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Abstract. We characterize absolutely continuous stationary measures (ac-

sms) of randomly perturbed dynamical systems in terms of pseudo-orbits
linking the ergodic components of absolutely continuous invariant measures

(acims) of the unperturbed system. We focus on those components, called
least-elements , which attract pseudo orbits. Under the assumption that the

transfer operators of both systems, the random and the unperturbed, satisfy

a uniform Lasota-Yorke inequality on a suitable Banach space, we show that
each least element is in a one-to-one correspondence with an ergodic acsm of

the random system.

1. Introduction

In this paper we study statistical aspects of random perturbations under the as-
sumption that the transfer operators of the random and the unperturbed systems
satisfy a uniform Lasota-Yorke inequality on a suitable Banach space (see subsec-
tion 2.3) 1. Let T : M →M , M ⊂ Rq. A random orbit {xεn}n is a random process
where, for all n, xεn+1 is a random variable whose possible values are obtained in
an ε-neighbourhood of Txεn according to a transition probability Pε(xn, .). We con-
sider the case where Pε(xn, .) is absolutely continuous with respect to Lebesgue
measure m. Denoting the density of the transition probability by pε(x, .), we define
a perturbed transfer operator , Lε, by:

Lεf(x) =

∫
M

pε(y, x)f(y)dy

where f ∈ L1
m(M). We focus on non-invertible dynamical systems whose transfer

operators, perturbed and non-perturbed, satisfy a uniform Lasota-Yorke inequality.
In this paper, the non-perturbed operator

Lf(x) =
∑

y∈T−1x

f(y)

|DyT )|
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is the traditional transfer operator (Perron-Frobenius) associated with the map T
[5]. Among other things, the Lasota-Yorke inequality implies the existence of a
finite number of ergodic acims for the initial system T , and a finite number of
ergodic acsms for the random system [5].

We then define an equivalence relation between the ergodic components of acims of
T using pseudo-orbits. Using this equivalence relation, we consequently introduce
equivalence classes of ergodic acims. Among the latter, we identify those which
attract pseudo-orbits and call them least elements. We show that each least element
admits a neighbourhood which supports exactly one ergodic acsm of the random
system, and the converse is also true, namely the support of any ergodic acsm
contains only one least element. This result allows us to identify the attractors
of the random orbits, namely the least elements, and we give a nice illustration
in the example 2 in Section 5. Moreover, we use our result to identify random
perturbations that exhibit a metastable behavior. Such a phenomenon has recently
been a very active topic of research in both ergodic theory [3, 4, 14, 16, 17, 24] and
applied dynamical systems [11, 30].

Section 2 contains the setup of the problem, our assumptions, the notion of a least
element and the statement of our main result (Theorem 2.8). Section 3 contains
the proof of Theorem 2.8. In Section 4 we use the results of the previous sections
to identify random systems which exhibit a metastable behavior. In Section 5 we
apply our results to random transformations, in particular, we provide examples to
illustrate the results of Sections 2 and 4.

2. Setup and statement of the main result

2.1. The initial system. Let M ⊂ Rq be compact2 with intM = M . We denote
by d the Euclidean distance on Rq. Let (M,A,m) be the measure space, where A is
Borel σ-algebra, and m is the normalized Lebesgue measure on M ; i.e, m(M) = 1.
Let T : M → M be a measurable map, DT be the set of discontinuities of T ; with
the notation Dg we mean the set of discontinuities of the function g. We assume
that m(DT ) = 0, and T is non-singular with respect to m. The transfer operator
(Perron-Frobenius) [5] associated with T , L : L1

m ↪→ L1
m is defined by duality: for

g1 ∈ L1
m and g2 ∈ L∞m ∫

M

g1g2 ◦ Tdm =

∫
M

Lg1g2dm.

2.2. The perturbed system. We perturb the map T by introducing a family of
Markov chains (X εn), ε > 0, n ≥ 0 with state space M and transition probabilities
{Pε(x, .)}x∈M ; i.e, Pε(x,A) is the probability that a point x is mapped into a
measurable set A. At time n = 0, (X ε0 ) can have any probability distribution. We
assume that:

(P1) For all x ∈M , Pε(x, .) is absolutely continuous with respect to the Lebesgue
measure. We will denote its density by pε(x, .). Therefore Pε(X εn+1 ∈
A|X εn = x) =

∫
A
pε(x, y)dm(y).

(P2) We have: suppPε(x, .) = Bε(Tx) for all x.

