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This paper investigates the problem of simultaneous state and input estimation (SSIE) for discrete-time linear stochastic
systems when the information on the inputs is partially available. To incorporate the partial information on the inputs, matrix
manipulation is used to obtain an equivalent system with reduced-order inputs. Then Bayesian inference is drawn to obtain
a recursive filter for both state and input variables. The proposed filter is an extension of the recently developed state filter
with partially observed inputs to the case where the input filter is also of interest, and an extension of the SSIE to the case
where the information on the inputs is partially available. A numerical example is given to illustrate the proposed method.
It is shown that, due to the additional information on the inputs being incorporated in the filter design, the performances of
both state and input estimation are substantially improved in comparison with the conventional SSIE without partial input
information.

Keywords: Bayesian inference; partial information; state filter; unknown input filter

1. Introduction
State estimation for discrete-time linear stochastic sys-
tems with unknown inputs has been receiving increasing
attention (see, e.g. Cheng, Ye, Wang, & Zhou, 2009;
Darouach & Zasadzinski, 1997; Darouach, Zasadzinski,
& Boutayeb, 2003; Hsieh, 2000; Kitanidis, 1987, among
many others) due to its widespread applications in the
fields of weather forecasting (Kitanidis, 1987), fault diag-
nosis (Mann & Hwang, 2013), etc.

In some applications such as population estimation,
traffic management (Li, 2013), and chemical engineering
(Mann & Hwang, 2013), however, information on the input
variables is not completely unknown; rather, it is available
at an aggregate level. Li (2013) has recently proposed a
unified filtering approach to incorporate this kind of infor-
mation. It is shown that this approach includes two extreme
scenarios as its special cases, that is, the filter where all
the inputs are unknown (i.e. the scenario investigated in
Kitanidis, 1987; Gillins & De Moor, 2007, etc.) and the
filter where the inputs are completely available (i.e. the
classical Kalman filter can be applied). Later, Su, Li, and
Chen (2015a) further investigated some properties of the
aforementioned unified filter such as existence, optimal-
ity and asymptotic stability. However, Li (2013) and Su
et al. (2015a) only considered the problem of sole state
estimation; the problem of simultaneous state and input
estimation (SSIE) with partial information on the inputs
has not been investigated.

∗Corresponding author. Email: b.li2@lboro.ac.uk

Gillins and De Moor (2007) developed a SSIE method
using the approach of minimum-variance unbiased esti-
mation (MVUE), then Fang and Callafon (2012) fur-
ther investigated its asymptotic stability. Potentially, the
SSIE can be applied to a wide range of problems such
as fault diagnosis (see, e.g. Gao & Ding, 2007; Pat-
ton, Clark, & Frank, 1989), fault-tolerant control (Jiang
& Fahmida, 2005), disturbance rejection control (Profeta,
Joseph, William, & Marin, 1990). In the field of fault
detection and fault-tolerant control, for example, actua-
tor, sensor and/or structure faults are usually modelled as
inputs to the system with unknown dynamics. One can
monitor system status by estimating the inputs for fault
diagnosis purposes where the estimated inputs can provide
valuable information for the fault-tolerant control system;
see, for example, Jiang and Fahmida (2005) and Su, Chen,
and Li (2014). In the field of disturbance rejection con-
trol, the uncertainties in system model are usually modelled
as lumped system inputs (which may include system mis-
matches, parameter uncertainties, external disturbances);
see Chen, Ballance, Gawthrop, and O’Reilly (2000), Yang,
Li, Su, and Yu (2013), and Yang, Su, Li, and Yu (2014)
for a detailed discussion. When inputs are approximately
obtained based on disturbance estimation algorithms, one
can attenuate their effects on dynamic systems by directly
feedthrough of the estimated value.

