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Abstract—This paper investigates the resource allocation prob-
lem for a virtualized wireless network (VWN) in which each base
station (BS) is equipped with a large number of antennas and
due to the pilot contamination error, the perfect estimation of
channel state information (CSI) is not available. In this case,
the duration of pilot sequence transmission plays a critical
role on the achieved VWN throughput. Therefore, we consider
this parameter as a new optimization variable and propose
a novel utility function for the resource allocation problem.
The proposed optimization problem is non-convex with high
computational complexity. To address this issue, by applying
relaxation and variable transformation techniques, we propose
a two-step iterative algorithm in which the allocation of power,
sub-carrier and number of antennas is first established and then
used to optimize the pilot duration. Simulation results reveal that
proper pilot duration design improves the VWN performance.

Index Terms—Massive multiple-input multiple-output, pilot
contamination error, virtualized wireless networks.

I. INTRODUCTION

Wireless networks virtualization is a promising approach
to improve network spectral efficiency wherein the wireless
resources, e.g., power, sub-carriers, and antennas are shared
between different wireless service providers (also called slices)
[1], [2]. In a virtualized wireless network (VWN), each slice
consists of a set of users and requires a minimum reserved
rate. Therefore, similar to other conventional wireless network
scenarios, efficient resource allocation algorithm is of high
importance in order to achieve the maximum network perfor-
mance while preserving the required rate of each slice.

Resource management in VWNs has received growing
interest lately [3]–[8]. For instance, in [3], a novel admission
control policy to provide the quality-of-service (QoS) require-
ment of each slice is introduced. In [4], the concept of wireless
virtualization is extended to the LTE network by formulating
a resource sharing algorithm. In [5], a resource allocation
algorithm is proposed by considering both time and space
division multiplexing so that effective isolation is ensured
between slices, while the resource utilization is optimized.
In [6], a game theoretic approach is applied to consider the
possible interactions among the network operator, slices and
the users such that the network tries to manage the spectrum
among slices while the slices try to provide the required QoS
for their users.

Application of massive multiple-input multiple-output
(MIMO) in the base-station (BS) of wireless networks has

been recently proposed to make extensive use of the degrees
of freedom to increase the spectral and energy efficiencies.
Channel state information (CSI) estimation in a massive
MIMO environment poses a serious challenge and significantly
complicates the resource allocation problem. Ideally, the pilot
sequences transmitted by the users to assist the BS in esti-
mating the CSI of the users should be mutually orthogonal.
However, accommodating a large number of users in the
neighboring BSs makes it necessary to reuse the orthogonal
sequences among users, which creates an interference and
causes imperfect CSI estimation.

There has been a growing interest in the research commu-
nity to address the issue of mitigating the pilot contamination
effects recently. For instance, in [9], various alternatives for
precoding and cooperative methods have been presented to
alleviate pilot contamination. In [10], the maximum number
of admissible users in a down-link pilot-contaminated time
division duplexing (TDD) massive MIMO system is derived
and an algorithm is proposed to achieve the individual user
capacity. In [11], an optimal power and pilot duration alloca-
tion algorithm is proposed in a conventional wireless network
with massive MIMO by considering different power for data
signal and training signal transmission.

In the context of VWNs, [12] has studied the benefits of
applying massive MIMO on the achieved network throughput
and shown that the feasibility region of optimization problem
is considerably expanded and the overall system throughput
is improved as a result. Both perfect and imperfect channel
estimation have been considered with fixed pilot duration in
[12]. In this paper, we aim to investigate whether and to
what extent adaptive pilot duration allocation can improve the
network performance. Based on our knowledge, there is no
related work dealing with adaptive pilot duration allocation in
a massive-MIMO based VWN.

The rest of this paper is organized as follows. Section II
explains the system model along with the problem formulation.
Section III discusses the proposed algorithm followed by
illustrative results described in Section IV. Finally, Section V
presents the concluding remarks.