2All our results can be carried to the case where M is a compact Riemannian manifold.
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Assumption (P2) can be weakened by supposing that suppPε(x, .) is a subset of a
slightly larger ball around Tx. Our proofs can be easily adapted to show that the
results of this paper will still hold under such a slightly weakened assumption.

2.2.1. Random orbits and stationary measures. The perturbed evolution of a state
x ∈M will be represented by a random orbit :

Definition 2.1. A sequence {xεn}n≥0 ⊂ M is an ε-random orbit if each xεn+1 is
a random variable whose distribution is Pε(x

ε
n, .), namely {xεn}n≥0 coincides with

the Markov chains (X εn), ε > 0, n ≥ 0.

The counterpart of an invariant measure in the case of randomly perturbed dynam-
ical systems is called a stationary measure:

Definition 2.2. A probability measures µε is called a stationary measure if for
any A ∈ A

µε(A) =

∫
M

Pε(x,A)dµε(x).

We call it an absolutely continuous stationary measure (acsm), if it has a density
with respect to the Lebesgue measure (see below).

2.2.2. The transfer operator of the random system. To study Markov processes it is
useful to define the transition operator Tε acting on bounded real-valued measurable
functions g defined on M :

(Tεg)(x) =

∫
M

g(y)Pε(x, dy).

Its adjoint T ∗ is defined on the space M(M) of all finite signed measures and is
given by:

T ∗ε µ(A) =

∫
M

Pε(x,A)dµ(x).

The measure µε is stationary if and only if T ∗ε µε = µε [26]. Moreover, a stationary
measure is ergodic if, any A ∈ A with Tε1A = 1A implies that µε(A) = 0 or
µε(A) = 1 [26].

Since condition (P1) implies the absolute continuity of any stationary measure, it
will be convenient to define an operator, Lε, acting on densities. That is to say, if µ
is an absolutely continuous measure with respect to m, whose density is a function
g ∈ L1

m, then T ∗ε µ is an absolutely continuous measure whose density is Lεg, where
Lεg is given by:

(2.1) Lεg(x) =

∫
M

pε(z, x)g(z)dz.

Thus, densities of acsms are fixed points of Lε. Results on the existence of acsms
can be found in [7] and references therein. We will comment again about this
definition of the random transfer operator in Remark 5.1, Section 5.
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2.3. A Banach space and quasi-compactness of L and Lε. We now introduce
a Banach space B(M) ⊂ L1

m. We assume that

(B1) The constant function 1 belongs to B(M).
(B2) The set of discontinuities, Df , of any function f ∈ B(M) has Lebesgue

measure zero.
(B3) There is a semi-norm |.| on B(M) such that the unit ball of B(M) is compact

in L1
m with respect to the complete norm || · ||B ≡ |.| + ‖.‖1, where ‖.‖1

denotes the L1
m norm.

We also assume that the transfer operators L and Lε satisfy a uniform Lasota-Yorke
inequality: there exist an η ∈ (0, 1) and a D ∈ (0,∞) such that for all f ∈ B(M)
and ε > 0 small enough:

|Lf | ≤ η |f |+D ‖f‖1 ; (LY )

|Lεf | ≤ η |f |+D ‖f‖1 . (RLY )

Assumptions (LY) and (RLY) ensure the quasi-compactness of both L and Lε,
see [5] and [2] for non-invertible systems. In particular, among other things, (LY)
implies the existence of a finite number of T -ergodic acim, and (RLY) implies the
existence of a finite number of ergodic acsm for the Markov process (X εn). More
precisely, we have for the operator L (see [9, 18]):

• The subspace of non-negative fixed points w of L, is a convex set with a
finite number of extreme points w1, · · · , wl with supports Λk, k = 1, · · · , l.
The supports Λk, k = 1, · · · , l, are mutually disjoint Lebesgue a.e..
• The measures µ1 = w1m, · · · , µl = wlm are ergodic and they give the

ergodic decomposition of any acim µ = hm, h ∈ L1
m. We also call them the

extreme (ergodic) points (measures) decomposing µ.

The Lasota-Yorke inequality (RLY) of Lε ensures that the random system admits
finitely many ergodic acsms µε1 = hε,1m, . . . , µ

ε
K = hε,Km. Note that in general

the number K of extreme points for µε is different from the number l of ergodic
components of µ. In our setting, (see Corollary 2.9), we show that the number of
ergodic ascms is bounded above by the number of ergodic acims.

Remark 2.3. We point out that for certain perturbations one can prove that (RLY)
follows from (LY). See [7, 22] for precise examples.

