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Abstract—This paper investigates the robust fault diagnosis
problem for vehicle lateral dynamics, which play a key role in
vehicle stability and driving safety. The proposed fault diagnosis
system consists of two sub-systems: fault diagnosis observer
and robust threshold. By treating faults as disturbances, Distur-
bance/Uncertainty Estimation technique is used as fault diagnosis
observer to generate residuals. Considering that residuals of
model-based fault diagnosis are subject to the effect of uncertain-
ties and consequently large false alarm rate may be resultedin,
a novel robust threshold is then proposed based on reachability
analysis technique for uncertain systems. The proposed fault
diagnosis system is finally applied to the accelerometer and
gyrometer sensor fault diagnosis problem of vehicle lateral
dynamics, where initial states and velocity are consideredto
be uncertain. Simulation study verifies the effectiveness of the
proposed fault diagnosis system.

Index Terms—Disturbance observer, Fault diagnosis, Reacha-
bility analysis, Robust threshold, Vehicle lateral dynamics.

I. I NTRODUCTION

The use of automobiles is increasing worldwide, along
with this trend are a significant number of accidents (every
day about 3000 people die and 30000 people are seriously
injured on the world’s roads [1]). It was reported by United
States DOT Report in 1992 that more than 90 percent of road
accidents were caused by human errors [2]. Consequently, in
the last few decades, much effort has been paid to develop-
ing advanced driver assistance systems (e.g., adaptive cruise
control, lane keeping system, electronic stability control) to
automate mundane driving operations such that drivers’ burden
and errors and consequently traffic accidents can thus be
reduced.

To develop those advanced functions, new sensors, actuators
and control units are inevitably introduced. For example, to
improve active safety of vehicles due to loss of control,
electronic stability control has been developed, which relies
on a set of sensors (e.g., a gyrometer, an accelerometer,
an encoder and a steering wheel sensor) and an upgraded
integrated control unit [2]. In addition, to improve response
time, safety and save weight, drive-by-wire systems have
been developed, where conventional mechanical or hydraulic
linkage has been gradually replaced by electronic or electro-
mechanical systems. As a result, modern systems are becom-
ing more complex and safety-critical, since the malfunction of
components (e.g., sensors, actuators) may result in dangerous
consequences [3].Vehicle lateral dynamics play a key role in

vehicle maneuver-ability, stability and driving safety [2], [4],
as a result, a lot of Fault Diagnosis (FD) algorithms have been
proposed (see, [3]–[5]) to monitor actuator’s or sensors’ status.

Model-based FD, as a type of Analytical Redundancy
(AR) approaches is receiving increasing attention recently
[5]–[7]. Unlike Hardware Redundancy (HR) approach, they
rely on mathematical models rather than redundant hardware
and consequently do not result in additional weight and
cost. They perform fault diagnosis by consistency-checking
between observed behaviour and predicted behaviour using
mathematical model of the concerned plant [6], [7]. There
are generally two steps involved in this approach, including
observer design to produce residuals (the residual is expected
to be zero in the absence of faults and deviates from zero
in the presence of faults) and threshold selection to evaluate
residuals such that a Boolean decision can be made–normal or
faulty. Different fault diagnosis observers are designed to gen-
erate residuals. Traditionally, output estimation errors(or their
functions) are usually chosen as residuals [6], where a bank
of observers are further designed for fault isolation.Recently,
Disturbance/Uncertainty Estimation techniques are used as
fault diagnosis observer by treating faults as disturbances,
resulting in fault estimation based diagnosis approaches (see,
[5], [7]–[9]) . In this approach, fault estimates directly serve
as residuals, which can substantially simplify fault isolation
logic and reduce computation load.

However, no matter what kinds of fault diagnosis observers
are designed, there is always an inevitable issue in model-
based fault diagnosis system, i.e.,robustness. This is because
residuals of fault diagnosis systems under normal case are
not zero in real application, since there are always some
mismatches between the real plant and the mathematical model
used for observer design, such as system parameter uncer-
tainties, external disturbances and sensor noises [10], [11].
For example, vehicle lateral dynamics depend on longitudinal
velocity [3], [4], [12], which is uncertain due to measurement
noises. Besides, it is also subject to bank angle, which can
not be easily obtained and thus be treated as mismatched
disturbances [13], [14]. As a result, many challenges are
brought to the stage of robust threshold selection,since if the
threshold is selected too small false alarm rate will be high
and if selected too large missed detection rate will be high.

