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Abstract—We propose a reference architecture, SelSus (SELf-
SUStaining Manufacturing Systems) that aims to enable the 
provisioning of diagnostic and prognostic capabilities in 
manufacturing systems that utilize the notions of “smart” automation 
devices.  
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Manufacturing; Component-based design  

I. INTRODUCTION   

Manufacturing organizations today are progressively 
pushing to reduce system downtime and unplanned stoppages 
in response to the increasingly competitive and changing 
markets. This need for more predictable and quick-to-recover 
manufacturing systems coupled with the increasing 
availability of cheaper, more powerful computational 
resources and sensory data on the shop-floor has resulted in an 
ever increasing interest in the provisioning of condition-based 
monitoring and smart diagnostic capabilities in manufacturing 
systems across all levels of the manufacturing enterprise.  

On the other hand a long term direction in the design and 
provisioning of automation devices has been moving towards 
modular, component-based systems where component 
suppliers aim to provide smart components with their own 
control capabilities that can easily be integrated into a wider 
system.  

 Within this context, the SelSus project (SELf-
SUStaining Manufacturing Systems) aims to enable 
component-based diagnosis and prognosis both on the device 
level and the system level through utilizing the notion of smart 
components and sensors accompanied with localized data 
processing and reasoning capabilities. In this paper we 
describe a novel architecture for diagnostics and predictive 
maintenance in manufacturing systems utilizing the concept of 
smart automation devices, or SelComps. In the next sections 
we give a brief introduction about some of the related work 
and then introduce the main concepts in the proposed 
architecture.  

II.  RELATED WORK 

Maintenace and diagnostics have been extensively 
studied in the context of manufacturing systems. Some studies 
tried to establish an understanding of the relationship between 
maintenance strategies and the various perforamce metrics of 
manufacturing organisations. For example in [1] and [2] the 
positive impact of following total productive maintenance 
practices on manufacturing performance, specicifcally on cost 
reduction and enhanced production quality is established. 
Moreover, the changing role of maintenance as a central factor 
in lifecycle management is discussed in [3] then a 
maintenance framework for management cycles of 
maintenance activities is suggested in order to enable the 
idetification of the main technical challenges associated with 
the changing role of maintenance along with the technological 
advances that can potentially support this change.  

Various approaches have been reported in literature 
aiming to realize the vision for preictive or condition-based 
maintenance. For example in [4] a predictive maintenance 
policy is proposed that is based on trying to achieve more 
accurate predictions out of equipment degradation and 
reliability models through utilising realtime operational 
degradation sensory signals. Other work has been focused on 
the optimization of maintenance activities scheduling based on 
predictive degradation models combined with various 
optimization methods. In [5] discrete event simulations are 
used to are used to estimate the effects of maintenace 
scheudles on the systems performance. Grey theory and 
evaluation diagnosis were used in [6] in order to construct 
preventive maintenace forecasting models for semicoductor 
manufacturing machine failures. A predictive maintenance 
decision support tool is presented in [7] that through the use of 
genetic algorithms tries to minimise the optimize system 
availability, and cost with regard to system-maintenance 
constraints. Similarly in [8] genetic algorithms are used in 
combination with Monte Carlo simulation-based degradation 
models in order to optimize both profit and system 
availability.  
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It is beyond the scope of this paper to give a 
comprehensive review for the state of the art of predictive and 
condition-based maintenance. However, interested readers are 
referred to review studies such as [9],[10] and [11]. 

The reasoning approach that is suggested to be used 
for diagnostic and prognostic reasoning purposes in this 
architecture is Bayesian networks [12],[13]. The diagnostic 
process in Bayesian Networks involves inferring the 
probability of the occurrence of an unobservable fault 
hypothesis based on the measured (observed) evidence 
(Symptoms). In other words inferring the probability of ௜ܺ 
being in a certain state, given the observed evidence E, which 
is expressed as ௥ܲሺ ௜ܺ ൌ ܧ ሻ whereܧ|ݔ ൌ 	 ሺݕଵ, … ,  ௝ݕ ,௠ሻݕ
being the observed state of the variable Yj and ሺ ଵܻ, … , ௠ܻሻ ⊂
ሺ ଵܺ, … , ܺ௡ሻ. An important feature of Bayesian Networks that 
makes their use in engineering diagnostic problems 
particularly attractive is the possibilities for models 
construction. Bayesian models can either be constructed from 
expert domain knowledge or from operational data or a 
combination of both.  

The modelling approach that is used in constructing 
the Bayesian models is Object-oriented Bayesian networks 
(OOBN)[14]. This approach enables component-based 
encapsulated modelling on the component level, while 
enabling the individual component models to be integrated 
into a wider system-level model that can be used for reasoning 
on the system level.  