Remark 2.4. In our work we are mainly concerned with non-invertible systems. In
general, to get spectral results from the Lasota-Yorke inequality, one needs to work
with a couple of adapted spaces. We choose here to work with L1

m because it is the
partner of the natural space of functions, namely functions of bounded variation,
needed when studying the examples of Section 5. A closer inspection to the proof
of Theorem 1 shows that any pair of adapted spaces will work whenever conditions
(B1)-(B3) are satisfied. A generalization of our results to invertible systems will
require to replace L1

m with an appropriate generalized Banach space, see [6, 12, 13]
for detailed discussions of such spaces.

A well known consequence of assumption (LY) and (RLY) is the following proposi-
tion, see for instance [9, 10].

Proposition 2.5. . Let {hε}ε>0 be a family of densities of absolutely continuous
stationary measures of (Xnε ). Then any limit point, as ε → 0, of {hε}ε>0 in the
L1
m-norm is a density of T -acim.
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2.4. Pseudo-orbits, least elements and the statement of the main result.
We now introduce the notion of a pseudo orbit which will be our main tool to char-
acterize ergodic acsm. Pseudo-orbits were previously used by Ruelle [28], followed
by Kifer [25], to study attractors of randomly perturbed smooth maps. See also [8].

Definition 2.6 (pseudo-orbit). For ε > 0, an ε-pseudo-orbit is a finite set {xi}ni=0 ⊂
M such that d(Txi, xi+1) < ε for i = 0 . . . n− 1.

Using pseudo-orbits, we define a pre-order (reflexive and transitive) “→” among
the supports {Λi} of T -ergodic acim by writing Λi → Λj if for any ε > 0 there is an

ε-pseudo-orbit {xi}ki=0 such that x0 ∈ Λi and xk ∈ Λj . Then we define a relation
“∼” among {Λi} by writing Λi ∼ Λj if both Λi → Λj and Λj → Λi. By ergodicity,
given a point y ∈ Λi ≡ suppµi and ε > 0, µi-almost any point x ∈ Λi will enter
the ball Bε(y) of positive µi measure, and therefore all the pairs (x, y) ∈ Λi can
be connected with a (finite) ε-pseudo-orbit. Hence we get an equivalence relation

among those ergodic components and we define Λ̃i the equivalence class which
contains Λi. We write Λ̃i → Λ̃j if Λk → Λl for any Λk ∈ Λ̃i and Λl ∈ Λ̃j .

Definition 2.7. Λ̃i is said to be a least element, if there is no Λ̃j , j 6= i, such that

Λ̃i → Λ̃j .

This in particular means that for all ε small enough no ε-pseudo-orbit can travel
from the least element to other equivalence classes. We point out that under the
Assumption (LY) and (BLY), there are at most finitely many such equivalence

classes Λ̃j ’s, hence, the least elements always exists by Zorn’s lemma. In general, a
dynamical system may have more than one least-element. This will be illustrated
in Example 5.2. We now state our first result:

Theorem 2.8. Under Assumption (P1) and (P2), if (LY) and (RLY) hold for
functions in a Banach space B(M) satisfying (B1-B3), then we have:

(1) If Λ̃ is a least element, then for ε small enough there exists an open neigh-

borhood Uε ⊃ Λ̃ which supports a unique ergodic acsm µΛ̃
ε .

(2) If Λ̃ is not a least element, then for ε small enough, µε(Λ̃) = 0 for any acsm

µε. Therefore, for any weak-limit of µε as ε→ 0, Λ̃ is a set of measure 0.

Theorem 2.8 implies the following three corollaries:

Corollary 2.9. For ε > 0 small enough, the number of acsms of the random system
(Xnε ) is bounded above by the number of acims of the map T . In particular, if T
has a unique acim, then (Xnε ) has a unique acsm.

Remark 2.10. In Theorem 2.8 we do not assume that sup
||f ||B≤1

||(Lε − L)f ||1 → 0.

Thus, Corollary 2.9 does not follow directly from the spectral stability result of
[23].

We also have the converse of part 1 of Theorem 2.8, namely:

Corollary 2.11. For ε > 0 small enough, the support of any ergodic acsm contains
exactly one least element.

Therefore, for ε small enough, we can uniquely associate to each least element Λ̃

the family of densities {hΛ̃
ε }ε>0.
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Definition 2.12. We say that the system (M,A, T ) is strongly stochastically stable
if any L1

m limit point of the densities of the ergodic absolutely continuous stationary
measures {µεj}ε>0, j = 1, . . . ,K and as ε goes to zero, is a convex combination of
the densities of the absolutely continuous ergodic extreme measures of µ.

