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ABSTRACT 

A methodology has been developed for the multi-

objective optimization of the refurbishment of 

domestic building stock on a regional scale. The 

approach is based on the decomposition of the 

problem into two stages: first to find the energy-cost 

trade-off for individual houses, and then to apply it 

tomultiple houses. 

The approach has been applied to 759 dwellings 

using  buildings data from a survey of the UK 

housing stock. The energy use of each building and 

their refurbished variants were simulated using 

EnergyPlus using automatically-generated input files.  

The variation in the contributing refurbishment 

options from least to highest cost along the Pareto 

front shows loft and cavity wall insulation to be 

optimal intially, and solid wall insulation and double 

glazing appearing later.  

INTRODUCTION 

Housing is responsible for more than a quarter of 

total energy consumption and carbon dioxide (CO2) 

emissions the UK (DECC, 2014). With less than 1% 

annual growth rate of new-build homes, it is 

estimated that 75% of the housing stock in 2050 will 

have been constructed before 2014 (Ravetz, 2008). 

Although energy efficiency for the whole housing 

stock has increased slightly over the years, the 

average home energy rating remains low and the 

housing stock could hugely benefit from a wide 

range of retrofit measures ( (DCLG, 2014). In order 

to achieve the UK Government’s CO2 reduction 

target of 80% by 2050 compared to the 1990 baseline 

(HM Government, 2008), large-scale retrofitting (i.e. 

improving the thermal efficiency and energy system 

efficiency of dwellings rapidly and at high volumes) 

of the existing housing stock is expected to play an 

important role. 

In general, available retrofit measures can be 

categorized into three groups:  

 Improving the building envelope, e.g. 

insulating walls, roofs, and windows; 

 Improving heating and hot water systems, 

e.g. upgrading boilers and control systems;  

 Installing renewable energy systems, e.g. 

photovoltaic, biomass boilers, ground source 

heat pump systems, etc. 

When retrofitting a building, there is usually more 

than one measure that is applicable and the capital 

cost and energy saving of one measure could be very 

different from that of another. Consequently, it is of 

great importance to identify the most cost effective 

combinations of retrofit measures. At a regional or 

national level, the identification of which retrofit 

strategies should be targeted for government 

incentives is particularly difficult as at these scales, 

the most cost effective strategy is influenced by: the 

large number of dwellings that could be refurbished; 

the high number of alternative forms of dwelling; and 

the exisiting level of refurbishment of each dwelling, 

this inlfuencing the extent to which further 

refurbishment is possible.  

Applying multi-objective optimization to evaluate the 

retrofit strategies for a single building by considering 

multiple and competing objectives, such as cost, 

energy saving and thermal comfort, is well 

established in the research field of building 

simulation (Asadi et al., 2014; Evins, 2013; Wright et 

al., 2002). In contrast, applying multi-objective 

optimization to a large scale retrofitting program on 

multiple buildings, particularly on a regional or 

national scale, is still emerging. Scaling the 

optimization problem up from a single building to 

many buildings results in a very large search space 

and objective functions that are insensitive to any 

single instance of refurbishment; for instance, the 

reduction in heating energy use resulting from the 

installation of wall insulation in a single dwelling 

will be very small in relation to the total heating 

energy use of the region. The large scale and the 

insensitivity of the objectives to the variables results 

in a problem that is difficult to solve and that requires 

a very large number of candidate building 

performance simulations. 

This paper describes the development of an 

optimization methodology for the multi-objective 

optimization of domestic building stock on a regional 

scale, that is computationally efficient, and which has 

proved to be robust in finding the trade-off between 

the reduction in building energy use and capital cost 

for multiple dwellings. The optimization approach is 

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 2066 -

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288372579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


based on the decomposition of the problem into two 

stages, the first being to find the energy-cost trade-off 

for individual houses, and the second for the trade-off 

of multiple houses at a regional scale. 

LARGE SCALE OPTIMIZATION 

There has been recent interest among the 

evolutionary computation community in large scale 

optimisation, with a recent review (Latorre et al., 

2014) citing a number of different approaches, and 

the introduction of the CEC large-scale benchmark 

problems (Li et al., 2013). Much of the literature 

focuses on problems with around 1000 variables, 

although some (Deb et al., 2003; Sastry et al., 2007; 

Semet and Schoenauer, 2005) do tackle very large 

problems with millions or more variables. The 

specific application in the present paper has the 

equivalent of 1205 binary variables (and has the 

potential for solving poblems with more variables). 