II. SYSTEM MODEL

We consider the up-link transmission of an orthogonal
frequency division multiplexing (OFDMA) VWN with a single
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base-station (BS) equipped with an array of N = {1, . . . , N}
antennas. The BS serves a set of slices, S = {1, · · · , S}.
Slice s ∈ S consists of a set of single-antenna users,
Us = {1, · · · , Us} and requires a minimum rate Rrsv

s . The
total number of users in the system is U =

∑
s∈S Us, and we

assume U � N .
The total available bandwidth is divided into a set of sub-

carriers, K = {1, . . . ,K} and for OFDMA, each sub-carrier
is exclusively assigned to at most a single user at a time. The
sub-carrier assignment indicator is denoted as

βus,k =

{
1, if sub-carrier k is allocated to user us,
0, otherwise.

We denote the sub-carrier assignment vectors for the BS, each
slice, and each user as β = [β1, · · · ,βS ], βs = [βus

]Us
us=1,

and βus = [βus,1, · · · , βus,K ], respectively. The up-link pilot
duration for user us with sub-carrier k in slice s is denoted by
τus,k. Correspondingly, the pilot duration vectors of the sys-
tem, slice s, and user us are τ = [τ1, · · · , τS ], τs = [τus ]

Us
us=1,

and τus
= [τus,1, · · · , τus,K ], respectively.

Let Nus,k be the number of antennas allocated to user us
on sub-carrier k. The antenna allocation vector of the system,
slice s, and user us can be denoted as N = [N1, · · · ,NS ],
Ns = [Nus

]Us
us=1 and Nus

= [Nus,1, · · · , Nus,K], respec-
tively. Also, let P = [P1, · · · ,PS ], Ps = [Pus

]Us
us=1 and

Pus = [Pus,1, · · · , Pus,K] be the allocated power vectors of
the system, slice s, and user us. respectively, where Pus,k is
the power allocated to user us in sub-carrier k. The variables
used in the system model are listed in Table I.

The channel state information vector of user us at sub-
carrier k is denoted by hus,k ∈ C1×Nus,k , where the channel
coefficients are given by, [13],

hus,k,Nus,k
= χus,k,Nus,k

√
dus

,

where χus,k,Nus,k
represents the small-scale fading coefficient

of the link from the user us on the sub-carrier k to the antenna
Nus,k and dus

represents the large-scale link power attenuation
due to path-loss and shadowing.

In order to perform sub-carrier and power allocation aiming
to maximize the transmission rate, the user-link fading coeffi-
cients need to be estimated by using the up-link pilot signals.
To this end, all users simultaneously transmit orthogonal pilot
sequences at a specific part of the coherence time interval of T .
Ideally, the pilot sequences transmitted from the users to their
BS and the neighboring BSs should be mutually orthogonal
to allow CSI estimation for all the users. However, since the
number of orthogonal pilot sequences that can be used within a
fixed T and bandwidth is limited, reuse of the orthogonal pilot
sequences is unavoidable in neighboring BSs. Therefore, a BS
will get the same orthogonal sequences not only from users
in its coverage area but also from users in the neighboring
areas, causing pilot contamination. In this case, the BS would
be unable to accurately estimate the CSI of all users due to
interference from users in neighboring BSs.

If h̃us,k is the estimated channel vector taking into account

TABLE I
LIST OF VARIABLES

Notations Definitions
S Set of slices
US Set of users in slice s
K Set of sub-carriers
β Sub-carrier assignment vector
hus,k CSI vector of user us in slice s in sub-carrier k
τus,k Pilot duration for user us in sub-carrier k
Nus,k Antennas allocated to user us in sub-carrier k
Pus,k Power allocated to user us in sub-carrier k
T Coherence interval
σ2 Noise power spectral density
γus,k SINR of user us in sub-carrier k
Rus,k Rate of user us in slice s and sub-carrier k
cN
s Pricing factor for antenna for slice s
cP
s Pricing factor for transmit power for slice s
cτs Pricing factor for pilot duration for slice s
Nmin
s Min. antennas for slice s