In our setting, by Proposition 2.5 and Theorem 2.8, any limit point of the family

{hΛ̃
ε }ε>0 as ε goes to 0, is a convex combination of the densities3 of the ergodic

measures spanning Λ̃. Hence we proved that

Corollary 2.13. The system (M,A, T ) is strongly stochastically stable.

Remark 2.14. Our definition of stochastic stability is inspired by the definition
in Section 1.1 of [1]. Whenever there is only one absolutely continuous ergodic
invariant measure µ and only one absolutely continuous ergodic stationary measure
µε, it makes sense to speak of strongly stochastic stability of the measure µ if the
density of µε converges in L1

m to the density of µ, see for instance [10]. Adapting
this point of view we can restate the previous corollary by saying that: an absolutely
continuous invariant measure for the original system (M,A, T ) whose support is the
union of least elements, is strongly stochastically stable.

3. Proofs

We first prove a key lemma.

Lemma 3.1. Let f ∈ B ≡ B(M) and {xi}Ni=0 ⊂M be an ε-pseudo-orbit such that
xj ∈M \ (DLj

εf
∩DT ), 0 ≤ j ≤ N and Liεf(xi) > 0 for some 0 ≤ i < N . Then for

all i < k ≤ N we have Lkεf(xk) > 0.

Proof. Let f ∈ B and {xi}Ni=0 be an ε-pseudo-orbit, satisfying the assumptions of
the lemma. In particular, suppose that for some fixed 0 ≤ i < N , Liεf(xi) > 0.
Then

Li+1
ε f(xi+1) =

∫
M

Liεf(y)pε(y, xi+1) dy.

By the hypothesis (P2) we have xi+1 ∈ Bε(Ty)⇒ pε(y, xi+1) > 0 and by the pre-
ceding continuity assumptions there exists δ > 0 such that y ∈ Bδ(xi)⇒ Liεf(y) >
0. But this δ-neighborhood of xi can be made smaller in such a way that when

y belongs to it, d(Ty, Txi) ≤ ε−d(Txi,xi+1)
2 which implies that xi+1 is ε-close to

Ty. Therefore for all the y in this δ-neighborhood (which is of positive Lebesgue
measure), the integrand above is strictly positive and this finishes the proof of the
Lemma. � �

of Theorem 2.8. We first show that for every least element Λ̃ there exists a neigh-
borhood Uε such that T (Uε) ⊂ Uε. We denote by Bε(A) the (open) ε-neighborhood
of a set A, that is, Bε(A) = {x ∈ M : d(x,A) < ε}. We observe that even though

a least element Λ̃ is forward invariant, the image of a ball of radius ε centred at a
point in Λ̃ may not be necessarily contained in Λ̃. However, this ball will surely be
a subset of the open set Uε,1 := Bε(T Λ̃). We define inductively a family of nested

open sets Uε,n := Bε(TUε,n−1) and consider the open neighborhood Uε of Λ̃ defined

3Note that within the general setting of this paper, we do not claim that the values of the

weights in the convex combination that determine the limiting density can be easily identified.
However, for certain perturbations of one dimensional maps, using insights form open dynamical

systems, such weights can be determined. See [17, 3, 4].



PSEUDO-ORBITS, STATIONARY MEASURES AND METASTABILITY 7

by Uε := ∪∞n=1Uε,n. This set is clearly forward invariant under T , and its closure is
disjoint, for ε small enough, from the supports of the other ergodic acim; otherwise,
we can construct an ε pseudo-orbit linking the least element to them.
Let B(Uε) := {f ∈ B|f is supported on Uε}. Since Lεf(x) =

∫
M
pε(y, x)f(y)dy,

the forward invariance of Uε together with x ∈ Bε(Ty), insure that Lε leaves
the Banach space B(Uε) invariant. Then by applying on B(Uε) the Lasota-Yorke
inequality and successively the Ionescu-Tulcea-Marinescu spectral theorem, (see
for instance [9, 18],) we obtain a fixed point Lεhε = hε ∈ B(Uε): the measure
µε = hεm,

∫
Uε hεdm = 1 is therefore stationary.

