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Abstract—This paper investigates the robust fault diagnosis vehicle maneuver-ability, stability and driving safety],[4],
problem for vehicle lateral dynamics, which play a key role 0 as a result, a lot of Fault Diagnosis (FD) algorithms havenbee
vehicle stability and driving safety. The proposed fault dagnosis proposed (see, [3]-[5]) to monitor actuator’s or sensaeUs.

system consists of two sub-systems: fault diagnosis observ .
and robust threshold. By treating faults as disturbances, Distur- Model-based FD, as a type of Analytical Redundancy

bance/Uncertainty Estimation technique is used as fault diagnosis (AR) approaches is receiving increasing attention regentl
observer to generate residuals. Considering that residuals of [5]-[7]. Unlike Hardware Redundancy (HR) approach, they
model-based fault diagnosis are subject to the effect of uectain-  rely on mathematical models rather than redundant hardware
ties and consequently large false alarm rate may be resultemh, 5,4 consequently do not result in additional weight and
a novel robust threshold is then proposed based on reachatii . . . .
analysis technique for uncertain systems. The proposed féu cost. They perform fault QIagnOSIS by (.:onSIStency—.chEg:kln
diagnosis system is finally applied to the accelerometer and between observed behaviour and predicted behaviour using
gyrometer sensor fault diagnosis problem of vehicle lateda mathematical model of the concerned plant [6], [7]. There
dynamics, _Wher_e initi_al states and__velocity are _consideredo are genera”y two steps involved in this approach' indgdin
be uncertain. Simulation study verifies the effectivenessfahe  ,pcarver design to produce residuals (the residual is éspec
proposed fauilt diagnosis system. . . to be zero in the absence of faults and deviates from zero

Index Terms—Disturbance observer, Fault diagnosis, Reacha- . i
bility analysis, Robust threshold, Vehicle lateral dynames. in the presence of faults) and threshold selection to etalua
residuals such that a Boolean decision can be made—normal or
faulty. Different fault diagnosis observers are desigreeden-
erate residuals. Traditionally, output estimation erforstheir

The use of automobiles is increasing worldwide, alonfinctions) are usually chosen as residuals [6], where a bank
with this trend are a significant number of accidents (eveof observers are further designed for fault isolatiBecently,
day about 3000 people die and 30000 people are seriouBlgturbance/Uncertainty Estimation techniques are used a
injured on the world’s roads [1]). It was reported by Unitedlault diagnosis observer by treating faults as disturbamce
States DOT Report in 1992 that more than 90 percent of romgbulting in fault estimation based diagnosis approactses(
accidents were caused by human errors [2]. Consequently[3h [7]-[9]) . In this approach, fault estimates directly serve
the last few decades, much effort has been paid to develag- residuals, which can substantially simplify fault isioia
ing advanced driver assistance systems (e.g., adapti&ecripgic and reduce computation load.
control, lane keeping system, electronic stability coltto However, no matter what kinds of fault diagnosis observers
automate mundane driving operations such that driversidur are designed, there is always an inevitable issue in model-
and errors and consequently traffic accidents can thus lissed fault diagnosis system, i.mbustnessThis is because
reduced. residuals of fault diagnosis systems under normal case are