To solve the aforementioned challenging issue, this paper
proposes a robust fault diagnosis system, where robustness
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is achieved in the stage of threshold selection. To this end,
vehicle lateral dynamics are firstly described by systems with
interval uncertainties [12]. Then a fault diagnosis observer
(fault estimation based approach is chosen due to its simplicity
in fault isolation) is designed based on the normal system
such that residuals are generated. To achieve better robustness,
a robust threshold selection approach is proposed based on
reachability analysis, which can efficiently calculate allpossi-
ble trajectories of an uncertain system in the presence of initial
state uncertainty, parameter uncertainty and input uncertainty
[15]. In this approach, all possible residual trajectoriesunder
normal case and a selected faulty cases are calculated in an
over-approximation but tight way. Then a fault is alarmed
when fault estimates deviate from residuals’ normal reachable
set. In this way, no false alarm will be present under described
uncertainties, and users can also tune the missed detectionrate
through adjusting the uncertain intervals.

The rest of the paper is organized as follows. In Section.
II, vehicle lateral dynamics are introduced. In Section. III, the
proposed robust fault diagnosis system is discussed. Section.
IV briefly introduces the reachability analysis tool, where
examples are given to evaluate its effectiveness. The robust
fault diagnosis system is applied to sensor fault diagnosisof
vehicle lateral dynamic in Section. V. Section. VI concludes
the paper and the future work is also discussed.

II. V EHICLE LATERAL DYNAMIC

In this section, vehicle lateral dynamics are introduced using
one-track model, which is one of the most widely used models
for the purpose of vehicle lateral control and fault diagnosis
[2]–[5] due to its availability for on-line application andability
to well describe vehicle behaviour with lateral acceleration
under 0.4 g (g denotes acceleration of gravity) on normal
dry asphalt roads [2]–[4]. The diagram of one-track model
for vehicle lateral dynamics is shown in Fig. 1, where

∫
rc

denotes the yaw angle and the rest notations are explained
where needed.

Fig. 1. The diagram of a one-track model for vehicle lateral dynamics.

Assuming a constant vehicle velocity (see, Chapter 2 of
[2] or pp. 79 of [4] for other assumptions), taking vehicle side
slip angleβ and yaw raterc as state variables, and front wheel
steering angleδL as input signal, vehicle lateral dynamics can

be described by differential equations [2]
{

mv(β̇ + ṙc) = FyV + FyH

Iz ṙc = lV FyV − lHFyH
, (1)

wherem is vehicle mass,v is vehicle longitudinal velocity,
FyV , FyH are front and rear tire forces,Iz is yaw moment of
inertia, andlV , lH are distances from Centre of Gravity (CG)
to front and rear tires, respectively.

Moreover, for small tire slip angles, lateral tire forces are
usually approximated as a linear function of tire slip angles,
which are defined

{
FyV = cαV (δc − β − lV rc/v)
FyH = cαH

(−β + lHrc/v)
, (2)

wherecαV and cαH are cornering stiffness of front and rear
tires (values of all the parameters are given in Appendix).

Define vehicle statex = [β; rc] and control inputu = δL,
substituting (2) into (1), one can obtain the state-space model
of vehicle lateral dynamic, given by

ẋ =






−

cαV + cαH

mv

lHcαH − lV cαV

mv2
−1

lHcαH − lV cαV

Iz
−

l2V cαV + l2HcαH

Izv




x+






cαV

mv
lV cαV

Iz




u.

The variables that can be directly measured are the lateral
acceleration signalαy through accelerometer and the yaw
rate signal rc through gyrometer, i.e.,y = [αy; rc] and
consequently the measurement model is

y =

[

−
cαV + cαH

m

lHcαH − lV cαV
mv

0 1

]

x+

[ cαV
m
0

]

u.

Since the velocity information is inevitably subject to mea-
surement error,v is treated as an uncertain parameter within
a bounded interval [12]. Substituting the values of the restof
parameters [3], one can obtain the following compact form of
vehicle lateral dynamic

ẋ =






−

85.449

v

28.774

v2
− 1

23.616 −

116.733

v






︸ ︷︷ ︸

A(v)

x+

[
35.236

v
33.258

]

︸ ︷︷ ︸

B(v)

u,

y =

[

−85.450
28.774

v
0 1

]

︸ ︷︷ ︸

C(v)

x+

[
35

0

]

︸ ︷︷ ︸

D

u+ F

[
fa
fy

]

︸ ︷︷ ︸

f

.