Typically, approaches for the very large problems 

use hybrid algorithms that exploit characteristics of 

the application such as known partial solutions and 

constraints to reduce the search space an improve 

efficiency (Deb et al., 2003; Semet and Schoenauer, 

2005). There is some evidence (Durillo et al., 2010, 

2008) that commonly-used evolutionary multi-

objective optimization methods do not scale well 

with the number of decision variables, and as far as 

the authors are aware, there have been few attempts 

so far (an exception being a study by Antonio and 

Coello Coello (2013)) at multi-objective optimization 

of problems with thousands of decision variables. 

This motivates the development of frameworks for 

large scale multi-objective problems. 

METHODS 

English housing survey (EHS) data 

The English Housing Survey (EHS) is a year-on-year 

national survey commissioned by the UK 

Department for Communities and Local Government 

(DCLG). It collects information about people’s 

housing circumstances and the condition and energy 

efficiency of housing in England (DCLG, 2015). Its 

database provides detailed information, such as age 

band, dwelling type, region, dimensions, window 

area, glazing type, wall construction, roof 

construction, floor construction, loft insulation and 

built form, of representative houses in England. This 

detailed information can be interpreted to allow the 

performance of the recorded dwellings to be 

simulated dynamically in building simulation 

software such as EnergyPlus (D.B. et al., 2000).  

This study is focused on regional planning for the NE 

of England. The 2009 EHS database contains 935 

sample dwellings in the NE region of England, and 

these dwellings represent 1.2 million homes in that 

region. The 935 dwellings are of 6 different dwelling 

types, 10 age bands, 8 wall construction types, and 

12 loft insulation levels. The distribution of the 935 

dwellings in dwelling type, age band, wall 

construction and loft insulation is shown in Figure 1. 

This initial study excludes flats and focuses on the 

759 houses recorded in the database, taking no 

account at this stage of the 1.2 million homes they 

represent. Note that although the selected stock relate 

to 4 high-level archetype forms (detached, semi-

detached, mid-terrace, and end-terrace), the robust 

idenitifcation of the refurbishment strategey for the 

region requires the variants of each archetype to be 

included in the optimization (the variants ralting 

particularly to the type of construction and state of 

refurbishment of each dwelling). 

a. Dwelling Type 

 
b. Age Band 

 
c. Wall Construction 

 
d. Loft Insulation 

 
 

Figure 1. Distributions of 935 dwellings in dwelling 

type, age band, wall construction and loft insulation. 

 

Energy demand of the housing stock 

A dynamic housing stock model has been developed, 

using the English Housing Survey (EHS) 2009 data, 

coupled to the EnergyPlus dynamic simulation 
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engine. EnergyPlus is a well-recognized and 

extensively tested fully-integrated building 

simulation tool and freely available. EnergyPlus 

takes an input data file (IDF), in which a building 

model is specified, and a weather file to run a 

dynamic simulation of a building. Although there are 

tools currently available to create IDFs, none of them 

is suitable to simulate a relatively large number of 

real houses with individual dimensions, different age 

bands and various fabric constructions. Therefore, an 

in-house program called the Building Generation 

Tool (BGT) has been developed to create the IDFs 

automatically, taking inputs from text files. The 

detailed description of the model and the validation 

against a steady-state housing stock model can be 

found in a previous study (He et al., 2014).  

In order to minimize computational complexity, the 

approach adopted for simulating the thermal behavior 

of the houses was to determine the heating demand. 

Post-processing was then used to account for fuels 

and heating systems. The optimization study was 

therefore restricted to retrofit measures related to 

improving the building fabric, including cavity wall 

insulation, internal solid wall insulation, external 

solid wall insulation, loft insulation, and double 

glazing. All possible individual or combined retrofit 

measures have been applied to each of the 759 

houses identified in the EHS 2009 database. 

However, not all measures are applicable to all 

houses; for example, double glazing is not an option 

for houses that are already fully double glazed. This 

reduced the number of possibilities with only 2097 

retrofit strategies being applicable across all 759 

houses. The energy demand of the original 759 

houses and the retrofitted 2097 houses has been 

estimated by the dynamic housing stock model (He et 

al., 2014). 

Costs of retrofit measures 

Despite there being multiple price guide books and 

references available, no single source of cost 

information could be found that covers all retrofit 

measures and the range of figures varies widely from 

different sources (Porritt, 2012). Table 1 shows the 

costs of retrofit measures used in this study.  

These costs were carefully chosen to reflect the real 

costs in the market. Most of the costs are taken from 

Energy Saving Trust (EST, 2015), except the cost of 

double glazing which is taken from a report from the 

Retrofit for the Future project by the Technology 

Strategy Board (TSB, 2014). 