To develop those advanced functions, new sensors, acsuatmt zero in real application, since there are always some
and control units are inevitably introduced. For exampde, mismatches between the real plant and the mathematicallmode
improve active safety of vehicles due to loss of controljsed for observer design, such as system parameter uncer-
electronic stability control has been developed, whiclesel tainties, external disturbances and sensor noises [1Q], [1
on a set of sensors (e.g., a gyrometer, an acceleromefanr, example, vehicle lateral dynamics depend on longitldin
an encoder and a steering wheel sensor) and an upgradeldcity [3], [4], [12], which is uncertain due to measurarhe
integrated control unit [2]. In addition, to improve resgen noises. Besides, it is also subject to bank angle, which can
time, safety and save weight, drive-by-wire systems hawmet be easily obtained and thus be treated as mismatched
been developed, where conventional mechanical or hydrawdisturbances [13], [14]. As a result, many challenges are
linkage has been gradually replaced by electronic or electbrought to the stage of robust threshold selectgince if the
mechanical systems. As a result, modern systems are bectimeshold is selected too small false alarm rate will be high
ing more complex and safety-critical, since the malfunttsd and if selected too large missed detection rate will be high
components (e.g., sensors, actuators) may result in daumngier To solve the aforementioned challenging issue, this paper
consequences [3].Vehicle lateral dynamics play a key mole proposes a robust fault diagnosis system, where robustness
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is achieved in the stage of threshold selection. To this ergk described by differential equations [2]
vehicle lateral dynamics are firstly described by systenth wi 5L~ r
interval uncertainties [12]. Then a fault diagnosis observ { ?v(ﬂ:rl rgf ylv;; vH 1)
(fault estimation based approach is chosen due to its siitypli e = Wiyv = lyH
in fault isolation) is designed based on the normal systenherem is vehicle massy is vehicle longitudinal velocity,
such that residuals are generated. To achieve better ressst £, v, Fy,r are front and rear tire forces, is yaw moment of
a robust threshold selection approach is proposed basedingitia, andy, [ are distances from Centre of Gravity (CG)
reachability analysis, which can efficiently calculatemisi- to front and rear tires, respectively.
ble trajectories of an uncertain system in the presenceitidlin -~ Moreover, for small tire slip angles, lateral tire forcee ar
state uncertainty, parameter uncertainty and input uaicgyt usually approximated as a linear function of tire slip asgle
[15]. In this approach, all possible residual trajectoti@sier Which are defined
normal case and a selected faulty cases are calculated in an Eyy = cav(0e — B — lyre/v) )
over-approximation but tight way. Then a fault is alarmed Fyir = oy (=B +1ure/v) ’ @)
when fault estimates deviate from residuals’ normal rebleha . .

wherec,y andc,y are cornering stiffness of front and rear

set. In this way, no false alarm will be present under deedribtir al ¢ all th rameters are qiven in Appendix
uncertainties, and users can also tune the missed deteate®on es (. alues of afl the parameters are given ppe )-
Define vehicle state: = [3;r.] and control inputu = ¢y,

through adjusting the uncertain intervals. o ; ;
g ) g . . ._Substituting (2) into (1), one can obtain the state-spacdeio
The rest of the paper is organized as follows. In Sectlogf vehicle lateral dynamic, given by
I, vehicle lateral dynamics are introduced. In Sectioh.the '
proposed robust fault diagnosis system is discussed.oBecti

: . e : Cav +can  lucanm —lvcav Cav
IV briefly introduces the reachability analysis tool, where E— 2 -1 o
examples are given to evaluate its effectiveness. The tobu8= | ;. . —1vcov oy + Bcan T lyeay | ®
fault diagnosis system is applied to sensor fault diagnokis 1. - T.v I.
vehicle lateral dynamic in Section. V. Section. VI conclsde
the paper and the future work is also discussed. The variables that can be directly measured are the lateral
acceleration signak, through accelerometer and the yaw
rate signalr. through gyrometer, i.e.y = [oy;7] and
Il. VEHICLE LATERAL DYNAMIC consequently the measurement model is
In this section, vehicle lateral dynamics are introducedgis _Cav +Can lacan — lvcav Cav.
one-track model, which is one of the most widely used modelsY = m mo T+ 73 u.
0 1

for the purpose of vehicle lateral control and fault diageos o ST _
[2]-[5] due to its availability for on-line application arability Since the velocity information is inevitably subject to mea
to well describe vehicle behaviour with lateral accelerati SUrément errory is treated as an uncertain parameter within
. . a,bounded interval [12]. Substituting the values of the ofst
under 0.4 g (g denotes acceleration of gravity) on normgh.ameters [3], one can obtain the following compact form of
dry asphalt roads [2]-[4]. The diagram of one-track modegknhicle lateral dynamic

for vehicle lateral dynamics is shown in Fig. 1, whefe. _
; . 85.449  28.774 35.936
denotes the yaw angle and the rest notations are explained, I 02 -1 :
€T = x + ) U
where needed. 93616  — 116.733 33958
L v N———
y y A(v) B 3)
0 r 28.774
i y= | 85430 x+{305]u+FHa]'
X7 0 1 Y
Fyn Ko | - ‘f—’D %/—/f
pa Fyy C(v) ’
|4 . .
€G- %6 In this model, the effect of sensor faults is also modelled
C_1 vl ~7 p '7 ‘ through introducing fault variables (i.e., acceleromé&eit f,,
) ] i ; &/ and gyrometer faulf,) and their distribution matrix- (i.e.,
i = 4 identity matrix). The under-brace notatiordsv), B(v), C(v)

and D are system matrix, input matrix, measurement matrix
and feed-through matrix, respectively, where the first éhre
matrices depend on uncertain velocity

