samples were prepared as follows. Ultra-fine, 99.99% pure α-Al2O3 powder 

(TM-DAR, Taimei, Japan) was first ball-milled in butanol (Sigma Aldrich, USA) for 24 hrs. 

This slurry was then dried, crushed and ground, followed by sieving. The resultant powder 

was then die-pressed at ~65 MPa, to form a 40 mm diameter disc with an approximate 

thickness of 12 mm. These discs were subsequently placed in an isostatic-press at ~200 MPa, 

followed by sintering in a box furnace. The sintering profile included a ramp rate of 5°C/min 

from room temperature to 1050°C, dwelled for 10 hrs, then to 1400°C, dwelled for 4 hrs. As 

shown in Fig. 1(a), this produced a 99.5% dense ceramic with an equiaxial grain structure and 

an average grain size of 1.38±0.73 µm. The sintered alumina samples were then polished 

using a 1 µm diamond abrasive before DW tests were conducted. 

 

The DW tests themselves were performed using a 2 mm tungsten carbide (WC) ball. A 

photograph of the testing apparatus used is presented in Fig. 2(a). Prior to DW testing, the 

unconfined alumina sample was positioned directly on top of a securely fastened thick 

alumina block (~50 mm thick) and held in place using vacuum grease. For each test, a 

weighted load of 0.6 kg (5.88 N) was released from a height of ~0.5 m along rails, giving an 

estimated velocity of ~3.13 ms-1. In this study, a total of 5 single hit tests were performed at 

different sites across one sample (~30 mm in diameter and ~10 mm in thickness). All test site 



 

locations were evenly distributed around the middle of the sample with a separating distance 

of ~10 mm. This is ~20 times larger than the diameter of the resultant crater size, typically 

0.5 mm for this impact load. We believe the aforementioned clearance between each test site 

was large enough to ensure an independent response in the ceramic during each impact. 

Frames from a high-speed camera video, taken on a HyperVision HPV-1 (Shimadzu, Kyoto, 

JPN) at 20,000 frames per second, demonstrates the DW process in Fig. 2(b-e), showing the 

indenter impacting the surface and the generation of a crater. Strain rate estimations of these 

impacts, assuming an initial contact diameter of 0.2 mm on impact, indicate that a falling 

speed of 3.13 ms-1 can give a peak strain rate along the surface of >104 s-1, which is around 

the upper boundary for Hopkinson bar tests [14]. The total kinetic energy (KE) applied on 

contact is calculated at 2.94 J. This is a relatively low value compared with gas gun tests (10-

150 J) and ballistic tests (500-4500 J). However, the benefit of having less KE to dissipate is 

that the residual damage zone remains intact with limited fracturing, making thorough post-

testing analysis possible. In order to measure the geometry of the residual impressions 

produced, a 3D optical microscope (NewView 5000, Zygo Corp., USA) was used to compose 

3D surface plots of the individual impressions. 

  

Further post-impact analysis of the impressions involved examination under SEM (Leo 1530 

VP, Carl Zeiss, Oberkochen, GER) and optical microscope (DMRX, Leica, Wetzler, GER). 

Meanwhile, lattice plastic deformation was detected and quantified using Cr3+/Al2O3 

fluorescence spectroscopy across a single impact site. Fluorescence microscopy was 

performed using a true confocal Raman microscope (Horiba, Japan) over a spectrum of 

14,250 to 14,550 cm-1 with a 633 nm red line He-Ne laser. A 50× objective lens was used in 

conjunction with a confocal setup that involved two 50 µm pinhole apertures at 90° to one 

another. This provided an approximate beam diameter on the specimen surface of 1 µm and 



 

ensured that data was only taken from the near-surface. A step size of 25 µm was used for 

measurements taken over ¼ of the impression. Each scan was made twice at each point for 10 

s and then averaged, giving a total detection time of 20 s. In order to comparatively quantify 

the degree of R1 peak broadening and peak shifting, multiple measurements were taken over 

the polished surface of the alumina sample to serve as a reference.  

 

3. Results and Discussion 

 

Figure 3(a) shows a 3D surface map of one of the impressions generated during a DW impact 

test. By evaluating the extracted profiles of the 5 different impressions generated, we 

calculated an average depth of 1.21±0.15 μm and an average diameter of 475.2±18.7 μm. 

Notice the limited standard deviation for each value, exemplifying the high repeatability of 

the tests.  

 

Analysis of the fracture patterns produced during the DW impact tests exhibited in Fig. 2(b) 

highlights a number of key features. Firstly, extensive ring-cracking is observed, the 

formation of which can be explained by adapting Hertzian indentation fracture mechanics. 

Here, ring-cracks are activated by surface flaws/defects in a well-defined tensile stress field 

just outside the boundary of contact [15]. Amongst these ring-cracks are multiple radial 

cracks emanating through and away from the initial point of contact. In a study by Evans and 

Wilshaw performing overloaded quasi-static Hertzian indentation tests, it was suggested that 

such cracks are a strong indicator of the onset of plastic deformation [16]. Located in areas 

surrounding the residual impression are what we describe as large arching-cracks. As shown, 

these cracks can be up to 700 µm away from the cavity boundary, are very deep and appear to 

be the initial stages of some form of fragmentation. Based on such observations, we conclude 



 

that these cracks did not form under Hertzian contact because they do not have a centre point 

aligned with that of the point of initial contact, show no signs of subsurface cone-cracking, 

and are located well-beyond any area of physical contact. At present, the mechanism by 

which these arching-cracks nucleate and propagate is unknown. However, we are curious as 

to how such large cracks could develop so far away from the point of physical contact in 

these dynamic impacts. Finally, there is no indication of significant micro-cracking, 

particularly inside the ring-cracked region underneath the point of initial contact. This is 

confirmed in Fig. 3(c) by the lack of grain dislodgement in the cross-sectioned and polished 

impression that one would expect with the coalescence of grain boundary micro-cracking. 