We now prove that hε is the only fixed point of Lε in B(Uε). Suppose there
is another function h′ε ∈ B(Uε)) with the same property, and let us define the

function ĥ = min(hε, h
′
ε). Then clearly: min(hε, h

′
ε) ≤ hε and min(hε, h

′
ε) ≤

h′ε and thus Lε(min(hε, h
′
ε)) ≤ Lεhε and Lε(min(hε, h

′
ε)) ≤ Lεh′ε which implies

Lε(min(hε, h
′
ε)) ≤ min(Lεhε,Lεh′ε). But min(Lεhε,Lεh′ε) = min(hε, h

′
ε) = ĥ, so

Lεĥ ≤ ĥ and therefore Lεĥ = ĥ. Let us consider hε − ĥ. It is a nonnegative

function and it satisfies Lε(hε − ĥ) = hε − ĥ. By Proposition 2.5 and by taking
ε small enough, we insure that the supports of hε and h′ε will intersect the least
element in a Borel set B of positive Lebesgue measure. Starting from almost any
point in this set we can attain any other point in Uε with a (finite) ε-pseudo-obit
4. Take any x0 ∈ B \ (Dhε−h ∩ DT ) such that (hε − ĥ)(x0) > 0. For any point

x ∈ Uε \ (Dhε−h ∩ DT ) there is an ε-pseudo-orbit {xi}Ni=0 ⊂ M \ (Dhε−h ∩ DT )
which starts from x0 and lands at x = xN . Hence we can apply Lemma 3.1 with

f = hε − ĥ to get Lkε(hε − ĥ)(xk) = (hε − ĥ)(xk) > 0, k = 1, · · · , N . This implies

that (hε−ĥ)(x) > 0 for all x ∈ Uε\(Dhε−h∩DT ), that is hε > h′ε almost everywhere
on Uε, contradicting the fact that

∫
hεdm =

∫
h′εdm = 1. Therefore hε = h′ε almost

everywhere on Uε. We get part 1 of the theorem.
Now we prove part 2. Suppose Λ̃0 is not a least element. We will show that h′ε = 0

on Λ̃0 for the density h′ε be the density of any acsm. We proceed by contradiction.

In this case we have Λ̃0 → Λ̃ for some least element Λ̃, if otherwise Λ̃0 would be
a least element itself. So there is an ε-pseudo-orbit which starts from Λ̃0 and ends
up in Λ̃. Let hε denote the density of the unique acsm supported on Λ̃. If h′ε 6= 0,
we can invoke again the arguments of Lemma 3.1 and part 1 of this theorem to
conclude that hε > 0 on Λ̃ too and also that min(hε, h

′
ε) is a fixed point of Lε.

But the support of such a minimum is a subset of Uε since for ε small enough,
hε = 0 outside Uε. Then by uniqueness of the density hε over Uε we get that
hε = min(hε, h

′
ε). This implies that

∫
M
h′εdm > 1, which is false. � �

of Corollary 2. By Proposition 1 and part 2 of Theorem 2.8, for ε small enough, the
support of any ergodic acsm µε1 intersects the support of a least element. By part 1
of Theorem 2.8 a small neighborhood of this least element supports an ergodic acsm
µε2. By repeating the arguments of the proof of part 2 of Theorem 2.8 we obtain
that those two ergodic acsm must coincide. Finally the unicity of the least element
inside the support of µε1 follows from the fact that two disjoints least elements
are at strictly positive distance and therefore they cannot share the same ergodic
acsm. � �

4The ergodicity insures this possibility for points in the same ergodic component; the equiva-
lence relation allows to pass from one representative to the other in the least element, and finally

the recursive construction of Uε allows to get the external points Uε/Λ.
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4. Pseudo-orbits and metastability

An ergodic dynamical system is said to be metastable if it possesses regions in
its phase space that remain close to invariant for long periods of time. A well-
known approach for detecting such a behaviour is by proving that the corresponding
Perron-Frobenius operator5 has a subdominant real eigenvalue ξε. Then the positive
and negative parts of the eigenfunction corresponding to ξε can be used to identify
sets which remain close to invariant for long periods of time. Such sets are often
called almost invariant sets. For more information on almost invariant sets we refer
the reader to [15] and references therein. An analogous theory also exists in the
framework of non-autonomous dynamical systems, where the analogous sets are
called coherent structures (see for instance [16] and references therein).

In this section we assume that:
(M1) As an operator on B(M), L has 1 as an eigenvalue of multiplicity two. More-
over, if λ 6= 1 is an eigenvalue of L, then |λ| < 1.
(M2) The map T has a unique least element.

Under conditions (M1) and (M2), we will show that random perturbations of T
exhibit a metastable behavior. In particular, we will show that Lε, as an operator
on B, will have 1 as a simple eigenvalue and will have another real eigenvalue ξε
close to 1. Moreover ξε has the second largest modulus among eigenvalues of Lε.
Such a ξε determines the rate of mixing [5] of the random system (X εn).