III. OVERALL ARCHITECTURE APPROACH 

The overall strategy of the architecture is based on 
the concept of independent smart automation components 
which can be integrated bottom-up into a wider automation 
system. The underlying intention is to enable the providers of 
automation components to offer more functionality as part of 
their devices but also to allow these devices to be better and 
faster integrated into the specific context of the wider 
automation system they will be used in. Hence, the overall 
concept behind the solution strategy is based on smart 
components or SelComps which represent the automation 
components, smart sensor nodes to allow wider data gathering, 
and mobile input and output devices in the base layer which 
get integrated into a wider system using a common 
communication infrastructure.  
Furthermore, SelSus architecture supports three levels of 
communication which can be roughly categorized into data, 
information and knowledge as shown in Figure 1. 

A. SelComp Concept 

In order to be able to provide prognostic and 
diagnostic functionalities on the device level, the automation 
components or devices in SelSus need to be encapsulated 
using the concept of SelComp. The aim is to encapsulate the 
automation component with its own control and sensory 
capabilities including some of its own local data processing, 
diagnostic and prognostic capabilities. The overall system will 
be an integration of a number of SelComps with the added 

system-level functionalities. This should enable diagnostic and 
prognostic reasoning to be conducted on two levels: locally on 
the SelComp level where the only issues within the scope of 
the SelComp itself are possible to be detected and analyzed; 
and globally on the System-level where various SelComps 
make some or all of their observations available for system-
level reasoning. This will enable system-level visibility in 
capturing and analyzing the state of the system as a whole, 
covering the various influences between individual SelComps. 
Figure 1 shows an overview of the generic internal 
architecture of the SelComp and how it relates to the system-
level functionalities within SelSus. 

Typically a smart automation device (SelComp) will 
have its own actuators, sensors and possibly a dedicated 
Human-Machin Interface (HMI) which are controlled and 
monitored through the device’s control environment. As 
shown in Figure 1 the SelComp concept is based on the four 
layers of content abstraction. The first layer, the Control Layer 
is the real-time control environment of the device which 
controls the various actuators in the device, as well as 
capturing raw sensory data from the device sensors and human 
inputs from operators through the HMI. All of the content on 
this layer is control-related and represents raw content that 
cannot directly be used for meaningful maintenance-related 
decision-making. 

Therefore, within the SelComp these raw control 
signals are then annotated to give them contextual meaning 
within the device. This annotation should enable the 
identification of the context the signal was generated in. This 
can be in the form of providing information such as device, 
process, timing, etc. The annotated signals form what is called 
the data layer and can then be consumed inside the SelComp 
based on their contextual information for further reasoning up 
the content abstraction hierarchy.     

This raw annotated data should then be transformed 
into meaningful events that convey “information” about 
critical and periodic events. To do that the SelComp will need 
to have its own internal statistical data processing 
functionalities that can analyze trends and detect abnormalities 
in the various data streams. In the information layer these 
events are annotated to give them their real-world context 
using the reference data model enriching them with (Product, 
Process and Equipment) information of which a localized 
version is retained in the SelComp (Device Self-Description). 
The SelComp can choose to make some of these events 
available to the System level functionalities through 
advertising for topics and services that interested data 
consumers can subscribe to. Although events generated in this 
information layer of content abstraction are expected to 
convey significant meaning about the health status of the 
device, however such events are unlikely to be useful on their 
own for diagnostic and prognostic reasoning.  

In the knowledge layer the events passed from the 
information layer are expected to be reasoned with in order to 
establish estimations about the state of the system (diagnostic 
and prognostic reasoning). The diagnostic and prognostic 
reasoning capabilities cannot be derived only from generated 



events. There is a need to incorporate engineering domain 
knowledge and the designers’ expertise in constructing the 
models that can then be used to carry out diagnostic and 
prognostic reasoning. This gives rise to the highest level of 
content abstraction, the knowledge layer. The knowledge layer 
is expected to incorporate the design knowledge about the 
system’s behavior in the form of diagnostic and degradation 
models. Within this architecture the diagnostic and prognostic 
modelling approach of choice is Bayesian Networks [12],[13]. 
The events generated in the information layer are then passed 
into the Bayesian reasoning engine to enable the diagnostic 
and prognostic probabilistic reasoning that leads into 
estimating the state of the device based on these observed 
events. The structure of the model is expected to be derived 
from engineering domain knowledge but the parameters are 
expected to be continuously fine-tuned with incoming 
observations in the form of events. This Bayesian model and 
the associated reasoning and learning processes constitute the 
knowledge layer. The SelComp is expected to share some of 
the results from the diagnostic and prognostic reasoning with 

the wider system-level functionalities. Similarly the local 
SelComp Bayesian model (Knowledge Model) itself is also 
expected to be shared with the wider system in order to enable 
the formation of component-based, system-level Bayesian 
knowledge models. 
 