(3)

In this model, the effect of sensor faults is also modelled
through introducing fault variables (i.e., accelerometerfault fa
and gyrometer faultfy) and their distribution matrixF (i.e.,
identity matrix). The under-brace notationsA(v), B(v), C(v)
andD are system matrix, input matrix, measurement matrix
and feed-through matrix, respectively, where the first three
matrices depend on uncertain velocityv.

The objective of fault diagnosis is to detect the presence of
faults fa andfy (i.e., fault detection) and isolate which fault
has occurred when a fault is detected (i.e., fault isolation). In
this paper, model-based fault diagnosis approach is considered,



which contains a fault diagnosis observer based on model
(3) for residual generation and a robust threshold for residual
evaluation. The diagram of the overall fault diagnosis system is
shown in Fig. 2, where the fault diagnosis observer and robust
threshold are discussed in Section. III-A and III-B respectively.

Vehicle Lateral 

dynamic
sensors

Faults

Fault 

diagnosis 

observer

Robust 

Threshold

Accelerometer fault

Gyrometer fault 

Residual generation Residual evaluation

Velocity uncertainty

Fig. 2. The diagram of overall fault diagnosis system for vehicle lateral
dynamics including fault diagnosis observer and robust threshold selection.

III. FAULT DIAGNOSIS SYSTEM

In this section, the fault diagnosis system will be discussed,
including fault diagnosis observer design to generate residuals
and robust threshold selection to evaluate residuals.

When there is a small perturbation (or uncertainty) in
velocityv, the matrixA(v) (similarlyB(v) andC(v)) will fall
into an interval matrixA (Matrices whose elements can take
values within intervals are referred to as interval matrices), i.e.,
A(v) ∈ A whereA = [A, Ā] is a interval matrix withA and
Ā being the upper and low bound matrices element-wisely.
The interval matrixA can also be equivalently represented
by A = A + ∆A, whereA is the normal matrix and∆A
can be seen as the radius matrix element-wisely. As a result,
the vehicle lateral dynamics with sensor faults (3) can be
represented by the following generic systems

{
ẋ = (A+∆A)x + (B +∆B)u
y = (C +∆C)x+Du+ Ff

. (4)

Consequently, in the following section, the fault diagnosis
problem for generic system (4) will be considered.

A. Fault diagnosis observer

In this section, we consider fault diagnosis observer design
for residual generation, whose role in the overall diagnosis
system is shown in Fig. 2. The residual is chosen to indicate
the presence of fault, and consequently it is expected to be
close to zero in fault-free case and deviate from zero in the
presence of faults [6]. In this paper, Disturbance/Uncertainty
Estimation technique [5], [7], [9] is used as diagnosis observer
by treating faults as disturbances, where the fault estimates
serve as residuals for both fault detection and fault isolation.

Considering that the common sensor faults are bias, drift,
scaling with unknown amplitude and occurring time, a linear
model can effectively describe their dynamics [5]. Without
loss of generality, the state augmentation approach is usedfor

fault estimate, where a first-order model is chosen (see [5] for
second-order models and [9] for high order models). In this
approach, faults are augmented as additional states and can
be estimated along with the original system states [7]. Taking
x̄ = (x, f), system (4) can be equivalently represented by the
following extended system

{
˙̄x = (Ā+∆Ā)x̄+ (B̄ +∆B̄)u
y = (C̄ +∆C̄)x̄+Du

, (5)

whereĀ =

[
A O
O O

]

, B̄ =

[
B
O

]

and C̄ =
[
C F

]
.

Then a fault diagnosis observer can be designed for system
(5) using normal matrices under the observability of the pair
(Ā, C̄), as follows







˙̄̂x = Āˆ̄x+ B̄u+ K̄o(y − ŷ)
ŷ = C̄ ˆ̄x+Du

f̂ = P ˆ̄x

, (6)

where the gain matrixK̄o is the observer gain matrix to be
designed (e.g., pole assignment of the pair(Ā, C̄)) andP =
[O, I] is the projection matrix to obtain fault estimate from
the augmented state estimate. Then fault estimatesf̂ serve as
the residuals.

B. Robust threshold

The threshold is chosen to evaluate residuals such that false
alarm rate and missed detection rate are kept at a low level.
Our philosophy of robust threshold selection is as follows.We
calculate the residual reachable set under normal case, i.e., in
the presence of initial state uncertainties and system parameter
uncertainties, then the upper and lower bounds of residual
reachable set can be chosen as the robust threshold interval.
And if fault estimates deviate from the threshold interval,a
fault is alarmed. On the other hand, we can also calculate
residual reachable set under a selected faulty cases. By doing
so, we can determine the minimal fault amplitude that can be
detected by a given fault diagnosis system.