Assuming a constant vehicle velocity (see, Chapter 2 of The objective of fault diagnosis is to detect the presence of
[2] or pp. 79 of [4] for other assumptions), taking vehicldesi faults f, and f, (i.e., fault detection) and isolate which fault
slip angles and yaw rate. as state variables, and front wheehas occurred when a fault is detected (i.e., fault isolatiom
steering anglé;, as input signal, vehicle lateral dynamics cathis paper, model-based fault diagnosis approach is ceresid

Fig. 1. The diagram of a one-track model for vehicle latesatamnics.



which contains a fault diagnosis observer based on modealilt estimate, where a first-order model is chosen (seeof5] f
(3) for residual generation and a robust threshold for tesdid second-order models and [9] for high order models). In this
evaluation. The diagram of the overall fault diagnosiseysis approach, faults are augmented as additional states and can
shown in Fig. 2, where the fault diagnosis observer and ttobire estimated along with the original system states [7]. @gki
threshold are discussed in Section. IlI-A and IlI-B respety. z = («, f), system (4) can be equivalently represented by the
following extended system
Z=(A+AA)z+ (B+AB)u 5)
y=(C+AC)z + Du ’
6y Vehicle Lateral Sensors where A — A g , B g andC — [ cF ]
' Then a fault diagnosis observer can be designed for system
(5) using normal matrices under the observability of the pai

Velocity uncertaint

Robust (/_l, é), as follows
Threshold i_ {1% n Bu N Ko(y B y)
§=Cz+ Du : (6)
Residual generation Residual evaluation f: Pa

Fig. 2. The diagram of overall fault diagnosis system forisienlateral Where the gain matrix<, is the observer gain matrix to be
dynamics including fault diagnosis observer and robuststold selection.  designed (e.g., pole assignment of the gairC')) and P =
[O,1] is the projection matrix to obtain fault estimate from

the augmented state estimate. Then fault estimAtesrve as
I11. FAULT DIAGNOSIS SYSTEM :
the residuals.

In this section, the fault diagnosis system will be discdsse
including fault diagnosis observer design to generatelveds B. Robust threshold
and robust threshold selection to evaluate residuals. The threshold is chosen to evaluate residuals such that fals
When there is a small perturbation (or uncertainty) ialarm rate and missed detection rate are kept at a low level.
velocity v, the matrixA(v) (similarly B(v) andC(v)) will fall Our philosophy of robust threshold selection is as follows.
into an interval matrix4 (Matrices whose elements can tak&alculate the residual reachable set under normal caseini.e
values within intervals are referred to as interval masjcee., the presence of initial state uncertainties and systenmpetea
A(v) € A where A = [A, A] is a interval matrix with4 and uncertainties, then the upper and lower bounds of residual
A being the upper and low bound matrices e|emem-wiserﬁachable set can be chosen as the robust threshold interval
The interval matrixA can also be equivalently representednd if fault estimates deviate from the threshold intenaal,
by A = A + AA, where A is the normal matrix and\A fault is alarmed. On the other hand, we can also calculate
can be seen as the radius matrix element-wisely. As a resifsidual reachable set under a selected faulty cases. By doi
the vehicle lateral dynamics with sensor faults (3) can 5@, we can determine the minimal fault amplitude that can be

represented by the following generic systems detected by a given fault diagnosis system.
. However, the residual reachable set calculation for system
{ &= (A+AA)z+ (B+ AB)u