Multi-objective optimization 

A multi-objective optimization package has been 

applied to identify the most cost-effective 

combinations of all measures across the housing 

stock. The algorithm selected in this study is an 

implementation of the popular Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) first 

proposed by Deb et al. (2002). The same 

implementation was used in a previous study to 

optimize the design of fenestration on a façade of a 

building (Wright et al., 2013). 

Table 1 Costs of retrofit measures. 

RETROFIT 

OPTIONS 

DWELLING 

TYPE 

COST SOURC

E 

Loft Insulation 

(0 to 270mm) 

  

Detached £395 (EST, 

2015) Semi/End £300 

Mid £285 

Loft Insulation 

top up (100mm to 

270mm)  

Detached £265 (EST, 

2015) Semi/End £220 

Mid £215 

Cavity Wall 

Insulation 

Detached £720 (EST, 

2015) Semi/End £475 

Mid £370 

Solid Wall 

Internal 

Insulation 

External wall 

area 

£87/m2 (EST, 

2015) 

Solid Wall 

External 

Insulation 

External wall 

area 

£157/m2 

Double Glazing Window area £261/m2 (TSB, 

2014) 

 

Two objectives are optimized: the energy demand of 

the housing stock, estimated by the dynamic housing 

stock model; and the costs of installing retrofit 

measures, calculated using the values in Table 1. In 

order to deal with the large search space, the 

optimization approach is decomposed into two 

stages. First, an exhaustive search is run for each 

individual house to find its Pareto-optimal energy-

cost trade-off (the search space for this typically 

being a maximum of a few tens of solutions per 

house). Although it was not done in the present work, 

it is possible at this point to take constraints into 

account such as over-heating risk, so that only 

admissible solutions are passed to the next stage. 

Secondly, to find the trade-off for the housing stock, 

the space of Pareto-optimal solutions over all houses 

is searched using NSGA-II. Each house is 

represented in the second stage problem by a single 

integer variable whose value identifies the specific 

Pareto-optimal solution for the house arising from the 

first stage. The Pareto-optimal solutions for each 

house are sorted by cost, so that there is a natural 

ordering over the values that the variable for a house 

can take. A parametric tool called jEPlus (Zhang, 

2009) has been used in this study to run simulations 

in EnergyPlus in parallel and to extract outputs. Each 

simulation takes about 30 seconds to run; therefore 

running a full set of simulations for the original 759 

houses and the potential retrofitted 2097 houses takes 

approximately 6 hours in a dual-core PC with 4 

threads. 

The optimization approach explained 

As noted earlier, the two stage optimization was 

developed to improve search efficiency over the large 

search space. Considering the possible refurbishment 
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options that can be applied to each of the 759 houses 

in the stock, the overall problem has a total of 1205 

decisions about whether to apply a specific 

refurbishment. The resulting problem has a search 

space of 2
1205

 (approx. 5.5 x 10
362

) solutions. Using 

the two stage approach exploits the fact that the 

houses are independent. While the houses are related 

in the sense that a decision to spend money 

refurbishing one house means that it cannot be spent 

on a different one, the more complex relationship 

between energy saving and refurbishment cost is 

independent for each house (unless there is, for 

example, a community shared heating system, but 

this is not considered here). Separated into two 

stages, the search space at each stage is reduced. At 

stage 1 (exhaustive search across all houses), rather 

than the product of all possible options across the 

whole stock, we only consider the product of possible 

solutions for each house separately. For any one 

house, there are a maximum of 5 refurbishment 

options, so the search space for each house has a 

maximum of 32 solutions. At stage 2, only the 

product of Pareto-optimal solutions found at Stage 1 

are considered, resulting in a reduced search space 

over 759 variables (1 per house) of 3.1x10
300

. This is 

still very large but represents a substantial reduction 

from the overall problem. Moreover, the second stage 

optimization is on solutions that are known to be 

Pareto optimal and therefore, the limnits of the search 

space are naturally constrained to be in the region of 

the optima (which may improve the effectiveness of 

the second stage search). 

To explore the alternative optimization approaches, a 

synthetic example problem was developed: a version 

of the stock optimization problem using the same 

house repeated 500 times. Using duplicate houses 

allows a reference Pareto front to be developed by 

taking each of the solutions from the house’s front 

and scaling up their energy and cost by a factor of 

500. 