Nmax
s Max. antennas for slice s

the pilot contamination error and fus,k ∈ CNus,k×1 is the
precoding vector for user us and on sub-carrier k, the received
signal at the BS after Maximal Ratio Combining (MRC) can
be expressed as, [13]

yus,k =
√
Pus,k h̃us,kfus,kxus,k + Ius,k + zus,kfus,k, (1)

where Ius,k =
∑
s∈S

∑
u′
s 6=us

√
Pu′

s,k
h̃u′

s,k
fus,kxu′

s,k
−√

Pus,k

∑
s∈S

∑
u′
s∈Us

eu′
s,k

fus,kxu′
s,k

is the interference re-
ceived from other users due to contamination error. Also,
zus,k denotes the additive white Gaussian noise (AWGN) with
zero mean and power spectral density σ assumed to be 1
for simplicity. Note that in the above expression for Ius,k,
eus,k = h̃us,k − hus,k and the elements of eus,k are random

variables (RVs) with zero mean and variance
P Pilot

us,kdus

P Pilot
us,kdus+1

[13],

and P Pilot
us,k

= τus,kPus,k is the power used for the pilot signal.

For MMSE-based channel estimation, h̃us,k contains i.i.d

RVs with zero mean and variance
P Pilot

us,kd
2
us

P Pilot
us,kdus+1

[13], and for the

MRC precoding vector, fus,k = h̃
H
us,k. Since eus,k and h̃us,k

are independent, ∀us ∈ Us and ∀k ∈ K, and fImperf
us,k

, eus,k are
independent, ∀us ∈ Us and ∀k ∈ K, the received SINR at the
BS from the user us at sub-carrier k is given by

γus,k =
Pus,k‖h̃us,k‖4

Pus,k‖eus,kh̃
H
us,k‖2 + ‖h̃us,k‖2

. (2)

Substituting the variance of h̃us,k in the above expression
yields the received SINR, ∀us ∈ Us, ∀k ∈ K,

γus,k =
N2
us,k

Pus,k
ζus,k

Nus,k
Pus,k

ζus,k(
P Pilot

us,kdus

P Pilot
us,kdus+1

)2 +Nus,k
ζus,k

, (3)



where ζus,k = (
P Pilot

us,kd
2
us

P Pilot
us,kdus+1

)2. By substituting P Pilot
us,k

=

τus,kPus,k, we get, for all us ∈ Us and k ∈ K,

γus,k =
τus,kρ

2
us,k

d2us

1 + (1 + τus,k)ρus,kdus
/
√
Nus,k

, (4)

where we substituted Pus,k = ρus,k/
√
Nus,k [13]. As

Nus,k → ∞, we get γus,k = τus,kρ
2
us,k

d2us
=

τus,kP
2
us,k

d2us
Nus . Hence, the rate of user us on sub-carrier

k for a fraction τus,k of the total up-link frame time T is

Rus,k =
T − τus,k

T
log2

(
1 + τus,kP

2
us,kd

2
us
Nus

)
. (5)

Thus, the total rate of user us is

Rus(P,β,N, τ ) =
∑
k∈K

βus,kRus,k

which is a function of P,β, N, and τ . Now, we define the
utility function of a slice s as

Fs(P,β,N, τ ) =
∑

us∈Us
Rus

(P,β,N, τ )−

− cN
s

∑
us∈Us

∑
k∈K

βus,kNus,k − cP
s

∑
us∈Us

∑
k∈K

βus,kPus,k

− cτs
∑
us∈Us

∑
k∈K

βus,kτus,k,

(6)

where cN
s , cP

s and cτs are pricing factors for the number of
allocated antennas, the transmit power and the up-link pilot
duration for slice s, respectively. Considering these three
pricing factors, Fs(P,β,N, τ ) is an increasing function of total
rate of VWN while it is a decreasing function of the total
consumed resource of the VWN for each slice, i.e., power,
antenna and pilot duration, which is novel in this context and
can be considered as a total revenue minus the costs for each
slice. Since in an OFDMA system, a sub-carrier in a BS can
be allocated to one user, we have the following constraint:

C1: βus,k ∈ {0, 1}, and
∑

s∈S

∑
us∈Us

βus,k ≤ 1,∀k ∈ K.

The sum of the total transmit power for each user us over all
sub-carriers k allocated to it poses another constraint, i.e.

C2:
∑

k∈K
βus,kPus,k ≤ Pmax

us
, ∀us ∈ Us, ∀s ∈ S,

where Pmax
us

is the maximum transmit power of user us. Since
the minimum rate reservation per each slice s is Rrsv

s , we have

C3:
∑

us∈Us
Rus
≥ Rrsv

s , ∀s ∈ S.