In this paper, we investigate the problem of SSIE.
Unlike Gillins and De Moor (2007) where the inputs are

© 2015 The Author(s). Published by Taylor & Francis.
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assumed to be completely unknown, we consider the sce-
nario where the information on the inputs is partially
available. To incorporate the partial information on the
inputs, the original inputs are decoupled into two parts,
where the first part is completely known based on the
available information on the original inputs, whereas the
second part is completely unknown which will serve as
the unknown inputs of the new system. On this basis,
we draw Bayesian inference (see, e.g. Li, 2009, 2013)
and obtain simultaneous estimates of the state and new
unknown inputs. According to the Bayesian theory, the
obtained estimates are optimal in the sense of minimum
mean square estimation under the assumption of Gaussian
noise terms (Li, 2013). Finally, the estimates of the orig-
inal inputs can be worked out by pooling together all the
available information on the inputs.

Compared with the filter in Li (2013) where only
state estimate is of interest, the proposed method obtains
SSIE, and hence the estimated inputs can be used in
fault detection and other applications. Compared to the
results in Gillins and De Moor (2007), this paper takes
into account the additional information on the inputs, and
hence it results in a better estimate of state and input vec-
tors. In addition, we show that Bayesian inference can
provide an alternative derivation of the filter in Gillins
and De Moor (2007) for the SSIE problem. We further
investigate the relationships of the proposed filter with
some existing approaches. In particular, we show in this
paper that (a) when the inputs are completely available,
the proposed filter reduces to the classical Kalman filter
(Simon, 2006); (b) when no information on the unknown
inputs is available, it reduces to the results of Gillins and
De Moor (2007) where both state and input estimation are
concerned; and (c) if only state estimation is of interest,
it is equivalent to the filter for partially available inputs
developed in Li (2013).

The rest of paper is structured as follows. Section 2 for-
mulates the considered problem. The main results of the
paper are provided in Section 3. In Section 4, a simulation
study is carried out to illustrate the proposed filter. Finally,
Section 5 concludes the paper.

2. Problem formulation
Consider a discrete-time linear stochastic time-varying
system with unknown inputs:

xk+1 = Akxk + Gkdk + ωk,

yk = Ckxk + υk,
(1)

where xk ∈ Rn, dk ∈ Rm, yk ∈ Rp are the state vector, input
vector, and measurement vector at each time step k with
p ≥ m and n ≥ m. Following Li (2013), the process noise
ωk ∈ Rn and the measurement noise υk ∈ Rp are assumed

to be mutually independent, and each follows a Gaus-
sian distribution with zero mean and a known covari-
ance matrix, Qk = E[ωkω

T
k ] > 0 and Rk = E[υkυ

T
k ] > 0,

respectively. Ak, Gk, Ck are known matrices. Following the
existing researches (e.g. Gillins & De Moor, 2007; Kitani-
dis, 1987; Li, 2013; Su et al., 2015a), Gk is assumed to
have a full column-rank; otherwise, the redundant input
variables can be removed.

We consider the scenario where the input vector dk
is not fully observed at the level of interest but rather
it is available only at an aggregate level. Specifically,
let Dk be a qk × m known matrix with 0 ≤ qk ≤ m and
F0k an orthogonal complement of DT

k such that DkF0k =
Oqk×(m−qk). It is assumed that the input data are available
only on some linear combinations:

rk = Dkdk, (2)

where rk is available at each time step k, whereas no infor-
mation on δk = FT

0kdk is available. Hence, δk is assumed to
have a non-informative probability density function f (δk)

such that all possible values of δk are equally likely to
occur:

f (δk) ∝ 1. (3)

Without loss of generality, we assume that Dk has a full
row-rank; otherwise, the redundant rows of Dk can be
removed from the analysis (see Su et al., 2015a).

As pointed out in Li (2013), the matrix Dk character-
izes the availability of input information at each time step
k. It includes two extreme scenarios that are usually con-
sidered: (a) qk = 0, that is, no information on the input
variables is available; this is the problem investigated in
Kitanidis (1987) and Gillins and De Moor (2007); (b) qk =
m and Dk is an identity matrix, that is, the complete input
information is available. This is the case that the classical
Kalman filter can be applied (Simon, 2006).