(4) (6) under normal case (i.e., in the presence of system un-
y=(C+AC)z+Du+t Ff certaintiesAA, AB and AC) is never an easy task. This is
Consequently, in the following section, the fault diagsosbecause the input (i.ey) to observer system (6) has infinite
problem for generic system (4) will be considered. possible values at each time instant, sincés the output
of uncertain system (5). Infinite simulations are needed to
cover the range of system parameter uncertainties andliniti
In this section, we consider fault diagnosis observer desigtate uncertainties [16] and consequently the possibigerah
for residual generation, whose role in the overall diagnosiesiduals. To this end, we transform this challenging isstee
system is shown in Fig. 2. The residual is chosen to indicaigate reachable set calculation, as follows.
the presence of fault, and consequently it is expected to beCombining (5) and (6), the error dynamic= z — z can
close to zero in fault-free case and deviate from zero in the obtained
presence of faults [6]. In this paper, Disturbance/Undetya i T = A T = A e =
Estimation technique [5], [7], [9] is used as diagnosis obse ¢=(A-K,Cle+ (AA- K0A0)$_+ AB_“' (7)
by treating faults as disturbances, where the fault estismatn addition, substituting measurement= (C' + AC)Z + Du
serve as residuals for both fault detection and fault ismtat of (5) into system (6), one can obtain
Considering that the common sensor faults are bias, drift,

A. Fault diagnosis observer

scaling with unknown amplitude and occurring time, a linear 3 — 4% 4+ By + K,(y—19)
model can effectively describe their dynamics [5]. Without — A% 1 B¢ + K,[(C+ AC)z + Du — (C& + Du)] - (8)
loss of generality, the state augmentation approach isfased — A% 4 By + K,(Ce+ ACxz)



Both system (7) and (8) involve unknown state variables Ré(1,) —

Z, to make the residual reachability analysis feasible, we RA(ty)
eliminate it through the relationship = e + z. Substituting
A . . convex hull of
T = e+ into (7) and (8) and putting them together, one can R(t1), R (ts1)
obtain R (tk41)
¢| _ [A—R,C+AA—K,AC AA—K,AC] e AB

[1} = { KoCHK,AC  A4+K,AC } (5] + [ u ® @ ®

X A X B ) Fig. 3. Main steps for reachable set computation of an uaicedystem.
Using the under-brace notations in (9), Eq. (9) can be pot int
a compact form The reachable set for the complete time interval is ob-

X = Ax + Bu(t). (10) tained by the union of the intermediate time interval thioug

RA([0,t4]) = U7 RY([ts1,tx]), wherer denotes the step.
Now the problem of residual reachable set calculation under2) Numerical verification: In this section, vehicle lateral
normal and faulty cases has been transformed into the stg{@amics (3) are used to evaluate the effectiveness of reach
reachability analysis of uncertain system (10) (sirfces the ability analysis tool. From simulation results, the resear
elements ofy), the implementation of which will be discussecthallenges in threshold selection due to the presence @frunc

in Section. IV. tainties will also be highlighted.
The vehicle velocityv is assumed to be uncertain within
IV. REACHABILITY ANALYSIS a bounded intervab € [19,21] m/sec, then following the

In this section, we briefly describe the tool of reachabiIit?rOngureI Ofl [tla], systtem rlnatritc'?:i(é;)) ang B (7{) 1"‘1](3)
analysis for uncertain system (10), where initial stateemnc G&" P€ calculated as interval matri € do4|—1, 1]
taintiesz(0) € Xy, system parameter uncertaintigs 5 and ad, Bv) € Bo+ [=1,1] x AB, with 4o, A4, By and AB

. D _ ) given by

input uncertainties(t) € U can be considered simultaneously:

The exact set of reachable stat$(r) for a timet = ris  , _ | —4.2832 —09275 | | —0.2142 —0.0073

defined as: 07| 236162 —5.8513 ['°F T 0 —0.2926 |’
Ré(r) = {a(r)|2(t) = [y[Ax(7) + Bu(7)]dr, By=[ 1.7662 33.2580 ] ,AB=[0.0883 0 ].

x(0) € Xg, A€ A, Be B,Vt:u(t) e U}. _ o
where Ay is a stable matrix with complex poles.