If Nmin
s and Nmax

s are the minimum and maximum numbers
of antennas that can be allocated for the slice s, then we have
[14]

C4:
∑

us∈Us

∑
k∈K

βus,kNus,k ∈ {Nmin
s , Nmin+1

s , · · · , Nmax
s },

for each slice s ∈ S. Finally, for each user, the up-link pilot
duration τus,k has a limitation, i.e.,

C5: 0 < τus,k < T, if βus,k = 1.

Algorithm 1 : Iterative Algorithm
Initialization: Set each element of τ (l = 0), β(l = 0),
Pus

(l = 0), and N(l = 0) to 0.3T , 1, Pmax
us

/K and Nmax
s ,

respectively, for all us ∈ Us and s ∈ S. Initialize lmax � 1,
0 < ε� 1, λ(l = 0), ψ(l = 0) and θ(l = 0).
Step 1: Obtain the optimum values of P∗us

(l), β∗(l), N∗(l)
using Alg. 1.A for fixed τ (l).
Step 2: For fixed P∗us

(l), β∗(l), N∗(l), find the optimal pilot
duration τ ∗(l) using Alg. 1.B.
Stop if ||P∗us

(l+1)−P∗us
(l)|| ≤ ε, where ||x|| is the norm of

vector x, otherwise, set l := l + 1 and go to Step 1.

Therefore, the resource allocation problem is

max
P,β,N,τ

∑
s∈S

Fs(P,β,N, τ ), (7)

subject to : C1− C5.

(7) is an inherently non-convex optimization problem involv-
ing four sets of optimization variables. Thus, finding optimal
solution of (7) leads to high computational complexity. To
tackle this issue, in the next section, we propose a two-step
iterative algorithm with a low computational complexity.

III. PROPOSED ALGORITHM

In the proposed Algorithm 1 to solve problem (7), we first
apply the framework proposed in [12] to derive the optimum
values of P, β, and N for a fixed τ in Step 1. Then, for the
obtained values of P, β, and N, we derive the optimal value of
τ in Step 2. The derived solution of iteration l is denoted as
P∗(l),β∗(l),N∗(l), and τ ∗(l) and the overall solution process
can be represented as

τ (0)→ P(0),β(0),N(0)︸ ︷︷ ︸
Initialization

→ . . . τ ∗(l)→ P∗(l),β∗(l),N∗(l)︸ ︷︷ ︸
Iteration l

→

(8)
τ ∗ → P∗,β∗,N∗︸ ︷︷ ︸

Optimal solution

Steps 1 and 2 are repeated until the convergence conditions are
met. Also, to simplify the algorithm, we just focus on the case
that τus,kP

2
us,k

d2us
Nus
� 1 which is a reasonable assumption

in massive MIMO context due to large value of Nus
.

A. Algorithm 1.A

For a fixed value of τ , (6) involves three sets of variables
P,β, and N, which is still a combinatorial function contain-
ing both discrete and continuous variables. To simplify this
problem, we relax the sub-carrier assignment indicator to be
continuous in the interval [0, 1] which will relax the constraints
explained above. Considering the variable transformations
xus,k = βus,kPus,k and yus,k = βus,kNus,k, the optimization
problem of this step can be written as

max
β,x,y

∑
s∈S

F̃s(β, x, y), (9)

subject to :



C̃1 : βus,k ∈ [0, 1],∑
s∈S

∑
us∈Us

βus,k ≤ 1, ∀k ∈ K

C̃2 :
∑

k∈K
xus,k ≤ Pmax

us
, ∀us ∈ Us, ∀s ∈ S,

C̃3 :
∑

us∈Us
R̃us
≥ Rrsv

s , ∀s ∈ S,

C̃4 : Nmin
s ≤

∑
us∈Us

∑
k∈K

yus,k ≤ Nmax
s ,∀s ∈ S,

C̃5 : βus,kτus,k < T, ∀k ∈ K,∀us ∈ Us,∀s ∈ S

where F̃s(β, x, y) =
∑
us∈Us R̃us

(x,β, y) −
cN
s

∑
us∈Us

∑
k∈K yus,k − cP

s

∑
us∈Us

∑
k∈K xus,k −

cτs
∑
us∈Us

∑
k∈K βus,kτus,k.