The objective of this paper is to simultaneously esti-
mate the state and input vectors based on Equations (1)
and (2).

3. Main results
In this section, the main results of the paper will be given.
To incorporate the partial information on the inputs dk,
Gkdk is decoupled into two parts based on a decoupling
matrix, that is, the known part given by the prior infor-
mation (2) and unknown part δk. Note that δk has a lower
dimension than the original input vector dk and it plays the
role of unknown inputs in the new system. Next, Bayesian
inference is drawn to obtain recursive estimates of both
state variables xk and unknown inputs δk, upon which the
estimate of the original input vector dk can be worked out.
Finally, the relationships between the proposed method and
the relevant existing filters are discussed. The diagram of
the system and the proposed filter structure is shown in
Figure 1.
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Figure 1. Diagram of the system and filter structure.

3.1. Transformation
To incorporate the information rk = Dkdk, a decoupling
method is used here (see Su et al., 2015a). Define a non-
singular decoupling matrix Mk of appropriate dimension
as follows:

Mk =

⎡
⎢⎣

Dk O
O I

FT
0k O

⎤
⎥⎦ [Gk, G⊥

k ]−1,

where G⊥
k denotes an orthogonal complement of Gk, O

and I represent the zero matrix and identity matrix of
appropriate dimensions, respectively. F0k is the orthogonal
complement of DT

k such that DkF0k = O and FT
0kF0k = I .

Then, MkGkdk can be expressed as follows:

MkGkdk = [DT
k , O, F0k]Tdk

= [(Dkdk)
T, O, O]T + [O, O, I ]TFT

0kdk

= r̃k + G̃kδk,

(4)

where r̃k := [rT
k O O]T is completely available due to the

available information on the inputs, G̃k := [O O I ]T and
δk := FT

0kdk.
Multiplying M−1

k (the explicit form of M−1
k is given in

the appendix) on both sides of Equation (4), Gkdk can be
decoupled into two parts:

Gkdk = M−1
k r̃k + M−1

k G̃kδk. (5)

Consequently, the dynamics of xk+1 can be written as

xk+1 = Akxk + M−1
k r̃k + M−1

k G̃kδk + ωk

= Akxk + M−1
k r̃k + Fkδk + ωk,

where Fk := M−1
k G̃k = [Gk, G⊥

k ]
[ F0k

O

] = GkF0k.
Hence, the linear system (1) with the additional infor-

mation on the inputs, rk = Dkdk, can equivalently be
represented by the following system:

xk+1 = Akxk + M−1
k r̃k + Fkδk + ωk,

yk = Ckxk + υk.
(6)

Remark 1 An alternative approach to incorporating the
unknown input information is to use pseudo-inverse the-
ory. From Equation (2), one can obtain the general solution
of dk

dk = D+
k rk + F0k δ̄k, (7)

where D+
k = DT

k (DkDT
k )−1 and δ̄k is completely unknown.

If we select δ̄k := δk = FT
0kdk, we can show that this

approach is equivalent to the decoupling matrix based
method.

Remark 2 It should be noted that the partial information
on the inputs rk = Dkdk has been fully incorporated into
the system (6). We also note that the dimension of the
inputs has been reduced from m to m − qk.

3.2. Filter design
It can be seen from Equation (6) that yk is a function of
xk, and xk is related to the inputs δk−1. Hence, the input
estimate of δk is delayed by one time unit (Gillins and De
Moor, 2007). The objective of filter design is to obtain the
estimate of xk and δk−1 based on the available measurement
sequence Yk = {y1, y2, . . . , yk}. For the new system (6),
we can either solve the filtering problem based on the
approach of MVUE (e.g. Gillins & De Moor, 2007) or
Bayesian inference (e.g. Li, 2009, 2013). In the paper, we
use the Bayesian method that can be seen as an alternative
approach to that of Gillins and De Moor (2007).