The true Pareto front for the stock will not perfectly 

match this reference front (it will almost certainly 

have many more solutions, some of which may 

dominate those in the reference front) but it provides 

a useful approximation to work towards. By way of 

illustration, consider a single house with three 

Pareto-optimal solutions: (1,5), (3,4), (5,1) where the 

x and y values might represent cost and energy 

consumption. The “Reference Pareto front” for a 

stock of three houses, are the points (3,15), (9,12), 

(15,3). However, at the stock level, different 

refurbishments might be applied to each of the three 

houses: there are 27 possible combinations of the 

Pareto-optimal solutions for each house, some of 

which have identical values, plotted as “All” Figure 

2. The “Global Pareto front” of these lies near to the 

reference front, but does not include the point at 

(9,12). 

For this house, there were 10 refurbishment options, 

giving a search space of 2
10

=1024 per house, and 

2
10*500

=1.4x10
1505

 overall. This was deliberately 

larger than the real problem studied in this paper, to 

ensure that the approach would scale to larger 

problems. An exhaustive search was conducted over 

the 1024 solutions for a single house, these options 

being plotted in terms of the house’s resulting annual 

operational energy demand and capital cost of the 

refurbishments in Figure 3. The Pareto-optimal 

solutions from this search are highlighted. 

 

 

 
Figure 2. Combining solutions from the Pareto fronts 

for individual houses into a global Pareto front does 

not simply result in a scaled up version of the front 

for one house. 

 

 
Figure 3. Exhaustive set of refurbishment options for 

one house in the synthetic example problem, with the 

Pareto optimal solutions highlighted. 

 

The example problem was used to test several 

approaches to the multi-objective optimization using 

NSGA-II. A naïve approach to tackling the global 

problem would be a binary encoding, in which each 

bit represents a possible refurbishment on a particular 

house: 2000 bits for the example. Secondly, the two-

level approach could be taken, using either a Gray 

binary or integer encoding. All algorithm runs were 

terminated after 100,000 evaluations, with a 

population size of 200 and binary tournament 

selection. Those with a binary encoding used bit flip 

mutation at a rate of 1/2000, and uniform crossover 

at a rate of 1.0. The integer encoded algorithm used 

simulated binary crossover and polynomial real 

mutation. The results for each are plotted against the 

reference in Figure 4. These are from single runs so 
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the individual solutions in the Pareto fronts can be 

shown, but the same broad trend was reflected over 

multiple runs. 

 
Figure 4. The global Pareto optimal fronts found by 

three different approaches to the synthetic example 

problem, compared with the reference front formed 

by scaling up the front for one house. 

 

The integer-encoded 2-stage optimization finds a 

front that is closer to the reference front that the other 

two approaches. This is because it has a smaller 

search space to explore, and because the integer 

encoded algorithm was able to more efficiently 

explore the fronts for each house. It was found by 

experimentation that the approaches could be 

improved further by seeding the evolutionary 

algorithm with points from the reference front – that 

is, including these among the randomly generated 

solutions at the start of the algorithm’s run. However, 

it should be noted that this would not be an option for 

the real stock optimization problem, as the houses are 

not duplicates, making it impossible to generate a 

reference front by simply scaling up the front for one 

house. 

RESULTS AND DISCUSSION 

Pareto optimal result 

The output set of non-dominated solutions, i.e. the 

Pareto optimal set, was derived from the set of all 

solutions generated over an optimization run. The 

parameters, such as random initialization number, 

which might affect the results of the optimization 

runs, have been extensively tested. The run found 

398 solutions in the trade-off, which are plotted in 

the objective space, i.e. energy demand and cost, in 

Figure 5. The total heating energy demand of the 759 

houses without applying any retrofit measures is 

about 5,660 MWh. Providing a total investment of 

£250,000, a maximum 310 MWh reduction in total 

heating energy demand (5,350 MWh) can be 

achieved through applying the optimum combination 

of retrofit measures to the houses. The cost-effective 

ratio of the investment can be defined as: R=ER⁄C, 

where R is the cost-effective ratio (kWh/£), ER is the 

total energy reduction (kWh) and C is the total cost 

(£). The cost-effective ratio of the initial £250,000 

investment is 1.24 kWh/£. Increasing the investment 

to £750,000, a maximum further 230 MWh reduction 

can be made, which gives a cost-effective ratio of 

0.46 kWh/£ for the additional £500,000 investment. 

If all suitable measures are applied to all houses, it 

will cost a total of £1,620,000, reducing the total 

energy demand to 5,015 MWh. The further additional 

investment of £870,000 gives a cost-effective ratio of 

only 0.12 kWh/£. 