By assuming τus,kP
2
us,k

d2us
Nus
� 1 and new sets of xus,k,

yus,k and βus,k, the total rate of user us, Rus
, is a convex

function [12]. Consequently, (9) is a convex optimization
problem which can be solved by Lagrange dual function,
defined as

L(β, x, y, λus , φg, θs, ψs) = (10)

−
∑

s∈S
F̃s +

∑
us∈Us

λus
(
∑
k∈K

xus,k − Pmax)

+
∑

s∈S
φs(R

rsv
s −

∑
us∈Us

R̃us
)

+
∑

s∈S
θs(N

min
s −

∑
us∈Us

∑
k∈K

yus,k)

+
∑

s∈S
ψs(
∑

us∈Us

∑
k∈K

yus,k −Nmax
s ),

+
∑

us∈Us
ηus

(
∑
k∈K

βus,kτus,k − T ),

where the Lagrange multipliers are λus
, φs, θs, , ψs and ηus

for the relaxed constraints C̃2, C̃3, C̃4 and C̃5, respectively.
To solve (10), we apply iterative gradient descent method
introduced in Alg. 1.A where l1 is the iteration number. In
Alg. 1.A, the dual variables can be updated as

λus
(l1 + 1) =

[
λus

(l1) + δλus

∂L
∂λus

]+
,∀us ∈ U , (11)

φs(l1 + 1) =

[
φs(l1) + δφs

∂L
∂φs

]+
, ∀s ∈ S, (12)

θs(l1 + 1) =

[
θs(l1) + δθs

∂L
∂θs

]+
, ∀s ∈ S, (13)

ψs(l1 + 1) =

[
ψs(l1) + δψs

∂L
∂ψs

]+
, ∀s ∈ S, (14)

ηus(l1 + 1) =

[
ηus(l1) + δηus

∂L
∂ηus

]+
,∀us ∈ Us. (15)

where δλus
, δφs , δθs , δψs and δηus

are the small positive step
sizes for their dual variables.

Now, to update the primal variables, Pus,k, Nus,k and βus,,
differentiating (10) with respect to each of the variables and
setting them to zero, we get following expression for the
updated value in the iteration l + 1 as

Pus,k(l1 + 1) = (16)

Algorithm 1.A: Resource Allocation
Initialization: Set τ (l1 = 0) = 0.3T , β(l1 = 0) = β(l),
Pus(l1 = 0) = Pus(l), and N(l1 = 0) = N(l) for all us ∈ Us
and s ∈ S . Initialize lmax

1 � 1, 0 < ε � 1, λ(l1 = 0),
ψ(l1 = 0) and θ(l1 = 0).

1: Update dual variables, λus
, φs, θs and ψs, by gradient

descent method for all s ∈ S from (11)-(15).
2: Using the above updated parameters for iteration (l1+1),

compute P ∗us,k
(l1 +1) and N∗us,k

(l1 +1) for all us ∈ Us, and
k ∈ K using (16) and (17), respectively.

3: Perform sub-carrier allocation for all us ∈ Us and for
all k ∈ K from (19).

Stop if ||P(l1 + 1)− P(l1)|| ≤ ε or l1 ≥ lmax
1 , otherwise,

set l1 := l1 + 1 and go to 1.

(T − τus,k(l))

T

[
2(1 + φs)

ln(2)(λus
+ cPs )

]Pmax
us

0

,

and,

Nus,k(l1 + 1) = (17)

(T − τus,k(l))

T
×
[

1 + φs
ln(2)(ψs − θs + cNs )

]Nmax
s

0

,

where [x]ba = min{b,max{x, a}}. Differentiating (10) with
respect to βus,k, we have

∂L
∂βus,k

=cτs
∑

us∈Us
τus,k(l) + ηus

τus,k(l)+ (18)

(1 + φs)(T − τus,k(l))

T
×(

log2(τus,k(l)Pus,k(l1)
2d2us

Nus,k(l1)−
3

ln(2)

)
,

and hence, as shown in [14],

β∗us,k(l1 + 1) =

{
1, if ∂L

∂βus,k
> 0,

0, otherwise.
(19)

The iteration is repeated until ||P(l1 + 1) − P(l1)|| ≤ ε or
l1 ≥ lmax

1 , where lmax
1 is the maximum number of iterations

for Algorithm 1.A.