In the context of Bayesian inference, the first step is to
predict the dynamics of xk and δk−1 based on the available
measurement sequence Yk−1 = {y1, y2, . . . , yk−1}. Since we
do not assume that the unknown input vector δk satisfies
any transition dynamics, prediction is only performed to
determine the dynamics of xk, that is, p(xk|Yk−1). The like-
lihood function can be determined based on the observation
equation of system (6). The second step is to obtain the
posterior distribution of the concerned variables after the
measurement vector yk is received based on Bayes’ chain
rule:

p(xk, δk−1|Yk) ∝ p(yk|xk)p(xk, δk−1|Yk−1). (8)

The main results on filtering design are summarized in
Theorem 1.

THEOREM 1 For state space model (6), suppose the
matrix CkFk−1 has a full column-rank, then the prior and
posterior distributions for xk and δk−1 at any time step k
can be obtained sequentially as follows:

(i) Posterior of xk−1 for given Yk−1 :

xk−1 ∼ N (x̂k−1|k−1, Px
k−1|k−1).
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(ii) Prediction for xk :

N (x̂k|k−1, Px
k|k−1),

with x̂k|k−1 = Ak−1x̂k−1|k−1 + M−1
k−1r̃k−1,

Px
k|k−1 = Ak−1Px

k−1|k−1AT
k−1 + Qk−1. (9)

(iii) Posterior of δk−1 for given Yk :

δk−1 ∼ N (δ̂k−1, Pδ
k|k),

where the posterior mean is given by

δ̂k−1 = Pδ
k|k(CkFk−1)

TR̃−1
k (yk − Ckx̂k|k−1), (10)

and the posterior covariance matrix is given by

Pδ
k|k = (FT

k−1CT
k R̃−1

k CkFk−1)
−1, (11)

while the posterior of xk for given Yk is

xk ∼ N (x̂k|k, Px
k|k),

where the posterior mean is given by

x̂k|k = x̂k|k−1 + Px
k|k−1CT

k R̃−1
k (yk − Ckx̂k|k−1)

+ (Fk − Px
k|k−1CT

k R̃−1
k CkFk)δ̂k−1, (12)

and the posterior covariance matrix is given by

Px
k|k = Px

k|k−1 − Px
k|k−1CT

k R̃−1
k CkPx

k|k−1

+ (Fk−1 − Px
k|k−1CT

k R̃−1
k CkFk−1)(Pδ

k|k)
−1()T,

(13)

where R̃k = CkPx
k|k−1CT

k + Rk, ()T in (∗)A()T

stands for the transpose of ∗.

Proof From Equation (8), the posterior distribution
p(xk, δk−1|Yk) is governed by

p(xk, δk−1|Yk) ∝ exp{−(yk − Ckxk)
TR−1

k ()

− (xk − x̂k|k−1 − Fk−1δk−1)
T(Px

k|k−1)
−1()}.

By completing the square on [xT
k , δT

k−1]T, the exponent can
be rewritten as −([xT

k , δT
k−1] − [x̂T

k|k, δ̂T
k−1])P−1

k|k ()
T, where

[
x̂k|k
δ̂k−1

]
= Pk|k

[
CT

k R−1
k yk + (Px

k|k−1)
−1x̂k|k−1

−FT
k−1(P

x
k|k−1)

−1xk|k−1

]

and

Pk|k =
[

CT
k R−1

k Ck + (Px
k|k−1)

−1 −(Px
k|k−1)

−1Fk−1

−FT
k−1(P

x
k|k−1)

−1 FT
k−1(P

x
k|k−1)

−1Fk−1

]−1

.

This indicates that the posterior distribution is a Gaus-
sian distribution with mean [x̂T

k|k, δ̂T
k−1]T and covariance

matrix Pk|k. When CkFk−1 is of full row-rank, based on
the inverse of partitioned matrix, we can obtain the recur-
sive estimation of both xk and δk−1 as shown in Equations
(9)– (13).