For this purpose, we first introduce some notation and recall the Keller-Liverani
perturbation theorem [23]. We adapt it to our situation which deals with the two
adapted norms || · ||B = | · |+ || · ||1 and || · ||1. For the unperturbed Perron-Frobenius
operator L let us consider the set

Vδ,r(L) = {z ∈ C : |z| ≤ r or dist(z, σ(L)) ≤ δ},
where σ(L) is the spectrum of L as an operator on B. Further, for ε ≥ 0, we define
the following operator norm

(4.1) |||Lε||| = sup
||f ||B≤1

||Lεf ||1.

Conditions (LY) and (RLY) are necessary for the operators L, Lε to satisfy the
assumptions [23]. Thus, we are ready to state and use the following important
result of [23]:

Theorem 4.1. [23] If limε→0 |||Lε − L||| = 0 then for sufficiently small ε > 0,
σ(Lε) ⊂ Vδ,r(L). Moreover, in each connected component of Vδ,r(L) that does
not contain 0 both σ(L) and σ(Lε) have the same multiplicity; i.e., the associated
spectral projections have the same rank.

Using Theorem 4.1, we show that our random system (Xnε ) exhibits metastable
behavior:

Proposition 4.2. Suppose that

5In our setting, since we assume that Lε satisfies (RLY), the operator Lε is quasi-compact on
B; i.e., ∃ an r ∈ (η, 1) such that outside a ball centred at zero and of radius r, the operator Lε, as

an operator on B, has only discrete spectrum.
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• T satisfies assumptions (M1), (M2);
• limε→0 |||L − Lε||| = 0.

Then, as an operator on B, Lε has 1 as a simple eigenvalue. Moreover, Lε has a
real eigenvalue ξε very close to 1. In particular, ξε has the second largest modulus
among eigenvalues of Lε.
Proof. Assumption (M1) states that the spectrum of L, as an operator on B, sat-
isfies the following: ∃ an r ∈ (η, 1)6 and a δ > 0 such that:

(1) The eigenvalue 1 of L is of multiplicity two;
(2) if λi 6= 1 is an eigenvalue of L, then λi ∈ B(0, r);
(3) B(0, r) ∩B(1, δ) = ∅.

Moreover, under assumptions (M2), using Theorem 2.8, the random map (Xnε ) has
exactly one ergodic acsm; i.e., as an operator on B, Lε has 1 as a simple eigenvalue.
Consequently, by Theorem 4.1, for sufficiently small ε, the spectrum of Lε satisfies
the following:

(1) Lε has a real eigenvalue ξε < 1, with ξε ∈ B(1, δ);
(2) if λi,ε /∈ {1, ξε} is an eigenvalue of Lε, then λi,ε ∈ B(0, r). �

�

Remark 4.3. The condition limε→0 |||L−Lε||| = 0 of Proposition 4.2 can be checked
in several cases. A general theorem is presented in Lemma 8 of [7] for piecewise
expanding maps of the interval endowed with our pair of adapted spaces where the
noise is represented by a convolution kernel. In the multidimensional case, using
quasi-Hölder spaces, the proof is given in Proposition 4.3 of [2]. It should be noted
that the previous result implies that the non-essential spectrum of L is stable [23].

Remark 4.4. The technique followed to prove Proposition 4.2 does not work when
the number of ergodic T -acim is l > 2. This is due to the fact that
a) If l is odd, then l− 1 is even. Therefore, the transfer operator Lε may have l− 1
complex eigenvalues of modulus one sitting in B(1, δ).
b) If l is even, then l−2 is even. Therefore, the transfer operator Lε may have l−2
complex eigenvalues of modulus one sitting in B(1, δ).

Whether Proposition 4.2 is true or not for l > 2 is an interesting question.