However, the residual reachable set calculation for system
(6) under normal case (i.e., in the presence of system un-
certainties∆Ā, ∆B̄ and∆C̄) is never an easy task. This is
because the input (i.e.,y) to observer system (6) has infinite
possible values at each time instant, sincey is the output
of uncertain system (5). Infinite simulations are needed to
cover the range of system parameter uncertainties and initial
state uncertainties [16] and consequently the possible range of
residuals. To this end, we transform this challenging issueinto
state reachable set calculation, as follows.

Combining (5) and (6), the error dynamice = x̄ − ˆ̄x can
be obtained

ė = (Ā− K̄oC̄)e + (∆Ā− K̄o∆C̄)x̄+∆B̄u. (7)

In addition, substituting measurementy = (C̄ +∆C̄)x̄+Du
of (5) into system (6), one can obtain

˙̄̂x = Āˆ̄x+ B̄u+ K̄o(y − ŷ)
= Āˆ̄x+ B̄u+ K̄o[(C̄ +∆C̄)x̄+Du− (C̄ ˆ̄x+Du)]
= Āˆ̄x+ B̄u+ K̄o(C̄e+∆C̄x̄)

. (8)



Both system (7) and (8) involve unknown state variables
x̄, to make the residual reachability analysis feasible, we
eliminate it through the relationship̄x = e + ˆ̄x. Substituting
x̄ = e+ ˆ̄x into (7) and (8) and putting them together, one can
obtain

[
ė
˙̄̂x

]

︸︷︷︸

χ̇

=
[
Ā−K̄oC̄+∆Ā−K̄o∆C̄ ∆Ā−K̄o∆C̄

K̄oC̄+K̄o∆C̄ Ā+K̄o∆C̄

]

︸ ︷︷ ︸

A

[ eˆ̄x ]
︸︷︷︸

χ

+
[
∆B̄
B̄

]

︸ ︷︷ ︸

B

u
.

(9)
Using the under-brace notations in (9), Eq. (9) can be put into
a compact form

χ̇ = Aχ+ Bu(t). (10)

Now the problem of residual reachable set calculation under
normal and faulty cases has been transformed into the state
reachability analysis of uncertain system (10) (sincef̂ is the
elements ofχ), the implementation of which will be discussed
in Section. IV.

IV. REACHABILITY ANALYSIS

In this section, we briefly describe the tool of reachability
analysis for uncertain system (10), where initial state uncer-
taintiesx(0) ∈ X0, system parameter uncertaintiesA,B and
input uncertaintiesu(t) ∈ U can be considered simultaneously.
The exact set of reachable statesRd

e(r) for a time t = r is
defined as:

Rd
e(r) = {x(r)|x(t) =

∫ t

0
[Ax(τ) +Bu(τ)]dτ,

x(0) ∈ X0, A ∈ A, B ∈ B, ∀t : u(t) ∈ U}.

However, computation of exact reachable set for generic sys-
tem is an open problem and consequently over-approximation
is usually preferred [16].

1) Computation tool:The reachability analysis tool in [15],
[16] is used in this paper, which can over-approximately (but
in a tight way) obtain the reachable setR([0, r]) of system (10)
in a time intervalt ∈ [0, r] denoted asRd([0, r]), Rd([0, r]) ⊇
Rd

e([0, r]) with Rd
e([0, r]) being the exact reachable set.

The detailed algorithm and its implementation can be found
in [15], [16]. However, for the completeness of the paper, its
basic algorithm structure for a time intervalτk = [tk, tk+1] is
given as follows. PartitionBu(t) into Bu(t) = uc(t) + uu(t)
with uc(t) being the centre of uncertain input anduu(t) being
Bu(t)−uc(t). Suppose the reachable set of the affine dynamics
ẋ = Ax + uc(t) is Rd

a(t), the reachable set of the particular
solution due to the uncertain inputuu(t) is Rd

p(uu(t), t), and
the partial reachable set correcting the initial assumption that
trajectories are straight lines betweentk andtk+1 is Rd

ǫ . Then
the reachable set for a time intervalτk is computed as shown
in Fig. 3

i Starting from Rd(tk), compute the reachable set
Rd

a(tk+1)
ii Obtain the convex hull ofRd(tk) and Rd(tk+1) to

approximate the reachable set for the time intervalτk
iii Compute Rd(τk) by considering uncertain inputs by

addingRd
p(uu(t), τk) and accounting for the curvature

of trajectories by addingRd
ǫ .