B. Algorithm 1.B

For the derived values of P∗(l),N∗(l)and,β∗(l), the opti-
mization problem for finding τ ∗(l) is

max
τ ,0<τus,k<T

∑
s∈S

F̂s(τ ), (20)

where

F̂s(τ ) =
∑

us∈Us
Rus(τ )− cN

s

∑
us∈Us

∑
k∈K

βus,k(l)Nus,k(l)

− cP
s

∑
us∈Us

∑
k∈K

βus,k(l)Pus,k(l)− cτs
∑
us∈Us

∑
k∈K

βus,k(l)τus,k.

The optimum value of τ from (20) can be obtained by setting
∂F̂s(τ )
∂τus,k

= 0 where 0 < τus,k < T . To derive this optimal value,



Algorithm 1.B: Pilot Duration Allocation
Initialization:
Set β(l2 = 0) = β∗(l1), Pus

(l2 = 0) = P∗us
(l1), and

N(l2 = 0) = N∗(l1) for all us ∈ Us and s ∈ S , and
lmax
2 � 1, aus,k(l2 = 0) = 0, bus,k(l2 = 0) = T ,
0 < ε � 1, and cus,k(l2 = 0) = T/2, and calculate
fus,k(l2 = 0) = fus,k(cus,k(l2 = 0)).
Iterative Bisection Method for all us and k:

1) For cus,k(l2) = (aus,k(l2) + bus,k(l2))/2, calculate
fus,k(cus,k(l2)) and fus,k(aus,k(l2))

– If fus,k(aus,k(l2)) × fus,k(cus,k(l2)) < 0,
bus,k(l2) = cus,k(l2)

– Else, aus,k(l2) = cus,k(l2)

2) Consider c(l2) = [cus,k(l2)]∀us,k and f(l2) =
[fus,k(l2)]∀us,k,
Stop if:

• ‖c(l2)− c(l2 − 1)‖ < ε or
• ‖f(l2)− f(l2 − 1)‖ < ε or l2 > lmax

2

• Otherwise l2 = l2 + 1, go to 1.

we apply the iterative bisection method where we consider

fus,k(τus,k) =
T

τus,k
− log2(τus,kP

∗2
us,k

(l)d2us,k
N∗us,k

(l)− 1− cτsT,

and the iteration number l2 as summarized in Alg. 1.B.

IV. SIMULATION RESULTS

To study the performance of Algorithm 1, we simulate a
scenario of a VWN with a single BS serving two slices each
with Us = 4 users per slice where Pmax

us
= 0 dB and Rrsv =

Rrsv
s = 2 bps/Hz. The users are distributed uniformly in the

coverage area of the BS. The total number of sub-carriers is
K = 4 and the total transmission frame duration is set to
T = 1 s. To study the effects of changing pricing factors, we
consider 3 scenarios: (1) Set 1 where cτs = cNs = cPs = 0, (2)
Set 2 where cτs = 0.5, cPs = 1, and cNs = 0.07 and (3) Set 3
where cτs = 1, cPg = 2 and cNs = 0.09. Obviously, Set 3 has
more restricted price parameters than Set 2 and Set 1, while
Set 2 has moderate pricing factors compared to other sets.
We compare Alg. 1 with the approach using fixed τ where
τus,k/T = 0.3 for all us and k. The simulation results are
averaged over 100 trials and we set the total rate to zero when
there is an infeasibility in the solution.

Fig. 1 plots the total rate versus Rrsv for the three different
sets by applying Algorithm 1 as well as for a fixed pilot
duration. The results indicate that the total rate achieved
decreases with increasing Rrsv due to the fact that at higher
Rrsv, C3 cannot be fulfilled all the time. Since we set the total
rate to zero when there is an infeasibility, the average rate de-
creases with increasing Rrsv. The overall system throughput is
improved by using adaptive pilot duration in Alg. 1. Moreover,
the total rate decreases as the values of cτs , c

P
s and cNs increase.

This is obvious since the utility function (6) is defined as a
non-increasing function of pricing factors.