B. SelComp Components 

In this section the main building blocks or the internal 
software components that are required to provide the 
functionalities described in the previous section will be briefly 
discussed. The SelComp concept is defined through the ability 
to provide the aforementioned four content abstraction layers. 
Therefore; for the SelComp to be able to provide the intended 
functionalities it will need to have internal components that 
handle and transform each of the content layers. Firstly to 
handle the interface with the control environment on the data 
layer, there need to be an interfacing component that handles 
all the interactions with the control layer and provides 
meaningful annotated data items to the consumption of the 

higher abstraction levels. The component that will realize this 
functionality is the control Interface. Once the data is 
generated in the data layer it will then need to be turned into 
information or events in the information layer. This 
transformation functionality will need to be carried out by a 
statistical analysis engine. On the knowledge layer there will 
be a need for a reasoning engine that handles the diagnostic 
and prognostic reasoning with the Bayesian models. 

The aforementioned three components are the fundamental 
building blocks for the SelComp concept. However, there are 
other supporting functionalities that need to be present in order 
to enable the SelComp concept to be realized. Figure 2 shows 
the internal structure of the SelComp. In the next subsections 
these components will be briefly explained. 

1) Control Interface 
To capture relevant process information for diagnostic 

purposes, specific variables or signals within the PLC or 
Industrial Control system will be observed and time stamped. 
This component has to act like a passive observer that cannot 
affect or intervene in the control behavior of the core control 
system. On the other communication direction, i.e from SelSus 
to the control environment (Self-Healing scenarios) recipe 
adjustments can be deployed only for pre-defined parameters 
which need to be present within the control program. The 
interface will have to synchronize with the Industrial 
Controller to ensure recipe adjustments are deployed in a 
timely and well controlled manner. In most cases this will 
mean that recipe adjustments can only be deployed at a 
particular point during the control cycle of the Industrial 
Control Program.  

2) Statistical Analysis Engine 
The statistical analysis engine imports a well-structured 

data set and applies various statistical models to analyze 
whether the data items or wider processes behave normally, 
are changing or exhibit abnormal behavior.  
The specific mathematical models required will be largely 
dependent on the specific nature of the SelComp and process 
it is responsible for. It is expected that component developers 
will embed different statistical tools as part of their 
components. This is seen as one approach to add value to the 
SelComp. The statistical functions which could be embedded 
into the SelComp are not limited but need to cover at the very 
least the required discretization to prepare the data points for 
use as part of the Bayesian Diagnosis as this forms the basic 
requirement for the data-to-information transformation. 

3) Reasoning Engine 
The reasoning engine is used to update Bayesian network 

knowledge models for different kinds of questions. This could 
include root cause analysis as part of diagnostics, prediction of 
likely future faults as part of prognosis as well as 
identification of most promising actions. Updating of the 
knowledge model will take historical information and update 
the conditional probabilities of the Bayesian knowledge model 
based on these past known observations. 

 
 

Figure 1 SelComp Concept 



4) Communication Middleware 
The purpose of the communication middleware is to 

enable SelSus-compatible communication within and between 
various SelComp devices, allowing different software 
components to request and send data, information and 
knowledge between each other. The main aim of the 
communication middleware however, is to enable the 
SelComps to communicate events and data items with the 
overall SelSus system functionality.  A publish and subscribe 
communication protocol is expected to be used where data 
providers (SelComps in this case) publish events into 
predefined topics while interested data consumers (on the 
system level) can subscribe to the topics that are relevant to 
their functionality.  

a) SelComp Self-Description Manager 
The Device Self-Description Manager is responsible for 

maintaining and communicating the self-description file of the 
device to the higher level system and other participants in the 
same network. The device declares itself and all the services it 
offers to the other participants in the network. The device can 
also supply its self-description on request. 

b) SelComp Knowledge Model Manager 
The purpose of this manager is to manage the release 

and update of the Bayesian knowledge model for the 
SelComp. The Object Oriented Bayesian Network (OOBN) 

model of the component can be requested from external 
applications (e.g. the system level diagnostic engine). The 
update of the model could either on request, on event or on a 
regular basis. Example for 'on-request' would be to update the 
model just before a Bayesian inference task is being carried 
out. 'On-event' could be in cases that a new maintenance case 
is submitted which may affect the probability tables of the 
hidden states. 'Cyclic' behavior could be required to regularly 
update the status probabilities of the observable states in the 
Bayesian model.  