Fig. 3. Main steps for reachable set computation of an uncertain system.

The reachable set for the complete time interval is ob-
tained by the union of the intermediate time interval through
Rd([0, tf ]) =

⋃tf/r
k=1

Rd([tk−1, tk]), wherer denotes the step.
2) Numerical verification: In this section, vehicle lateral

dynamics (3) are used to evaluate the effectiveness of reach-
ability analysis tool. From simulation results, the research
challenges in threshold selection due to the presence of uncer-
tainties will also be highlighted.

The vehicle velocityv is assumed to be uncertain within
a bounded intervalv ∈ [19, 21] m/sec, then following the
procedure of [12], system matricesA(v) and B(v) in (3)
can be calculated as interval matricesA(v) ∈ A0 + [−1, 1]×
∆A,B(v) ∈ B0 + [−1, 1]×∆B, with A0,∆A,B0 and∆B
given by

A0 =

[
−4.2832 −0.9275
23.6162 −5.8513

]

,∆A =

[
−0.2142 −0.0073

0 −0.2926

]

,

B0 =
[
1.7662 33.2580

]
,∆B =

[
0.0883 0

]
.

whereA0 is a stable matrix with complex poles.
The initial values of slip angle and yaw rate are within

a bounded interval vector([−0.02, 0.02]; [0.03, 0.07]). The
known steering angle inputuc(t) is a step input with amplitude
0.05 rad at 1 sec. The step-size for reachability analysis is
chosen as 0.01 and the order of zonotopeρ is 400, under
which configuration the computation time is less than 0.5 sec
using Matlab 2015a with Intel Core i5-3570 CUP @ 3.40 GHz.
The reachable sets of slip angleβ and yaw raterc together
with 200 exemplary trajectories using stochastic Monte Carlo
sampling are shown in Figs. 4 and 5 respectively.

Fig. 4. The reachable set of slip angle (grey area) and 200 exemplary
trajectories (black lines) with their zoom-in plot during 0.7 to 1 sec.



Fig. 5. The reachable set of yaw rate (grey area) and 200 exemplary
trajectories (black lines) with their zoom-in plot during 0.8 to 1 sec.

We can see from Figs. 4 and 5 that:(i) all the exemplary
trajectories lie in the calculated reachable sets, which verifies
the effectiveness of reachability analysis tool; (ii) In the
absence of control input, the reachable sets converge to zero
due to system convergence; in the presence of control input
after 1 sec, the reachable sets are no longer close to zero
and the width of reachable sets are also increased compared
with the case of without input (this is because the uncertainty
∆Ax + ∆Bu in (4) becomes non-zero interval input).This
phenomenon will bring many challenges to fault diagnosis,
since in the presence of control input, the state reachable
set and consequently the effect of system uncertainties on
residuals will be obvious and can no longer be ignored.

V. A PPLICATION STUDY

In this section, the robust fault diagnosis system in Sec-
tion. III is applied to the sensor fault diagnosis problem
of vehicle lateral dynamic systems described in Section. II.
The accelerometer fault and gyrometer fault are considered
simultaneously. The initial state of vehicle lateral dynamic
systems is chosen asx0 = [0; 0.05], and a steering input
u = 0.05 rad is executed at 1 sec. The accelerometer sensor
fault and gyrometer sensor fault profile are plotted in red lines
of Figs. 6 and 7.

The fault estimation based diagnosis observer is then de-
signed using state augmentation approach, where accelerom-
eter fault and gyrometer fault are treated as two additional
states. The observer gain matrix̄Ko in (6) is designed using
pole assignment of the normal system matrix pair(Ā, C̄) such
that the poles of matrixĀ − K̄oC̄ are [−10;−9;−4;−3].
Since the initial system states can not be known exactly
due to measurement errors, the initial states of the fault
diagnosis observer are supposed to lie in a bounded interval,
i.e., ˆ̄x0 =

[
(−0.02, 0.02), (0.03, 0.07), 0, 0

]
, where

uncertainties are supposed to exist in vehicle side slip angle
and yaw rate.

The uncertain longitudinal velocityv is supposed to lie
in an uncertain interval[19, 21] m/sec, based on which the
uncertain matrices in Eq. (9) can be calculated using INTerval

LABoratory (INTLAB) as follows:

∆Ā− K̄o∆C̄ =






−0.4283 −0.0228 0 0

0 −0.5989 0 0

0 −0.5057 0 0

0 −0.0260 0 0




 ,

K̄o∆C̄ =






0 0.0042 0 0

0 0.0069 0 0

0 0.2529 0 0

0 0.0130 0 0




 ,∆B̄ =






0.0883
0

0

0




 .