Fig. 1. Total rate versus Rrsv

Fig. 2. Total rate versus Nmax
s

From Fig. 2, the total rate increases with increasing Nmax
s

as expected due to the multiplexing gain of massive MIMO.
Again, the overall system performance is improved by adaptive
pilot duration via Alg. 1 as compared to the approach using
fixed pilot duration. Similarly, as the costs increase across Sets
1, 2, and 3, the total achieved rate decreases as expected by
(6).

To get more insight about the effects of the pricing factors
on the VWN performance, in Fig. 3 and 4, we plot the total
rate versus cτs and cNs with cPs fixed, and cτs and cPs with cNs
fixed, respectively. As seen in these two figures, the total rate
is not a convex function with respect to the pricing factors.
Specifically, the values of cτs and cNs have significant effects
on decreasing the total rate of the VWN.

V. CONCLUSION

In this paper, we examined the resource allocation in a
massive MIMO-based VWN. In consideration of possible pilot
contamination errors, we formulated an optimization problem
to adaptively assign uplink pilot duration, power, antennas
and sub-carriers to users in order to maximize the overall
system throughput. We developed a low-complexity two-step
iterative algorithm wherein the first step finds the optimal



Fig. 3. Total rate versus cτs and cNs for fixed cPs

Fig. 4. Total rate versus cτs and cPs for fixed cNs

power, antenna and sub-carrier allocation to be used in the
second step to optimize the up-link pilot duration. Simulation
results indicate a significant system performance improvement
offered by the proposed scheme using adaptive pilot duration
as compared to the scenario with fixed pilot duration.

REFERENCES

[1] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A
substrate for virtualizing wireless resources in cellular networks,”
IEEE/ACM Trans. Netw., vol. 20, no. 5, Oct. 2012.

[2] C. Liang and F. Yu, “Wireless virtualization for next generation mobile
cellular networks,” IEEE Wireless Commun. Mag., vol. 22, no. 1, pp.
61–69, 2015.

[3] S. Parsaeefard, V. Jumba, M. Derakhshani, and T. Le-Ngoc, “Joint
Resource Provisioning and Admission Control in Wireless Virtualized
Networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar.
2015.

[4] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “LTE wireless virtual-
ization and spectrum management,” in IEEE Wireless and Mobile Netw.
Conf. (WMNC), 2010, pp. 1–6.

[5] X. Zhang, Y. Li, D. Jin, L. Su, L. Zeng, and P. Hui, “Efficient resource
allocation for wireless virtualization using time-space division,” in Proc.

IEEE Int. Conf. on Wireless Commun. and Mobile Comp. (IWCMC), Aug
2012, pp. 59–64.

[6] F. Fu and U. Kozat, “Stochastic game for wireless network virtualiza-
tion,” IEEE/ACM Trans. Netw., vol. 21, no. 1, Feb. 2013.

[7] M. I. Kamel, L. B. Le, and A. Girard, “LTE Wireless Network Virtual-
ization: Dynamic Slicing via Flexible Scheduling,” in Proc. IEEE Veh.
Tech. Conf. (VTC), Sept. 2014, pp. 1–5.

[8] M. Yang, Y. Li, D. Jin, J. Yuan, I. You, and L. Zeng, “Opportunistic
sharing scheme for spectrum allocation in wireless virtualization,” Soft
Computing, vol. 18, no. 9, pp. 1685–1696, 2014.

[9] L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: benefits and challenges,” IEEE J. Sel.
Topics Signal Process., vol. 8, Oct. 2014.

[10] J.-C. Shen, J. Zhang, and K. B. Letaief, “User Capacity of Pilot-
Contaminated TDD Massive MIMO Systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2014.

[11] H. Q. Ngo, M. Matthaiou, and E. G. Larsson, “Massive MIMO with
Optimal Power and Training Duration Allocation,” IEEE Wireless Com-
mun. Lett., 2014.

[12] V. Jumba, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Resource
provisioning in Wireless Virtualized Networks via Massive-MIMO,”
IEEE Wireless Commun. Lett., vol. 4, no. 3, pp. 237–240, 2015.

[13] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser MIMO systems,” IEEE Trans. Wireless
Commun., vol. 61, no. 4, Apr. 2013.

[14] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource
allocation in OFDMA systems with large numbers of Base Station
antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, Jun. 2012.