The manager will have a number of different updating 
functions and will request the required event history 
information from the SelComp Event Buffer. The manager 
will then call the model learning function of the Bayesian 
diagnostic engine to update the conditional probabilities of the 
model. The result will be stored as the new Object Oriented 
Bayesian Model of the SelComp and released to external 
source when requested. 

c) SelComp Event Buffer 
Stores SelComp internal condition information for a finite 

amount of time and makes it accessible for internal and 
external use. The component will store all condition 
information about itself for a predefined amount of time which 
could be dependent on the amount of available storage space. 
It will provide a number of services to retrieve and send data 
to internal and external consumers. The need for this event 

 

Figure 2 SelComp Internal Structure 



buffer arises from the fact that most events will tend to be high 
frequency events due to the high frequency of signal 
generation on the industrial control level. However, for most 
analysis purposes there will be a need to analyze these events 
over a long period of time in order to establish trends and 
abnormalities.   

C. System Integration Concept 

The manufacturing system being monitored by SelSus 
system is expected to be formed of a number of SelComps that 
are integrated to form the SelSus system level functionality. 
Individual SelComps will be designed in a way that would 
allow the local SelSus capabilities to function even when the 
overall SelSus system becomes unavailable. The system 
integration will be triggered either during the original system 
integration (e.g. after system build) or when a change to the 
system (re-configuration, replacement, refurbishment) is being 
carried out. SelComps make some of their internal information 
available to the wider system through advertising for the 
available services using a discovery service that enables newly 
introduced SelComps to advertise their presence in the system 
along with the information they choose to make available 
externally. The data communication service enables the 
synchronization and persistence of data between the local and 
the system level storages.   

Following the notions of component-based modelling, the 
aim here is to enable modular, component-based Bayesian 
models to be constructed on the SelComp level while 
accommodating for the possibility of integrating these local 
models into a wider system-level model that covers the overall 

system. The component models should ideally be self-
sufficient and only require information that is available from 
the SelComp itself. Instances of the component models are 
expected to be communicated from the SelComp level to the 
system level whenever there is a change in the SelComp 
model structure or parameters. This separation should allow 
individual SelComps to independently reason about their own 
states if needed without necessarily having to be plugged in as 
part of a wider SelSus system. 

The main aim behind this is to enable independent 
SelComps to operate normally even when they are not 
connected to an overall SelSus system. This can only be true if 
the diagnostic and prognostic models along with the reasoning 
process are entirely self-contained within each individual 
SelComp and do not depend in their operation on external 
resources, either in the form of observations or reasoning and 
computation.  

D. System-level Components 

The system-level functionality requirements are driven 
following the same approach in specifying the requirements of 
the Slecomp. That is the separation between the three layers of 
content abstraction: data, information and knowledge. The 
system-level functionality results from the integration of 
SelComps and sensor nodes. Figure 3 shows the main building 
blocks on the system level. The sensor nodes can stream data 
which requires that the system level should have data 
processing capability to transform such data streams into 
events. This gives rise to a statistical analysis engine similar to 
the one on the SelComp level. The SelComps are expected to 
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communicate events (information). Therefore, similar to the 
SelComp, on the highest content abstraction level, the 
knowledge level Bayesian models will be used to carry out 
diagnostic and prognostic reasoning. The only difference is 
that on the system level, the system knowledge models will be 
a result of the integration of the individual SelComp models 
that constitute the system. This is made possible through the 
use of Object Oriented Bayesian Networks (OOBN). This will 
necessitate the need for a system knowledge manager that 
ensures the integration of all the SelComp local knowledge 
models into the system-level model. Another important 
requirement will be enabling and triggering the integration of 
the system during the configuration and reconfiguration 
process. This gives rise to a system integration manager.  

 

CONCLUSIONS 

The main concept for a reference architecture to enable the 
provisioning of diagnostic and predictive maintenance 
capabilities in manufacturing systems utilizing the localized 
computational and sensory capabilities of smart automation 
devices was proposed. The proposed architecture aims to 
enable Bayesian Networks-based diagnosis and prognosis both 
on the automation device level as well as on the system level 
through decoupling the modelling and reasoning processes on 
the two levels. The main building blocks and the internal 
structure of the smart automation device within the context of 
this architecture were motivated and described. The proposed 
architecture is currently being deployed and tested as part of an 
ongoing European collaborative research project. Future work 
will include further testing of the performance of the resultant 
systems and benchmarking against similar existing standards.  
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