Based on them, the interval matricesA andB in (10) can be
calculated. Now the initial state uncertainties, system matrix
uncertainties in (10) are available, the reachability analysis tool
described in Section. IV can be used to calculate the reachable
sets of the accelerometer and gyrometer fault estimates (i.e.,
the residuals). The step-size for reachability analysis ischosen
as 0.01 and the order of zonotopeρ is 800 (the calculation
accuracy can be further increased by reducing step-size and
increasing zonotope order, which will require longer compu-
tation time), under which configuration the computation time
is about 3 sec using Matlab 2015 with Intel Core i5-3570
CUP @ 3.40 GHz. The reachable sets of accelerometer and
gyrometer fault estimates and exemplary trajectories using
stochastic Monte Carlo Simulations are shown Figs. 6 and
7 respectively.
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Fig. 6. Accelerometer fault profile (red line); accelerometer fault estimate
reachable set (grey area) and stochastic simulated trajectories (black lines).

It can be observed in Figs. 6 and 7 thatall the exemplary
trajectories fall into the calculated reachable setsand the
reachable sets are not overly conservative, i.e., the trajecto-
ries are not far away from the boundaries of the reachable
sets, which again verifies the effectiveness of the reachability
analysis tool.

During 0 to 1 sec, no steering control input is executed on
the system, one can see the effect of initial state uncertainties
and system parameter uncertainties on residuals, i.e., the
residual reachable sets firstly get large and then converge
close to zero. This is due to the fact that in the absence of
control input, the system states of vehicle lateral dynamics
and consequently the effect of parameter uncertainties will
converge to zero in steady-state due to its convergence (i.e.,
the real parts of the eigenvalues ofA(v) are negative). After
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Fig. 7. Gyrometer fault profile (red line); gyrometer fault estimate reachable
set (grey area) and stochastic simulated trajectories (black lines).

1 sec, steering control inputu = 0.05 rad is given to the
system, as a result, the system states of vehicle lateral dynamic
systems and consequently the effect of system uncertainties on
residuals will no long be zero (see also the simulation result
in Section. IV).

We can see from Fig. 6, that in the presence of accelerome-
ter fault at 2 sec, the accelerometer fault estimate reachable set
substantially deviates from its normal reachable set before 2
sec, which verifies the effectiveness of fault diagnosis system.
One can also see the effect of gyrometer fault on accelerometer
fault reachable set at 3 sec due to the coupling between them.
Based on our robust threshold selection criteria, the boundaries
of the reachable set of accelerometer fault estimate under
normal case can be chosen as the interval threshold.

Similarly, we can see from Fig. 7 that in the presence of
gyrometer sensor fault at 3 sec, the reachable set of gyrometer
fault estimate substantially deviates from its normal reachable
set. We can also see the effect of accelerometer fault on
reachable set of gyrometer fault estimate at 2 sec. Similarly,
the boundaries of the reachable set of gyrometer fault estimate
under normal case can be chosen as the interval threshold.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, sensor fault diagnosis problem for vehicle
lateral dynamics is considered using model-based fault diag-
nosis. The robust fault diagnosis system contains two sub-
systems including fault diagnosis observer and robust thresh-
old selection. A fault estimation based diagnosis observeris
first designed to produce residuals. A robust threshold is then
proposed using reachability analysis to evaluate residuals such
that the overall fault diagnosis system is robust to described
system uncertainties and thus no false alarm appears.

In the future work, more realistic scenarios will be con-
sidered (e.g., other system parameter uncertainties such as
cornering stiffness of front and rear tires, vehicle mass and
sensor noise, etc.). Besides, the effect of bank angle can also be
handled by enlarging the uncertain input interval. The results
can also be extended to the threshold selection issue of the
conventional residual based fault diagnosis approach.
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APPENDIX

TABLE I
NUMERICAL VALUES OF THE PARAMETERS.

Notation Value Significance
g 9.80 m/s2 gravity acceleration constant
m 1621 kg vehicle total mass
lV 1.15 m distance from CG to front axle
lH 1.38 m distance from CG to rear axle
Iz 1975 Kg ·m2 moment of inertia about the z-axis
cαV 57117 N/rad front axle tire cornering stiffness
cαH 81396 N/rad rear axle tire cornering stiffness
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