So far, we have obtained the state estimate x̂k|k and esti-
mate δ̂k−1 for the transformed system. When FT

0k−1dk−1 =
δ̂k−1 is obtained, based on Equation (5), we can further
obtain the estimate of the original inputs dk−1 as follows:

d̂k = (GT
k Gk)

−1GT
k (M−1

k r̃k + M−1
k G̃k δ̂k).

It can be verified that the obtained unknown
input estimate satisfies the unknown input information
(Equation (2)), that is,

Dkd̂k = rk. (14)

The proof is given in the appendix. �

3.3. Relationships with the existing results
In this section, we investigate the relationships between the
proposed approach and the relevant results in the existing
literature. This is summarized in the following theorem.

THEOREM 2 The set of recursive formulas (9)–(13)
reduces to

(1) the classical Kalman filter when all entries of the
input vector dk are available;

(2) the filter in Gillins and De Moor (2007) when no
information on the unknown inputs dk is available;

(3) the filter in Li (2013) when only state estimation is
concerned.

Proof For the case where all the input variables are avail-
able at the level of interest, Dk becomes an m × m identity
matrix, and FT

0k becomes an zero-by-zero empty matrix.
Consequently, the last term on the right-hand side of Equa-
tions (12) and (13) vanishes, and Equations (12) and (13)
reduce to

Px
k|k = Px

k|k−1 − Px
k|k−1CT

k H−1
k CkPx

k|k−1.

Since M−1
k−1r̂k−1 = Gk−1dk−1, Equation (12) becomes

x̂k|k = Ak−1x̂k−1|k−1 + Gk−1dk−1

+ Px
k|k−1CT

k H−1
k (yk − Ck(Ak−1x̂k−1|k−1

+ Gk−1dk−1)).

Clearly, these recursive formulas are identical to the clas-
sical Kalman filter equations (see Simon, 2006).
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Next, we consider the case where no input information
is available. Clearly r̃k in Equation (4) is an empty vector,
Fk becomes Gk, and δk = dk. Hence, Equation (13) reduces
to

Px
k|k = Px

k|k−1 − Px
k|k−1CT

k R̃−1
k CkPx

k|k−1

+ [Gk − Px
k|k−1CT

k H−1
k CkGk−1]Pδ

k|k[]T

and the unknown input covariance matrix (11) becomes

Pδ
k|k = (GT

k−1CT
k R̃−1

k CkGk−1)
−1.

In addition, Equation (12) becomes

x̂k|k = x̂k|k−1 + Px
k|k−1CT

k R̃−1
k (yk − Ckx̂k|k−1)

+ (Gk − Px
k|k−1CT

k R̃−1
k CkGk)δ̂k−1

and the unknown input estimation Equation (10) becomes

δ̂k−1 = Pδ
k|k(CkGk−1)

TR̃−1
k (yk − Ckx̂k|k−1).

These recursive formulas are identical to (a) the results
in Kitanidis (1987) when only state filtering is of inter-
est; and (b) the results in Gillins and De Moor (2007) for
both unknown input and state estimations obtained using
the approach of MVUE.

Finally, if only state estimation is concerned, the
proposed method leads to the same results as those in
Li (2013). To show this, we note that the state estima-
tion error covariance matrix Equation (13) is the same as
the one in Li (2013). In addition, inserting Equations (10)
and (11) into Equation (12), Equation (12) can be rewritten
in the following form:

x̂k|k = x̂k|k−1 + Kk(yk − Ckx̂k|k−1),

where the gain matrix Kk is defined as

Kk = Px
k|k−1CT

k R̃−1
k

+ [Fk−1 − Px
k|k−1CT

k R̃−1
k CkFk−1](Pδ

k|k)
−1FT

k−1CT
k R̃−1

k .