Based on the evidence presented, it would appear that the residual impression must be 

attributable to the plastic response of the Al2O3 and is not a consequence of micro-crack 

based pseudo-ductility through grain boundary sliding, as has been documented after similar 

blunt contacts in alumina under quasi-static loading conditions [17]. 

 

Further evidence to support this can be seen in Fig. 4(a), where the R1 peak in a fluorescence 

spectrum taken from a highly-strained site near the cavity edge exhibits significant 

broadening compared to that at the polished surface. A comparative quantification of this data 

reveals a discernible increase of 6.8 cm-1 in the full width half maximum (FWHM). By 

adopting the model of Wu et al [18], we can convert this value into the dislocation density, in 

this case estimated at 4.02 × 1014 m-2. 

 

In-plane fluorescence mapping results in Fig. 4(b), covering a quarter of the same impression 

and depicting the FWHM, highlight a ring or ‘band’ of broadening peaks, with a radius of 

~200 µm. This is located inside the cavity boundary. Here, the alumina has experienced 



 

significant mechanically-induced plastic deformation during the DW test, activating 

dislocation densities in the order of 1014 m-2.  

 

As shown in Fig. 4(c), complementary fluorescence mapping of the cross-sectioned 

impression presented in Fig. 3(c), reveals that the band of broadening at the surface is only 

part of a highly deformed region beneath the contact interface, where the maximum 

broadening is found to be along the contact axis and ~125 µm below the surface. Here, the 

maximum ΔFWHM of 5.79 cm-1, equating to a dislocation density of ~2.80 × 1014 m-2, is a 

value consistent with the broadening peaks in Fig. 3(b). According to Lawn, the maximum 

shear stress under quasi-static Hertzian contact should be located at ≈0.5a [19], where a is the 

radius of contact. By using the average measured diameter of the cavity (475.2 µm) as the 

diameter of contact, 2a, the location of the maximum shear stress in an idealised Hertzian 

shear stress field would be at ~118.8 µm below the surface. This result is consistent with the 

~125 µm depth at which the maximum broadening is observed. From the point of maximum 

broadening, plastic deformation then expands outwardly, with dislocation densities gradually 

degrading with distance. Incidentally, this trend fits well with the contours of principal shear 

stress presented in Fig. 4.5 of Johnson [20]. It is worth noting that whilst the shear stress field 

endured during DW tests appears to resemble that of Hertzian indentation, the scale of the 

permanent deformation exhibited is unprecedented in this form of quasi-static testing at the 

low loads employed during the DW impact tests. 

 

4. Conclusion 

 

In summary, we have characterised residual impressions generated on the surface of pure, 

fully dense alumina after scaled-down, blunt contact DW impact tests. The formation of such 



 

cavities, with an average measured depth of 1.21±0.15 µm, was found to coincide with 

extensive fracture damage in the form of ring-cracks, radial cracks, and large macro-scale 

arching-cracks that appear to be exclusive to the dynamic loading of a blunt indenter. How 

these arching-cracks originate is unknown at this point. Fracture analysis of the subsurface 

revealed no micro-crack-induced grain boundary sliding as a contributing factor in the 

generation of an impression. Instead, quantification of any plastic deformation through 

fluorescence mapping showed that there was a band of dislocations within the cavity 

boundary and a region of extensive dislocations located directly underneath the point of 

contact. By measuring the broadening of Cr3+/Al2O3 fluorescence peak, we have determined 

the dislocation density to be in the order of 1014 m-2. Given the low loads employed in these 

tests compared to those used in its quasi-static equivalent, such high dislocation densities and 

increased deformation in the DW impressions were considered to be a consequence of the 

dynamic effect. However, detailed analysis of the mechanics is needed in a further study.  
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Fig. 1. SEM micrograph of the alumina microstructure after 1 µm polishing and thermal 

etching. 

  



 

  

 

Fig. 2. The DW test apparatus; (a) a photograph of the DW test rig, (b-e) frames taken from 

high-speed camera footage of the DW impact process; (b) shows the sample prior to damage; 

(c) at 0.45s the impacting head comes into view, this is travelling at 3.13 ms-1; (d) at 0.75s the 

blunt indenter hits the surface with an impact energy density of ~94 MJ/m2 (assuming a 0.2 

mm contact diameter); (e) at 1.3s the load bounces back leaving the residual impression 

generated on the samples surface. 

  



 

 

  

 

Fig. 3. Optical and SEM imaging of the deformation and damage produced during a 0.6kg 

DW impact test on alumina: (a) 3D optical microscopy map of the residual impression, (b) 

UV optical microscopy of the resultant fracture patterns, (c) SEM image of the cross-

sectioned DW impression. 

 

  



 

 

  

 

Fig. 4. Measurements of broadening (FWHM) in Cr3+ fluorescence spectrums around a 0.6 

kg DW impression: (a) fluorescence spectra acquired from a single position on the as-

polished surface (red line) and the as-impacted surface (blue line), showing the net 

broadening (FWHM) induced by DW impact; (b) 2D map of FWHM over a quarter of the 

in-plane surface of the impression; (c) 2D map of FWHM over half of the cross-section of 

the impression. The (0,0) coordinate represents the centre of the impression. 

 

 

 