5. Random Transformations

In sections 2, 3 and 4 we studied random perturbations of a dynamical system in the
framework of general Markov processes. Nevertheless, it is often useful to deal with
the case when the Markov process is generated by random transformations [26]. In
this setting, we consider an i.i.d. stochastic process (ωk)k∈N with values in Ωε and
with probability distribution θε. We associate with each ω ∈ Ωε a map Tω : M →M
and we consider the random orbit starting from the point x and generated by the
realization ωn = (ω1, ω2, · · · , ωn), defined as : Tωn

:= Tωn
◦ · · · ◦ Tω1

(x). This
defines a Markov process Xε with transition function

(5.1) P (x,A) =

∫
Ωε

1A(Tω(x))dθε(ω),

6By (LY) and (RLY), η is an upper bound on the essential spectral radius of L and the essential
spectral radius of Lε.
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Figure 1. An example of a 1−dimensional map T with two least elements

where A ∈ B(M), x ∈M and 1A is the indicator function of a set A. The transition
function induces an operator U∗ε which acts on measures µ on (I,B(M)) as:

U∗ε µ(A) =

∫
M

∫
Ωε

1A(Tω(x))dθε(ω)dµ(x) =

∫
I

Uε1A(x)dµε(x),

where Uε is the random evolution operator acting on L∞m functions g:

(5.2) Uεg =

∫
Ωε

g ◦ Tωdθε(ω).

A measure µε on (M,B(M)) is called a Xε-stationary measure if and only if, for
any A ∈ B(M),

(5.3) U∗ε µε(A) = µε(A).

We are interested in studying Xε-acsm. By (5.2), one can define the transfer oper-
ator Lε (Perron-Frobenius) acting on L1(M,B(M),m) by:

(5.4) (Lεf)(x) =

∫
Ωε

Lωf(x)dθε(ω),

which satisfies the duality condition

(5.5)

∫
M

gLεfdm =

∫
M

Uεgfdm
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where g is in L∞m and Lω is the transfer operator associated with Tω. It is well
know that µε := ρεm is a Xε-acsm if and only if Lερε = ρε; i.e., ρε is a Xε-invariant
density. In order to use the results of sections 2, 3 and 4, we also assume that
assumptions (P1), (P2)7 (B1)-(B3), (LY) and (RLY) hold. Moreover, we assume
that (5.4) reduces to

(5.6) (Lεf)(x) =

∫
Ωε

Lωf(x)dθε(ω) =

∫
M

pε(z, x)f(z)dz.

In fact, an important example of a random perturbation where Lε can be reduced
as in (5.6) is the case of additive noise. For instance if M = Sq, the q-dimensional
torus 8, let define Tω = T (x)−ω mod Sq, where ω ∈ Sq. Let the density of θε with
respect to the Lebesgue measure dω on Sm, hε, be continuously differentiable with
support contained in the square Ωε ≡ [−ε, ε]q:

∫
dθε =

∫
hε(ω)dω = 1. It is then

straightforward to check that pε(x, y) = hε(Tx− y).

Remark 5.1. The preceding example illustrates very well the relation between the
two approaches used in this paper to deal with randomness. Namely the Markov
chain approach, which was used to prove Theorem 1, and the random transforma-
tions approach which permits to follow the orbit of a point under the concatenation
of the randomly chosen maps. Consequently, the latter allows for more explicit rep-
resentation of objects like the evolution operator and the transfer operator. In fact,
relation (5.6) is a general fact whenever the transition function for the Markov
chain is given by the integral (see (5.1)), P (x,A) =

∫
Ωε

1A(Tω(x))dθε(ω), and the

noise is absolutely continuous, namely θε(ω ∈ Ωε; Tωx ∈ A) =
∫
A
pε(x, z)dz, where

A is a measurable set in M . This in particular means that we can always construct
a Markov chain starting with a random transformation. The converse is also true.
We refer to [26] for the construction, and to [21] for recent results in this direction9.
Finally, we stress that Theorem 1 has been proved for an absolutely continuous
noise. This means that it cannot be applied, in its actual form, to random pertur-
bations on a finite noise space, for which the probability θε is an atomic measure
and the random transfer operator Lε applied to the function f becomes a weighted
operator of the form

∑
j≥1 Lωj

f pωj
, where the weights pωj

,
∑
j≥1 pωj

= 1, are
associated to the values of the random variables ωj .

5.1. 1-dimensional examples. To illustrate our results, we present two simple
examples of 1-dimensional maps. In these examples the Banach space B is consid-
ered to be the space of functions of bounded variation. In Example 5.2 we present
a map that has three ergodic components and two least elements.

Example 5.2. In this example T : [0, 10] → [0, 10]. The graph of T is shown in
Fig. 1. T is piecewise linear and Markov with respect to the partition:

[0, 1), . . . , [4, 5), [5, 5.5) . . . , [9.5, 10].