However, computation of exact reachable set for generie SySThe initial values of slip angle and yaw rate are within
tem is an open problem and consequently over-approximati9nyounded interval vectof[—0.02,0.02]; [0.03,0.07]). The
is usually preferred [16]. known steering angle input,(¢) is a step input with amplitude

1) Computation tool:The reachability analysis tool in [15], 0,05 rad at 1 sec. The step-size for reachability analysis is
[16] is used in this paper, which can over-approximatelyt (0dhosen as 0.01 and the order of zonotgpés 400, under
in a tight way) obtain the reachable det[0, r]) of system (10) hich configuration the computation time is less than 0.5 sec
in a time intervak € [0, 7] denoted as??([0, 7]), R([0,7]) 2 ysing Matlab 2015a with Intel Core i5-3570 CUP @ 3.40 GHz.
RE([0,7]) with RZ([0,7]) being the exact reachable set.  The reachable sets of slip angleand yaw rater, together

The detailed algorithm and its implementation can be fouRgiin 200 exemplary trajectories using stochastic MonteldCar

in [15], [16]. However, for the completeness of the paper, i%ampling are shown in Figs. 4 and 5 respectively.
basic algorithm structure for a time interval = [tx, tp41] IS

given as follows. PartitiorBu(t) into Bu(t) = ue(t) + wy(t)
with u.(t) being the centre of uncertain input ang(t) being
Bu(t)—u.(t). Suppose the reachable set of the affine dynamics x10
i = Az + u.(t) is R4(t), the reachable set of the particular
solution due to the uncertain input,(t) is R (u,(t),t), and
the partial reachable set correcting the initial assumptiat
trajectories are straight lines betwegrandt;, 1 is R%. Then
the reachable set for a time interval is computed as shown
in Fig. 3
i Starting from R%(t;), compute the reachable set
R (tis1) ‘ ‘ ‘ ‘
i Obtain the convex hull ofR%(t;) and R%(t;41) to o 1 2 3 4 5
) . . ime (sec)
approximate the reachable set for the time interyal
iii Compute R%(r;) by considering uncertain inputs bYrig. 4. The reachable set of slip angle (grey area) and 206ngiaey
adding Rg(uu(t), 1) and accounting for the curvaturetrajectories (black lines) with their zoom-in plot during7Go 1 sec.
of trajectories by addingR¢.

0.02 ) : : -

Slip angle B




03 ‘ ‘ ! ! ‘ LABoratory (INTLAB) as follows:
—0.4283 —0.0228 0 0
T ~ 0 —0.5989 0 O
Ad = KAl = 0 —0.5057 0 0 |°
;0 0 —0.0260 0 O
5 0 00042 0 0 0.0883
z ~ ~~_ | 0 00069 0 0 - 0
> AC=1109 0252 0 0 [AB=] o
E 0 00130 0 O 0
0.9 1 . . .
Based on them, the interval matricdsand 3 in (10) can be
calculated. Now the initial state uncertainties, systentrima

-0.1 - - : p d .. . . - .
0 1 2 3 4 5 uncertainties in (10) are available, the reachability ysialtool

Time (sec) described in Section. IV can be used to calculate the reéehab
Fig. 5. The reachable set of yaw rate (grey area) and 200 dagmp S€ts of the accelerometer and gyrometer fault estimates (i.
trajectories (black lines) with their zoom-in plot during3Go 1 sec. the residuals). The step-size for reachability analysthi@sen
as 0.01 and the order of zonotopes 800 (the calculation
_ ) accuracy can be further increased by reducing step-size and
We can see from Figs. 4 and 5 thal: all the exemplary jncreasing zonotope order, which will require longer compu
trajectories lie in the calculated reachable sets, whichfies {ation time), under which configuration the computationetim
the effectiveness of reachability analysis tool; (i) Inethis apout 3 sec using Matlab 2015 with Intel Core i5-3570
absence of control input, the reachable sets converge © zgf{yp @ 3.40 GHz. The reachable sets of accelerometer and
due to system convergence; in the presence of control iNRkometer fault estimates and exemplary trajectories gusin

after 1 sec, the reachable sets are no longer close t0 z&fRchastic Monte Carlo Simulations are shown Figs. 6 and
and the width of reachable sets are also increased comparggespectively.

with the case of without input (this is because the uncetyain

AAz + ABu in (4) becomes non-zero interval inpuijhis 6
phenomenon will bring many challenges to fault diagnosis,

since in the presence of control input, the state reachable

set and consequently the effect of system uncertainties on 4r
residuals will be obvious and can no longer be ignored.