We can further show that (see the appendix for details)

M−1
k−1r̃k−1 − KkCkM−1

k−1r̃k−1

= Pk|kM̄ T
k−1(M̄k−1Pk|k−1M̄ T

k−1)
−1r̄k−1, (15)

where the left-hand side of Equation (15) is the term
associated with the prior information of the proposed fil-
ter, whereas the right-hand side of Equation (15) is the
term associated with the prior information of the filter in
Li (2013). This completes the proof. �

4. Simulation study
In this section, we use a simple numerical example to illus-
trate the developed filter. First, we will show that, when
only state estimation is of interest, the proposed filter can
obtain the same result as that of Li (2013). Next we further
demonstrate that incorporating the partially available infor-
mation on the inputs can effectively improve both state
estimation and unknown input estimation in comparison
with the one without using the input information (Gillins
& De Moor, 2007).

The system for the simulation is chosen the same as
that of Su, Li, and Chen (2015b) that has been widely used
in many previous studies (see, e.g. Cheng et al., 2009).
However, to better assess the performance of the proposed
filter under uncertainties, we considered a system subject to
larger random variation: the covariance matrices Qk and Rk
of the system and measurement noises were taken 10 times
as those of Cheng et al. (2009). The initial values of system
model is chosen as x0 = [3, 1, 2, 2, 1]T, the initial state
and covariance matrix of filter are chosen as x̂0 = 05×1 and
Px

0|0 = 0.2 × I5.
We applied the recursive formulas in this paper to esti-

mate the state and unknown input vectors at each time step.
To evaluate the quality of the state estimate and unknown
input estimate obtained using the developed filter, we cal-
culated the trace of the error covariance matrix Px

k|k and
the trace of the error covariance matrix Pδ

k|k at each time
step, as displayed in Figure 2(a) and Figure 2(b) (real
line), respectively. For comparison, we also considered the
state estimation using the filter in Li (2013) (only state
estimation is concerned) and Gillins and De Moor (2007)
(assuming that the inputs were completely unknown). The
traces of Px

k|k are superimposed in Figure 2(a) (dotted line
for Li, 2013 and dashed line for Gillins & De Moor, 2007),
and the trace of Pδ

k|k is superimposed in Figure 2(b) (dashed
line for Gillins & De Moor, 2007).

It can be seen from Figure 2(a) that the trace of state
estimation error covariance using the proposed filter is the
same as that of Li (2013). Both the method in Li (2013) and
the proposed method have a smaller trace of the covariance
matrix than that of Gillins and De Moor (2007).

In addition, Figure 2(b) shows that the trace of the error
covariance matrix of the unknown input estimate using the
proposed filter is smaller in comparison with that of Gillins
and De Moor (2007). This is because more information on
the unknown inputs was used by the filter developed in this
paper. This demonstrates that when the unknown inputs are
of practical interest, the proposed method in this paper will
have a better performance than Gillins and De Moor (2007)
if there is additional information available on the unknown
inputs for filtering.

We also compared the state estimates obtained using
the three filters, that is, the filter in Li (2013) (Figure 3),
the proposed filter (Figure 4) and the filter in Gillins and De
Moor (2007) (Figure 5). The upper graphs of Figures 3–5
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Figure 2. (a) Traces of the covariance matrix Px
k|k for three

different filters; (b) traces of the covariance matrix Pδ
k|k for the

proposed approach and the filter in Gillins and De Moor (2007).

Figure 3. State estimation of the filter in Li (2013) and its
estimation error.

display the simulated true values of the fifth state variable
(real line) and the estimated state using the filters (dotted
line), while the lower graphs plot the corresponding state
estimation error for each filter.

It can be seen from Figures 3–5 that the three methods
can provide a reasonably good estimate of the state vec-
tor. However, overall the state estimation errors using the

Figure 4. State estimation of the proposed filter and its estima-
tion error.

Figure 5. State estimation of the filter in Gillins and De
Moor (2007) and its estimation error.

Figure 6. Unknown input estimation based on the proposed
filter.
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Figure 7. Unknown input estimation based on the filter in
Gillins and De Moor (2007).

proposed filter and the filter in Li (2013) are smaller com-
pared with that of Gillins and De Moor (2007) because the
additional unknown input information was incorporated
into the proposed filter and that of Li (2013).