 

 
Figure 5. The Pareto optimal set found by the 

optimization, plotted in objective space. 

 

Data analysis 

Analyzing the Pareto optimal solutions in detail 

provides insights into the uptakes of individual or 

combined retrofit measures during the optimization 

process. Figure 6 shows the number of installations 

for each individual retrofit measure for all the 

solutions on the Pareto front. 

 

 
Figure 6 Counts of individual measures for the 

Pareto solutions. 

 

The solutions on the Pareto front are ranked from 1 

to 398 according to the increment of total cost, and 

this ranking is shown on the x-axis. Solution No.1, 

for example, is the solution with the minimum cost (0 

in this case), and none of the measures is installed. 

Solution No. 398 is the solution with the maximum 

cost, and in this case, all the suitable measures for all 

houses are installed. Each line between Solution No.1 

and No.398 shows the trend of the installation of a 

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 2070 -



particular measure as the total cost increases. The 

prioritization is in the installation of loft insulation, 

followed by the installation of cavity wall insulation, 

which is not surprising, considering that loft 

insulation is the cheapest, and cavity wall insulation 

second cheapest, among all selected measures and 

their energy savings are relatively high. External and 

internal solid wall insulation are two exclusive 

measures, both of which can only be applied to 

houses with solid wall construction. Internal 

insulation increases up to Solution No. 325 due to its 

lower cost; however, external insulation has a better 

performance in terms of reducing heat demand in 

some cases, and therefore starts to pick up at the 

higher cost end of the solutions, as internal starts to 

decline. The installation of double glazing also only 

starts to happen towards to the high cost end of the 

solutions due to the high cost and the smaller savings 

from individual installation. 

CONCLUSIONS 

A two stage optimization methodology has been 

proposed for approximating the trade-off between the 

reduction in building energy use and capital cost for 

refurbishments of the domestic building stock on a 

regional scale. The methodology has been shown to 

work well for a synthetic problem covering 500 

duplicate houses each with 10 possible refurbishment 

options. It was then successfully applied to the multi-

objective optimization of refurbishments to 935 

sample dwellings in the NE region of England. These 

were taken from the 2009 EHS database and 

represent 1.2 million homes. 

When resources are limited, as is often the case in the 

real world and particularly in a large scale retrofitting 

programme, it is important to identify the most cost-

effective measures that can be applied to the most 

suitable houses. By applying the multi-objective 

optimization package, it is possible to derive the 

Pareto optimal solution set that demonstrates the 

trade-off between the energy demand and cost. The 

findings show that the cost-effective ratio decreases 

sharply for a significant increase in investment. The 

initial £250,000 investment could result in a cost-

effective ratio of 1.24 kWh/£, while the cost-effective 

ratio of an additional £500,000 investment drops to 

0.46 kWh/£. Retrofitting all houses with the 

expensive measures for a further additional £870,000 

causes the cost-effective ratio to fall to 0.12 kWh/£.  

The analysis of the Pareto optimal solutions set can 

be complicated, particularly where there is a large 

number of an individual or combined retrofit option 

to consider. A simple approach based on ranking the 

solutions and counting the number of installations of 

individual measures, whether they are applied on 

their own or in combination with other measures, has 

been used in this study to examine the trend of 

installation for each measure across the whole cost 

range. While it is not surprising the uptake of loft 

insulation shows a much faster trend, followed by 

cavity wall insulation, it is interesting to notice the 

uptake of double glazing only begins towards the 

higher cost end, and the uptake of solid wall internal 

insulation starts to drop and later overtaken by solid 

wall external insulations at the higher cost end.  

FURTHER WORK 

When running all the dynamic simulations, the 

overheating hours for living room and bedroom were 

recorded, and in future work they will be added as 

the constraints in the optimization process. 

Furthermore, the ability to predict dynamic demand 

at regional or sub-regional level by the dynamic 

housing stock model needs to be further investigated. 

The optimization methodology has worked for the 

synthetic optimization problem, which has a larger 

number of variables (5000) than the problem derived 

from the real North-East housing stock data (1205). 

With improvements to the modelling to cover  more 

housing types and more refurbishment options, the 

problem size will grow and we intend to apply the 

framework to these larger scale problems. 

Preliminary studies suggest that it can be scaled to a 

problem with over 16,000 houses (with nearly 50,000 

variables). As well as improvements to the 

optimization algorithm itself, more advanced 

methods to analyse the resulting Pareto-optimal 

fronts will need to be developed to make sense of the 

large amount of information arising from such an 

optimization. 
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