Effect of fy

V. APPLICATION STUDY

Fault f
N

Fault occurs

Input occurs

In this section, the robust fault diagnosis system in Sec-

tion. 1l is applied to the sensor fault diagnosis problem

of vehicle lateral dynamic systems described in Section. Il

The accelerometer fault and gyrometer fault are considered 2 \ \ \

. - . : 0 1 2 3 4 5
simultaneously. The initial state of vehicle lateral dymam Time (sec)

systems is chosen ag = [0;0.05], and a steering input

u = 0.05 rad is executed at 1 sec. The accelerometer senswr 6. Accelerometer fault profile (red line); acceleroenefault estimate
fault and gyrometer sensor fault profile are plotted in regsi reachable set (grey area) and stochastic simulated wegsst(black lines).
of Figs. 6 and 7. o

The fault estimation based diagnosis observer is then 1re-|'teg3)nriss ?atl)ls ?rzllsdtr:z ilgli.ugtir:jd rZatcr:?lz;E)T: :::ﬂrgpﬁrey
signed using state augmentation approach, where accelerr achable sets are not overly conservative, i.e., thectmje
eter fault and gyrometer fault are treated as two additiong] y UV J
states. The observer gain mati, in (6) is designed using ries are not far away from the boundaries of the reachable
pole assignment of the normal system matrix girC) such sets, WhiCh again verifies the effectiveness of the reatityabi
that the poles of matrixd — K,C are [—10; —9; —4; —3]. analysis tool. . . .
Since the initial system states can not be known exact During 0 to 1 sec, no steering control input is executed on

due to measurement errors, the initial states of the fatle system, one can see the effect of initial state unceieain

diagnosis observer are supposed to lie in a bounded inIer\?eﬂqd sylstem Eatr)zlimetetr ;J_nilertamgels on re:otlﬁals, le., the
e, iy = | (~0.02,002), (0.03,0.07), 0, 0], where residual reachable sets firstly get large an en converge

uncertainties are supposed to exist in vehicle side slipeamﬁlos'e to_ zero. This is due fo the fact that in the absence. of
and yaw rate. ontrol input, the system states of vehicle lateral dynamic

The uncertain longitudinal velocity is supposed to lie and consequently_ the effect of paramet_er uncertaintieb v_vil
in an uncertain interval19, 21] m/sec, based on which theconverge to zero in steady-state due to its convergence (i.e
uncertain matrices in Eq. (9) can be calculated using INAlenthe real parts of the eigenvalues 4fv) are negative). After
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Effect of fa
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Fig. 7. Gyrometer fault profile (red line); gyrometer faudttimate reachable
set (grey area) and stochastic simulated trajectorieskbiaes).

1 sec, steering control input = 0.05 rad is given to the
system, as a result, the system states of vehicle lateraldign
systems and consequently the effect of system uncertainiie

residuals will no long be zero (see also the simulation tesul
[1] C. Murray and A. D. Lopez, “Global health statistics: amgeendium of

in Section. 1V).

We can see from Fig. 6, that in the presence of accelerome-

ter fault at 2 sec, the accelerometer fault estimate redelsab
substantially deviates from its normal reachable set leefor
sec, which verifies the effectiveness of fault diagnosisesys

One can also see the effect of gyrometer fault on accelesrmet
fault reachable set at 3 sec due to the coupling between thekfl.

Based on our robust threshold selection criteria, the bartesl
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APPENDIX
TABLE |
NUMERICAL VALUES OF THE PARAMETERS
Notation Value Significance
g 9.80 mk? gravity acceleration constant
m 1621 kg vehicle total mass
ly 1.15m distance from CG to front axle
ly 1.38 m distance from CG to rear axle
1, 1975 Kg-m? | moment of inertia about the z-axis
Cav 57117 N/rad front axle tire cornering stiffness
CaH 81396 N/rad rear axle tire cornering stiffness
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