Finally, we further compared our proposed method with
the results in Gillins and De Moor (2007) for the purpose
of unknown inputs estimation. The comparison results are
shown in Figure 6 (the proposed method) and Figure 7
(the method in Gillins and De Moor (2007)), where
real unknown inputs are depicted by real lines, and the
unknown input estimations are depicted by the dotted lines.

We can see from Figures 6 and 7 that, by incorporat-
ing the information on the unknown inputs, the proposed
method can obtain a much better performance for the
unknown input estimation.

5. Conclusions
In this paper, the problem of SSIE has been investigated
when partial information on the unknown inputs is avail-
able at an aggregate level. A decoupling approach is used
to incorporate the unknown input information into the sys-
tem dynamics. Then Bayesian inference is drawn to obtain
the recursive state and input filter. The relationships of
the proposed approach with the existing results are also
discussed. Finally, the numerical example shows that, in
comparison with the filter without using any input infor-
mation, the proposed filter that makes use of the input
information available at an aggregate level can substan-
tially improve on the quality of both the state and input
estimations. Future research can be done to extend the
result to the case where there exists direct feedthrough of
the partially observed inputs.
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Appendix
A.1. Proof of Equation (14)
First, we can obtain the inverse of Mk as follows:

M−1
k = [Gk , G⊥

k ]

[
(I − F0kFT

0k)D
T
k (DkDT

k )−1 O F0k

O I O

]
.

Then, Equation (14) can be obtained as follows:

Dkd̂k = Dk(GT
k Gk)

−1GT
k M−1

k [rk O O]T

+ Dk(GT
k Gk)

−1GT
k M−1

k [O O I ]Tδ̂k

= Dk(GT
k Gk)

−1GT
k Gk(I − F0kFT

0k)D
T
k (DkDT

k )−1rk

+ Dk(GT
k Gk)

−1GT
k GkF0k δ̂k

= rk .

A.2. Proof of Equation (15)
Define M P

k−1 = Pk|kM̄ T
k−1(M̄k−1Pk|k−1M̄ T

k−1)
−1. Then, we have

M−1
k−1r̃k−1 − KkCkM−1

k−1r̃k−1

= (I − KkCk)M−1
k−1r̃k−1

= M P
k−1M̄k−1M−1

k−1r̃k−1

= M P
k−1M̄k−1Gk−1DT

k−1(Dk−1DT
k−1)

−1Dk−1dk−1

= M P
k−1

[
Dk−1 O

O I

]
[Gk−1, G⊥

k−1]−1

× Gk−1DT
k−1(Dk−1DT

k−1)
−1Dk−1dk−1

= M P
k−1

[
rk−1

O

]
= M P

k−1M̄k−1Gk−1dk−1

= Pk|kM̄ T
k−1(M̄k−1Pk|k−1M̄ T

k−1)
−1r̄k−1,

where in the above derivation, we have used the following
identities:

M−1
k−1r̃k−1 = Gk−1DT

k−1(Dk−1DT
k−1)

−1Dk−1dk−1, (A1)

I − KkCk = M P
k−1M̄k−1. (A2)

Now we show Equation (A2):

I − KkCk − M p
k−1M̄k−1

= I − KkCk − Pk|kM̄ T
k−1(M̄k−1Pk|k−1M̄ T

k−1)
−1M̄k−1

= I − Pk|kCT
k R−1

k Ck − Pk|k[M̄ T
k−1(M̄k−1Pk|k−1M̄ T

k−1)
−1

× M̄k−1 + CT
k R−1

k Ck − CT
k R−1

k Ck]

= I − Pk|kCT
k R−1

k Ck − [I − Pk|kCT
k R−1

k Ck]

= O,

where M̄k =
[

Dk O
O I

]
[Gk , G⊥

k ]−1.
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