7(P1) and (P2) in this setting are analogous to:

(P1) For all x ∈ I the measure P (x, ·) defined above on the Borel subsets of I by P (x,A) = θε{ω ∈
Ωε , Tω(x) ∈ A} is absolutely continuous with respect to Lebesgue, namely we have a summable
density pε(x, ·) such that: P (x,A) =

∫
A pε(x, y)dy;

(P2) We have: support of P (x, ·) coincides with Bε(Tx), ∀x ∈ I.
8If M is not the torus we assume that, for all ω ∈ Ωε, Tω(M) ⊆M .
9[21] gives a representation of a local Markov chain perturbation by random diffeomorphisms

close to the unperturbed one. It would be interesting to extend the work of [21] to C2 endomor-
phisms where the corresponding random expanding map satisfy (RLY).
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Figure 2. The graph of the map T for a = 0.1. The least element
for T is the closed interval [ 1

2 + a, 1 − a]. This induces the least

element [ 1
2 + a, 1− a]× S for Φ0 on [0, 1]× S.

One can easily check that T has exactly three ergodic acim whose supports Λ1,Λ2,Λ3

are, respectively, equal to [1, 4], [5.5, 7.5], and [7.5, 9.5]. Moreover, one can easily
check that T admits two least elements. Namely, {Λ1} and {Λ2,Λ3}.

5.2. A 2-dimensional example.

Example 5.3. We now present an example in higher dimensions, in particular the
two-dimensional skew system Φω : [0, 1]×S → [0, 1]×S defined as (x′, y′) = Φω(x, y)
where

x′ = T (x) + ωy

y′ = 2y mod1,

where S denotes the unit circle, and T : [0, 1]→ [0, 1] is given by
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Figure 3. The least element on the right side x > 1
2 for the map

Φω; notice that ω on the top of the figure is just ε = 1/120.
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• for x ∈ [0, a), T (x) = ( 1
2a − 3)x+ a;

• for x ∈ [a, 1
4 ), T (x) = −2x+ (a+ 1

2 );

• for x ∈ [ 1
4 ,

1
2 + a), T (x) = 2x+ (a− 1

2 );

• for x ∈ [ 1
2 + a, 3

4 ), T (x) = −2x+ (2 + a);

• for x ∈ [ 3
4 , 1− a), T (x) = 2x+ (a− 1);

• for x ∈ [1− a, 1], T (x) = (3− 1
2a )x+ (− 5

2 + 1
2a + 2a).

The graph of T is depicted in Fig.2

We considered a piecewise linear map to simply the exposition. However, this is not
really needed to apply our results. In fact, a map with nonlinear branches can be
used in the example as long as we keep uniform dilatation, bounded distortion, and a
C1+ smoothness. For each ω we have a different random map and we compose them
by taking ω uniformly distributed, for instance, between (−ε, ε). In this case θε(ω) =
1
2εdω. The positive parameter a can be chosen equal to 1

10 , in such a way that the
image of the unit interval remains in [0, 1] when ε < a. It is very easy to check
that the unperturbed map Φ0 has two ergodic components which are, respectively,
subsets of [a, 1

2−a]×S and [ 1
2 +a, 1−a]×S and the latter is a least element. These

ergodic components are with respect to absolutely continuous invariant measures
whose densities are the fixed points of the Perron-Frobenius operator associated to
Φ0. The existence of such fixed points follow easily by obtaining a Lasota-Yorke
inequality on a suitable function space, such as the space of functions of bounded
variation [9] or quasi-Hölder functions, [29, 19], which satisfy all the assumptions
required in this paper. Notice that a Lasota-Yorke inequality can be obtained as
well for the random Perron-Frobenius operator associated to the random system,
by using the closeness of the perturbed maps Φω, |ω| ≤ ε for small ε (this means
that the constants η and D in (LY) and (RLY) can be chosen to be the same for the
unperturbed and the perturbed systems10). According to our main theorem, there
must be only one ergodic absolutely continuous stationary measure and this must
be supported in a neighborhood of the least element. In Fig. 4 we show the limit
set of several random orbits taken with ε = 1/120 and a = 0.1. All these random
orbits accumulate in the right hand side of [0, 1]× S as predicted by our theory.
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7. Baladi, V., Young, L.-S. On the spectra of randomly perturbed expanding maps. Comm. Math.
Phys. 156 (1993), no. 2, 355–385.

8. Bonatti, Christian; Daz, Lorenzo J.; Viana, Marcelo, Dynamics beyond uniform hyperbolicity.

A global geometric and probabilistic perspective. Encyclopaedia of Mathematical Sciences, 102.
Mathematical Physics, III. Springer-Verlag, Berlin, 2005.

9. Boyarsky, A., Gora, P., Laws of Chaos, Invariant measures and Dynamical Systems in one

dimension, Birkhäuser, (1997).
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